Trends in Renewable Energy Consumption and Electricity
2012-01-01
Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.
2015-04-15
the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources Energy is a National...Park, NC 27709-2211 Energy Audits, Energy Conservation, Renewable Energy, Solar Energy, Wind Turbine Use, Energy Consumption REPORT DOCUMENTATION PAGE 11...in non peer-reviewed journals: An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non
2017-01-01
The State Energy Data System (SEDS) is the U.S. Energy Information Administration's (EIA) source for comprehensive state energy statistics. Included are estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Production and consumption estimates begin with the year 1960 while price and expenditure estimates begin with 1970. The multidimensional completeness of SEDS allows users to make comparisons across states, energy sources, sectors, and over time.
Sulaiman, Chindo; Abdul-Rahim, A S
2017-11-01
This study examines the three-way linkage relationships between CO 2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO 2 emission. Energy consumption is revealed to be an increasing function of CO 2 emission. Whereas, CO 2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO 2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO 2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.
State energy price and expenditure report 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimatesmore » by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.« less
Energy consumption: Past, present, future
NASA Technical Reports Server (NTRS)
1973-01-01
The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.
Grubert, Emily; Sanders, Kelly T
2018-06-05
The United States (US) energy system is a large water user, but the nature of that use is poorly understood. To support resource comanagement and fill this noted gap in the literature, this work presents detailed estimates for US-based water consumption and withdrawals for the US energy system as of 2014, including both intensity values and the first known estimate of total water consumption and withdrawal by the US energy system. We address 126 unit processes, many of which are new additions to the literature, differentiated among 17 fuel cycles, five life cycle stages, three water source categories, and four levels of water quality. Overall coverage is about 99% of commercially traded US primary energy consumption with detailed energy flows by unit process. Energy-related water consumption, or water removed from its source and not directly returned, accounts for about 10% of both total and freshwater US water consumption. Major consumers include biofuels (via irrigation), oil (via deep well injection, usually of nonfreshwater), and hydropower (via evaporation and seepage). The US energy system also accounts for about 40% of both total and freshwater US water withdrawals, i.e., water removed from its source regardless of fate. About 70% of withdrawals are associated with the once-through cooling systems of approximately 300 steam cycle power plants that produce about 25% of US electricity.
Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030
NASA Astrophysics Data System (ADS)
Sahnoune, F.; Imessad, K.; Bouakaz, D. M.
2017-02-01
The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.
2016-01-01
Italy is the fourth largest energy consumer in Europe, after Germany, France, and United Kingdom. Italy's primary energy consumption is driven by oil and gas, which contributed to over three-quarters of Italy's total consumption. The remaining portion is made up of coal, hydro, and other renewable energy sources. Renewable energy sources, excluding hydroelectricity, have increased their share in Italy's energy consumption from less than 2% in 2005 to nearly 10% in 2015. As a net importer of crude oil and natural gas, Italy is heavily dependent on imports to meet about 90% of its oil and gas needs and to maintain its exports of refined petroleum products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghose, M.K.; Paul, B.
The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next fewmore » years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.« less
NASA Astrophysics Data System (ADS)
Latosov, Eduard; Volkova, Anna; Siirde, Andres; Kurnitski, Jarek; Thalfeldt, Martin
2017-05-01
District heating (DH) offers the most effective way to enhance the efficiency of primary energy use, increasing the share of renewable energy in energy consumption and decreasing the amount of CO2 emissions. According to Article 9 section 1 of the Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, the Member states of the European Union are obligated to draw up National Plans for increasing the number of nearly zero-energy buildings [1]. Article 2 section 2 of the same Directive states that the energy used in nearly zero-energy buildings should be created covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby. Thus, the heat distributed by DH systems and produced by manufacturing devices located in close vicinity of the building also have to be taken into account in determining the energy consumption of the building and the share of renewable energy used in the nearly zero-energy buildings. With regard to the spreading of nearly zero-energy and zero-energy houses, the feasibility of on-site energy (heat and/or electricity) production and consumption in DH areas energy (i.e. parallel consumption, when the consumer, connected to DH system, consumes energy for heat production from other sources besides the DH system as well) needs to be examined. In order to do that, it is necessary to implement a versatile methodological approach based on the principles discussed in this article.
Factors affecting wood energy consumption by U.S. households
Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt
2012-01-01
About 23% of energy derived from woody sources in the U.S. was consumed by households, of which 70% was used by households in rural areas in 2005. We investigated factors affecting household-level wood energy consumption in the four continental U.S. regions using data from the U.S. Residential Energy Consumption Survey. To account for a large number of zero...
ERIC Educational Resources Information Center
Seeger, Raymond J.
1971-01-01
Briefly discusses energy consumption per capita as an index of technical progress, a historical review of concepts related to energy conservation, energy conversion, natural sources, man-made sources, and social implications. (PR)
Sichieri, Rosely; Bezerra, Ilana Nogueira; Araújo, Marina Campos; de Moura Souza, Amanda; Yokoo, Edna Massae; Pereira, Rosangela Alves
2015-05-28
Identification of major sources of energy in the diet helps to implement dietary recommendations to reduce obesity. To determine the food sources of energy consumed by Brazilians, we used the traditional method of ranking energy contribution of selected food groups and also compared days with and without consumption of specific food groups. Analysis was based on two non-consecutive days of dietary record from the Brazilian National Dietary Survey, conducted among 34,003 Brazilians (aged 10 years or more), taking into account the complex design of the survey. Comparison of days with and without consumption gave more consistent results, with sweets and cookies as the most important contributors to energy intake, increasing 992 kJ/d (95% CI 883, 1096) for those days when consumption of cakes, cookies and desserts was reported compared to days without their consumption. Savoury snacks, cheese and sugar-sweetened beverages (SSB) also increase energy intake by about 600 kJ. The only group associated with decreased energy intake was vegetable (-155 kJ; 95% CI -272, -37). Consumption of beans, milk and fruits increased the energy intake by about 210 kJ. In total, the mean energy intake of the group was 8000 kJ. Except for the consumption of vegetables, all of the other ten food groups analysed were associated with increased energy intake. Sweets and cookies may increase the energy intake by 12% and SSB by 7%, indicating that these two groups are major targets for improving healthy eating by reducing energy intake; whereas vegetable intake is associated with the reduction of energy content of the diet.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
NASA Astrophysics Data System (ADS)
Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.
2018-04-01
A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.
Consumption of Energy in New York State: 1972 (with Estimates for 1973).
ERIC Educational Resources Information Center
Hausgaard, Olaf
This report contains tabular data on energy consumption for the calendar year 1972 and a forecast of natural gas requirements for the period 1973 to 1976. Broad sector categories used in the tables are electric utilities, residential commercial, industrial, and transportation. Tables show energy consumption by primary source and major sector for…
Supplementing Conservation Practices with Alternative Energy Sources.
ERIC Educational Resources Information Center
Kraetsch, Gayla A.
1981-01-01
Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, C.; Ensminger, J.; O'Keefe, P.
This book presents papers on the use of wood fuels in Kenya. Topics considered include domestic energy consumption, historical aspects, the Kenyan economy, ecology, supply and demand, forests, aspects of energy consumption in a pastoral ecosystem, estimation of present and future demand for wood fuels, and energy source development.
An Overview of the Energy Crisis
ERIC Educational Resources Information Center
Walters, Edward A.; Wewerka, Eugene M.
1975-01-01
Concludes that coal will be the major U.S. energy source in the near future despite the significant problems associated with an increase in coal consumption. Provides advantages and disadvantages for the four major long-term energy sources: nuclear fission, nuclear fusion, geothermal sources, and solar energy. (MLH)
Glass and Fiber Glass Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Computers, Electronics, and Appliances Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Textiles Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Aluminum Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Fabricated Metals Footprint, October 2012 (MECS 2006) (in Spanish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-19
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Cement Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-01
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Chemicals Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Food and Beverage Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
All Manufacturing Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Forest Products Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Foundries Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Plastics and Rubber Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Transportation Equipment Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Iron and Steel Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Machinery Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Petroleum Refining Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Strycharz-Dudziak, Małgorzata; Nakonieczna-Rudnicka, Marta; Bachanek, Teresa; Kobyłecka, Elżbieta
2014-01-01
Accessibility of the Internet allows obtaining information on different areas of life, including the impact of smoking, alcohol consumption and energy drinks on health. Environmental exposure to tobacco smoke and active smoking are a serious risk for women's health, especially for women in reproductive age and children at any time in their lives. Alcohol is a risk factor for the development of general diseases, and consumed by pregnant women has a toxic effect on the body of women and a child in the prenatal period. Due to the increased consumption of energy drinks containing among others nervous system stimulants and carbohydrates, their consumption should be a conscious choice of the consumers. Knowledge of the health risks resulting from the lifestyle can be a decisive factor for the implementation of health behaviour. The aim of the study was to determine the sources from which men and women acquire information concerning the effects of cigarette smoking, alcohol consumption and energy drinks on health. The respondents interest in the above mentioned subjects was also evaluated. The survey study was carried out in a group of 160 persons (114 women and 46 men), aged 19-60 years, randomly selected from the patients presenting to the Department of Conservative Dentistry with Endodontics of the Medical University of Lublin. An author's questionnaire was prepared for this research. The data were analyzed statistically with the use of Pearson's X2 test. Statistically significant test values were those with p<0.05. The internet was a source of information about the impact of smoking cigarettes on health for 52.63% women and 56.52% men, about the alcohol effect on health for 57.02% women and 45.65% men, while about energy drinks for 61.40 % of women and 47.83% men. Differences between sex of the respondents and indicated source of information were not statistically significant. Obtaining information from television programmes on the impact of smoking on health reported 70.18% of women and 63.04% of men, about alcohol consumption - 66.67% women and 58.70% men respectively. There was no statistically significant correlation between sex of the respondents and obtaining information concerning cigarette smoking and alcohol consumption. Women showed significantly more frequently TV programmes as a source of information about energy drinks (61.40%) compared to males (43.48%) (X2 = 4.28, p <0.05). Interest in the subject of the impact of smoking, alcohol consumption and energy drinks on health was not dependent on sex of the respondents. Most women acquire knowledge about the effects of cigarette smoking, alcohol consumption and energy drinks on health from TV programmes, although the internet is an increasingly important source of information in this respect.
NASA Astrophysics Data System (ADS)
Al-Talibi, A. Adhim
An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e determination. The model was verified and showed a good agreement with billed and measured data from a base case study. In a next phase, a supplemental computational tool can be created for conducting plant energy design comparisons and plant energy and emissions parameters assessments. The main conclusions drawn from this research is that current approaches are severely limited, not covering plant's design phase and not fully considering the balance of energy consumed (EC), energy produced (EP) and the resulting CO2 e emission integration. Finally their results are not representative. This makes reported governmental and institutional national energy consumption figures incomplete and/or misleading, since they are mainly considering energy consumptions from electricity and some fuels or certain processes only. The distinction of the energy trilogy model over existing approaches is based on the following: (1) the ET energy model is unprecedented, prepared to fit WWTP energy assessment during the design and rehabilitation phases, (2) links the energy trilogy eliminating the need for using several models or tools, (3) removes the need for on-site expensive energy measurements or audits, (4) offers alternatives for energy optimization during plant's life-cycle, and (5) ensures reliable GHG emissions inventory reporting for permitting and regulatory compliance.
75 FR 12227 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... proposes to collect the following data from each MECS establishment: (1) For each energy source consumed--consumption (total, fuel and nonfuel uses) and the expenditures for each energy source, energy storage (as... DEPARTMENT OF ENERGY Energy Information Administration Agency Information Collection Activities...
Energy consumption model on WiMAX subscriber station
NASA Astrophysics Data System (ADS)
Mubarakah, N.; Suherman; Al-Hakim, M. Y.; Warman, E.
2018-02-01
Mobile communication technologies move toward miniaturization. Mobile device’s energy source relies on its battery endurance. The smaller the mobile device, it is expected the slower the battery drains. Energy consumption reduction in mobile devices has been of interest of researcher. In order to optimize energy consumption, its usage should be predictable. This paper proposes a model of predicted energy amount consumed by the WiMAX subscriber station by using regression analysis of active WiMAX states and their durations. The proposed model was assessed by using NS-2 simulation for more than a hundred thousand of recorded energy consumptions data in every WiMAX states. The assessment show a small average deviation between predicted and measured energy consumptions, about 0.18% for training data and 0.187% and 0.191% for test data.
Alcohol intake in relation to diet and obesity in women and men.
Colditz, G A; Giovannucci, E; Rimm, E B; Stampfer, M J; Rosner, B; Speizer, F E; Gordis, E; Willett, W C
1991-07-01
We studied relations between alcohol intake, body mass index, and diet in 89,538 women and 48,493 men in two cohort studies. Total energy increased with alcohol consumption (partial r = 0.11, P less than 0.001), and carbohydrate intake decreased from 153 g/d in abstainers to 131 g/d in women drinking 2.5.0-49.9 g alcohol/d. The decrease in carbohydrate intake was due mainly to decreased sugar consumption with higher alcohol intake (partial r = -0.05, P less than 0.001), reflecting decreased energy consumption from sources excluding alcohol. In men total energy increased with alcohol consumption (partial r = 0.19, P less than 0.001), from 7575.6 (abstainers) to 9821.5 kJ/d (greater than 50 g alcohol/d). Energy intake excluding alcohol varied little with alcohol intake (partial r = 0.003, P = 0.48) but sucrose intake decreased with higher alcohol intake. These data suggest that calories from alcohol were added to energy intake from other sources in men, and that in women, energy from alcohol intake displaced sucrose. The consumption of candy and sugar is inversely related to alcohol intake, raising the possibility that it is related to appetite for alcohol.
Commercial Buildings Energy Consumption Survey 2012 - Detailed Tables
2016-01-01
The 2012 CBECS consumption and expenditures detailed tables are comprised of Tables C1-C38, which cover overall electricity, natural gas, fuel oil and district heat consumption, and tables E1-E11, which disaggregate the same energy sources by end use (heating, cooling, lighting, etc.). All of the detailed tables contain extensive row categories of building characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-12-01
This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus toolmore » equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification is needed to maintain space relative humidity (RH) below 60% in a hot-humid climate home. Researchers also concluded that while all the active dehumidification options included in the study successfully controlled space relative humidity excursions, the increase in whole-house energy consumption was much more sensitive to the humidity set point than the chosen technology option. In the high-performance home, supplemental dehumidification equipment results in a significant source energy consumption penalty at 50% RH set point (12.6%-22.4%) compared to the consumption at 60% RH set point (1.5%-2.7%). At 50% and 55% RH set points, A/C with desiccant wheel dehumidifier and A/C with ERV and high-efficiency DX dehumidifier stand out as the two cases resulting in the smallest increase of source energy consumption. At an RH set point of 60%, all explicit dehumidification technologies result in similar insignificant increases in source energy consumption and thus are equally competitive.« less
Relation Decomposing between Urbanization and Consumption of Water-Energy Sources
NASA Astrophysics Data System (ADS)
Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.
2017-12-01
Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.
Demir, Ender; Gozgor, Giray
2018-02-01
The renewable energy sources are considered as the important factor to decrease the level of carbon emissions and to promote the global green economy. Understanding the dynamics of renewable energy consumption, this paper analyzes whether there is a unit root in renewable energy consumption in 54 countries over the period 1971-2016. To this end, the unit root test of Narayan-Popp with two endogenous (unknown) breaks is implemented. The paper finds that renewable energy consumption series are stationary around a level and the time trend in 45 of 54 countries. In other words, renewable energy consumption follows a unit root process only in nine countries: Brazil, China, Colombia, India, Israel, Japan, the Netherlands, Spain, and Turkey. The evidence implies that renewable energy demand policies, which aimed to decrease the carbon emissions, will only have permanent effects in those nine countries.
NASA Technical Reports Server (NTRS)
1975-01-01
Energy consumption in the United States has risen in response to both increasing population and to increasing levels of affluence. Depletion of domestic energy reserves requires consumption modulation, production of fossil fuels, more efficient conversion techniques, and large scale transitions to non-fossile fuel energy sources. Widening disparity between the wealthy and poor nations of the world contributes to trends that increase the likelihood of group action by the lesser developed countries to achieve political and economic goals. The formation of anticartel cartels is envisioned.
Air transportation energy consumption - Yesterday, today, and tomorrow
NASA Technical Reports Server (NTRS)
Mascy, A. C.; Williams, L. J.
1975-01-01
The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David
Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less
Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models
2014-01-01
The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.
Kolasa-Wiecek, Alicja
2015-04-01
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.
Conservation as an alternative energy source
NASA Technical Reports Server (NTRS)
Allen, D. E.
1978-01-01
A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.
The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.
Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H
2016-10-01
In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.
Smart City Energy Interconnection Technology Framework Preliminary Research
NASA Astrophysics Data System (ADS)
Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu
2018-01-01
to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.
Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter
Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.
2012-01-01
PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters—the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. PMID:23012534
Design parameters of a miniaturized piezoelectric underwater acoustic transmitter.
Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J
2012-01-01
PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters--the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level.
ERIC Educational Resources Information Center
Udall, Morris K.
This report reviews America's current energy position. The energy sources studied include oil and gas, coal, nuclear energy, solar energy, and geothermal energy. Each source is analyzed in terms of current use, technology for extracting and developing the energy, research and development funding, and projections for future consumption and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, M. D.
2013-07-01
Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.
Uncertainties in predicting energy consumption in houses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penz, A.J.; Yasky, Y.
1979-01-01
Many efforts are underway to develop public and private sector programs to encourage energy conservation in existing housing. The effectiveness of these programs, which range from public persuasion to implementation of building-performance codes, depends on the ability of their designers to identify at an aggregate level energy-conservation techniques that are economically viable on an individual-household level. Whereas information on average energy consumption per household forms the basis for many conservation programs, variations in household energy consumption threaten to weaken the impact of programs that are too general. Differences in weather, house site conditions, house design and condition, and household behaviormore » are all likely to influence the benefits derived from conservation actions. This paper focuses on sources of variance in household energy consumption and their impact on the effectiveness of various energy-conservation strategies. 45 references.« less
Leanergy(TM): how lean manufacturing can improve energy efficiency.
Riche, Jean-Pierre
2013-01-01
Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.
Investigating energy consumption of coastal vacation rental homes
NASA Astrophysics Data System (ADS)
Myers, Sam
In 2007, vacation rental properties in the United States accounted for more than 22% of the domestic lodging market. These properties are a unique segment of the lodging industry due to their residential design and commercial use. Coastal vacation rental properties represent the largest supply, demand and value of the nation's vacation rental supply. In the case of North Carolina's Outer Banks, tourism is the area's largest source of income, with vacation real estate agencies being the largest accommodation provider. This study uses a multiple regression analysis to investigate the energy consumption of 30 vacation rental homes on Hatteras Island. Hatteras Island's abundant supply of vacation rental homes provided a diverse sample to study energy consumption with a wide range of houses regarding size, age, and location. Since very little research has been conducted on the energy consumption of vacation rental homes, this study aims to contribute detailed information regarding the energy consumption of unique accommodation sector.
Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.
2010-01-01
The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.
Lighting in Commercial Buildings
2009-01-01
Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings.
NASA Astrophysics Data System (ADS)
Mainzer, Stephen P.
We are using more energy every year. Between 2001 and 2011, Pennsylvania residential electricity sales increased by two and a half times the number of new customers, accounting for almost one third of the state's total electricity consumption. Our ability to meet demand by acquiring new energy sources faces several challenges. Confusion surrounds the physical and economic accessibility of remaining fossil fuel sources. Immense land use requirements and subsequent environmental impacts challenge a total shift to renewable energy sources. The laws of thermodynamics limit the potential for new technology to efficiently convert raw energy to consumable sources. As a result, any rational strategy to meet future energy demands must involve conservation. Conservation is a pro-environmental behavior, an act intended to benefit the environment surrounding a person. I posit that a transdisciplinary model, the community landscape model of the pro-environmental behavior, unifies the conceptually analogous - yet disparate - fields of landscape, community, and behavior towards explaining residential energy conservation actions. Specifically, the study attempted to describe links between the physical environment, social environment, and conservation behaviors through a mixed-method framework. Two Pennsylvania townships - Spring and East Buffalo townships - were selected from an analysis of housing, electricity consumption, and land cover trends. Key informants from both townships informed the design of a survey instrument that captured the utility consumption, residential conservation actions, energy and environmental values, types and levels of community engagement, perceived barriers, and socio-demographic information from 107 randomly selected households. A mixed-method analysis produced evidence that place-based values and intention to participate in the community were significantly linked to lower utility consumption in households. People who cared deeply about their town were both more likely to attend community events and use less energy in their home. Other less significant examples of influences from the physical and social environments are presented in chapters 4 and 5.
A solar power plant for Curtin University Malaysia
NASA Astrophysics Data System (ADS)
Palanichamy, C.
2016-03-01
The Curtin University, Sarawak Malaysia (Curtin Sarawak) is the first and largest offshore campus of Curtin University in Perth, Western Australia, and the first foreign university to be established in East Malaysia in partnership with the Sarawak State Government. Today's major concern of Curtin is its monthly electrical energy consumption and the electricity bill since its monthly energy consumption exceeds 0.3 Million kWh, and the corresponding electricity bill surpasses RM 95000. Such a situation necessitates Curtin to curtail the heavy energy consumption with immediate effect. Introducing Renewable Energy Source such as PV Solar Systems is a cost-effective and environmental friendly solution to reduce the exponential increase in energy consumption charges of Curtin. Hence, this paper proposes a 90 kW solar power plant for Curtin Sarawak.
USDA-ARS?s Scientific Manuscript database
Since metabolism of energy is a major source of reactive oxygen species, the quantity of dietary antioxidants needed may be related to energy consumption. Antioxidant status in vivo can be altered by diet, but the postprandial response is dependent upon factors such as 1) antioxidant capacity (AOC) ...
Technological challenges for boosting coal production with environmental sustainability.
Ghose, Mrinal K
2009-07-01
The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.
Paramati, Sudharshan Reddy; Sinha, Avik; Dogan, Eyup
2017-05-01
Increasing economic activities in developing economies raise demand for energy mainly sourced from conventional sources. The consumption of more conventional energy will have a significant negative impact on the environment. Therefore, attention of policy makers has recently shifted towards the promotion of renewable energy generation and uses across economic activities to ensure low carbon economy. Given the recent scenario, in this paper, we aim to examine the role of renewable energy consumption on the economic output and CO 2 emissions of the next fastest developing economies of the world. The study employs several robust panel econometric models by using annual data from 1990 to 2012. Empirical findings confirm the significant long-run association among the variables. Similarly, results show that renewable energy consumption positively contributes to economic output and has an adverse effect on CO 2 emissions. Given our findings, we suggest policy makers of those economies to initiate further effective policies to promote more renewable energy generation and uses across economic activities to ensure sustainable economic development.
Availability of added sugars in Brazil: distribution, food sources and time trends.
Levy, Renata Bertazzi; Claro, Rafael Moreira; Bandoni, Daniel Henrique; Mondini, Lenise; Monteiro, Carlos Augusto
2012-03-01
To describe the regional and socio-economic distribution of consumption of added sugar in Brazil in 2002/03, particularly products, sources of sugar and trends in the past 15 years. The study used data from Household Budget Surveys since the 1980s about the type and quantity of food and beverages bought by Brazilian families. Different indicators were analyzed: % of sugar calories over the total diet energy and caloric % of table sugar fractions and sugar added to processed food/ sugar calories of diet. In 2002/03, of the total energy available for consumption, 16.7% came from added sugar in all regional and socio-economic strata. The table sugar/ sugar added to processed food ratio was inversely proportional to increase in income. Although this proportion fell in the past 15 years, sugar added to processed food doubled, especially in terms of consumption of soft drinks and cookies. Brazilians consume more sugar than the recommended levels determined by the WHO and the sources of consumption of sugar have changed significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Nagle, Nicholas N; Piburn, Jesse O
As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for detailed information regarding residential energy consumption patterns has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy consumption, the majority of techniques are highly dependent on region-specific data sources and often require building- or dwelling-level details that are not publicly available for many regions in the United States. Furthermore, many existing methods do not account for errors in input data sources and may not accurately reflect inherent uncertainties in modelmore » outputs. We propose an alternative and more general hybrid approach to high-resolution residential electricity consumption modeling by merging a dasymetric model with a complementary machine learning algorithm. The method s flexible data requirement and statistical framework ensure that the model both is applicable to a wide range of regions and considers errors in input data sources.« less
Alternative Fuels Data Center: Hawaii Transportation Data for Alternative
Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data Plant Capacity (nameplate, MW) 145 Source: BioFuels Atlas from the National Renewable Energy Laboratory $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the West Coast
Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative
Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon ) 2,573 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail Source: Average prices per gasoline gallon equivalent (GGE) for the Midwest PADD from the Alternative
Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano
2017-02-01
The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity
Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar
2015-09-01
Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers.
Alternative Fuels Data Center: District of Columbia Transportation Data for
Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to (nameplate, MW) 0 Source: BioFuels Atlas from the National Renewable Energy Laboratory Videos Text Version /GGE $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Central
Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption
NASA Astrophysics Data System (ADS)
Saritha, R.; Vinod Chandra, S. S.
2017-10-01
In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.
de Souza, Emerson Santana; Freire, Fátima de Souza; Pires, Josimar
2018-05-13
The main objective of this study was to analyze the impact of energy consumption (divided into renewable and non-renewable sources) and income on CO 2 emissions within the environmental Kuznets curve (EKC) model for the Southern Common Market (MERCOSUR). To do so, the annual panel data collected during the 1990-2014 periods was used. The CO 2 variable, representing carbon dioxide emissions in metric tons per capita, was used as a proxy for the emission of pollutants. The annual data were obtained from the World Bank (World Development Indicators). The sample consisted of the five MERCOSUR member countries: Argentina, Brazil, Paraguay, Uruguay, and Venezuela, comprising a period of 25 consecutive years. The results showed that energy consumption from renewable sources had a negative impact on CO 2 emissions, while the energy consumption from non-renewable sources had a positive impact. The positive impact of economic development on CO 2 emissions was also seen. In addition, this study supports the validity of the EKC hypothesis for the MERCOSUR because GDP (real output) leads to environmental degradation while GDP 2 reduces the level of gas emissions.
DUV light source sustainability achievements and next steps
NASA Astrophysics Data System (ADS)
Roman, Yzzer; Cacouris, Ted; Raju, Kumar Raja Guvindan; Kanawade, Dinesh; Gillespie, Walt; Luo, Siqi; Mason, Eric; Manley, David; Das, Saptaparna
2018-03-01
Key sustainability opportunities have been executed in support of corporate initiatives to reduce the environmental footprint and decrease the running cost of DUV light sources. Previously, substantial neon savings were demonstrated over several years through optimized gas management technologies. Beyond this work, Cymer is developing the XLGR 100, a self-contained neon recycling system, to enable minimal gas consumption. The high efficiency results of the XLGR 100 in a production factory are validated in this paper. Cymer has also developed new light source modules with 33% longer life in an effort to reduce raw and associated resource consumption. In addition, a progress report is included regarding the improvements developed to reduce light source energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadi, S.S.
1982-01-01
A survey was conducted to estimate per capita, per household, and total energy consumption by region, by level of development, and by fuel source in rural West Java. Socio-economic conditions were also measured by using parameters that included income, family size, husband education, wife education, biomass fuelstock, level of village development, and land size. These data are tabulated and used to develop a model that can predict probabilities of fuel use, consumption, and variety.
A High Resolution Technology-based Emissions Inventory for Nepal: Present and Future Scenario
NASA Astrophysics Data System (ADS)
Sadavarte, P.; Das, B.; Rupakheti, M.; Byanju, R.; Bhave, P.
2016-12-01
A comprehensive regional assessment of emission sources is a major hindrance for a complete understanding of the air quality and for designing appropriate mitigation solutions in Nepal, a landlocked country in foothills of the Himalaya. This study attempts, for the first time, to develop a fine resolution (1km × 1km) present day emission inventory of Nepal with a higher tier approach using our understanding of the currently used technologies, energy consumption used in various energy sectors and its resultant emissions. We estimate present-day emissions of aerosols (BC, OC and PM2.5), trace gases (SO2, CO, NOX and VOC) and greenhouse gases (CO2, N2O and CH4) from non-open burning sources (residential, industry, transport, commercial) and open-burning sources (agriculture and municipal solid waste burning) for the base year 2013. We used methodologies published in literatures, and both primary and secondary data to estimate energy production and consumption in each sector and its sub-sector and associated emissions. Local practices and activity rates are explicitly accounted for energy consumption and dispersed often under-documented emission sources like brick manufacturing, diesel generator sets, mining, stone crushing, solid waste burning and diesel use in farms are considered. Apart from pyrogenic source of CH4 emissions, methanogenic and enteric fermentation sources are also accounted. Region-specific and newly measured country-specific emission factors are used for emission estimates. Activity based proxies are used for spatial and temporal distribution of emissions. Preliminary results suggest that 80% of national energy consumption is in residential sector followed by industry (8%) and transport (7%). More than 90% of the residential energy is supplied by biofuel which needs immediate attention to reduce emissions. Further, the emissions would be compared with other contemporary studies, regional and global datasets and used in the model simulations to understand impacts of air pollution on health and climate in Kathmandu Valley and Nepal. Future emissions are being developed based on different possible growth scenarios and policy interventions to mitigate emissions.
NASA Astrophysics Data System (ADS)
Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.
2015-12-01
California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.
NASA Astrophysics Data System (ADS)
Gazder, Uneb
2017-11-01
Energy crisis is raising serious concerns throughout the world. There has been constant rise in energy consumption corresponding to the increase in global population. This sector affects the other pillars of national economy including industries and transportation. Because of these reasons, the traditional fossil-based energy sources are depleting rapidly, resulting in high and unstable energy prices. Saudi Arabia and Pakistan, although different from each other in terms of their economic stability and political systems, still rely heavily on the traditional fossil fuels. This paper presents the comparison of these two countries in terms of their energy consumption and factors affecting it. These factors include, but not limited to, economic development, and growth in population and other sectors such as; industries, transportation, etc. The comparison is also made with the regional and global energy consumption trends and these countries. Moreover, regression models were built to predict energy consumption till 2040 and compare the growth in this sector and share in global energy demand. Energy consumption in oil-rich countries (Saudi Arabia) has been driven through its economic development, while for energy insecure country (Pakistan) it is mainly because of population growth. It was also found that in the next two decades the share of Pakistan in the global energy demand will increase. This concludes that population growth will have more impact on energy consumption than economic growth. It could mean that the shift in energy sector would shift towards sustenance instead of using energy for commercial or industrial usage. Conference Track: Policy and Finance and Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine
2015-08-01
Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.
The Mass Flux of Non-renewable Energy for Humanity
NASA Astrophysics Data System (ADS)
Solomon, Edwin
The global energy supply relies on non-renewable energy sources, coal, crude oil, and natural gas, along with nuclear power from uranium and these finite resources are located within the upper few kilometers of the Earth's crust. The total quantity of non-renewable energy resources consumed relative to the total quantity available is an essential question facing humanity. Analyses of energy consumption was conducted for the period 1800--2014 using data from the U. S. Energy Information Administration (EIA) and World Energy Production, 1800--1985 to determine the balance between non-renewable energy resources consumed and ultimately recoverable reserves. Annual energy consumption was plotted for each non-renewable resource followed by analyses to determine annual growth rates of consumption. Results indicated total energy consumption grew approximately exponentially 3.6% per year from 1800--1975 and was linear from 1975--2014. The ultimately recoverable reserves (URR) plus the total quantity consumed to date equals the total energy resource reserve prior to exploitation (7.15 x 1018 grams). Knowing the original resource quantity and the annual consumption and growth rates, we can forecast the duration of remaining resources using different scenarios. Alternatively, we can use population growth models and consumption trends to determine the per capita allocation trends and model that into the future. Alternative modeling of future resource allocation on a per capita bases suggests that resource lifetime may be significantly less than that predicted from consumption and production dynamics alone.
ERIC Educational Resources Information Center
LaHart, David, Ed.
Fossil fuels, upon which we now depend almost exclusively, are finite resources. Because the environmental problems inherent in large scale fossil fuel consumption are increasingly apparent, the reality of developing alternative energy sources must be faced. Solar energy is the obvious solution to the problem. It is a renewable, clean source that…
Alternative Fuels Data Center: Nebraska Transportation Data for Alternative
Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data Capacity (nameplate, MW) 546 Source: BioFuels Atlas from the National Renewable Energy Laboratory Videos $2.50/gallon $2.50/GGE Diesel $2.89/gallon $2.60/GGE $2.96/gallon $2.66/GGE Source: Average prices per
Alternative Fuels Data Center: Utah Transportation Data for Alternative
Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail for /gallon $2.42/GGE $2.50/gallon $2.50/GGE Diesel $2.82/gallon $2.54/GGE $2.96/gallon $2.66/GGE Source
How Schools Can Plug the Energy Drain
ERIC Educational Resources Information Center
Nation's Schools, 1973
1973-01-01
Schools could conserve energy by following recommendations by Educational Facilities Laboratories: (1) review operations and maintenance personnel qualifications to handle mechanical-electrical equipment, (2) analyze energy consumption to identify waste sources in schools, (3) incorporate energy conservation into all architectural programs for…
Patterns and trends : New York State energy profiles, 1983-1997
DOT National Transportation Integrated Search
1998-12-01
Section 1 presents a comparison of energy consumption, selected energy prices, source of petroleum products, and other factors influencing energy demand and expenditures for the U.S. and NYS. Section 2 provides historic data for primary and net energ...
Energy Sources, Costs and Availability. Technical Report No. 1 of a Study of School Calendars.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Research.
The first in a series of reports consolidates data about energy sources and extrapolates that information to the problems and expenses that New York has and will experience in heating public schools. A presentation of national energy consumption is followed by an examination of the availability of potential alternatives to petroleum and natural…
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
Global and Regional Evaluation of Energy for Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaling; Hejazi, Mohamad; Kyle, Page
Despite significant effort to quantify the inter-dependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process, for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 ± 5 EJ of primary energy consumption in 2010, accounting for 1.2–3% of total global primary energy consumption, of which 58% pertains to surface water, 30% to groundwater, and 12% to non-fresh water, assuming medianmore » energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%) and wastewater treatment (18%). While the USA was the largest E4W consumer from the 1970’s until the 2000’s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.« less
Design and optimization of zero-energy-consumption based solar energy residential building systems
NASA Astrophysics Data System (ADS)
Zheng, D. L.; Yu, L. J.; Tan, H. W.
2017-11-01
Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.
Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; ...
2015-06-26
This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4°C and 21.7°C, respectively. The WA-GSHP shared the same 94.5 m verticalmore » bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.« less
Energy 80 for the 1981-82 School Year. [Student Handbook].
ERIC Educational Resources Information Center
Enterprise for Education, Santa Monica, CA.
Energy 80 is a booklet of energy topics for junior/high/middle school students. The topics are presented in 16 short sections (spreads). Topics include: energy forms; energy rules; solar energy; food energy; origin of fossil fuels; coal; oil and gas production and consumption; nuclear fission; renewable energy sources; history of United States…
Change-over natural and mechanical ventilation system energy consumption in single-family buildings
NASA Astrophysics Data System (ADS)
Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata
2017-11-01
The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.
Minimization of energy and surface roughness of the products machined by milling
NASA Astrophysics Data System (ADS)
Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.
2017-08-01
Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.
Effectiveness of a night radiative cooling system in different geographical latitudes
NASA Astrophysics Data System (ADS)
Tsoy, A. P.; Granovskiy, A. S.; Baranenko, A. V.; Tsoy, D. A.
2017-08-01
Growth of world energy consumption and depletion of energy resources make humanity to constantly work on the creation of the energy efficient technologies and increase usage of the alternative and renewable sources of energy. One of such alternative sources of energy is the night radiative cooling (NRC). NRC is an alternative and renewable source of energy, derived from the effective radiation of the Earth into the Space. If the given surface is located so that it looks to the night sky, then under the particular condition more energy can be generated under the effect of radiative cooling, than received from the atmosphere. As a result the temperature of the surface can be kept lower than the temperature of the ambient air. This effect can be used for creation of the refrigeration systems with the low energy consumption and as a result lower negative influence on the environment. During the research it has been identified that the possibility of the NRC usage is mostly predetermined by the specifics of the climate of the each region. In particular climate conditions the refrigeration systems working on night radiative cooling will be more effective that in others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, David J.; Cai, Hao; Wang, Zhichao
The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of amore » fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.« less
Harvesting alternate energies from our planet
NASA Astrophysics Data System (ADS)
Rath, Bhakta B.
2009-04-01
Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.
Energy: An annotated selected bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)
1979-01-01
This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.
Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.
Silva, Catarina; Rosa, Maria João
2015-01-01
The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production.
Energy Education: The Quantitative Voice
NASA Astrophysics Data System (ADS)
Wolfson, Richard
2010-02-01
A serious study of energy use and its consequences has to be quantitative. It makes little sense to push your favorite renewable energy source if it can't provide enough energy to make a dent in humankind's prodigious energy consumption. Conversely, it makes no sense to dismiss alternatives---solar in particular---that supply Earth with energy at some 10,000 times our human energy consumption rate. But being quantitative---especially with nonscience students or the general public---is a delicate business. This talk draws on the speaker's experience presenting energy issues to diverse audiences through single lectures, entire courses, and a textbook. The emphasis is on developing a quick, ``back-of-the-envelope'' approach to quantitative understanding of energy issues. )
NASA Astrophysics Data System (ADS)
Payne, Christopher Todd
The commercial and industrial sectors of the United States compose roughly one-third of total United States energy consumption. Many studies have suggested that significant cost-effective energy savings opportunities exist in this sector, but there is a gap between predictions of potential and actual investment in energy-efficient technologies. Very few studies have been conducted to examine the decision-making environment of the business sector. In particular, there is essentially no information about how small-business decision-makers make choices about energy consumption. My research is intended to begin the process of understanding this important arena of energy consumption behavior. Using semi-structured interview techniques, I interviewed forty-four businesses in ten states. The focus of the interviews was the business decision-maker's handling and use of the utility bill---the main (often sole) piece of information that links energy consumption to cost. Through the interviews, I collected information about how utility bills are understood and misunderstood, what components of the bill are seen as useful or confusing, and how energy consumption was seen in the context of larger business decision-making. In addition, I collected data on two forms of energy consumption feedback: historic consumption feedback, in which informants compared their current energy use to patterns of their own energy consumption over time; and group comparison consumption feedback, in which informants compared their energy consumption to the consumption of a group of similar energy consumers. Finally, I collected data on sources of information to which decision-makers turned when they wanted to seek more information about energy consumption alternatives. Overall, my findings suggest that the current utility bill format is often misunderstood. In many cases, particularly in the small-business and medium-size-business categories, the link between energy consumption and energy cost is broken. The result is a sense of disempowerment for many consumers. Rather than seeing their energy consumption as something under their control, they instead view the energy bill as an unavoidable component of operating a business, comparing it to other required expenses like rent or taxes. Reaction to changes in the utility bill to provide consumption feedback were mixed. Improvements to self-comparison information provided on the bill were generally viewed positively. On the other hand, energy consumption comparisons with similar groups of customers were viewed with a great deal of skepticism. The idea of group comparison was generally discarded as impractical or invalid. This research improves academic understanding of the energy consumption decision-making environment in the business sector. By developing a better understanding of the context in which these energy consumption decisions are made, the research suggests opportunities for improvements to the mechanisms by which business decision-makers gain information about energy consumption alternatives and energy efficiency opportunities. Improvements to the information provided on the utility bill could enhance the linkage between energy consumption and energy cost for commercial-sector decision-makers, particularly in the small business sector. This could, in turn, lead to greater attention to economic opportunities for energy consumption reduction. Ultimately, improved utility bill information could result in energy and cost savings to business consumers.
Alternative uses of highway rights-of-way : accommodating renewable energy technologies
DOT National Transportation Integrated Search
2012-01-01
In recent years, the capacity, generation, and consumption of energy derived from renewable sources have grown significantly on a global level. To increase renewable energy production in the near term, state and local transportation agencies have rec...
The Control Principles of the Wind Energy Based DC Microgrid
NASA Astrophysics Data System (ADS)
Zaleskis, G.; Rankis, I.
2018-04-01
According to the strategical objectives of the use of the renewable energy sources, it is important to minimise energy consumption of conventional power grid by effective use of the renewable energy sources and provi-ding stable operation of the consumers. The main aim of research is to develop technical solutions that can provide effective operation of the wind generators in the small power DC microgrids, which also means wind energy conversion at as wider generator speed range as possible.
Leroy, Jef L; Gadsden, Paola; Rodríguez-Ramírez, Sonia; de Cossío, Teresa González
2010-03-01
Conditional transfer programs are increasingly popular, but the impact on household nutrient consumption has not been studied. We evaluated the impact of the Programa de Apoyo Alimentario (PAL), a cash and in-kind transfer program, on the energy and nutrient consumption of poor rural households in Mexico. The program has been shown to reduce poverty. Beneficiary households received either a food basket (including micronutrient-fortified milk) or cash. A random sample of 206 rural communities in Southern Mexico was randomly assigned to 1 of 4 groups: a monthly food basket with or without health and nutrition education, a cash transfer with a cost to the government equivalent to the food basket (14 USD/mo) with education, or control. The impact after 14 mo of exposure was estimated in a panel of 5823 households using a double difference regression model with household fixed effects. PAL was associated with increases (P < 0.01) in the consumption of total energy (5-9%), energy from fruits and vegetables (24-28%), and energy from animal source foods (24-39%). It also affected iron, zinc, and vitamin A and C consumption (P < 0.05). The consumption of energy and all nutrients was greater in the food basket group (P < 0.05). Cash and in-kind transfers in populations that are not energy-deficient should be carefully redesigned to ensure that pulling poor families out of poverty leads to improved micronutrient intake but not to increased energy consumption.
Woody biomass and volume for four tree species in Missouri Forests
Charles D. Keating; David R. Larsen
2015-01-01
Global energy supply concerns and increasing energy consumption are forcing our society to look into non-fossil-based energy sources and fuels to supplement humanityâs ever growing energy requirements (Hahn 1984, Jenkins and others 2004, Smith 1985, Stortz 1975)
Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje
2015-01-01
Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853
Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje
2015-01-01
Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin A.; Boardman, Richard; McKellar, Michael
The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 10 18 J) or 102 quads (1 quad = 10 15 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% ofmore » total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to herein as solar industrial process heat [SIPH]), and geothermal energy sources. The possibility of applying electrical heating and greater use of hydrogen is also considered, although these opportunities are not discussed in as much detail.« less
Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine
2014-01-01
Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.
3 CFR - Improving Energy Security, American Competitiveness and Job Creation, and Environmental...
Code of Federal Regulations, 2011 CFR
2011-01-01
... source of fossil fuel consumption and greenhouse gas pollution. I therefore request that the... annual progress in reducing transportation sector emissions and fossil fuel consumption consistent with... substantial annual progress in reducing transportation sector greenhouse gas emissions and fossil fuel...
Vafi, Kourosh; Brandt, Adam
2016-07-19
This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
An Energy Environment Education Program for Grade 6.
ERIC Educational Resources Information Center
Cannon, Esther; And Others
This curriculum guide contains 33 interdisciplinary energy and environmental education activities to help students become familiar with past, present, and alternative sources and forms of energy as well as the economic and environmental cost of energy consumption. Each activity, designed to meet one of five objectives, includes: (1) statement of…
Code of Federal Regulations, 2013 CFR
2013-01-01
... building and any installation therein which are designed to reduce the energy consumption in such building... commercial source of energy used within the building or complex being surveyed such as natural gas, fuel oil... device or devices which are designed to shift energy use to hours of low demand in order to reduce energy...
Code of Federal Regulations, 2012 CFR
2012-01-01
... building and any installation therein which are designed to reduce the energy consumption in such building... commercial source of energy used within the building or complex being surveyed such as natural gas, fuel oil... device or devices which are designed to shift energy use to hours of low demand in order to reduce energy...
Code of Federal Regulations, 2014 CFR
2014-01-01
... building and any installation therein which are designed to reduce the energy consumption in such building... commercial source of energy used within the building or complex being surveyed such as natural gas, fuel oil... device or devices which are designed to shift energy use to hours of low demand in order to reduce energy...
Smith, Andrew P; Richards, Gareth
2018-06-01
Energy drinks are widely consumed, and concerns have been raised about possible negative outcomes. The aim of the present research was to examine associations between consumption of energy drinks, caffeine and junk food, and academic attainment in a sample of UK secondary school students. A total of 3071 students agreed to participate in the study; 2677 completed the survey on one occasion (52.4% female, 47.6% male; approximately 20% of the sample from each school year) and 1660 (49.6% female, 50.4% male) completed the survey a second time, approximately six months later. The academic attainment measure was based on Key Stage 3 and Key Stage 4 grades for Maths and English. In the cross-sectional analyses, logistic regressions showed that consumption of energy drinks was associated with a greater likelihood of being in the low academic achievement group. This was not found for other sources of caffeine. The effect of energy drinks was still significant when demographic, academic and health/lifestyle variables were covaried. However, inclusion of an unhealthy diet variable (junk food) removed the significant effect of energy drinks. Similar observations were made in the longitudinal study, with the poorer attainment of those who consumed energy drinks reflecting breakfast omission and depression. The present findings indicate that consumption of energy drinks is associated with an increased likelihood of poor academic attainment that reflects energy drink consumption being part of an unhealthy diet or being associated with skipping breakfast rather than a more specific effect, such as being a source of caffeine. Although the current study extends previous research by utilising a longitudinal design, intervention studies are now required to better answer questions relating to causality and direction of effect.
The impact of fruit and vegetable intake on weight management
USDA-ARS?s Scientific Manuscript database
Fruit and vegetables (FV) are important sources of phytochemicals, dietary fiber, and low energy density, and their consumption may be protective against obesity. Despite these potential benefits of FV consumption on human health, rates of FV intake remain low throughout the world. This chapter revi...
Dogan, Eyup; Ozturk, Ilhan
2017-04-01
The objective of this study is to explore the influence of the real income (GDP), renewable energy consumption and non-renewable energy consumption on carbon dioxide (CO 2 ) emissions for the United States of America (USA) in the environmental Kuznets curve (EKC) model for the period 1980-2014. The Zivot-Andrews unit root test with a structural break and the Clemente-Montanes-Reyes unit root test with a structural break report that the analyzed variables become stationary at first-differences. The Gregory-Hansen cointegration test with a structural break and the bounds testing for cointegration in the presence of a structural break show CO 2 emissions, the real income, the quadratic real income, renewable and non-renewable energy consumption are cointegrated. The long-run estimates obtained from the ARDL model indicate that increases in renewable energy consumption mitigate environmental degradation whereas increases in non-renewable energy consumption contribute to CO 2 emissions. In addition, the EKC hypothesis is not valid for the USA. Since we use time-series econometric approaches that account for structural break in the data, findings of this study are robust, reliable and accurate. The US government is advised to put more weights on renewable sources in energy mix, to support and encourage the use and adoption of renewable energy and clean technologies, and to increase the public awareness of renewable energy for lower levels of emissions.
Configuration of Wireless Cooperative/Sensor Networks
2008-05-25
WSN), the advantages of cooperation can be further exploited by optimally allocating the energy and bandwidth resources among users based on the... consumption and extend system lifetime [Sin98]. The implementation of a minimum energy routing protocol is discussed in [Dos02a, Dos02b]. An online...power consumption in the network given the required SER at the destination. For example, with source power Ps=20dB, the EP algorithm requires one relay
Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko
2017-07-01
This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.
NASA Astrophysics Data System (ADS)
Volkov, A.; Aristova, A.
2017-06-01
Recently megalopolises have become centres of economy development worldwide. Gradual growth in energy consumption and thereafter - enormous power production and delivery to sustain metropolis’ needs entailed, rapid increase in emissions of hazardous substances in quantities, no longer tolerable for secure residence in majority of these cities. Ekaterinburg, is one of them. In order to abridge harmful pollution in Ekaterinburg and further centralize economic importance of the city, this paper proposes to implement the concept of urban sustainable development/ref. / by introducing alternative energy sources, which would progressively displace traditional fossil fuels. A number of actual cases, where the concept was successfully implemented, were studied and analysed to demonstrate how different shares of renewables can become effective substitutes to conventional energy sources in the cities strongly dependent on them: 1. Energy strategy of Pecs (Hungary); 2. International low carbon city (ILCC) project (Shenzhen, China); 3. Electric power system template of Tangshan city (China). Further, regional environmental and economic specifics of Ekaterinburg were studied to understand power consumption needs and energy generation possibilities, which led authors to conclude on the alternative energy sources feasibility, plot specific flow chart for RES implementation in Ekaterinburg’s power network and outline recommendations for future works.
Adaptive Liquid Crystal Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taheri, Bahman; Bodnar, Volodymyr
2011-12-31
Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. Atmore » a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.« less
A sustainable manufacturing system design: A fuzzy multi-objective optimization model.
Nujoom, Reda; Mohammed, Ahmed; Wang, Qian
2017-08-10
In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.
Gibson, Desmond; MacGregor, Calum
2013-01-01
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing. PMID:23760090
Gibson, Desmond; MacGregor, Calum
2013-05-29
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.
The International Energy Portal includes a powerful data browser that provides country-level energy data; many countries have at least 30 years of historical data. The data browser provides users the ability to view and download complete datasets for consumption, production, trade, reserves, and carbon dioxide emissions for different fuels and energy sources.
41 CFR 102-74.100 - What are conservation programs?
Code of Federal Regulations, 2014 CFR
2014-01-01
... programs are programs that improve energy and water efficiency and promote the use of solar and other renewable energy. These programs must promote and maintain an effective source reduction activity (reducing consumption of resources such as energy, water, and paper), resource recovery activity (obtaining materials...
41 CFR 102-74.100 - What are conservation programs?
Code of Federal Regulations, 2012 CFR
2012-01-01
... programs are programs that improve energy and water efficiency and promote the use of solar and other renewable energy. These programs must promote and maintain an effective source reduction activity (reducing consumption of resources such as energy, water, and paper), resource recovery activity (obtaining materials...
41 CFR 102-74.100 - What are conservation programs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... programs are programs that improve energy and water efficiency and promote the use of solar and other renewable energy. These programs must promote and maintain an effective source reduction activity (reducing consumption of resources such as energy, water, and paper), resource recovery activity (obtaining materials...
Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren Mabee
2016-01-01
The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels. Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources. There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...
Energy management: total program considers all building's systems.
Blan, G J; Browne, K H
1978-09-16
Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.
Wood energy markets, 2010-2011
Francisco Aguilar; Christopher Gaston; Rens Hartkamp; Warren Mabee; Kenneth Skog
2011-01-01
Global wood energy markets continue to grow, driven primarily by demand in the EU and its commitment to meet 20% of energy consumption from renewable sources by 2020. Large investments in industrial pellet-production capacity have been made under expectations of a continuously growing demand, mainly from the EU. Concern about how energy and climate-change policies may...
Energy consumption habits and human health nexus in Sub-Saharan Africa.
Hanif, Imran
2018-05-22
This study explores the impact of fossil fuels consumption, solid fuels consumption for cooking purposes, economic growth, and carbon emissions on human health, with a key emphasis on the occurrence of tuberculosis and the high mortality rate in Sub-Saharan Africa. For its practical insights, the study develops a system Generalized Method of Moment (GMM) for a panel of 34 middle- and lower-middle-income countries from 1995 to 2015. The study adopts a flexible methodology to tackle endogeneity in the variables. The robust results report that the use of solid fuels (charcoal, peat, wood, wood pellets, crop residues) for cooking purposes and the consumption of fossil fuels (oil, coal, gas) are significantly increasing the occurrence of tuberculosis. In addition, the results highlight that the consumption of both solid fuels and fossil fuels has adverse affects on life expectancy by increasing the mortality rate in Sub-Saharan African countries. Results report that renewable energy sources like sun, wind, and water (all with potential to prevent households from direct exposure to particulate matters and harmful gases) as well as a rise in economic growth serve as helping factors to control the occurrence of tuberculosis and to decrease the mortality rate. Moreover, the use of renewable energy sources is serving to lessen emissions of carbon dioxide, nitrogen dioxides, and particulate matters, which can ultimately decrease the mortality rate and extend the life expectancy in Sub-Saharan Africa.
Fuel-conservative engine technology
NASA Technical Reports Server (NTRS)
Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.
1975-01-01
Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.
Alternative Fuels Data Center: Delaware Transportation Data for Alternative
local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Plants 1 Renewable Power Plant Capacity (nameplate, MW) 2 Source: BioFuels Atlas from the National /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Central Atlantic
Energy Use of Home Audio Products in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, K.B.; Meier, A.K.
1999-12-01
We conducted a bottom-up analysis using stock and usage estimates from secondary sources, and our own power measurements. We measured power levels of the most common audio products in their most commonly used operating modes. We found that the combined energy consumption of standby, idle, and play modes of clock radios, portable stereos, compact stereos, and component stereos was 20 TWh/yr, representing about 1.8% of the 1998 national residential electricity consumption.
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
The integration of daylighting with artificial lighting to enhance building energy performance
NASA Astrophysics Data System (ADS)
Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi
2017-10-01
In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.
Trends in energy intake among US children by eating location and food source, 1977-2006.
Poti, Jennifer M; Popkin, Barry M
2011-08-01
Little is known about the influence of location of food consumption and preparation upon daily energy intake of children. To examine trends in daily energy intake by children for foods eaten at home or away from home, by source of preparation, and for combined categories of eating location and food source. The analysis uses data from 29,217 children aged 2 to 18 years from the 1977-1978 Nationwide Food Consumption Survey, 1989-1991 and 1994-1998 Continuing Survey of Food Intakes by Individuals, and 2003-2006 National Health and Nutrition Examination Surveys. Nationally representative weighted percentages and means of daily energy intake by eating location were analyzed for trends from 1977 to 2006. Comparisons by food source were examined from 1994 to 2006. Analyses were repeated for three age groups: 2 to 6 years, 7 to 12 years, and 13 to 18 years. Difference testing was conducted using a t test. Increased energy intake (+179 kcal/day) by children from 1977-2006 was associated with a major increase in energy eaten away from home (+255 kcal/day). The percentage of daily energy eaten away from home increased from 23.4% to 33.9% from 1977-2006. No further increase was observed from 1994-2006, but the sources of energy shifted. The percentage of energy from fast food increased to surpass intake from schools and become the largest contributor to foods prepared away from home for all age groups. For foods eaten away from home, the percentage of daily energy from stores increased to become the largest source of energy eaten away from home. Fast food eaten at home and store-bought food eaten away from home increased significantly. Eating location and food source significantly influence daily energy intake for children. Foods prepared away from home, including fast food eaten at home and store-prepared food eaten away from home, are fueling the increase in total energy intake. However, further research using alternative data sources is necessary to verify that store-bought foods eaten away from home are increasingly store-prepared. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Minimizing water consumption when producing hydropower
NASA Astrophysics Data System (ADS)
Leon, A. S.
2015-12-01
In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and optimal penstock diameter. For instance, it was found that for minimizing water consumption, the ratio of head loss to gross head should not exceed about 15%. Two examples of application are presented to illustrate the procedure for determining optimal flow discharge and optimal penstock diameter for impulse and reaction turbines.
Biomethane production system: Energetic analysis of various scenarios.
Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan
2016-04-01
The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.
Geothermal heat pumps for heating and cooling
NASA Astrophysics Data System (ADS)
Garg, Suresh C.
1994-03-01
Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.
10 CFR 436.100 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... General Operations Plans § 436.100 Purpose and scope. (a) Purpose. The purpose of this subpart is to... plans to establish energy conservation goals, to reduce the rate of energy consumption, to promote the... energy sources, to provide a methodology for reporting their progress in meeting the goals of those plans...
Nuclear Power from Fission Reactors. An Introduction.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Forgotten Fundamentals of the Energy Crisis
ERIC Educational Resources Information Center
Bartlett, Albert A.
1978-01-01
Explains using exponential mathematics, the effect of growth on rate of consuming energy resources. Concludes that we are running out of energy resources at a greater rate than many people think. Lists few options left such as conservation by stopping growth of consumption, recycling, and research to develop alternate sources. (GA)
Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.
Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H
2016-12-01
As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jiang-tao; Lin, Xiao-tao; Zhou, Chen-hui; Zeng, Peng; Xu, Zhong-neng; Sun, Jun
2016-01-01
To explore the consumption of energy sources and swimming performance of juvenile Gambusia affinis and Tanichthys albonubes after starvation, contents of glycogen, lipid and protein, burst swimming speeds (Uburst), and critical swimming speeds (Ucrit) at different starvation times (0, 10, 20, 30 and 40 days) were evaluated. The results showed that, at 0 day, contents of glycogen and lipid were significantly lower in G. affinis than those in T. albonubes, whereas no significant difference in content of protein between two experimental fish was found. Swimming speeds in G. affinis were significantly lower than those in T. albonubes for all swimming performances. After different starvation scenarios, content of glycogen both in G. affinis and T. albonubes decreased significantly in power function trend with starvation time and were close to zero after starvation for 10 days, whereas the contents of lipid and protein were linearly significantly decreased. The slope of line regression equation between content of lipid and starvation time in G. affinis was significantly lower than that in T. albonubes, whereas there was a significantly higher slope of line equation between content of protein and starvation time in G. affinis. 40 days later, the consumption rate of glycogen both in G. affinis and T. albonubes were significantly higher than that of lipid, while the consumption rate of protein was the least. Consumption amounts of glycogen in all experimental fish were the least, G. affinis consumed more protein than lipid, and T. albonubes consumed more lipid than protein. Uburst and Ucrit decreased significantly linearly with starvation time for all experimental fish. Slope of linear equation between Uburst and starvation time was not significantly different between G. affinis and T. albonubes. However, the straight slope between Ucrit and starvation time was significantly lower in G. affinis than that in T. albonubes. These findings indicated that there was close relationship between the consumption of energy sources and swimming performance in starvation. Although the store amounts of energy sources and swimming performance were lower in G. affinis than those in T. albonubes, G. affinis mainly used protein during starvation. The result of more stable lipid content and Ucrit in G. affinis in starvation compared with that in T. albonubes indicated that G. affinis had a fair endurance to starvation, which helped them to adapt to the poor nutrition environment in stream habitat.
Monthly energy review, December 1991. [Contains glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-23
This publication contains data and informative feature articles pertaining to various energy sources. The following topics are discussed: Section 1. energy overview; section 2. energy consumption; Section 3. petroleum; Section 4. natural gas; Section 5. Oil and gas resource development; Section 6. Coal; Section 7. electricity; Section 8. nuclear energy; Section 9. energy prices and Section 10. international energy. Appendix conversion factors a glossary is included. 57 tabs.,
Reasonable use of artificial lighting in building energy saving
NASA Astrophysics Data System (ADS)
Hou, Yuhan
2018-06-01
The architectural light environment is a crucial part of the built environment. Appropriate lighting can not only meet the needs of people's production and life, but also have a positive impact on people's mental state and feelings. Architectural lighting occupies a vital part of building energy consumption. At present, China's lighting electricity consumption has accounted for 12% of the total electricity generated in the country. Promoting lighting energy conservation can play an important role in alleviating energy shortages. This article mainly discusses how to make reasonable use of artificial lighting and choose suitable light sources to reduce the energy consumed by lighting under the condition of satisfying a good architectural light environment.
Biofuels, fossil energy ratio, and the future of energy production
NASA Astrophysics Data System (ADS)
Consiglio, David
2017-05-01
Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.
Metal photonics and plasmonics for energy generation
NASA Astrophysics Data System (ADS)
Nagpal, Prashant
Energy generation from renewable sources and conservation of energy are important goals for reducing our carbon footprint on the environment. Important sources of renewable energy like sun and geothermal energy are difficult to harness because of their energetically broad radiation. Most of our current energy requirements are met through consumption of fossil fuels, and more than 60% of this energy is released to the environment as "waste heat". Thus, converting heat from sun, or inefficient furnaces and automobiles can provide an important source of energy generation. In the present work, I describe design, fabrication, and characterization two and three dimensional patterned metals. These nanofabricated structures can be used as selective emitters to tailor the glow of hot objects. The tailored radiation can then be converted efficiently into electricity using an infrared photocell. This thermophotovoltaic conversion can be very efficient, and useful for converting heat-to-electricity from a wide variety of sources.
Energy: Decisions for Today and Tomorrow. [Student's Guide.] Preparing for Tomorrow's World.
ERIC Educational Resources Information Center
Iozzi, Louis A.; And Others
The purpose of this module is to engage students (grades 7-8) in examining issues that underlie the "energy crisis" and in considering value aspects involved in decisions regarding energy consumption, distribution, sources, and other energy-related issues. The module is comprised of three parts, each focusing on a current, major source…
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Congressional Research Service.
This handbook contains a comprehensive selection of United States and foreign energy statistics in the form of graphs and tables. The data are classified according to resources, production, consumption and demand, energy and gross national product, and research and development. Statistics on energy sources such as coal, oil, gas, nuclear energy,…
Where Does RECS Square Footage Data Come From?
2012-01-01
The size of a home is a fixed characteristic strongly associated with the amount of energy consumed within it, particularly for space heating, air conditioning, lighting, and other appliances. As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of homes with varying characteristics. In-person measurements are vital because many alternate data sources, including property tax records, real estate listings, and, respondent estimates use varying definitions and under-estimate square footage as defined for the purposes of evaluating residential energy consumption.
Alternative Fuels Data Center: West Virginia Transportation Data for
Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon (bbl/day) 20,000 Renewable Power Plants 13 Renewable Power Plant Capacity (nameplate, MW) 751 Source Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD from the
Alternative Fuels Data Center: Nevada Transportation Data for Alternative
. Gasoline Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System Renewable Power Plant Capacity (nameplate, MW) 1,684 Source: BioFuels Atlas from the National Renewable Source: Average prices per gasoline gallon equivalent (GGE) for the West Coast PADD from the Alternative
Alternative Fuels Data Center: Montana Transportation Data for Alternative
. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta Renewable Power Plant Capacity (nameplate, MW) 2,955 Source: BioFuels Atlas from the National Renewable /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Rocky Mountain PADD
International energy annual, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-08
This document presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 200 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy includes hydroelectric, geothermal, solar and wind electric power and alcohol for fuel. The data were largely derived from published sources and reports from US Embassy personnel in foreign posts. EIA also used data from reputable secondary sources, industry reports, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manibog, F.R.
1982-01-01
This study presents the methodology and results of: (1) a rural energy survey that was conducted in a Philippine island community; and (2) a cost-effectiveness analysis of selected conventional and renewable-energy technologies. The rural energy survey section compares different survey techniques and analyzes energy utilization by providing: (1) a breakdown of energy flows and use patterns; (2) information on energy prices, ownership patterns, social relations, and their effects in terms of differential access to energy sources; (3) per household and per capita consumption figures; and (4) a village energy-consumption table. Correlation analysis is used to determine if the stratified, independentmore » socio-economic variables are indicators for dependent energy variables. Results of the economic analysis indicate that renewable-energy technologies are already least-cost alternatives to diesel generation in the village case study. The sensitivity analysis also shows that these technologies remain the least-cost options even if their capital costs were underestimated. The findings of the study are useful to the current Philippine renewable-energy program in terms of providing: (1) information essential for determining end-users' priority energy needs and for improving technology choice and project design; and (2) justification for promoting auto-generation based on renewable energy sources as alternatives to diesel fuel.« less
Zaman, Khalid
2018-02-01
The renewable energy sources are considered the vital factor to promote global green business. The environmental cost of doing business is the pre-requisite to analyze sustainable policies that facilitate the eco-minded entrepreneurs to produce healthier goods. This study examines the impact of renewable energy sources (i.e., hydro energy, biofuel energy, and wind energy) on the environmental cost of doing business in a panel of BRICS (Brazil, Russian Federation, India, China, and South Africa) countries, for the period of 1995-2015. The study employed principal component analysis to construct an "integrated environmental index" by using three alternative and plausible factors including carbon dioxide emissions, fossil fuel energy consumption, and chemicals used in the manufacturing process. The environmental index is used as an interactive term with the three cost of doing business indicators including business disclosure index, the cost of business start-up procedures, and logistics performance index to form environmental cost of doing business (ECDB) indicators. The results of three-stage least squares (3SLS) estimator show that foreign direct investment (FDI) inflows supported the green business while trade openness deteriorates the environment, which partially validates the "pollution haven hypotheses (PHH)" in a panel of countries. There is no evidence for environmental Kuznets curve (EKC) hypothesis; however, there is a monotonic decreasing relationship between per capita income and ECDB indicators. The hydro energy supports the sustainable business environment, while biofuel consumption deteriorates the environmental impact on the cost of business start-up procedures. Finally, wind energy subsequently affected the ECDB indicators in a panel of BRICS countries. The overall results conclude that growth factors and energy sources both have a considerable impact on the cost of doing business; therefore, there is a momentous need to formulate sustainable policy vista to magnetize green business across countries.
Energy: An annotated bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler)
1975-01-01
This bibliography is the first update of a previous energy bibliography dated August 1974. It contains approximately 3,300 selected references on energy and energy related topics from bibliographic sources dated August 1974 through December 1974. The references are arranged by date, with the latest works first, in subject categories. (1) Energy and power - general; resources, supply/demand, and forecasting; policy, legislation, and regulation; research and development, environment; consumption and economics; conservation; and systems analysis. (2) Energy and power sources - general; fossil fuels; hydrogen and other fuels; organic wastes and waste heat; nuclear; geothermal; solar; wind; ocean/water; magnetohydrodynamics and electrohydrodynamics; and gas and steam turbines. (3) Energy and power storage and transmission.
Dietary sources of five nutrients in ethnic groups represented in the Multiethnic Cohort.
Sharma, Sangita; Wilkens, Lynne R; Shen, Lucy; Kolonel, Laurence N
2013-04-28
Data are limited on how dietary sources of energy and nutrient intakes differ among ethnic groups in the USA. The objective of the present study was to characterise dietary sources of energy, total fat, saturated fat, protein, dietary fibre and added sugar for five ethnic groups. A validated quantitative FFQ was used to collect dietary data from 186,916 men and women aged 45-75 years who were living in Hawaii and Los Angeles between 1993 and 1996. Participants represented five ethnic groups: African-American; Japanese-American; Native Hawaiian; Latino; Caucasian. The top ten dietary sources of energy contributed 36·2-49·6% to total energy consumption, with rice and bread contributing the most (11·4-27·8%) across all ethnic-sex groups. Major dietary sources of total fat were chicken/turkey dishes and butter among most groups. Ice cream, ice milk or frozen yogurt contributed 4·6-6·2% to saturated fat intake across all ethnic-sex groups, except Latino-Mexico women. Chicken/turkey and bread were among the top dietary sources of protein (13·9-19·4%). The top two sources of dietary fibre were bread and cereals (18·1-22%) among all groups, except Latino-Mexico men. Regular sodas contributed the most to added sugar consumption. The present study provides, for the first time, data on the major dietary sources of energy, fat, saturated fat, protein, fibre and added sugar for these five ethnic groups in the USA. Such data are valuable for identifying target foods for nutritional intervention programmes and directing public health strategies aimed at reducing dietary risk factors for chronic disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less
Reedy, Jill; Krebs-Smith, Susan M
2010-10-01
The objective of this research was to identify top dietary sources of energy, solid fats, and added sugars among 2- to 18-year-olds in the United States. Data from the National Health and Nutrition Examination Survey, a cross-sectional study, were used to examine food sources (percentage contribution and mean intake with standard errors) of total energy (data from 2005-2006) and energy from solid fats and added sugars (data from 2003-2004). Differences were investigated by age, sex, race/ethnicity, and family income, and the consumption of empty calories-defined as the sum of energy from solid fats and added sugars-was compared with the corresponding discretionary calorie allowance. The top sources of energy for 2- to 18-year-olds were grain desserts (138 kcal/day), pizza (136 kcal/day), and soda (118 kcal/day). Sugar-sweetened beverages (soda and fruit drinks combined) provided 173 kcal/day. Major contributors varied by age, sex, race/ethnicity, and income. Nearly 40% of total energy consumed (798 of 2,027 kcal/day) by 2- to 18-year-olds were in the form of empty calories (433 kcal from solid fat and 365 kcal from added sugars). Consumption of empty calories far exceeded the corresponding discretionary calorie allowance for all sex-age groups (which range from 8% to 20%). Half of empty calories came from six foods: soda, fruit drinks, dairy desserts, grain desserts, pizza, and whole milk. There is an overlap between the major sources of energy and empty calories: soda, grain desserts, pizza, and whole milk. The landscape of choices available to children and adolescents must change to provide fewer unhealthy foods and more healthy foods with less energy. Identifying top sources of energy and empty calories can provide targets for changes in the marketplace and food environment. However, product reformulation alone is not sufficient-the flow of empty calories into the food supply must be reduced.
General equilibrium incidence of energy taxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solow, J.L.
1984-04-01
The pervasiveness of energy in the economy and the numerous ways in which energy taxation can distort resource allocations implies the necessity of a general equilibrium approach to the question of energy tax incidence. The author presents a general equilibrium model that accounts for domestic energy production and energy imports, direct energy consumption and use of energy as an intermediate good, and production of energy intensive and nonenergy intensive goods. He examines the incidence of three broadly-based energy taxation policies: a tax on all energy consumption, a subsidy to domestic energy production, and a tariff on energy imports. The subsidy,more » although not a revenue raising measure, is included because, like the other policies, it acts to reduce energy imports. Such a measure may be of interest by reducing reliance on unstable foreign sources of supply. 12 references, 3 tables.« less
Commonwealth of the Northern Mariana Islands Strategic Energy Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, M. D.; Ness, J. E.
2013-07-01
Describes various energy strategies available to CNMI to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption. The information presented in this strategic energy plan will be used by the CNMI Governor's Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, and expanding the use of a range of energy technologies, including renewable electricity production and buildings energy efficiency and conservation.
History of energy sources and their utilization in Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunsola, O.I.
1990-01-01
Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956more » and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.« less
NASA Astrophysics Data System (ADS)
Rath-Nagel, S.
1981-03-01
Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.
Farajian, Paul; Risvas, Grigoris; Panagiotakos, Demosthenes B; Zampelas, Antonis
2016-09-01
Excessive free sugars consumption has a possible role in health issues, diet quality and obesity development. The present cross-sectional study aimed to identify the major food sources of free sugars in Greek children's diet and investigate possible associations of dietary patterns with free sugars intake. Anthropometric measurements and information on dietary and physical activity habits were obtained. Energy and free sugars intake coming from foods were estimated and principal components analysis was applied to identify dietary patterns. The GRECO (Greek Childhood Obesity) study. Nationwide sample of 3089 children (aged 10-12 years). Adopting WHO criteria, 44·2 % of participants were categorized as having free sugars intake above 10 % of total energy intake. Mean contribution of free sugars to energy intake was 11·2 %, and the major food sources of free sugars differed from those of other childhood populations. Free sugars intake was not associated with overweight/obesity. Multiple linear regression analysis revealed that two lifestyle and dietary patterns, characterized by higher consumption of sweets, fast foods, fries, sugared drinks, frequently ordering/eating outside home and having meals in front of a screen (pattern 1) and higher consumption of whole fruits, 100 % fruit juices, vegetables, legumes and honey/jam (pattern 2), were positively associated with free sugars intake. A large proportion of children exceeded the recommended cut-off and free sugars intake was associated with lifestyle patterns rather than single foods. Public health programmes aiming to reduce free sugars consumption should be tailored on promoting the correct dietary habits of specific childhood populations.
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
2018-01-16
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
An, R
2016-01-01
Calorie intake and diet quality are influenced by the source of food and the place of consumption. This study examines the impacts of fast-food and full-service restaurant consumption on daily energy and nutrient intakes in US adults. Nationally representative data of 18,098 adults 18 years of age and above from the National Health and Nutrition Examination Survey 2003-2010 waves were analyzed. Outcomes included daily intake of total calories and 24 nutrients of public health concern. The key predictors were any food/beverage consumption in a day from fast-food or full-service restaurant, differentiated by consumption at home versus away from home. First-difference estimator addressed confounding bias from time-invariant unobservables such as personal food/beverage preferences by using within-individual variations in diet and restaurant consumption status between two nonconsecutive 24-h dietary recalls. Fast-food and full-service restaurant consumption, respectively, were associated with a net increase in daily total energy intake of 190.29 and 186.74 kcal, total fat of 10.61 and 9.58 g, saturated fat of 3.49 and 2.46 g, cholesterol of 10.34 and 57.90 mg, and sodium of 297.47 and 411.92 mg. The impact of fast-food and full-service restaurant consumption on energy and nutrient intakes differed by sex, race/ethnicity, education, income and weight status. Increased total energy, total fat, saturated fat, cholesterol and sodium intake were substantially larger when full-service restaurant food was consumed away from home than at home. A holistic policy intervention is warranted to target the American's overall dining-out behavior rather than fast-food consumption alone.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gurney, K. R.
2009-12-01
In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood
[Principles of energy sources of totally implantable hearing aids for inner ear hearing loss].
Baumann, J W; Leysieffer, H
1998-02-01
A fully implantable hearing aid consists of a sound receptor (microphone), an electronic amplifier including active audio-signal processing, an electromechanical transducer (actuator) for stimulating the ear by vibration, and an energy source. The energy source may be either a primary cell or a rechargeable (secondary) cell. As the energy requirements of an implantable hearing aid are dependent on the operating principle of the actuator, the operating principles of electromagnetic and piezoelectric transducers were examined with respect to their relative power consumption. The analysis showed that the energy requirements of an implantable hearing aid are significantly increased when an electromagnetic transducer is used. The power consumption of a piezoelectric transducer was found to be less than that of the electronic components alone. The energy needed to run a fully implantable hearing aid under these conditions would be 38 mWH per day. Primary cells cannot provide the energy needed for a minimum operation time of 5 years (70 WH), and therefore rechargeable cells must be used. A theoretical appraisal was carried out on nickel-cadmium, nickel-metal hydride, and lithium-ion cells to determine their suitability as well as to assess the risks associated with their use in an implant. Safety measures were drawn up from the results. Ni-MH cells were found to be the most suitable for use as an energy source for implantable hearing-aids because they are more robust than Li ion cells and their storage capacity is double that of Ni-Cd cells of similar size.
Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.
Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke
2014-05-20
Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.
Energy: An annotated bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler)
1974-01-01
This bibliography is a compilation of approximately 4,300 selected references on energy and energy related topics. The references are arranged by date, with the latest works first, in the following subject categories: (1) energy and power - general; resources, supply/demand, and forecasting; policy, legislation, and regulation; research and development; environment; consumption and economics; and conservation, (2) energy and power sources - general, fossil fuels, hydrogen and methanol, organic wastes and waste heat, nuclear, geothermal, solar, wind, ocean/water, magnetohydrodynamics and electrohydrodynamics, and gas and steam turbines, and (3) energy and power storage and transmission. Literature from bibliographic sources dated January 1972 through July 1974 is covered, with some pertinent literature prior to 1972 included.
Energy history of the United States 1776 to 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
A bicentennial energy wall chart and accompanying manual depict the history of U.S. energy use since 1776. Color bars for wood, coal, animal energy, wind and water power, gaseous and liquid fuels, electricity, solar energy, geothermal energy, and nuclear fuels help tie specific historical events with energy sources. The color bars are arranged vertically in a year-by-year chronology and horizontally by decades. Projections to the year 2001 predict the uses and technologies of each energy source and the possibility of new discoveries. One section of the chart graphically cites the relationship of territorial expansion and energy history, energy consumption andmore » end use, the substitution of one energy source for another, and conversion from one form to another. The chart can be used to trace specific themes, such as Joseph Henry's invention of the electric motor in 1826 to the projection of building-size storage batteries for future city needs. (DCK)« less
Status of geothermal direct use in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bujakowski, W.
1997-12-31
Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less
An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.
Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran
2017-02-01
In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.
The NASA Energy Conservation Program
NASA Technical Reports Server (NTRS)
Gaffney, G. P.
1977-01-01
Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.
An energy management for series hybrid electric vehicle using improved dynamic programming
NASA Astrophysics Data System (ADS)
Peng, Hao; Yang, Yaoquan; Liu, Chunyu
2018-02-01
With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.
Alternative Fuels Data Center: Iowa Transportation Data for Alternative
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 41 Renewable Power Plant Capacity (nameplate, MW) 3,807 Source /gallon $2.60/GGE $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for
Alternative Fuels Data Center: South Carolina Transportation Data for
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 31 Renewable Power Plant Capacity (nameplate, MW) 3,396 Source /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD
Energy from wood biomass: The experience of the Brazilian forest sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, L.; Graca, L.R.; Betters, D.R.
Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being builtmore » in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.« less
Li, Jinguo; Zheng, Yi; Luo, Xiaolin; Lin, Zhongrong; Zhang, Wei; Wang, Xuejun
2016-01-01
To improve its air quality, Beijing, the capital of China, has implemented high-cost pollution control measures mainly focused on shifting its energy mix. However, the effectiveness of these measures has long been questioned, especially given the recent problem of severe haze. The main study objectives are to achieve independent, although indirect, information on Beijing’s air pollution by measuring the level of polycyclic aromatic hydrocarbon (PAH) contamination in topsoil and to examine how soil contamination reflects energy consumption. Soil sampling data from two years, 2004 and 2013, were used. The key findings are as follows: 1) although the total PAH content in the topsoil did not significantly decrease from 2004 to 2013, the composition changed considerably; 2) as of 2013, vehicle emissions replaced coal combustion as the leading source of soil PAHs, which validates the existing policy measures regarding vehicle purchasing and traffic volume; 3) the regional transport of atmospheric pollutants, as indicated by the contribution of coking sources in 2013, is not negligible; and 4) appropriate policy measures are needed to control the growing practice of burning biomass. Overall, this study demonstrates that the PAH contamination in topsoil represents an informative indicator of Beijing’s energy consumption and overall environmental quality. PMID:27633056
NASA Astrophysics Data System (ADS)
Radziszewska, Weronika; Nahorski, Zbigniew
An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.
Estimating Household Travel Energy Consumption in Conjunction with a Travel Demand Forecasting Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garikapati, Venu M.; You, Daehyun; Zhang, Wenwen
This paper presents a methodology for the calculation of the consumption of household travel energy at the level of the traffic analysis zone (TAZ) in conjunction with information that is readily available from a standard four-step travel demand model system. This methodology embeds two algorithms. The first provides a means of allocating non-home-based trips to residential zones that are the source of such trips, whereas the second provides a mechanism for incorporating the effects of household vehicle fleet composition on fuel consumption. The methodology is applied to the greater Atlanta, Georgia, metropolitan region in the United States and is foundmore » to offer a robust mechanism for calculating the footprint of household travel energy at the level of the individual TAZ; this mechanism makes possible the study of variations in the energy footprint across space. The travel energy footprint is strongly correlated with the density of the built environment, although socioeconomic differences across TAZs also likely contribute to differences in travel energy footprints. The TAZ-level calculator of the footprint of household travel energy can be used to analyze alternative futures and relate differences in the energy footprint to differences in a number of contributing factors and thus enables the design of urban form, formulation of policy interventions, and implementation of awareness campaigns that may produce more-sustainable patterns of energy consumption.« less
Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C
2016-09-06
Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.
Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J. P. C.
2016-01-01
Mobile sink is widely used for data collection in wireless sensor networks. It can avoid ‘hot spot’ problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios. PMID:27608022
A novel microgrid demand-side management system for manufacturing facilities
NASA Astrophysics Data System (ADS)
Harper, Terance J.
Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid and DSM program was enabled together, resulting in a total reduction of 37%. On average, peak demand was reduced by 6%, but due to the intermittency of the renewable source and the billing structure for peak demand, only a 1% reduction was obtained. During a billing period, it only takes one day when solar irradiance is poor to affect the demand reduction capabilities. To achieve further demand reduction, energy storage should be introduced and integrated.
Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings
2008-10-21
transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http
Code of Federal Regulations, 2014 CFR
2014-04-01
... items necessary for its use, the type of energy source (e.g., oil, natural gas, coal, electricity), and... provided with respect to each climate zone. The applicant may use the Department of Energy's climatic zones... result in reduction of oil or natural gas consumption by replacing an item which uses such an energy...
Distributed Power Systems for Sustainable Energy
2012-10-01
capital investment in state-of- the-art cogeneration technologies, renewable sources, energy storage, and interconnection hardware and software. It is...8 capacity may not be well suited to support building or campus-scale microgrids. This is because new thermal and electrical energy storage devices...constraints, as well as the site location, weather, and consumption patterns. These factors change over the life of the energy microgrid. • Tradeoffs
Bezerra, Ilana Nogueira; de Moura Souza, Amanda; Pereira, Rosangela Alves; Sichieri, Rosely
2013-04-14
The objectives of the present study were to estimate the dietary contribution of away-from-home food consumption, to describe the contribution of away-from-home foods to energy intake, and to investigate the association between eating away from home and total energy intake in Brazilian urban areas. In the first Brazilian Nationwide Dietary Survey, conducted in 2008-9, food records were collected from 25 753 individuals aged 10 years or older, living in urban areas of Brazil. Foods were grouped into thirty-three food groups, and the mean energy intake provided by away-from-home food consumption was estimated. Linear regression models were used to evaluate the association between away-from-home food consumption and total energy intake. All analyses considered the sample design effect. Of the total population, 43 % consumed at least one food item away from home. The mean energy intake from foods consumed away from home was 1408 kJ (337 kcal), averaging 18 % of total energy intake. Eating away from home was associated with increased total energy intake, except for men in the highest income level. The highest percentage of away-from-home energy sources was for food with a high content of energy, such as alcoholic beverages (59 %), baked and deep-fried snacks (54 %), pizza (42 %), soft drinks (40 %), sandwiches (40 %), and sweets and desserts (30 %). The consumption of foods away from home was related to a greater energy intake. The characterisation of away-from-home food habits is necessary in order to properly design strategies to promote healthy food consumption in the away-from-home environment.
Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.
Chun, Ock K.; Chung, Chin E.; Wang, Ying; Padgitt, Andrea; Song, Won O.
2010-01-01
This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases. PMID:22254059
Changes in intakes of total and added sugar and their contribution to energy intake in the U.S.
Chun, Ock K; Chung, Chin E; Wang, Ying; Padgitt, Andrea; Song, Won O
2010-08-01
This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1-18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.
Extreme prices in electricity balancing markets from an approach of statistical physics
NASA Astrophysics Data System (ADS)
Mureddu, Mario; Meyer-Ortmanns, Hildegard
2018-01-01
An increase in energy production from renewable energy sources is viewed as a crucial achievement in most industrialized countries. The higher variability of power production via renewables leads to a rise in ancillary service costs over the power system, in particular costs within the electricity balancing markets, mainly due to an increased number of extreme price spikes. This study analyzes the impact of an increased share of renewable energy sources on the behavior of price and volumes of the Italian balancing market. Starting from configurations of load and power production, which guarantee a stable performance, we implement fluctuations in the load and in renewables; in particular we artificially increase the contribution of renewables as compared to conventional power sources to cover the total load. We then determine the amount of requested energy in the balancing market and its fluctuations, which are induced by production and consumption. Within an approach of agent-based modeling we estimate the resulting energy prices and costs. While their average values turn out to be only slightly affected by an increased contribution from renewables, the probability for extreme price events is shown to increase along with undesired peaks in the costs. Our methodology provides a tool for estimating outliers in prices obtained in the energy balancing market, once data of consumption, production and their typical fluctuations are provided.
Alternative Fuels Data Center: Arkansas Transportation Data for Alternative
Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on Renewable Power Plant Capacity (nameplate, MW) 1,349 Source: BioFuels Atlas from the National Renewable $2.50/gallon $2.50/GGE Diesel $2.61/gallon $2.35/GGE $2.96/gallon $2.66/GGE Source: Average prices per
ERIC Educational Resources Information Center
Walker, Kenneth; Timmerman, Linda
1980-01-01
Describes Navarro College's (Corsicana, TX) program to reduce kilowatt hour consumption through alternative energy sources and energy costs through transition to a four-day/40-hour work week. Presents results of studies of employee performance levels, community response, and the cost effectiveness of the program. Lists benefits for the student,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harto, C. B.; Schroeder, J. N.; Horner, R. M.
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less
Cogo, Carolina; Pérez-Giménez, Julieta; Rajeswari, Chandrasekar B; Luna, María F; Lodeiro, Aníbal R
2018-01-01
Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium's carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin-Benson-Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO 2 -enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O 2 -consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O 2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O 2 -consumption rates of a lafR ::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O 2 -consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.
NASA Technical Reports Server (NTRS)
McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.
2012-01-01
There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility
Evaluation of the potential for operating carbon neutral WWTPs in China.
Hao, Xiaodi; Liu, Ranbin; Huang, Xin
2015-12-15
Carbon neutrality is starting to become a hot topic for wastewater treatment plants (WWTPs) all over the world, and carbon neutral operations have emerged in some WWTPs. Although China is still struggling to control its water pollution, carbon neutrality will definitely become a top priority for WWTPs in the near future. In this review, the potential for operating carbon neutral WWTPs in China is technically evaluated. Based on the A(2)/O process of a typical municipal WWTP, an evaluation model is first configured, which couples the COD/nutrient removals (mass balance) with the energy consumption/recovery (energy balance). This model is then applied to evaluate the potential of the organic (COD) energy with regards to carbon neutrality. The model's calculations reveal that anaerobic digestion of excess sludge can only provide some 50% of the total amount of energy consumption. Water source heat pumps (WSHP) can effectively convert the thermal energy contained in wastewater to heat WWTPs and neighbourhood buildings, which can supply a net electrical equivalency of 0.26 kWh when 1 m(3) of the effluent is cooled down by 1 °C. Photovoltaic (PV) technology can generate a limited amount of electricity, barely 10% of the total energy consumption. Moreover, the complexity of installing solar panels on top of tanks makes PV technology almost not worth the effort. Overall, therefore, organic and thermal energy sources can effectively supply enough electrical equivalency for China to approach to its target with regards to carbon neutral operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-10-01
This paper reports on the Austrian research project "Renewable energy in Austria: Modeling possible development trends until 2020". The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006-2020, using the integrated environment-energy-economy model "e3.at". The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy.
Annual energy outlook 1991 with projections to 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-01
The report examines a range of scenarios by considering and comparing the effects of three selected variations from a reference case. Fundamental forces that determine the direction of energy markets will remain in effect. Recent events and high prices may have some residual impacts on Government policy, industrial energy planners, and consumers. Higher oil prices could stimulate interest in conservation and renewable energy and encourage growth in domestic energy production capacity. United States energy consumption has held steady for the third year in a row. Oil imports increased and use of electrical power increased. Legislative initiatives could set in motionmore » significant changes in energy markets world wide. A proposed National Energy Strategy has primary goals of economic growth, energy security and environmental improvement. Energy resources and energy uses of the United States are discussed. Energy resources include petroleum, natural gas, coal, and renewable energy sources. Statistical data is presented in various tables and graphs for energy consumption by end use sector. (JF)« less
Annual energy outlook 1991 with projections to 2010
NASA Astrophysics Data System (ADS)
1991-03-01
The report examines a range of scenarios by considering and comparing the effects of three selected variations from a reference case. Fundamental forces that determine the direction of energy markets will remain in effect. Recent events and high prices may have some residual impacts on Government policy, industrial energy planners, and consumers. Higher oil prices could stimulate interest in conservation and renewable energy and encourage growth in domestic energy production capacity. United States energy consumption has held steady for the third year in a row. Oil imports increased and use of electrical power increased. Legislative initiatives could set in motion significant changes in energy markets world wide. A proposed National Energy Strategy has primary goals of economic growth, energy security and environmental improvement. Energy resources and energy uses of the United States are discussed. Energy resources include petroleum, natural gas, coal, and renewable energy sources. Statistical data is presented in various tables and graphs for energy consumption by end use sector.
Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng
2014-01-01
An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.
Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng
2014-01-01
An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233
2016-01-01
Taiwan has very limited domestic energy resources and must rely on oil and coal imports to satisfy the majority of its energy demand. According to Taiwanese official statistics, oil, coal, and natural gas made up 48%, 29%, and 13% of Taiwan’s total primary energy consumption in 2015, respectively, while the remainder was mostly nuclear (7%) and smaller amounts of various renewable energy sources. Total energy import dependence was about 98%, according to the Taiwanese government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolmasquim, M.T.; Szklo, A.S.; Cohen, C.
This paper presents the development of energy consumption in the Brazilian industrial sector and energy efficiency potential based on the analysis undertaken through a model developed in the Energy Planning Program at COPPE/UFRJ, known as the Integrated Energy Planning Model (IEPM). The study starts by presenting the IEPM, which is a technical and economic parameter-based model designed to forecast energy supplies and consumption for all economic sectors in Brazil, within three scenarios. Outlines of all three scenarios are presented, as they were constructed according to certain specific assumptions. The industrial sector was broken down into eleven sub-sectors: food and beverages,more » ceramics, cement, iron and steel, mining and pelletizing, ferroalloys, non-ferrous metals and others (metallurgy), chemicals, pulp and paper, textiles and other industries (MME, 1998). All these sub-sectors will also be presented as well as the results of the scenario forecasts. Results deriving from these forecasts come from very specific studies that analyze all process steps in each sub-sector in order to propose energy replacements, efficiency improvements of structural production alterations that result in major potential energy consumption reductions. Last but not least, this paper gives the development forecasts deriving from the three scenarios over ten years, with their contributions to energy efficiency in the Brazilian industrial sector, showing that the authors can reduce energy consumption in the Brazilian industrial sector by: substituting less efficient processes by more efficient ones, through the conversion of final energy into usable energy, basically, in the cement and aluminum industries; replacing equipment and energy sources; modifying product mix of several industries (pulp and paper), assigning top priority to producing goods with higher added value that are less energy intensive, and, finally, reducing the share held by some energy intensive sectors in the industrial output.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant
This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the datamore » sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.« less
Ha, Eun-Jeong; Caine-Bish, Natalie
2011-01-01
To estimate current consumption of whole grains in college students and determine whether there would be an increase in whole-grain consumption after the students completed an interactive introductory nutrition course focusing on disease prevention. Eighty college students, 18-24 years old, participated in the study. Grain and whole-grain consumption, whole-grain food sources, and energy intake were measured before and after the nutrition course. Repeated-measures analysis of variance was performed. After the study, whole-grain intake significantly increased from 0.37 ounces (oz) to 1.16 oz (P < .001), whereas total grain intake remained the same (3.07 oz). The number of whole-grain food sources increased from 7 to 11 food items after the intervention. A general nutrition course can be used as an avenue to increase whole-grain intake by college students. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
Energy and Nutrient Intake From Pizza in the United States
Nguyen, Binh T.; Dietz, William H.
2015-01-01
BACKGROUND AND OBJECTIVE: Pizza consumption is a top contributor to children’s and adolescents’ caloric intake. The objective of this study was to examine children’s and adolescents’ pizza consumption patterns and its impact on their energy and nutrient intake. METHODS: Twenty-four–hour dietary recall data for children aged 2 to 11 and adolescents aged 12 to 19 were drawn from the 2003–2004, 2005–2006, 2007–2008, and 2009–2010 National Health and Nutrition Examination Survey. We tested changes in consumption patterns, including by race/ethnicity, income, meal occasion, and source. Individual-level fixed effects regression models estimated the impact of pizza consumption on total energy intake (TEI) and intakes of sugar, saturated fat, and sodium. RESULTS: From 2003–2004 to 2009–2010, overall energy intake from pizza declined 25% among children (110 to 83 kcal, P ≤ .05). Among adolescents, although caloric intake from pizza among those who consumed pizza fell (801 to 624 kcal, P ≤ .05), overall pizza intake remained unchanged due to slightly higher pizza consumption prevalence. For children and adolescents, pizza intake fell (P ≤ .05) at dinner time and from fast food. For children and adolescents, respectively, pizza consumption was significantly associated with higher net daily TEI (84 kcal and 230 kcal) and higher intakes of saturated fat (3 g and 5 g) and sodium (134 mg and 484 mg) but not sugar intake, and such affects generally did not differ by sociodemographic characteristics. Pizza consumption as a snack or from fast-food restaurants had the greatest adverse impact on TEI. CONCLUSIONS: The adverse dietary effects of pizza consumption found in this study suggest that its consumption should be curbed and its nutrient content improved. PMID:25601973
Energy and nutrient intake from pizza in the United States.
Powell, Lisa M; Nguyen, Binh T; Dietz, William H
2015-02-01
Pizza consumption is a top contributor to children's and adolescents' caloric intake. The objective of this study was to examine children's and adolescents' pizza consumption patterns and its impact on their energy and nutrient intake. Twenty-four-hour dietary recall data for children aged 2 to 11 and adolescents aged 12 to 19 were drawn from the 2003-2004, 2005-2006, 2007-2008, and 2009-2010 National Health and Nutrition Examination Survey. We tested changes in consumption patterns, including by race/ethnicity, income, meal occasion, and source. Individual-level fixed effects regression models estimated the impact of pizza consumption on total energy intake (TEI) and intakes of sugar, saturated fat, and sodium. From 2003-2004 to 2009-2010, overall energy intake from pizza declined 25% among children (110 to 83 kcal, P ≤ .05). Among adolescents, although caloric intake from pizza among those who consumed pizza fell (801 to 624 kcal, P ≤ .05), overall pizza intake remained unchanged due to slightly higher pizza consumption prevalence. For children and adolescents, pizza intake fell (P ≤ .05) at dinner time and from fast food. For children and adolescents, respectively, pizza consumption was significantly associated with higher net daily TEI (84 kcal and 230 kcal) and higher intakes of saturated fat (3 g and 5 g) and sodium (134 mg and 484 mg) but not sugar intake, and such affects generally did not differ by sociodemographic characteristics. Pizza consumption as a snack or from fast-food restaurants had the greatest adverse impact on TEI. The adverse dietary effects of pizza consumption found in this study suggest that its consumption should be curbed and its nutrient content improved. Copyright © 2015 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Zielinski, F.; Pape, T.; Wenzhöfer, F.; Seifert, R.; Dubilier, N.
2005-12-01
The ultramafic hosted Logatchev hydrothermal vent field at the slow spreading Mid-Atlantic Ridge (MAR) exhibits unusually high hydrogen concentrations due to serpentinization of ultramafic rocks. Endmember H2-concentrations here have been calculated to be as high as 12 mM which is significantly higher than at most other vent sites along the MAR. Hydrogen is a potential energy source for bacteria providing an energy yield of roughly 240 kJ/mol if oxidized with oxygen. Hence, the energy yield is even higher than for conventional aerobic respiration which liberates 220 kJ/mol. The ability to use H2 as an energy source has been shown for a variety of free-living bacteria. However, to date no other energy sources besides methane and sulfide have been identified for vent (or seep) symbionts. Here we show that H2 is consumed by endosymbiotic bacteria of the Logatchev vent mussel Bathymodiolus puteoserpentis. B. puteoserpentis is known to live in dual symbiosis with methane- and sulfide-oxidizing bacteria that occur intracellularly in specialized gill cells called bacteriocytes. The methanotrophic symbionts use methane as both an energy and carbon source whereas the thiotrophic symbionts use H2S as an energy and dissolved CO2 as a carbon source. Hydrothermal fluids carrying methane and sulfide provide the energy for the bacteria and the bacteria in turn provide the mussel with carbon compounds. The mussel on the other hand supplies its symbionts with a constant fluid flow and, by hosting them offers an ideal ecological niche. Freshly dissected gill pieces of B. puteoserpentis incubated in chilled sea water containing hydrogen gas readily consumed H2. The consumption of H2 over time was significantly higher in gill tissues than in symbiont-free mussel tissue indicating that the symbiotic bacteria are responsible for the observed activity. H2-consumption rates were similar in mussels from two different sampling sites, Irina II: 37 nmol h-1 (ml gill)-1 and Quest: 31 nmol h-1 (ml gill)-1. The hydrogen concentrations at these sites did not vary greatly either (Irina II 5.9 μM, Quest 4.2 μM). The H2-oxidation rates decreased significantly after removal of B. puteoserpentis from vent fluids for only 1 day suggesting that hydrogen uptake may be regulated by H2-availability or that bacteria were digested by the host due to starvation. The methane-oxidizing symbiont may be responsible for the observed hydrogen consumption. H2-uptake has been shown for the free-living methanotroph Methylococcus capsulatus and its genes coding for a membrane-bound H2-uptake hydrogenase (hupS and hupL) have been cloned and sequenced. We are currently trying to identify the symbiont responsible for H2-consumption by linking the phylogeny of the symbionts with their physiology using simultaneous fluorescence in situ hybridisation of rRNA and mRNA. Furthermore, we plan to analyze the stable isotope composition of hydrogen in the vent fluids and in the mussels.
Renewable energy sources in Bulgaria: Current state and trends
NASA Astrophysics Data System (ADS)
Kolev, K.
The over-dependency of Bulgaria on imported fuel stressed the importance of developing a new energy strategy based on energy saving which includes also using renewable energy sources (RES). The target is the substitution of at least 2 percent of the real primary energy consumption with RES by 2010. The author gives a generalized analysis of the available RES in Bulgaria -solar, wind, geothermal, biomass and mini-hydraulic. The potentialities of each source for its usage as a suitable energy supply are pointed out, as well as the current status of research and implementation work, problems connected with legislation, financing and production of particular facilities. The governmental policy concerning RES is considered briefly. A description is given to the project 'Technical and Economical Assessment of Possibilities for Expansion of the RES-part in the Energy Balance of the Country' developed and started in 1994 in the framework of the PHARE program.
NASA Astrophysics Data System (ADS)
Servigne, S.; Gripay, Y.; Pinarer, O.; Samuel, J.; Ozgovde, A.; Jay, J.
2016-09-01
Concerning energy consumption and monitoring architectures, our goal is to develop a sustainable declarative monitoring architecture for lower energy consumption taking into account the monitoring system itself. Our second is to develop theoretical and practical tools to model, explore and exploit heterogeneous data from various sources in order to understand a phenomenon like energy consumption of smart building vs inhabitants' social behaviours. We focus on a generic model for data acquisition campaigns based on the concept of generic sensor. The concept of generic sensor is centered on acquired data and on their inherent multi-dimensional structure, to support complex domain-specific or field-oriented analysis processes. We consider that a methodological breakthrough may pave the way to deep understanding of voluminous and heterogeneous scientific data sets. Our use case concerns energy efficiency of buildings to understand relationship between physical phenomena and user behaviors. The aim of this paper is to give a presentation of our methodology and results concerning architecture and user-centric tools.
Tao, Feng; Li, Ling; Xia, X. H.
2012-01-01
The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517
Tao, Feng; Li, Ling; Xia, X H
2012-01-01
The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.
JPRS Report, Science & Technology, Japan
1987-10-27
large untapped deposits of low-grade coal in such countries as Thailand and Indonesia . China has large shares of both the production and consumption...their supply and demand situations well balanced. Among these nations, production and consumption of coal are also well balanced, and there are...of coal in this region. Among other energy sources, natural gas is still in the initial stages of development and utilization, and hydropower
NASA Glenn Research Center Experience Using DOE Midwest Region Super ESPC
NASA Technical Reports Server (NTRS)
Zala, Laszlo F.
2000-01-01
The energy crisis of 1973 prompted the Federal Government and private industry to look into alternative methods to save energy. At the same time the constant reduction of operations and maintenance funds during the last 5 years forced Glenn Research Center (GRC) to look for alternative funding sources to meet the mandate to reduce energy consumption. The Super Energy Savings Performance Contract (ESPC) was chosen as a viable source of facility improvement funding that can create larger project scope and help replace aging, inefficient equipment. This paper describes Glenn's participation in the Department of Energy (DOE) Super ESPC program. This program provided Glenn cost savings in the performance of energy audits, preparation of documents, evaluation of proposals, and selection of energy service company (ESCO).
Energy conservation and solar retrofit analysis of a large office building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Hepner, M.
1981-01-01
During the winter and spring of 1981, a technical energy conservation and solar analysis of the JFK Federal Office Building in Boston was conducted. To reduce the building's energy consumption of a total of nineteen Energy Conservation Measures (ECM's) were analyzed. Among the measures studied were: reduction of ventilation and supply air, central automation controls, programmable lighting, absorption chiller replacement, fenestration modification and heat recovery. The results of the analyse show that implementation of all recommended ECM's would reduce energy consumption by 50% from a raw source Annual Energy Index (AEI) of 33.9 x 10/sup 8/ J/m/sup 2/ (299 MBtu/sf)more » to 17.2 10/sup 8/ j/m/sup 2/ (152 MBtu/sf). This relates to a savings of approximately $950,000 annually at April 1981 energy costs for a total construction cost of three million dollars.« less
A hierarchical approach for the design improvements of an Organocat biorefinery.
Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H
2015-04-01
Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Faitar, C.; Novac, I.
2016-08-01
In recent years, many environmental organizations was interested to optimize the energy consumption which has become, today, one of the main concerns to the whole world. From this point of view, the maritime industry, has strove to optimize the fuel consumption of ship through the development of engines and propulsion system, improve the hull design, or using alternative energies, this way making a reduction in the amount of CO2 released to the atmosphere. The main idea of this paper is to realize a complex comparative analysis of Energy Efficiency Design Index and Energy Efficiency Operational Indicator which are calculated in two cases: first, in a classical approach for a crude oil super tanker ship and second, after the energy performance of this ship has been improved by introducing alternative energy sources on board.
Energy Intake from Restaurants
Powell, Lisa M.; Nguyen, Binh T.; Han, Euna
2012-01-01
Background Eating food away from home and restaurant consumption have increased over the past few decades. Purpose To examine recent changes in calories from fast-food and full-service restaurant consumption and to assess characteristics associated with consumption. Methods Analyses of 24-hour dietary recalls from children, adolescents, and adults using nationally representative data from the 2003–2004 through 2007–2008 National Health and Nutrition Examination Surveys, including analysis by gender, ethnicity, income and location of consumption. Multivariate regression analyses of associations between demographic and socioeconomic characteristics and consumption prevalence and average daily caloric intake from fast-food and full-service restaurants. Results In 2007–2008, 33%, 41% and 36% of children, adolescents and adults, respectively, consumed foods and/or beverages from fast-food restaurant sources and 12%, 18% and 27% consumed from full-service restaurants. Their respective mean caloric intake from fast food was 191 kcal, 404 kcal, and 315 kcal, down by 25% (p≤0.05), 3% and 9% from 2003–2004; and among consumers, intake was 576 kcal, 988 kcal, and 877 kcal, respectively, down by 12% (p≤0.05), 2% and 7%. There were no changes in daily calories consumed from full-service restaurants. Consumption prevalence and average daily caloric intake from fast-food (adults only) and full-service restaurants (all age groups) were higher when consumed away from home versus at home. There were some demographic and socioeconomic associations with the likelihood of fast-food consumption, but characteristics were generally not associated with the extent of caloric intake among those who consumed from fast-food or from full-service restaurants. Conclusions In 2007–2008, fast-food and full-service restaurant consumption remained prevalent and a source of substantial energy intake. PMID:23079172
External costs as a measure of environmental impact in the generation of electricity in Poland
NASA Astrophysics Data System (ADS)
Cel, W.; Czechowska-Kosacka, A.; Kujawska, Justyna; Wasąg, H.
2018-05-01
The depletion of natural resources, rising fossil fuel prices and growing environmental awareness, are leading to an increase in the popularity of renewable energy sources. In Poland, the share of energy derived from renewable sources continues to grow and now stands at 12.9% of the country’s gross electricity consumption. Energy from renewable sources in Poland is 60€ more expensive per MWh than energy from conventional sources. According to the European Climate and Energy Package, Poland is committed to increasing its share of renewable energy to 15% in 2020, and a further 5% by 2030. It is very important to ensure that the increase in the share of renewable energy will increase the price of energy for the end users. To convince the public of the need to incur greater costs in the purchase of “green” power, we should put forward arguments showing the benefits of its use. The aim of this paper is to demonstrate the viability of support through a system of certification for renewable energy sources and also to estimate the potential increase in energy prices caused by raising RES contribution.
Water withdrawal and consumption reduction analysis for electrical energy generation system
NASA Astrophysics Data System (ADS)
Nouri, Narjes
There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.
Global renewable energy-based electricity generation and smart grid system for energy security.
Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.
Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security
Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201
78 FR 34105 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... include Natural Gas, Electricity, Fuel Oil, Propane, Wood and Coal. The average annual primary home energy... using a secondary source of heat. Annual Heating Fuel Consumption: The grantee would need to collect...
System for energy harvesting and/or generation, storage, and delivery
NASA Technical Reports Server (NTRS)
DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)
2011-01-01
A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.
System for energy harvesting and/or generation, storage, and delivery
NASA Technical Reports Server (NTRS)
DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)
2010-01-01
A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.
Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents
Larson, Nicole; Miller, Jonathan M.; Eisenberg, Marla E.; Watts, Allison W.; Story, Mary; Neumark-Sztainer, Dianne
2017-01-01
Frequent consumption of energy-dense, nutrient-poor snack foods is an eating behavior of public health concern. This study was designed to inform strategies for reducing adolescent intake of energy-dense snack foods by identifying individual and environmental influences. Surveys were completed in 2009-2010 by 2,540 adolescents (54% females, mean age=14.5±2.0, 80% nonwhite) in Minneapolis-St. Paul, Minnesota schools. Daily servings of energy-dense snack food was assessed using a food frequency questionnaire that asked about consumption of 21 common snack food items, such as potato chips, cookies, and candy. Data representing characteristics of adolescents’ environments were collected from parents/caregivers, friends, school personnel, Geographic Information System sources, and a content analysis of favorite television shows. Linear regression was used to examine relationships between each individual or environmental characteristic and snack food consumption in separate models and also to examine relationships in a model including all of the characteristics simultaneously. The factors found to be significantly associated with higher energy-dense snack food intake represented individual attitudes/behaviors (e.g., snacking while watching television) and characteristics of home/family (e.g., home unhealthy food availability), peer (friends’ energy-dense snack food consumption), and school (e.g., student snack consumption norms) environments. In total, 25.5% of the variance in adolescents’ energy-dense snack food consumption was explained when factors from within each context were examined together. The results suggest that the design of interventions targeting improvement in the dietary quality of adolescents’ snack food choices should address relevant individual factors (e.g., eating while watching television) along with characteristics of their home/family (e.g., limiting the availability of unhealthy foods), peer (e.g., guiding the efforts of a peer leader in making healthy choices), and school environments (e.g., establishing student norms for selecting nutrient-dense snack foods). PMID:28082196
Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents.
Larson, Nicole; Miller, Jonathan M; Eisenberg, Marla E; Watts, Allison W; Story, Mary; Neumark-Sztainer, Dianne
2017-05-01
Frequent consumption of energy-dense, nutrient-poor snack foods is an eating behavior of public health concern. This study was designed to inform strategies for reducing adolescent intake of energy-dense snack foods by identifying individual and environmental influences. Surveys were completed in 2009-2010 by 2540 adolescents (54% females, mean age = 14.5 ± 2.0, 80% nonwhite) in Minneapolis-St. Paul, Minnesota schools. Daily servings of energy-dense snack food was assessed using a food frequency questionnaire that asked about consumption of 21 common snack food items, such as potato chips, cookies, and candy. Data representing characteristics of adolescents' environments were collected from parents/caregivers, friends, school personnel, Geographic Information System sources, and a content analysis of favorite television shows. Linear regression was used to examine relationships between each individual or environmental characteristic and snack food consumption in separate models and also to examine relationships in a model including all of the characteristics simultaneously. The factors found to be significantly associated with higher energy-dense snack food intake represented individual attitudes/behaviors (e.g., snacking while watching television) and characteristics of home/family (e.g., home unhealthy food availability), peer (friends' energy-dense snack food consumption), and school (e.g., student snack consumption norms) environments. In total, 25.5% of the variance in adolescents' energy-dense snack food consumption was explained when factors from within each context were examined together. The results suggest that the design of interventions targeting improvement in the dietary quality of adolescents' snack food choices should address relevant individual factors (e.g., eating while watching television) along with characteristics of their home/family (e.g., limiting the availability of unhealthy foods), peer (e.g., guiding the efforts of a peer leader in making healthy choices), and school environments (e.g., establishing student norms for selecting nutrient-dense snack foods). Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance analysis of CO(2) emissions and energy efficiency of metal industries in China.
Shao, Chaofeng; Guan, Yang; Wan, Zheng; Chu, Chunli; Ju, Meiting
2014-02-15
Nonferrous metal industries play an important role in China's national economy and are some of the country's largest energy consumers. To better understand the nature of CO(2) emissions from these industries and to further move towards low-carbon development in this industry sector, this study investigates the CO(2) emissions of 12 nonferrous metal industries from 2003 to 2010 based on their life-cycle assessments. It then classifies these industries into four "emission-efficiency" types through cluster analysis. The results show that (1) the industrial economy and energy consumption of China's nonferrous metal industries have grown rapidly, although their recent energy consumption rate shows a declining trend. (2) The copper, aluminum, zinc, lead, and magnesium industries, classified as high-emission industries, are the main contributors of CO(2) emissions. The results have implications for policy decisions that aim to enhance energy efficiency, particularly for promoting the transformation of low-efficiency industries to high-efficiency ones. The study also highlights the important role of policy development in technological innovations, optimization, and upgrades, the reduction of coal proportion in energy consumption, and the advancement of new energy sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparing the Life Cycle Energy Consumption, Global ...
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
NASA Astrophysics Data System (ADS)
Septiandiani, F.; Raharjo, W.
2018-05-01
It is an undisputed fact that the development of a city requires more energy to accommodate the needs of the city’s population. Greater energy consumption due to growing cities is a concern for scholars as well as governments all over the world. In the European Union, Denmark’s renewable energy policy provides tax exemptions for passive air conditioning and renewable energy sources to foster public participation. To meet its energy provision objectives under this condition, cities need instruments to reduce energy consumption. The building of a community centre in Nordhavn (Denmark) was chosen as such an instrument due to its flexibility and possible exposure to solar radiation as an endless source of energy. An experimental design for the building envelope was developed to test its thermal performance when including a thermal storage wall. Design research was conducted using 3D modelling. Testing was done on a simulation of the building made with the Ecotect software application to provide comparable results for thermal performance supported by qualitative-descriptive methods. It was concluded that including a thermal storage wall in the building model corresponds well with the objectives of the design. Based on the result of the test, in the context of, the thermal storage wall is capable of contributing to passive air conditioning.
Dairy products, satiety and food intake: A meta-analysis of clinical trials.
Onvani, Shokouh; Haghighatdoost, Fahimeh; Surkan, Pamela J; Azadbakht, Leila
2017-04-01
Research on how dairy products affect appetite has shown conflicting results. To conduct a meta-analysis of clinical trials to assess the effects of dairy products consumption on satiety and its components (appetite, hunger, prospective food consumption, fullness, desire to eat and second meal food intake). We used PubMed, ISI Web of Science and Google Scholar to search for eligible clinical trials published before February 2015. From over 3000 articles, 13 clinical trials met the inclusion criteria. Analyses were performed to evaluate the effect of dairy consumption on energy intake in a second meal and to study sources of heterogeneity. We also assessed the effects of dairy consumption and subjective indicators of satiety. Primary analyses indicated that dairy consumption decreased energy intake in a second meal but that there was significant heterogeneity (Cochrane Q test, P < 0.001, I 2 = 88.2%). Heterogeneity was eliminated through subgroup analyses based on the type of preload consumed by the control group. All subgroups showed significant decreases in energy intake after consumption of preloads except for fruit drinks, cola, and chocolate bars. Consumption of more than 500 ml of dairy products influenced fullness, hunger, and PFC. Although not statistically significant, dairy consumption was associated with decreased appetite (-3.97, 95%CI: -9.37, 1.43) and desire to eat (-0.11, 95%CI: -4.21, 3.98). However, dairy product consumption significantly increased satiety (7.94, 95%CI: 0.60, 15.28). Consumption of over 500 ml of dairy products can increase satiety and its components. Moreover, the nature of the preload consumed by the control group influenced the effects of increased satiety on decreases in food intake during a second meal. Consumption of dairy products also increased the risk of inducing positive energy balance. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
State energy data report: Statistical tables and technical documentation 1960 through 1979
NASA Astrophysics Data System (ADS)
1981-09-01
All the data of the State Energy Data System (SEDS) is given. The data is used to estimate annual energy consumption by principal energy sources (coal, natural gas, petroleum, electricity), by major end-use sectors (residential, commercial, industrial, transportation, and electric utilities), and by state (50 states, the District of Columbia, and the United States). Data is organized alphabetically by energy source (fuel), by end-use sector or energy activity, by type of data and by state. Twenty data values are associated with each fuel-sector-type state grouping representing positionally the years 1960 through 1979. Data values in the file are expressed either as physical units, British thermal units, physical to Btu conversion factors or share factors.
Simulation and energy analysis of distributed electric heating system
NASA Astrophysics Data System (ADS)
Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan
2018-02-01
Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.
Energy Metrics for State Government Buildings
NASA Astrophysics Data System (ADS)
Michael, Trevor
Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation as budget enhancement is found to be a particularly useful approach in political environments that are not always receptive to climate change oriented efforts. For example, the NC Utility Savings Initiative claims to have saved over $400 million in avoided tax costs. The case studies reveal a wide range of individual successes as a result of energy conservation efforts. Despite the successes found, results indicate that most states have not obtained or completely measured progress towards their energy reduction goals.
Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings
2008-09-30
Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE
Reedy, Jill; Krebs-Smith, Susan M.
2010-01-01
Objective The objective of this research was to identify top dietary sources of energy, solid fats, and added sugars among 2–18 year olds in the United States. Methods Data from the National Health and Nutrition Examination Survey (NHANES), a cross-sectional study, were used to examine food sources (percentage contribution and mean intake with standard errors) of total energy (2005–06) and calories from solid fats and added sugars (2003–04). Differences were investigated by age, sex, race/ethnicity, and family income, and the consumption of empty calories—defined as the sum of calories from solid fats and added sugars—was compared with the corresponding discretionary calorie allowance. Results The top sources of energy for 2–18 year olds were grain desserts (138 kcal/day), pizza (136 kcal), and soda (118 kcal). Sugar-sweetened beverages (soda and fruit drinks combined) provided 173 kcal/day. Major contributors varied by age, sex, race/ethnicity, and income. Nearly 40% of total calories consumed (798 kcal/day of 2027 kcal) by 2–18 year olds were in the form of empty calories (433 kcal from solid fat and 365 kcal from added sugars). Consumption of empty calories far exceeded the corresponding discretionary calorie allowance for all sex-age groups (which range from 8–20%). Half of empty calories came from six foods: soda, fruit drinks, dairy desserts, grain desserts, pizza, and whole milk. Conclusion There is an overlap between the major sources of energy and empty calories: soda, grain desserts, pizza, and whole milk. The landscape of choices available to children and adolescents must change to provide fewer unhealthy foods and more healthy foods with fewer calories. Identifying top sources of energy and empty calories can provide targets for changes in the marketplace and food environment. However, product reformulation alone is not sufficient—the flow of empty calories into the food supply must be reduced. PMID:20869486
Life-Cycle Evaluation of Domestic Energy Systems
NASA Astrophysics Data System (ADS)
Bando, Shigeru; Hihara, Eiji
Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-01-01
This paper reports on the Austrian research project “Renewable energy in Austria: Modeling possible development trends until 2020”. The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006–2020, using the integrated environment–energy–economy model “e3.at”. The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy. PMID:21976785
Trends in energy intake among US children by eating location and food source, 1977–2006
Poti, Jennifer M.; Popkin, Barry M.
2011-01-01
Background Little is known about the impact of location of food consumption and preparation upon daily energy intake for children. Objective To examine trends in daily energy intake by children for foods eaten at home or away-from-home, by source of preparation, and for combined categories of eating location and food source. Subjects The analysis uses data from 29,217 children aged 2–18 years from the 1977–1978 Nationwide Food Consumption Survey, 1989–1991 and 1994–1998 Continuing Survey of Food Intake by Individuals, and 2003–2006 National Health and Nutrition Examination Surveys. Methods Nationally representative weighted percentages and means of daily energy intake by eating location were analyzed for trends from 1977 to 2006. Comparisons by food source were examined from 1994 to 2006. Analyses were repeated for 3 age groups: 2–6, 7–12, and 13–18 year olds. Difference testing was conducted using a t test. Results Increased energy intake (+179 kcal/d) by children from 1977–2006 was associated with a major increase in calories eaten away-from-home (+255 kcal/d). The percentage of kcal/d eaten away-from-home increased from 23.4% to 33.9% from 1977–2006. No further increase was observed from 1994–2006, but the sources of calories shifted. The percentage of calories from fast food increased to surpass intake from schools and become the largest contributor to foods prepared away-from-home for all age groups. For foods eaten away-from-home, the percentage of kcal/d from stores increased to become the largest source of calories eaten away-from-home. Fast food eaten at home and store-bought food eaten away-from-home increased significantly. Conclusion Eating location and food source significantly impact daily energy intake for children. Foods prepared away-from-home, including fast food eaten at home and store-prepared food eaten away-from-home, are fueling the increase in total calorie intake. However, further research using alternative data sources is necessary to verify that store-bought foods eaten away-from-home are increasingly store-prepared. PMID:21802561
Alternate Energy for National Security.
NASA Astrophysics Data System (ADS)
Rath, Bhakta
2010-02-01
Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )
Szabo de Edelenyi, Fabien; Julia, Chantal; Courtois, Frédéric; Méjean, Caroline; Péneau, Sandrine; Galan, Pilar; Hercberg, Serge; Kesse-Guyot, Emmanuelle
2014-01-01
French Nutritional Guidelines recommend eating starchy foods at each meal, according to appetite, and advise to vary sources. However, the proportion of energy from carbohydrates is currently too low in many Western European countries. Consumption of the different types of starchy foods was assessed among 80,209 adult participants in the French NutriNet-Santé cohort (78% women, mean age 42.9 ± 14.5). Description of starchy food consumption according to sociodemographics was provided as well as the contribution of starchy food to nutritional intake. Determinants of adherence to starchy food nutritional guidelines were estimated using multivariable polytomous logistic regression. Starchy foods contributed approximately 22% of the energy intake, 75% of the complex carbohydrate intake and 36.1% of the fibre intake. About 43% of the subjects had intakes in line with the French Nutritional Guidelines concerning starchy foods. Men met the recommendation more frequently (55 vs. 33% for women), but were also more likely to exceed the recommendation (9.5 vs. 1.3%), even after adjustment for energy intake. According to our multivariable model, starchy food consumption increased also with age. A higher consumption of starchy foods should be promoted in the French population in order to increase the part of the energy intake coming from complex carbohydrates.
Assessment of current technologies for communition of forest residues
Dana L. Mitchell
2005-01-01
Recent legislation and energy prices have led to an increased need for alternative energy sources. Biomass, including forest residues, is expected to replace a part of the nationâs reliance on petroleum consumption. This paper provides an overview of existing literature related to the harvest, communition and transport of forest residues. Past studies have investigated...
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-01-01
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-09-03
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.
The rigid bi-functional sail, new concept concerning the reduction of the drag of ships
NASA Astrophysics Data System (ADS)
Țicu, I.; Popa, I.; Ristea, M.
2015-11-01
The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (Executive Summary)
Langholtz, Matthew; Stokes, Bryce; Eaton, Laurence
2016-10-01
We report that consumption of renewable energy in the United States is the highest in history, contributing to energy security, greenhouse gas reductions, and other social, economic, and environmental benefits. The largest single source of renewable energy is biomass, representing 3.9 quadrillion of 9.6 quadrillion British thermal units (Btu) in 2015. Biomass includes agricultural and forestry resources, municipal solid waste (MSW), and algae.
A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations
2014-07-14
solutions in such areas as photovoltaic arrays for power harvesting, light emitting diodes (LED) for decreased energy consumption, and improved battery...generation and conversion system that allows Marines to power systems with solar energy. Each GREENS is comprised of eight photovoltaic array panels...renewable power sources such as photovoltaic arrays and wind turbines. The HOMER model has been utilized for years by organizations and companies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.
Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrationsmore » with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.« less
Is it time to tackle PM(2.5) air pollutions in China from biomass-burning emissions?
Zhang, Yan-Lin; Cao, Fang
2015-07-01
An increase in haze days has been observed in China over the past two decades due to the rapid industrialization, urbanization and energy consumptions. To address this server issue, Chinese central government has recently released the Action Plan on Prevention and Control of Air Pollution, which mainly focuses on regulation of indusial and transport-related emissions with major energy consumption from fossil fuels. This comprehensive and toughest plan is definitely a major step in the right direction aiming at beautiful and environmental-friendly China; however, based on recent source apportionment results, we suggest that strengthening regulation emissions from biomass-burning sources in both urban and rural areas is needed to meet a rigorous reduction target. Here, household biofuel and open biomass burning are highlighted, as impacts of these emissions can cause local and regional pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China.
Zhang, Yanxu; Tao, Shu
2008-12-01
A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer.
Analyzing Carbohydrate-Based Regenerative Fuel Cells as a Power Source for Unmanned Aerial Vehicles
2008-03-01
conventional means of generating electrical energy, such as turbines and internal combustion engines, in that the conventional methods normally have an...have 24 hours of daylight, this means that it must be able to store enough exergy (the total amount of energy that can theoretically be converted to...useful work, differentiated from useful energy by the efficiency of converting energy to work) to function during the time when exergy consumption is
An intelligent switch with back-propagation neural network based hybrid power system
NASA Astrophysics Data System (ADS)
Perdana, R. H. Y.; Fibriana, F.
2018-03-01
The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.
Dietary sources of sugars in adolescents' diet: the HELENA study.
Mesana, M I; Hilbig, A; Androutsos, O; Cuenca-García, M; Dallongeville, J; Huybrechts, I; De Henauw, S; Widhalm, K; Kafatos, A; Nova, E; Marcos, A; González-Gross, M; Molnar, D; Gottrand, F; Moreno, L A
2018-03-01
To report dietary sugars consumption and their different types and food sources, in European adolescents. Food consumption data of selected groups were obtained from 1630 adolescents (45.6% males, 12.5-17.5 years) from the HELENA study using two nonconsecutive 24-h recalls. Energy intake, total sugars and free sugars were assessed using the HELENA-DIAT software. Multiple regression analyses were performed adjusting for relevant confounders. Total sugars intake (137.5 g/day) represented 23.6% and free sugars (110.1 g/day), 19% of energy intake. Girls had significantly lower intakes of energy, carbohydrates, total sugars and free sugars. 94% of adolescents had a consumption of free sugars above 10% of total energy intake. The main food contributor to free sugars was 'carbonated, soft and isotonic drinks,' followed by 'non-chocolate confectionary' and 'sugar, honey, jam and syrup.' Older boys and girls had significantly higher intakes of free sugars from 'cakes, pies and biscuits.' Free sugars intake was negatively associated with low socioeconomic status for 'non-chocolate confectionary' and 'sugar, honey and jam' groups; with low maternal educational level for carbonated and 'soft drinks,' 'sugar, honey and jam,' 'cakes and pies' and 'breakfast cereals' groups; and with high paternal educational level for 'carbonated and soft drinks' and 'chocolates' group. The majority (94%) of studied adolescents consumed free sugars above 10% of daily energy intake. Our data indicate a broad variety in foods providing free sugars. Continued efforts are required at different levels to reduce the intake of free sugars, especially in families with a low educational level.
Developing a framework for energy technology portfolio selection
NASA Astrophysics Data System (ADS)
Davoudpour, Hamid; Ashrafi, Maryam
2012-11-01
Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.
Schroeder, Jenna N.
2014-12-16
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.
Energy and human welfare: a critical analysis. Volume III. Human welfare: the end use for power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Commoner, B.; Boksenbaum, H.; Corr, M.
Statements by the Board of Directors of the American Association for the Advancement of Science and the Committee on Environmental Alterations precede the nine chapters of the book. The end products are the measure of the social value of the entire process of power production. This output can be increased by burning more fuel or by improving the efficiency with which energy is converted into the desired goods and services or energy conservation. The latter is the more desirable since it reduces both the environmental and capital costs incurred in producing energy. This then is the scenario discussed in themore » nine chapters following the Preface by Barry Commoner. They are: A Review of Forecasts for U.S. Energy Consumption in 1980 and 2000, Lee E. Erickson; Energy Use in Transportation, D. P. Grimmer and K. Lusczcynski; Energy Use in Architecture and Building, Richard G. Stein; Mechanization, Energy and Agriculture, Michael Perelman; Power Consumption and Human Welfare in Industry, Commerce, and the Home, Barry Commoner and Michael Corr; Bottles, Cans and Energy Use, Bruce Hannon; Home Energy Consumption as a Function of Lifestyle, Michael Corr and Dan McLeod; Electric Power, Employment, and Economic Growth, Herman E. Daly; and Electric Power Requirements for Controlling Air Pollutants from Stationary Sources, William D. Watson, Jr. (MCW)« less
Saline sewage treatment and source separation of urine for more sustainable urban water management.
Ekama, G A; Wilsenach, J A; Chen, G H
2011-01-01
While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.
Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B
2013-07-04
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.
Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.
Yerushalmi, L; Ashrafi, O; Haghighat, F
2013-01-01
Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.
Research status and evaluation system of heat source evaluation method for central heating
NASA Astrophysics Data System (ADS)
Sun, Yutong; Qi, Junfeng; Cao, Yi
2018-02-01
The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.
A Method of Data Aggregation for Wearable Sensor Systems
Shen, Bo; Fu, Jun-Song
2016-01-01
Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources. PMID:27347953
Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes
Artes, Antonio; Ayala, Jose L.; Catthoor, Francky
2012-01-01
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202
Philippines Country Analysis Brief
2014-01-01
The Philippines is a net energy importer in spite of low consumption levels relative to its Southeast Asian neighbors. The country produces small volumes of oil, natural gas, and coal. Geothermal, hydropower, and other renewable sources constitute a significant share of electricity generation.
NASA Astrophysics Data System (ADS)
Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.
1980-07-01
The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.
Game theory competition analysis of reservoir water supply and hydropower generation
NASA Astrophysics Data System (ADS)
Lee, T.
2013-12-01
The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.
Energy Efficiency of Biogas Produced from Different Biomass Sources
NASA Astrophysics Data System (ADS)
Begum, Shahida; Nazri, A. H.
2013-06-01
Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.
Growth of hybrid poplars, white spruce, and jack pine under various artificial lights.
Pamela S. Roberts; J. Zavitkovski
1981-01-01
Describes the energy consumption and biological effects of fluorescent, incandescent, and high pressure sodium lighting on the growth of poplars, white spruce, and jack pine in a greenhouse. At similar light levels the biological effects of all three light sources were similar. The incandescent lamps consumed several times more energy than the other two light...
Radiant flux density, energy density, and fuel consumption in mixed-oak forest surface fires
R.L. Kremens; M.B. Dickinson; A.S. Bova
2012-01-01
Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as...
Implications of Sustainability for the United States Light-Duty Transportation Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Chris
Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in justmore » vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries. potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.« less
Improving Energy Security for Air Force Installations
2015-09-01
Wind power is a mature technology, with wind turbines first being used for electricity in the late 19th century. The Air Force operates two wind ...company, and the military unit receives energy credits back on its bill. Two concepts are important when considering the turbine size for a wind ...generation and consumption must remain balanced for a grid, so wind turbines are rarely used as a sole energy source since power is only generated
Short-term energy outlook. Volume 2. Methodology
NASA Astrophysics Data System (ADS)
1983-05-01
Recent changes in forecasting methodology for nonutility distillate fuel oil demand and for the near-term petroleum forecasts are discussed. The accuracy of previous short-term forecasts of most of the major energy sources published in the last 13 issues of the Outlook is evaluated. Macroeconomic and weather assumptions are included in this evaluation. Energy forecasts for 1983 are compared. Structural change in US petroleum consumption, the use of appropriate weather data in energy demand modeling, and petroleum inventories, imports, and refinery runs are discussed.
NASA Astrophysics Data System (ADS)
Carlson, Derrick R.
While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity consumption, which suggests significant diminishing returns for parties interested in monitoring appliance level electricity consumption. Another way to improve understanding of residential energy consumption is through the development of residential use phase energy vectors for use in the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. The EIO-LCA model is a valuable scoping tool to predict the environmental impacts of economic activity. This tool has a gap in its capabilities as residential use phase energy is outside the scope of the model. Adding use phase energy vectors to the EIO-LCA model will improve the modeling, provide a more complete estimation of energy impacts and allow for embedded energy to be compared to use phase energy for the purchase of goods and services in the residential sector. This work adds 21 quads of energy to the residential energy sector for the model and 15 quads of energy for personal transportation. These additions represent one third of the total energy consumption of the United States and a third of the total energy in the EIO-LCA model. This work also demonstrates that for many products such as electronics and household appliances use phase energy demands are much greater than manufacturing energy demands and dominate the life cycles for these products. A final way in which this thesis improves upon the understanding of how use phase energy is consumed in a home is through the exploration of potential energy reductions in a home. This analysis selects products that are used or consumed in a home, and explores the potential for reductions in the embedded manufacturing and use phase energy of that product using EIO-LCA and the energy vectors created in Chapter 3. The results give consumers an understanding of where energy is consumed in the lifecycle of products that they purchase and provide policy makers with valuable information on how to focus or refocus policies that are aimed and reducing energy in the residential sector. This work finds that a majority of the energy consumed by retail products is consumed in the use phase of electronics and appliances. Consequently the largest potential reductions in residential energy use can be found in the same area. The work also shows that targeting reductions in the manufacturing energy for many products is likely to be an ineffective strategy for energy reductions with the exception of a select few products. Supply chain energy reductions may be more promising than manufacturing energy reductions, though neither is likely to be as effective as strategies that target use phase energy reductions.
Defining Toll Fee of Wheeling Renewable with Reference to a Gas Pipeline in Indonesia
NASA Astrophysics Data System (ADS)
Hakim, Amrullah
2017-07-01
Indonesia has a huge number of renewable energy sources (RE) however; the utilization of these is currently very low. The main challenge of power production is its alignment with consumption levels; supply should equal demand at all times. There is a strong initiative from corporations with high energy demand, compared to other sectors, to apply a renewable portfolio standard for their energy input, e.g. 15% of their energy consumption requirement must come from a renewable energy source. To support this initiative, the utilization of power wheeling will help large factories on industrial estates to source firm and steady renewables from remote sites. The wheeling renewable via PLN’s transmission line has been regulated under the Ministry Decree in 2015 however; the tariff or toll fee has not yet been defined. The potential project to apply wheeling renewable will obtain power supply from a geothermal power plant, with power demand from the scattered factories under one company. This is the concept driving the application of power wheeling in the effort to push the growth of renewable energy in Indonesia. Given that the capacity of PLN’s transmission line are normally large and less congested compared to distribution line, the wheeling renewable can accommodate the scattered factories locations which then results in the cheaper toll fee of the wheeling renewable. Defining the best toll fee is the main topic of this paper with comparison of the toll fee of the gas pipeline infrastructure in Indonesia, so that it can be applied massively to achieve COP21’s commitment.
Renewable energy scenario in India: Opportunities and challenges
NASA Astrophysics Data System (ADS)
Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav
2016-10-01
Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources in Indian context while evaluating the present status, the energy demand of the country and forecast consumption and production, with the objective to evaluate and assess whether India can sustain its growth and its society with renewable resources.
The carbon footprint of Australian ambulance operations.
Brown, Lawrence H; Canyon, Deon V; Buettner, Petra G; Crawford, J Mac; Judd, Jenni
2012-12-01
To determine the greenhouse gas emissions associated with the energy consumption of Australian ambulance operations, and to identify the predominant energy sources that contribute to those emissions. A two-phase study of operational and financial data from a convenience sample of Australian ambulance operations to inventory their energy consumption and greenhouse gas emissions for 1 year. State- and territory-based ambulance systems serving 58% of Australia's population and performing 59% of Australia's ambulance responses provided data for the study. Emissions for the participating systems totalled 67 390 metric tons of carbon dioxide equivalents. For ground ambulance operations, emissions averaged 22 kg of carbon dioxide equivalents per ambulance response, 30 kg of carbon dioxide equivalents per patient transport and 3 kg of carbon dioxide equivalents per capita. Vehicle fuels accounted for 58% of the emissions from ground ambulance operations, with the remainder primarily attributable to electricity consumption. Emissions from air ambulance transport were nearly 200 times those for ground ambulance transport. On a national level, emissions from Australian ambulance operations are estimated to be between 110 000 and 120 000 tons of carbon dioxide equivalents each year. Vehicle fuels are the primary source of emissions for ground ambulance operations. Emissions from air ambulance transport are substantially higher than those for ground ambulance transport. © 2012 The Authors. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
40 CFR 424.21 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mean megawatt hour(s) of electrical energy consumed in the smelting process (furnace power consumption). ... STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.21 Specialized definitions. For the...
40 CFR 424.21 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mean megawatt hour(s) of electrical energy consumed in the smelting process (furnace power consumption). ... STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.21 Specialized definitions. For the...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
Experiments on the magnetic coupling in a small scale counter rotating marine current turbine
NASA Astrophysics Data System (ADS)
Kim, I. C.; Lee, N. J.; Wata, J.; Hyun, B. S.; Lee, Y. H.
2016-05-01
Modern economies are dependent on energy consumption to ensure growth or sustainable development. Renewable energy sources provide a source of energy that can provide energy security and is renewable. Tidal energy is more predictable than other sources or renewable energy like the sun or wind. Horizontal axis marine current turbines are currently the most advanced and commercially feasible option for tidal current convertors. A dual rotor turbine is theoretically able to produce more power than a single rotor turbine at the same fluid velocity. Previous experiments for a counter rotating dual rotor horizontal axis marine current turbine used a mechanical oil seal coupling that caused mechanical losses when water entered through small gaps at the shaft. A new magnetic coupling assembly eliminates the need for a shaft to connect physically with the internal mechanisms and is water tight. This reduces mechanical losses in the system and the effect on the dual rotor performance is presented in this paper.
NASA Astrophysics Data System (ADS)
Munoz Hernandez, A.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Hallack-Alegria, M.; Salazar, A.
2016-12-01
Interbasin transfers (IBT) of water have been used as a technological solution to the disparities between water supply and demand centers for centuries. However, the impacts of IBTs on the nexus between water, energy, and food production and consumption in the regions receiving and providing the vital resource are rarely assessed. This study addresses this question through the lens of a new IBT between two important basins located in Northwest Mexico: the Rio Yaqui Basin (RYB) and the Rio Sonora Basin (RSB). The RYB is a 72,000 km2 semi-arid basin with a predominantly agricultural focus that utilizes water from three surface water reservoirs and groundwater. The RSB, with an area of 20,648 km2, is one of the most prominent industrial areas of the region and is home to the most populous city in the state. Traditionally, groundwater has been the main source of water in the RSB due to significant surface water shortages associated with drought conditions. Recently, a 75 Mm3/year capacity aqueduct was built to transfer water from the RYB to the RSB. The impacts of the IBT on agricultural production and water-related energy consumption (groundwater pumping vs. pumping through the aqueduct) and production (hydropower generation) remain unknown, especially under drought conditions. Historical data was collected from the National Commission of Water in Mexico to create a water balance model that mimics the water consumption in the RYB. The purpose of this model is to compare electricity consumption and production and agricultural production, generated before and after the IBT, assuming that historical climatic conditions will be repeated in the future. Linear models were developed to understand the relationship between water, food, and energy production. Twelve aquifers in the RSB were modeled and daily hydraulic heads were estimated for a period of ten years. Once the heads were adjusted to account for local in-well drawdown, an estimation of the total amount of energy required for pumping was calculated. Results will be presented on energy consumption and generation tradeoffs as a function of water supply sources (IBTs vs groundwater extractions). The effects of hydro-climatic conditions in the context of the magnitude and timing of the IBT are assessed.
Transportation Fuels and the Hydrogen Economy
NASA Astrophysics Data System (ADS)
Gabbard, Alex
2004-11-01
An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.
Assessing the Impacts of Climate Change on the Water-Energy Nexus
NASA Astrophysics Data System (ADS)
Mo, W.; Jacobs, J. M.
2014-12-01
Water-energy nexus refers to the fact that a lot of energy is used for treating and delivering water, and a large amount of water is needed for energy production. This interrelation reinforces water and energy consumptions and challenges the sustainable management of both resources in light of growing population, developing economy, and dwindling resources. Climate change often exacerbates the negative effects of the water-energy nexus by intervening water and energy allocation, availability, and quality, forcing communities to seek more energy dependent alternative water sources and/or more water dependent alternative energy sources. The climate-water-energy interrelations play an important role in water and energy management, yet our understandings on the interactions between climate and the water-energy nexus are still very limited. Therefore, this study aims at qualitatively and quantitatively assessing the impacts of climate change from the water-energy nexus perspective by investigating previous literatures, case studies, climate change patterns, and recent extreme climate events. Management difficulties resulted from climate related source shifts as well as policy and regulation changes will be illustrated and discussed. Research needs and gaps on the climate-water-energy interrelations will be addressed.
Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian
2018-05-10
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.
An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks
Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian
2018-01-01
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525
Comparing domestic versus imported apples: a focus on energy use.
Milà i Canals, Llorenç; Cowell, Sarah J; Sim, Sarah; Basson, Lauren
2007-07-01
The issue of whether food miles are a relevant indicator for the environmental impacts associated with foods has received significant attention in recent years. It is suggested here that issues other than the distance travelled need to be considered. The argument is presented by illustrating the case for the provision of apples. The effects of variability in primary energy requirements for apple cultivation and for other life cycle stages, seasonality (timing of consumption) and loss of produce during storage are studied in this paper, by comparing apples from different supplier countries for consumption in Europe. Data sources for primary energy use (PEU) of apple production are identified ranging from 0.4-3.8 MJ/kg apples for European and Southern American countries and 0.4-0.7 MJ/kg for New Zealand. This variability is related to different yields and producer management practices in the different countries. Storage loss may range from 5% to 40% for storage periods between 4 and 10 months, and this has a significant effect on the results (e.g. increasing the total PEU by 8-16% when stored for 5-9 months in Europe as compared with a no loss and no storage situation). The storage periods and related storage losses change markedly through the year for imported (i.e. non-European) versus European apples. The timing of consumption and related storage losses need to be included in the assessment, as this affects the order of preference for locally sourced versus imported apples. The variability in energy requirements in different life cycle stages, but particularly for the fruit production stage, is also significant in this comparative analysis. Overall, it seems that there are similarities in the total PEU ranges for European and New Zealand apples during the Southern Hemisphere's apple season (European spring and summer). However, during the European autumn and winter (Northern Hemisphere apple season) PEU values are generally higher for apples imported from the Southern Hemisphere compared with European apples consumed in Europe. However, this latter observation may not hold true where apples for consumption in one European country are imported from another European country, because energy use for road transportation has a significant influence on the result. Future studies comparing alternative sources of fresh produce need to account for ranges of data for the fruit production and storage stages, which reflect the seasonality of production.
Cheetham, Mandy; Riby, Deborah M; Crossley, Stephen J; Lake, Amelia A
2016-01-01
Objective To examine patterns of energy drink consumption by children and young people, attitudes towards these drinks, and any associations with health or other outcomes. Design Rapid evidence assessment and narrative synthesis. Data sources 9 electronic bibliographic databases, reference lists of relevant studies and searches of the internet. Results A total of 410 studies were located, with 46 meeting the inclusion criteria. The majority employed a cross-sectional design, involved participants aged 11–18 years, and were conducted in North America or Europe. Consumption of energy drinks by children and young people was found to be patterned by gender, with boys consuming more than girls, and also by activity levels, with the highest consumption observed in the most and least sedentary individuals. Several studies identified a strong, positive association between the use of energy drinks and higher odds of health-damaging behaviours, as well as physical health symptoms such as headaches, stomach aches, hyperactivity and insomnia. There was some evidence of a dose–response effect. 2 experimental studies involving small numbers of junior athletes demonstrated a positive impact on limited aspects of sports performance. 3 themes emerged from the qualitative studies: reasons for use; influences on use; and perceived efficacy and impact. Taste and energy-seeking were identified as key drivers, and branding and marketing were highlighted as major influences on young people's consumption choices. Awareness of possible negative effects was low. Conclusions There is growing evidence that consumption of energy drinks is associated with a range of adverse outcomes and risk behaviours in terms of children's health and well-being. However, taste, brand loyalty and perceived positive effects combine to ensure their popularity with young consumers. More research is needed to explore the short-term and long-term impacts in all spheres, including health, behaviour and education. Trial registration number CRD42014010192. PMID:27855083
Designing a gradual transition to a hydrogen economy in Spain
NASA Astrophysics Data System (ADS)
Brey, J. J.; Brey, R.; Carazo, A. F.; Contreras, I.; Hernández-Díaz, A. G.; Gallardo, V.
The lack of sustainability of the current Spanish energy system makes it necessary to study the adoption of alternative energy models. One of these is what is known as the hydrogen economy. In this paper, we aim to plan, for the case of Spain, an initial phase for transition to this energy model making use of the potential offered by each Spanish region. Specifically, the target pursued is to satisfy at least 15% of energy demand for transport by 2010 through renewable sources. We plan to attain this target gradually, establishing intermediate stages consisting of supplying 5 and 10% of the energy demand for transport by 2006 and 2008, respectively. The results obtained allow us to determine, for each region, the hydrogen production and consumption, the renewable energy sources used to obtain hydrogen and the transport requirements between regions.
The Biomass Site Assessment Model - BioSAT
James H. Perdue; Timothy M. Young; Timothy G. Rials
2011-01-01
The 20th century was marked by rapid growth and increased prosperity in the world. By 2020, the worldâs energy consumption is predicted to be 40% higher than it is today, even in the presence of the global 2008/2009 economic recession (Energy Information Administration 2009). Key sources of oil for U.S. markets are located in complex geopolitical environments that...
Water for Energy: Quantifying Water Use in the United States Energy Economy as of 2014
NASA Astrophysics Data System (ADS)
Grubert, E.; Sanders, K.
2016-12-01
The US energy economy requires significant quantities of water for primary energy extraction, processing and refining, conversion to secondary forms, waste disposal and site remediation. Major shifts in the energy sector have affected the water requirements of the US energy system in ways that are widely acknowledged but poorly quantified. For example, hydraulic fracturing represents a new demand for water, but wind turbines and solar photovoltaics require essentially no water. Further, many water intensity factors commonly used in energy studies are several decades old. This work updates water intensity factors for the US energy system based on recent data and thermodynamic principles, with a near comprehensive treatment of 16 energy fuel cycles from resource capture through post-conversion waste management. For the first time, we also provide absolute estimates of water withdrawn and consumed for energy, differentiated by water source (surface, ground, or reclaimed) and quality (fresh, brackish, saline, and brine). We find that as of 2014, the US consumed approximately 19 billion cubic meters (m3) and withdrew 210 billion m3 of water for the energy system. Most of this water was freshwater (76% of consumption and 86% of withdrawal). Essentially all withdrawals (excluding flow through hydroelectric facilities) are for thermoelectric power plant cooling, accounting for about 38% of total US water withdrawals. Water consumption for energy is estimated at about 12% of total US water consumption, of which an estimated 37% and 17% is for thermoelectric cooling and evaporation from hydroelectric reservoirs, respectively. Withdrawals and consumption for life cycle stages other than thermoelectric cooling are reported in detail, with locally relevant findings like basin-specific water use for coal mining. This work provides a new baseline understanding of water use for the changing US energy economy that can guide decision makers integrating water and energy decisions.
Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.
Islas, Jorge; Manzini, Fabio; Martínez, Manuel
2002-02-01
This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).
Feasibility study of solar energy in residential electricity generation
NASA Astrophysics Data System (ADS)
Solanki, Divyangsinh G.
With the increasing demand for energy and the concerns about the global environment, along with the steady progress in the field of renewable energy technologies, new opportunities and possibilities are opening up for an efficient utilization of renewable energy sources. Solar energy is undoubtedly the most clean, inexhaustible and abundant source of renewable energy. Photovoltaic (PV) technology is one of the most efficient mean to utilize solar power. The focus of this study was to establish economics of a residential photovoltaic system for a typical home in south Texas. The PV system serves the needs of a typical mid-size home inhibited by a typical family. Assumptions are made for the typical daily energy consumption, and the necessary equipments like solar arrays, batteries, inverter, etc. are sized and evaluated optimally so as to reduce the life cycle cost (LCC) of the system. Calculations are done taking into consideration the economic parameters concerned with the system.
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2006-03-07
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2008-09-02
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Power Consumption Optimization in Tooth Gears Processing
NASA Astrophysics Data System (ADS)
Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.
2018-01-01
The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).
The Safety of Ingested Caffeine: A Comprehensive Review
Temple, Jennifer L.; Bernard, Christophe; Lipshultz, Steven E.; Czachor, Jason D.; Westphal, Joslyn A.; Mestre, Miriam A.
2017-01-01
Caffeine is the most widely consumed psychoactive drug in the world. Natural sources of caffeine include coffee, tea, and chocolate. Synthetic caffeine is also added to products to promote arousal, alertness, energy, and elevated mood. Over the past decade, the introduction of new caffeine-containing food products, as well as changes in consumption patterns of the more traditional sources of caffeine, has increased scrutiny by health authorities and regulatory bodies about the overall consumption of caffeine and its potential cumulative effects on behavior and physiology. Of particular concern is the rate of caffeine intake among populations potentially vulnerable to the negative effects of caffeine consumption: pregnant and lactating women, children and adolescents, young adults, and people with underlying heart or other health conditions, such as mental illness. Here, we review the research into the safety and safe doses of ingested caffeine in healthy and in vulnerable populations. We report that, for healthy adults, caffeine consumption is relatively safe, but that for some vulnerable populations, caffeine consumption could be harmful, including impairments in cardiovascular function, sleep, and substance use. We also identified several gaps in the literature on which we based recommendations for the future of caffeine research. PMID:28603504
Arfin, Scott K; Sarpeshkar, Rahul
2012-02-01
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.
Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †
D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.
2008-01-01
Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy. PMID:18641166
Portable thermo-photovoltaic power source
Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.
1997-01-14
A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.
When energy saving advice leads to more, rather than less, consumption
NASA Astrophysics Data System (ADS)
Revell, Kirsten M. A.; Stanton, Neville A.
2017-01-01
Energy saving technology that relies on behaviour change fails to deliver on its promise. Energy saving advice also has limited effect. This paper examines and reveals how technology and energy saving advice interacts with householders' thought processes to influence energy consumption. A case study of three households that held a 'Feedback' mental model of the home heating thermostat, as defined by Kempton [1986. 'Two Theories of Home Heat Control'. Cognitive Science 10 (1): 75-90], was undertaken to understand the driver behind differences in their home heating strategies, and the effect on energy consumption. Analysis was undertaken from five different data sources comprising: (1) boiler on durations, (2) thermostat set point adjustments, (3) self-reported strategies with home heating controls, (4) user mental model descriptions of the home heating system, and (5) Interview transcripts. The authors found that differences in user mental models of home heating at the system level explained differences in the strategies chosen at the control device level. Differences in boiler on periods were found to relate to limitations of the 'Feedback' mental model; that is, the model fails to consider the effect of the movement of warm air within the home and the impact of internal/external temperature differentials on heat loss rates. The authors argue that technology and advice should be tailored to the thought processes adopted by householders in order to promote behaviour that would realise intended energy savings.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.
2018-02-01
At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.
Energy simulation and optimization for a small commercial building through Modelica
NASA Astrophysics Data System (ADS)
Rivas, Bryan
Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.
Pricing strategies in inelastic energy markets: can we use less if we can't extract more?
NASA Astrophysics Data System (ADS)
Voinov, Alexey; Filatova, Tatiana
2014-03-01
Limited supply of nonrenewable energy resources under growing energy demand creates a situation when a marginal change in the quantity supplied or demanded causes non-marginal swings in price levels. The situation is worsened by the fact that we are currently running out of cheap energy resources at the global scale while adaptation to climate change requires extra energy costs. It is often argued that technology and alternative energy will be a solution. However, alternative energy infrastructure also requires additional energy investments, which can further increase the gap between energy demand and supply. This paper presents an explorative model that demonstrates that a smooth transition from an oil-based economy to alternative energy sources is possible only if it is started well in advance while fossil resources are still abundant. Later the transition looks much more dramatic and it becomes risky to rely entirely on technological solutions. It becomes increasingly likely that in addition to technological solutions that can increase supply we will need to find ways to decrease demand and consumption. We further argue that market mechanisms can be just as powerful tools to curb demand as they have traditionally been for stimulating consumption. We observe that individuals who consume more energy resources benefit at the expense of those who consume less, effectively imposing price externalities on the latters. We suggest two transparent and flexible methods of pricing that attempt to eliminate price externalities on energy resources. Such pricing schemes stimulate less consumption and can smooth the transition to renewable energy.
As fuel consumption continues depleting nonrenewable energy sources and environmental health concerns heighten due to its use, a movement toward sustainable alternatives is necessary for the stewardship of future generations. Biodiesel (BD) is one renewable resource being deve...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Administrator of the Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j... water below the ground surface in a zone of saturation. (r) Underground source of drinking water means... system; and (A) Currently supplies drinking water for human consumption; or (B) Contains fewer than 10...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administrator of the Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j... water below the ground surface in a zone of saturation. (r) Underground source of drinking water means... system; and (A) Currently supplies drinking water for human consumption; or (B) Contains fewer than 10...
NASA Astrophysics Data System (ADS)
Zhen, L.; Ochirbat, B.; Lv, Y.; Wei, Y. J.; Liu, X. L.; Chen, J. Q.; Yao, Z. J.; Li, F.
2010-01-01
Ecosystems in the Central Asian Plateau, which includes the Mongolian Plateau, are becoming increasingly sensitive to human interventions, leading to deterioration of already fragile ecosystems. The goal of this paper is to illustrate human dependence on an ecosystem by identifying patterns of resource consumption in this region and investigating the knowledge and perceptions of herders living in these ecosystems. Data on consumption in the two regions were collected using structured questionnaires delivered to a total of 252 herders from Mongolia and China's Inner Mongolia. Meat and other animal products remain the dominant food items for most households, accompanied by various vegetables and cereals. This unbalanced diet leads to excessive consumption of protein and fat from animal sources. The major energy sources used by herders are fuelwood, animal dung, crop residues, and dry grass, but consumption patterns differed between the two areas. Mongolian herders rely more heavily on livestock for meeting their consumption needs than herders in Inner Mongolia. Herder knowledge and perceptions of ecosystem conditions and consumption of resources differed between Mongolia and Inner Mongolia, reflecting the influence of different state policies. The data reported and the conclusions drawn are relevant for developing resource management policies for the Mongolian Plateau, but also provide useful insights for any region where livestock production dominates the use of rangeland resources.
Eganian, R A; Kalinina, A M; Izmaĭlova, O V; Shaternikova, I N; Aniskin, D B
2000-01-01
With use of a method of daily reproduction at representative sample of an unorganized population of inhabitants of Moscow the sources of energy value and contribution of various products to supply organism by the basic food substances (protein, fats, carbohydrates and cholesterol) are investigated. Is established that the nutrition structure is obviously debalanced. More quarters of daily diet energy is provided for consumption of animal fats and simple sugars. Is shown that the main part of fat (2/3) enters in organism as the "latent" fats of animal products, the fats "in the pure form" half consist from butters. The main source of the saturated fats and cholesterol for men are meat, and for women--the dairy products. 12% researched refuse purified sugars.
Hu, Yu-Chen
2018-01-01
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%. PMID:29702607
Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)
Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.
2013-01-01
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940
Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205
Climate impacts on extreme energy consumption of different types of buildings.
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.
Richardson, James W.; Johnson, Myriah D.; Outlaw, Joe L.
2012-05-01
As energy prices continue to climb there is an increasing interest in alternative, renewable energy sources. Currently, “most of the energy consumed in the U.S. comes from fossil fuels - petroleum, coal, and natural gas, with crude oil-based petroleum products as the dominant source of energy”. The use of renewable energy has grown, but is only making a small dent in current consumption at about eight percent of the United States total. Another concern with the use of fossil fuels is the emission of carbon dioxide into the atmosphere and complications to the climate. This is because, according to themore » U.S. Energy Information Administration (EIA) “fossil fuels are responsible for 99% of CO 2 emissions”.« less
Toward an energy efficient community
NASA Astrophysics Data System (ADS)
Horn, M.
1980-10-01
The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.
NASA Astrophysics Data System (ADS)
Huzvar, Jozef; Kapjor, Andrej
2011-06-01
This article deals with combined production of heat and electricity for small premises, such as households, where energy consumption is around few kilowatts. This proposal of micro co-generation unit uses as a heat source an automatic burner for combustion of wood pellets. Construction of an equipment for the heat transport can be designed using different basic ways of heat transfer. Electricity is produced by the two-stroke steam engine and the generator.
Using Photovoltaic (PV) Cells on Enduring DoD Installations in the Middle East: A Feasibility Study
2013-06-01
geothermal , and biomass). In FY 2009, 3.6 percent of the DoD’s electrical consumption came from renewable electricity sources, exceeding the EP Act 2005...defined as electrical energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal ...involving solar, wind, geothermal and biomass energy. The U.S. Navy accounts for 60 percent of DoD’s renewable energy projects—some 250 in total. The 14
Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.
Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina
2018-09-15
Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
Special Section: ;Microbial fuel cells: From fundamentals to applications;: Guest Editors' note
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
Water scarcity and production of non-renewable energy are among the most serious challenges faced by humankind at present. Water-related problems such as insufficient freshwater for drinking or irrigation or, even worse, unavailability of freshwater exist in many parts of the world. Over a billion people lack access to clean water, and approximately two million people die every year because of inadequate water sanitation. Fossil fuel combustion has also become problematic because of the depletion of fossil fuels, which are finite energy sources. This together with the emissions of greenhouse gases has increased the CO2 concentration in atmosphere to an unprecedented level of >400 ppm. Therefore, it is of paramount importance to identify new renewable energy sources and more efficient ways of energy consumption and hybridization with existing technologies.
California energy flow in 1989
NASA Astrophysics Data System (ADS)
Borg, I. Y.; Briggs, C. K.
1991-02-01
California's energy use showed a modest increase (2.2 percent) in 1989 over 1988 which was in keeping with the steady increase in population that the state has experienced annually during the decade. All end-use sectors (residential, commercial, industrial, transportation, etc.) contributed to the growth. The larger demand was met by increased imports of all major fuels. Only electrical imports remained close to 1988 levels, in part due to increased output from Diablo Canyon nuclear plant whose performance exceeded expectations. California's per capita energy consumption has traditionally been below the national average due to the relatively benign climate associated with its centers of population. The largest single use for energy in the state was for transportation, which overtook industrial usage in the 60's. Use of highway fuels continued to grow and reached all time highs in 1989. Highway congestion, a major problem and concern in the state, is anticipated to grow as the number of licensed drivers increases; in 1989 the increase was 3.4 percent. Output from the The Geysers Geothermal fields, the largest in the world, continued to falter as the steam output fell. Nonetheless new resources at the Coso Geothermal Resource Area and at the Wendel Geothermal field came on line during the year, and other geothermal areas were under active development. Novel sources of renewable energy (solar, wind, etc.) grew; however, collectively they made only a small contribution to the overall energy supply. Cogenerated electricity sold to the utilities by small power producers inexplicably fell in 1989 although estimates of the total capacity available rose. Energy flow diagrams illustrate energy sources and energy consumption.
Thermoelectrical generator powered by human body
NASA Astrophysics Data System (ADS)
Almasyova, Zuzana; Vala, David; Slanina, Zdenek; Idzkowski, Adam
2017-08-01
This article deals with the possibility of using alternative energy sources for power of biomedical sensors with low power consumption, especially using the Peltier effect sources. Energy for powering of the target device has been used from the available renewable photovoltaic effect. The work is using of "energy harvesting" or "harvest energy" produced by autonomous generator harvesting accumulate energy. It allows to start working from 0.25 V. Measuring chain consists of further circuit which is a digital monitoring device for monitoring a voltage, current and power with I2C bus interface. Using the Peltier effect was first tested in a thermocontainer with water when the water heating occurred on the basis of different temperature differential between the cold and hot side of the Peltier element result in the production of energy. Realized prototype was also experimentally tested on human skin, specifically on the back, both in idle mode and under load.
Sucrose consumption in Thai undergraduate students.
Promdee, Limthong; Trakulthong, Jindara; Kangwantrakul, Wisut
2007-01-01
Highly added sugar diets have been associated with various health problems such as dental caries, dyslipidemia, obesity and poor quality of life. Unfortunately, sugar consumption, especially sucrose, has increased continuously worldwide. The purpose of the study was to examine sources of sugar consumption and amount of added sucrose consumed in Thai undergraduate students. This study was carried out at Khon Kaen University, Thailand, between the years 2004-2005. A complete 3-day record of items and amounts of sweet consumption were obtained from 202 individuals--38 male and 164 female students. Added sucrose content of each sweetened food and drinks referred to in the record was determined by an enzymatic method. Mean intakes of sucrose were calculated from the sucrose content. The average of sucrose consumption in all subjects was 69+/-38 g/day, ranged from 4 to 182 g/day or 17 teaspoons of added sucrose per day. This amount accounted for 13.8% of total daily energy intake. There was a record of 337 kinds of sweetened foods and drinks found. The major source of added sucrose consumption was sweetened beverage, which was consumed 118 g/day averagely, or 60% of daily sugar consumption. Intake of sucrose per day in both male and female was not statistically difference, neither among different BMI groups. Intake of added sugar in the students was higher than the recommendation of the World Health Organization. These data would be helpful in a health promotion campaign aimed at a reduction of sugar consumption in Thai undergraduate students.
Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions
NASA Astrophysics Data System (ADS)
Buddala, Santhoshi Snigdha
Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.
Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach
NASA Astrophysics Data System (ADS)
Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun
2017-10-01
Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.
Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushman, Chris
In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and themore » Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.« less
Energy efficiency in U.K. shopping centres
NASA Astrophysics Data System (ADS)
Mangiarotti, Michela
Energy efficiency in shopping centres means providing comfortable internal environment and services to the occupants with minimum energy use in a cost-effective and environmentally sensitive manner. This research considers the interaction of three factors affecting the energy efficiency of shopping centres: i) performance of the building fabric and services ii) management of the building in terms of operation, control, maintenance and replacement of the building fabric and services, and company's energy policy iii) occupants' expectation for comfort and awareness of energy efficiency. The aim of the investigation is to determine the role of the above factors in the energy consumption and carbon emissions of shopping centres and the scope for reducing this energy usage by changing one or all the three factors. The study also attempts to prioritize the changes in the above factors that are more cost-effective at reducing that energy consumption and identify the benefits and main economic and legal drivers for energy efficiency in shopping centres. To achieve these targets, three case studies have been analysed. Using energy data from bills, the performance of the selected case studies has been assessed to establish trends and current energy consumption and carbon emissions of shopping centres and their related causes. A regression analysis has attempted to break down the energy consumption of the landlords' area by end-use to identify the main sources of energy usage and consequently introduce cost-effective measures for saving energy. A monitoring and occupants' survey in both landlords' and tenants' areas have been carried out at the same time to compare the objective data of the environmental conditions with the subjective impressions of shoppers and shopkeepers. In particular, the monitoring aimed at assessing the internal environment to identify possible causes of discomfort and opportunities for introducing energy saving measures. The survey looked at determining the occupants' expectation for comfort and awareness of energy efficiency in shopping centres. The results show the complexity of prioritizing the three factors affecting energy efficiency in shopping centres, highlighting the relationships between those factors, and the role of different actors, involved in the life of shopping centres, in the energy and environmental performance of these buildings.
Consumption of added sugars among US children and adults by food purchase location and food source.
Drewnowski, Adam; Rehm, Colin D
2014-09-01
The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003-2004, 2005-2006, 2007-2008, and 2009-2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to reduce added sugars consumption. © 2014 American Society for Nutrition.
Drewnowski, Adam; Rehm, Colin D
2014-01-01
Background: The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. Objective: The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). Design: This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003–2004, 2005–2006, 2007–2008, and 2009–2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Results: Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Conclusions: Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to reduce added sugars consumption. PMID:25030785
Code of Federal Regulations, 2012 CFR
2012-07-01
... Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j) Commission means the Nuclear... source of drinking water means an aquifer or its portion: (1)(i) Which supplies any public water system... supply a public water system; and (A) Currently supplies drinking water for human consumption; or (B...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j) Commission means the Nuclear... source of drinking water means an aquifer or its portion: (1)(i) Which supplies any public water system... supply a public water system; and (A) Currently supplies drinking water for human consumption; or (B...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j) Commission means the Nuclear... source of drinking water means an aquifer or its portion: (1)(i) Which supplies any public water system... supply a public water system; and (A) Currently supplies drinking water for human consumption; or (B...
Ruiz, Emma; Rodriguez, Paula; Valero, Teresa; Ávila, José M.; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio
2017-01-01
The consumption of total and individual sugars is controversial and little is known about consumption and dietary sources in Spain. The purpose was to examine free and intrinsic sugar intake and food and beverage sources. The ANIBES Study (Anthropometry, Intake and Energy Balance in Spain), a cross-sectional study of a representative sample of the Spanish population (9–75 years old; n = 2009) carried out in 2013, was used. Food and beverage records were obtained by a three-day dietary record by using a tablet device. The median total sugar intake was 71.5 g/day (17% Total Energy, TE), the intrinsic sugar intake was 38.3 g/day (9.6% TE), and the free sugar was 28.8 g/day (7.3% TE). Total sugar intake (free and intrinsic) was higher in men than in women for all age groups, although in terms of the contribution to total energy intake, the opposite was observed. Differences were observed for free sugar consumption dependent on age and marked differences (up to two-fold) were observed when considering the percent TE, which was much higher in children and adolescents. For the intrinsic sugar, however, a higher contribution to TE was observed in the elderly. The major sources of intrinsic sugars were fruits (31.8%), milks (19.6%), juices and nectars (11.1%), vegetables (9.89%), yogurt and fermented milk (7.18%), low-alcohol-content beverages (4,94%), bread (2.91%), and sugar soft drinks (2.24%), greater than 90% from diet contribution. As for free sugars, sources were sugar soft drinks (25.5%), sugar (17.8%), bakery and pastry items (15.2%), chocolates (11.4%), yogurt and fermented milk (6.44%), other dairy products (5.99%), jams (3.58%), juices and nectars (2.91%), and breakfast cereals and cereal bars (2.78%), summing up to 90% of the contribution. The present study demonstrates that only a moderate percentage of the Spanish population adhered to the present recommendations for total sugar intake, and urgent efforts are needed to improve diet quality in the youngest populations. PMID:28335441
Ruiz, Emma; Rodriguez, Paula; Valero, Teresa; Ávila, José M; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio
2017-03-14
The consumption of total and individual sugars is controversial and little is known about consumption and dietary sources in Spain. The purpose was to examine free and intrinsic sugar intake and food and beverage sources. The ANIBES Study (Anthropometry, Intake and Energy Balance in Spain), a cross-sectional study of a representative sample of the Spanish population (9-75 years old; n = 2009) carried out in 2013, was used. Food and beverage records were obtained by a three-day dietary record by using a tablet device. The median total sugar intake was 71.5 g/day (17% Total Energy, TE), the intrinsic sugar intake was 38.3 g/day (9.6% TE), and the free sugar was 28.8 g/day (7.3% TE). Total sugar intake (free and intrinsic) was higher in men than in women for all age groups, although in terms of the contribution to total energy intake, the opposite was observed. Differences were observed for free sugar consumption dependent on age and marked differences (up to two-fold) were observed when considering the percent TE, which was much higher in children and adolescents. For the intrinsic sugar, however, a higher contribution to TE was observed in the elderly. The major sources of intrinsic sugars were fruits (31.8%), milks (19.6%), juices and nectars (11.1%), vegetables (9.89%), yogurt and fermented milk (7.18%), low-alcohol-content beverages (4,94%), bread (2.91%), and sugar soft drinks (2.24%), greater than 90% from diet contribution. As for free sugars, sources were sugar soft drinks (25.5%), sugar (17.8%), bakery and pastry items (15.2%), chocolates (11.4%), yogurt and fermented milk (6.44%), other dairy products (5.99%), jams (3.58%), juices and nectars (2.91%), and breakfast cereals and cereal bars (2.78%), summing up to 90% of the contribution. The present study demonstrates that only a moderate percentage of the Spanish population adhered to the present recommendations for total sugar intake, and urgent efforts are needed to improve diet quality in the youngest populations.
NASA Astrophysics Data System (ADS)
Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.
2015-02-01
The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.
NASA Astrophysics Data System (ADS)
Osman, Ayat E.
Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.
Wang, Li; Xi, Feng Ming; Wang, Jiao Yue
2016-03-01
The contradiction between energy consumption and economic growth is increasingly prominent in China. Liaoning Province as one of Chinese heavy industrial bases, consumes a large amount of energy. Its economic development has a strong dependence on energy consumption, but the energy in short supply become more apparent. In order to further understand the relationship between energy consumption and economic growth and put forward scientific suggestions on low carbon development, we used the grey correlation analysis method to separately examine the relevance of economic growth with energy consumption industries and energy consumption varieties through analy sis of energy consumption and economic growth data in Liaoning Province from 2000 to 2012. The results showed that the wholesale and retail sector and hotel and restaurant sector were in the minimum energy consumption in all kinds of sectors, but they presented the closest connection with the economic growth. Although industry energy consumption was the maximum, the degree of connection between industry energy consumption and economic growth was weak. In all types of energy consumption, oil and hydro-power consumption had a significant connection with economic growth. However, the degree of connection of coal consumption with economic growth was not significant, which meant that coal utilization efficiency was low. In order to achieve low carbon and sustainable development, Liaoning Province should transform the economic growth mode, adjust industry structure, optimize energy structure, and improve energy utilization efficiency, especially promote producer services and develop clean and renewable energy.
Energy saving and consumption reducing evaluation of thermal power plant
NASA Astrophysics Data System (ADS)
Tan, Xiu; Han, Miaomiao
2018-03-01
At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.
Energy requirements for waste water treatment.
Svardal, K; Kroiss, H
2011-01-01
The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.
A Review of Recent Advances in Research on PM2.5 in China
Zou, Jiale; Yang, Wei; Li, Chun-Qing
2018-01-01
PM2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM2.5, the impact of PM2.5 pollution on atmospheric visibility, occupational health, and occupants’ behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM2.5, and control of indoor PM2.5, and finally presents analysis and suggestions for future research. PMID:29498704
A Review of Recent Advances in Research on PM2.5 in China.
Lin, Yaolin; Zou, Jiale; Yang, Wei; Li, Chun-Qing
2018-03-02
PM 2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM 2.5 , the impact of PM 2.5 pollution on atmospheric visibility, occupational health, and occupants' behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM 2.5 , and control of indoor PM 2.5 , and finally presents analysis and suggestions for future research.
Thermoelectric harvesting of low temperature natural/waste heat
NASA Astrophysics Data System (ADS)
Rowe, David Michael
2012-06-01
Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.
Learning energy literacy concepts from energy-efficient homes
NASA Astrophysics Data System (ADS)
Paige, Frederick Eugene
The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity generation. • Utility bill limits and constraints exemplify the ability to conserve energy resources. • Replicable examples teach lessons on conservation. • Via an understanding of the water-energy nexus, water conservation lessons transfer to energy saving lessons. • Passive design exemplifies how a shift in thinking can conserve energy resources through informed efficient decision-making. • Societal shifts in energy consumption are evident at home. • Efficient homes provide applicable examples of social and technological innovations. • The home is the environment in which memorable lessons on energy are passed through cultures. • Home energy consumption comparisons are a popular and effective social innovation, but people have mixed emotions about their usefulness. • A utility bill communicates that utility companies are monitoring energy use to calculate cost. • Interactivity enhances feedback from energy monitors. • Calculating and monitoring energy use is perceived as a complex mathematical process. • Energy consumption feedback at the appliance level is desired to inform decisions. • There is a separation between personal energy monitoring and public monitoring. Implications of this research are that an energy literate society will have the knowledge that is a prerequisite for the motivation to address energy and climate issues. Educators, policy makers, engineers, and designers all play a role in creating a built environment that encourages energy saving behavior.
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph
2015-03-01
Capture of CO2, whether from a flue gas source (PCC) or from distributed sources via ambient air (DAC), is a key enabling technology to provide carbon for sustainable synthetic energy carriers such as solar fuels. Based on thermodynamic minimum considerations, DAC is often expected to require about 3 times more energy (per ton CO2 captured) than PCC because CO2 in ambient air is more dilute. Here, we calculate the energy required for a humidity swing-based DAC installation that uses an anionic exchange resin as sorbent. The calculation uses recently measured equilibrium CO2 loadings of the sorbent as function of partial CO2 pressure, temperature, and humidity. We calculate the installation's electricity consumption to be about 45 kJ per mole of pure CO2 at 1 bar (scenario-dependent). Furthermore, we estimate the amount of heat provided by ambient air and thus provide context of the overall energy and entropy balance and thermodynamic minimum views. The electricity consumption is competitive with typical parasitic loads of PCC-equipped coal-fired power plants (40-50 kJ per mole at same pressure) and significantly lower than predicted for other DAC installations such as Na(OH) sorbent-based systems. Our analyses elucidate why DAC is not always more energy-intensive that PCC, thus alleviating often cited concerns of significant cost impediments. Financial support by ABB for research presented herein is gratefully acknowledged.
77 FR 2054 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... Consumption Data Access and Control Questionnaire; (3) Type of Request: New; (4) Purpose: The U.S. Department of Energy (DOE) will generate a ``crowd-sourced map'' that discloses consumer access to personal... questionnaire device that captures and publishes the necessary information as a series of web-based maps upon...
ERIC Educational Resources Information Center
Wikina, Suanu Bliss; Thompson, Cynthia Carlton; Blackwell, Elinor
2010-01-01
Increasing population, total economic volume, and human consumption levels have resulted in problems of resource shortages, climate change, ozone layer depletion, land regression, and deteriorating environmental pollution. Printing and related industries constitute one of the major sources of environmental pollution due to heavy energy and…
Generation, capture, and utilization of industrial carbon dioxide.
Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H
2010-03-22
As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater efficiency and lower per capita consumption, and replacing fossil energy sources with sources such as wind, wave, and solar, respectively). "Low carbon" is of inherently less value to the chemical and plastics industries at least in terms of raw materials although a version of (2), the use of biomass, does apply, especially if we use carbon sources that are renewable on a human timescale. There is however, another renewable, natural source of carbon that is widely available and for which greater utilization would help restore material balance and the natural cycle for carbon in terms of resource and waste. CO(2), perhaps the most widely discussed and feared chemical in modern society, is as fundamental to our survival as water, and like water we need to better understand the human as well as natural production and consumption of CO(2) so that we can attempt to get these into a sustainable balance. Current utilization of this valuable resource by the chemical industry is only 90 megatonne per year, compared to the 26.3 gigatonne CO(2) generated annually by combustion of fossil fuels for energy generation, as such significant opportunities exist for increased utilization of CO(2) generated from industrial processes. It is also essential that renewable energy is used if CO(2) is to be utilized as a C1 building block.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
NASA Astrophysics Data System (ADS)
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Lim, Shan-Xuan; Toh, Jia-Ying; van Lee, Linde; Han, Wee-Meng; Shek, Lynette Pei-Chi; Tan, Kok-Hian; Yap, Fabian; Godfrey, Keith M; Chong, Yap-Seng; Chong, Mary Foong-Fong
2018-03-10
Adequate nutrition during complementary feeding is important for the growth, development and well-being of children. We aim to examine the energy and macronutrient intake composition and their main food sources in a mother-offspring cohort study in Singapore. The diets of infants were assessed by 24 h dietary recalls or food diaries collected from mothers when their offspring were 6 (n = 760), 9 (n = 893) and 12 (n = 907) months of age. Food sources of energy and macronutrients were determined using the population proportion methodology. Energy intakes per day (kcal; mean (standard deviation, SD)) of these infants were 640 (158) at 6 months, 675 (173) at 9 months, and 761 (208) at 12 months. Infant formula, breastmilk and infant cereals were the top three food sources of energy and macronutrient intakes in infants through the period 6 to 12 months. Other main energy and carbohydrate sources at 9 and 12 months of age were rice porridge, infant biscuits and fresh fruits, while fish, red meat and eggs were the other main protein and total fat sources. Breast-fed and mixed-fed infants had a more varied diet as compared to formula-fed infants. Formula-fed infants had consistently higher protein and lower total fat consumption compared to those who were breastfed. An understanding of these main food sources during complementary feeding can inform local dietary recommendations and policies.
Lim, Shan-Xuan; Toh, Jia-Ying; Han, Wee-Meng; Shek, Lynette Pei-Chi; Yap, Fabian; Chong, Yap-Seng; Chong, Mary Foong-Fong
2018-01-01
Adequate nutrition during complementary feeding is important for the growth, development and well-being of children. We aim to examine the energy and macronutrient intake composition and their main food sources in a mother–offspring cohort study in Singapore. The diets of infants were assessed by 24 h dietary recalls or food diaries collected from mothers when their offspring were 6 (n = 760), 9 (n = 893) and 12 (n = 907) months of age. Food sources of energy and macronutrients were determined using the population proportion methodology. Energy intakes per day (kcal; mean (standard deviation, SD)) of these infants were 640 (158) at 6 months, 675 (173) at 9 months, and 761 (208) at 12 months. Infant formula, breastmilk and infant cereals were the top three food sources of energy and macronutrient intakes in infants through the period 6 to 12 months. Other main energy and carbohydrate sources at 9 and 12 months of age were rice porridge, infant biscuits and fresh fruits, while fish, red meat and eggs were the other main protein and total fat sources. Breast-fed and mixed-fed infants had a more varied diet as compared to formula-fed infants. Formula-fed infants had consistently higher protein and lower total fat consumption compared to those who were breastfed. An understanding of these main food sources during complementary feeding can inform local dietary recommendations and policies. PMID:29534442
Energy requirements for HE-3 mining operations on the Moon
NASA Technical Reports Server (NTRS)
Kulcinski, Gerald L.
1988-01-01
At the present rate of world energy consumption (10 TW-y/y) and allowing for an equilibrium consumption of 20 to 30 TW-y/y in mid 21st century, we will exhaust economically recoverable fossil fuels in the next 50 to 60 years. We will then have to rely on nuclear (fission and fusion) and renewable energy to feed, warm, and protect the world's population. Fusion energy is expected to play an important role in the 21st century and there a 2 billion dollar per year research program to commercialize that energy resource. A serious problem with this is its reliance on the D-T fuel cycle which releases 80 percent of its energy in the form of neutrons. These neutrons cause significant radiation damage and induce large amounts of radioactivity. There is another fusion fuel cycle involving the isotopes of Deuterium and Helium-3 which, if configured properly, releases 1 percent or less of its energy in neutrons. Obviously, such a fuel would be preferred, but there is no large source of He-3 known to satisfy world energy needs. Fortunately, a very large source of He-3 was found on the Moon, implanted over the past 4 billion years by the solar wind. Recent analysis of Apollo and Luna data reveals that over a million tons of He-3 sit on the Moon's surface. The potential energy in this He-3 fuel is 10 times that contained in all the coal, oil, and natural gas on the Earth. The purpose of this paper is to examine the energy required to extract the He-3 from the lunar regolith.
The status and prospect of new energy and renewable energy in China
NASA Astrophysics Data System (ADS)
Qin, Jiaxi
2018-06-01
Renewable energy is an important part of the energy supply system. At present, the scale of global renewable energy development and utilization continues to expand, and application costs are rapidly declining. The development of renewable energy has become the core content of many countries in promoting energy transformation and an important method to deal with the climate change. It is also a revolution in China's energy production and consumption and a promotion of energy. This article focuses on the status of the development of new energy and renewable energy in China. After analyzing the problems in China's development and understanding the related policies, we look forward to the prospects of China's future and renewable energy sources.
Smelting Magnesium Metal using a Microwave Pidgeon Method
Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi
2017-01-01
Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910
Heat-pump-centered integrated community energy systems: System development summary
NASA Astrophysics Data System (ADS)
Calm, J. M.
1980-02-01
An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.
Intake of caffeine from all sources and reasons for use by college students.
Mahoney, Caroline R; Giles, Grace E; Marriott, Bernadette P; Judelson, Daniel A; Glickman, Ellen L; Geiselman, Paula J; Lieberman, Harris R
2018-04-10
Caffeine intake in a convenience sample of U.S. college students (N = 1248) was surveyed at five geographically-dispersed United States (U.S.) universities. Intake from coffee, tea, soft drinks, energy drinks, gums, and medications was assessed. Associations between caffeine intake and demographic variables including sex, age, race/ethnicity, family income, general health, exercise, weight variables and tobacco use were examined. Reasons for use of caffeine-containing products were assessed. Caffeine, in any form, was consumed by 92% of students in the past year. Mean daily caffeine consumption for all students, including non-consumers, was 159 mg/d with a mean intake of 173 mg/d among caffeine users. Coffee was the main source of caffeine intake in male (120 mg/d) and female (111 mg/d) consumers. Male and female students consumed 53 vs. 30 mg/d of caffeine in energy drinks, respectively, and 28% consumed energy drinks with alcohol on at least one occasion. Students provided multiple reasons for caffeine use including: to feel awake (79%); enjoy the taste (68%); the social aspects of consumption (39%); improve concentration (31%); increase physical energy (27%); improve mood (18%); and alleviate stress (9%). As in the general U.S. population, coffee is the primary source of caffeine intake among the college students surveyed. Energy drinks provide less than half of total daily caffeine intake but more than among the general population. Students, especially women, consume somewhat more caffeine than the general population of individuals aged 19-30 y but less than individuals aged 31-50 y. Published by Elsevier Ltd.
Poppitt, Sally D.
2015-01-01
The role that energy-containing beverages may play in the development of overweight and obesity remains highly controversial, in particular the alcoholic and sugar-sweetened beverages (SSB). Both of these beverage formats have been increasing as a percentage of the westernized diet over the past 20 years, and both have contributed significantly to an increase in energy consumed in liquid form. Data from epidemiology and intervention studies however have long been contradictory, despite mechanistic evidence pointing towards poor compensation for addition of “liquid” energy from these two sources into the diet providing a strong rational for the balance to be tipped towards weight gain. Regulatory and government intervention has been increasing globally, particularly with respect to intake of SSBs in children. This narrative review presents evidence which both supports and refutes the link between alcohol and carbohydrate-containing liquids and the regulation of body weight, and investigates mechanisms which may underpin any relationship between increased beverage consumption and increased energy intake, body weight and adiposity. PMID:26270675
Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation.
Vadasarukkai, Yamuna S; Gagnon, Graham A
2017-03-21
The operational significance of energy-intensive rapid mixing processes remains unaddressed in coagulation and flocculation of insoluble precipitates (flocs), which play an important role in the removal of impurities from drinking water supplies. In this study, the influence of rapid mixing and associated mixing energy on floc aggregation was examined for a surface water source characterized by a high fraction of aquatic humic matter. Infrared spectral analyses showed that the colloidal complexes resulting from ligand exchange between iron and dissolved natural organic matter (DOM) were not substantially influenced by the mixing energy input. This signified that DOM removal by coagulation can be achieved at lower mixing intensity, thereby reducing energy consumption. In contrast, macroscopic investigations showed the coagulation mixing energy affected floc size distributions during the slow mixing stage in flocculation and, to some extent, their settling characteristics. The results from analysis of floc properties clearly showed that more mixing energy was expended than necessary in coagulation, which is typically designed at a high mixing intensity range of 600-1000 s -1 in treatment plants. The key findings from this study have practical implications to water utilities to strategically meet water quality goals while reducing energy demands.
Contribution of electric energy to the process of elimination of low emission sources in Cracow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, J.; Mejer, T.; Wybranski, A.
1995-12-31
At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact,more » that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.« less
NASA Astrophysics Data System (ADS)
Xu, Zhicheng; Yuan, Bo; Zhang, Fuqiang
2018-06-01
In this paper, a power supply optimization model is proposed. The model takes the minimum fossil energy consumption as the target, considering the output characteristics of the conventional power supply and the renewable power supply. The optimal capacity ratio of wind-solar in the power supply under various constraints is calculated, and the interrelation between conventional power supply and renewable energy is analyzed in the system of high proportion renewable energy integration. Using the model, we can provide scientific guidance for the coordinated and orderly development of renewable energy and conventional power sources.
ERIC Educational Resources Information Center
Poulos, Natalie S.; Pasch, Keryn E.
2016-01-01
Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…
Essays on environmental regulations in electricity markets
NASA Astrophysics Data System (ADS)
Sun, Yanming
Reducing the Greenhouse Gas pollution and promoting energy efficiency among consumers' energy use have been major public policy issues recently. Currently, both the United States and the European Union have set up explicit percentage requirements that require energy generators or consumers to undertake a certain percentage of their energy production or consumption from renewable sources. To achieve their renewable targets, the Tradable Green Certificates (TGC) system has been introduced in their electricity markets. Moreover, in order to promote energy conservation and achieve energy efficiency targets, price policies and price changes derived from environmental regulations have played a more important role in reducing electricity consumption. My research studies problems associated with these policy implementations. In Chapter 1, I analyze a competitive electricity market with two countries operated under a common TGC system. By using geometric illustrations, I compare the two countries' welfare when the renewable quota is chosen optimally under the common certificate market with three different situations. The policy recommendation is that when the value of damage parameter is sufficiently small, full integration with a TGC market is welfare superior to full integration of an all fossil-fuel based market with an optimal emissions standard. In Chapter 2, by analyzing a stylized theoretical model and numerical examples, I investigate the performance of the optimal renewables policy under full separation and full integration scenarios for two countries' electricity markets operated under TGC systems. In my third chapter, I look at residential electricity consumption responsiveness to increases of electricity price in the U.S. and the different effect of a price increase on electricity use for states of different income levels. My analysis reveals that raising the energy price in the short run will not give consumers much incentive to adjust their appliances and make energy conservation investments to reduce electricity use, while in the long run, consumers are more likely to lower their electricity consumption, facing the higher electricity price induced from regulation policies. In addition, for states of higher per capita GDP, raising the electricity price may be more effective to ensure a cut in electricity consumption.
Ahluwalia, Namanjeet; Herrick, Kirsten
2015-01-01
There is increasing concern about potential adverse effects of caffeine in children. Our understanding of caffeine intake relies on studies dating to the late 1990s. This article synthesizes information from national studies since then to describe caffeine consumption, its association with sociodemographic factors, key dietary sources including caffeine-containing energy drinks (CCEDs), and trends in caffeine intake and sources among US children. Findings from the Kanter Worldpanel (KWP) Beverage Consumption Panel and the NHANES showed that caffeine consumption prevalence was generally consistent across studies and over time; more than one-half of 2- to 5-y-olds and ∼75% of older children (>5 y) consumed caffeine. The usual intakes of caffeine were 25 and 50 mg/d for children and adolescents aged 2–11 and 12–17 y, respectively (NHANES 2007–2010). Caffeine consumption correlated with age and was higher in non-Hispanic white children. The key sources of caffeine were soda and tea as well as flavored dairy (for children aged <12 y) and coffee (for those aged ≥12 y). The frequency of CCED use varied (2–30%) depending on study setting, methods, and demographic characteristics. A statistically significant but small decline in caffeine intake was noted in children overall during the 10- to 12-y period examined; intakes remained stable among older children (≥12 y). A significant increasing trend in CCED and coffee consumption and a decline in soda intake were noted (1999–2010). In 2009–2010, 10% of 12- to 19-y-olds and 10–25% of caffeine consumers (aged 12–19 y) had intakes exceeding Canadian maximal guidelines. Continued monitoring can help better understand changes in caffeine consumption patterns of youth. PMID:25593149
Perceived stress, energy drink consumption, and academic performance among college students.
Pettit, Michele L; DeBarr, Kathy A
2011-01-01
This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants included 136 undergraduates attending a large southern plains university. Participants completed surveys including items from the Perceived Stress Scale(1) and items to describe energy drink consumption, academic performance, and demographics. Positive correlations existed between participants' perceived stress and energy drink consumption. Participants' energy drink consumption and academic performance were negatively correlated. Freshmen (M = 0.330) and sophomores (M = 0.408) consumed a lower number of energy drinks yesterday than juniors (M = 1.000). Males reported higher means than females for selected energy drink consumption items. Statistically significant interactions existed between gender and year in school for selected energy drink consumption items. Results confirm gender differences in energy drink consumption and illuminate a need for education regarding use of energy drinks in response to perceived stress.
Assessment of the influence of energy under-reporting on intake estimates of four food additives.
Gilsenan, M B; Gibney, M J
2004-03-01
Under-reporting has been identified as an important source of uncertainty in food chemical exposure assessments. The objective of the present study was to assess the influence of under-reporting on food additive intake estimates. Dietary survey data were derived from the North-South Ireland Food Consumption Survey (2001). Data from the Republic of Ireland (n = 958) were used. Energy under-reporters were identified using a ratio of energy intakes to estimated basal metabolic rate. First, food categories (n = 26) included in an assessment of exposure of four food additives were created and patterns of food intakes (i.e. likelihood of consumption, frequency of consumption and reported portion size) between acceptable and under-reporters compared. Second, for each food additive, deterministic intake estimates for the total sample (i.e. acceptable and under-reporters), under-reporters and acceptable reporters were calculated and compared. Differential reporting of the majority of food categories between acceptable and under-reporters was recorded. Under-reporters were less likely to record the consumption of a given food and more likely to under-report the frequency of consumption and portion size compared with acceptable reporters. Food additive intake estimates amongst acceptable reporters were higher than corresponding intake estimates amongst the total sample of reporters and amongst under-reporters. With the exception of one food additive (erythrosine), ratios of upper percentile additive intakes amongst acceptable reporters to corresponding intake estimates amongst the total sample of reporters did not exceed 1.06 when results were expressed as total population or consumer-only intakes. Findings illustrated that energy under-reporting does not materially influence estimates of food additive exposure based on the four food additives studied. However, a number of situations were identified where the under-reporting might exert a more significant impact on resulting exposure estimates.
Ben Jebli, Mehdi
2016-08-01
This study employs the autoregressive distributed lag (ARDL) approach and Granger causality test to investigate the short- and long-run relationships between health indicator, real GDP, combustible renewables and waste consumption, rail transport, and carbon dioxide (CO2) emissions for the case of Tunisia, spanning the period of 1990-2011. The empirical findings suggest that the Fisher statistic of the Wald test confirm the existence of a long-run relationship between the variables. Moreover, the long-run estimated elasticities of the ARDL model provide that output and combustible renewables and waste consumption have a positive and statistically significant impact on health situation, while CO2 emissions and rail transport both contribute to the decrease of health indicator. Granger causality results affirm that, in the short-run, there is a unidirectional causality running from real GDP to health, a unidirectional causality from health to combustible renewables and waste consumption, and a unidirectional causality from all variables to CO2 emissions. In the long-run, all the computed error correction terms are significant and confirm the existence of long-run association among the variables. Our recommendations for the Tunisian policymakers are as follows: (i) exploiting wastes and renewable fuels can be a good strategy to eliminate pollution caused by emissions and subsequently improve health quality, (ii) the use of renewable energy as a main source for national rail transport is an effective strategy for public health, (iii) renewable energy investment projects are beneficial plans for the country as this contributes to the growth of its own economy and reduce energy dependence, and (iii) more renewable energy consumption leads not only to decrease pollution but also to stimulate health situation because of the increase of doctors and nurses numbers.
Economic and demographic issues related to deployment of the Satellite Power System (SPS)
NASA Technical Reports Server (NTRS)
Baldwin, T. E.; Hill, L. G.; Santini, D. J.; Stenehjem, E. J.
1978-01-01
Growth in energy consumption stimulated interest in exploitation of renewable sources of electric energy. One technology that was proposed is the Satellite Power System (SPS). Before committing the U.S. to such a large program, the Department of Energy and the National Aeronautics and Space Administration are jointly participating in an SPS Concept Development and Evaluation Program. This white paper on industrial and population relocation is part of the FY 78 preliminary evaluation of related socio-economic issues. Results of four preliminary assessment activities are documented.
Transportation Big Data: Unbiased Analysis and Tools to Inform Sustainable Transportation Decisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Today, transportation operation and energy systems data are generated at an unprecedented scale. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is the go-to source for expertise in providing data and analysis to inform industry and government transportation decision making. The lab's teams of data experts and engineers are mining and analyzing large sets of complex data -- or 'big data' -- to develop solutions that support the research, development, and deployment of market-ready technologies that reduce fuel consumption and greenhouse gas emissions.
Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J
2009-08-15
Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.
Household energy consumption and expenditures 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-05
This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expendituresmore » than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.« less
Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.
2013-01-01
Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.
Development of the Concept of Recycling of Light
NASA Astrophysics Data System (ADS)
Harmer, Brian
Environmental and economic issues are the highlights of any new product or system created today. The efficient use of energy helps satisfy both of these concerns as a reduction in energy consumption contributes to a reduction both in fuel consumption and carbon emissions. Illumination efficiency has been one of the main areas of research as luminaires are one of the largest consumers of electricity in the world. The incandescent bulb is one of the oldest pieces of technology still used today, but is being phased out as compact fluorescent lamps and LED light sources have a much lower power consumption for the same amount of light emission. However, the light source design, while very important, is not the only way to improve the efficiency of an illumination system. This thesis proposes a new concept, the recycling of light (ROL). The ROL system collects, transports, and emits unused light from one area to another through the use of optical fibers. To find an optimal ROL system, many variables need to be accounted for. This thesis covers the effect of different luminaires on light collection areas. The collection area for the ROL system needs to be placed in the areas of a room that are of little or no importance, but still receive light, such as the ceiling or the upper section of the walls. The fiber-to-source distance and offset effects on fiber emission are investigated, as well as the length and type of the optical fibers. Additionally, this thesis looks at the possibility of beveling optical fiber ends to be used as a focusing mechanism for the ROL system.
Emergy accounting of the Province of Siena: towards a thermodynamic geography for regional studies.
Pulselli, R M; Pulselli, F M; Rustici, M
2008-01-01
This research is part of the SPIn-Eco project for the Province of Siena, Italy, and applies an environmental accounting method to a region with reference to its population, human activities, natural cycles, infrastructures and other settings. This study asserts that the consumption of resources due to the human economy is a source of great concern because of the load it places on the biosphere. Environmental resources locally used, whether directly or indirectly, from both renewable energy fluxes and storage of materials and energies, are investigated. In this paper emergy analysis is presented and applied to the Province of Siena and to each of its municipalities, in order to evaluate the main flows of energy and materials that supply the territorial system, including human subsystems, with reference to their actual environmental cost. Therefore, the behaviour of the whole system and the interactions between natural and human agents were studied; in other words, the attitudes of the territorial systems toward resource use as revealed by their patterns of emergy consumption were observed. Once expressed in units of the same form of energy through the emergy evaluation, categories of resource consumption and systems of varying scales and organization are compared. Furthermore, indexes of environmental performance based on emergy are calculated. Flows of energy and materials are assessed, and their intensities, which vary throughout the area of the Province, are then visualized on maps.
NASA Astrophysics Data System (ADS)
Ramaswami, Anu; Chavez, Abel
2013-09-01
Three broad approaches have emerged for energy and greenhouse gas (GHG) accounting for individual cities: (a) purely in-boundary source-based accounting (IB); (b) community-wide infrastructure GHG emissions footprinting (CIF) incorporating life cycle GHGs (in-boundary plus trans-boundary) of key infrastructures providing water, energy, food, shelter, mobility-connectivity, waste management/sanitation and public amenities to support community-wide activities in cities—all resident, visitor, commercial and industrial activities; and (c) consumption-based GHG emissions footprints (CBF) incorporating life cycle GHGs associated with activities of a sub-set of the community—its final consumption sector dominated by resident households. The latter two activity-based accounts are recommended in recent GHG reporting standards, to provide production-dominated and consumption perspectives of cities, respectively. Little is known, however, on how to normalize and report the different GHG numbers that arise for the same city. We propose that CIF and IB, since they incorporate production, are best reported per unit GDP, while CBF is best reported per capita. Analysis of input-output models of 20 US cities shows that GHGCIF/GDP is well suited to represent differences in urban energy intensity features across cities, while GHGCBF/capita best represents variation in expenditures across cities. These results advance our understanding of the methods and metrics used to represent the energy and GHG performance of cities.
NASA Astrophysics Data System (ADS)
Diaz-Elsayed, Nancy
Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the machining parameters --- these decisions affect how much energy is utilized during production. Therefore, at the facility level a methodology is presented for implementing priority queuing while accounting for a high product mix in a discrete event simulation environment. A baseline case is presented and alternative factory designs are suggested, which lead to energy savings of approximately 9%. At the industry level, the majority of energy consumption for manufacturing facilities is utilized for machine drive, process heating, and HVAC. Numerous studies have characterized the energy of manufacturing processes and HVAC equipment, but energy data is often limited for a facility in its entirety since manufacturing companies often lack the appropriate sensors to track it and are hesitant to release this information for confidentiality purposes. Without detailed information about the use of energy in manufacturing sites, the scope of factory studies cannot be adequately defined. Therefore, the breakdown of energy consumption of sectors with discrete production is presented, as well as a case study assessing the electrical energy consumption, greenhouse gas emissions, their associated costs, and labor costs for selected sites in the United States, Japan, Germany, China, and India. By presenting energy models and assessments of production equipment, factory operations, and industry, this dissertation provides a comprehensive assessment of energy trends in manufacturing and recommends methods that can be used beyond these case studies and industries to reduce consumption and contribute to an energy-efficient future.
A multi-source dataset of urban life in the city of Milan and the Province of Trentino.
Barlacchi, Gianni; De Nadai, Marco; Larcher, Roberto; Casella, Antonio; Chitic, Cristiana; Torrisi, Giovanni; Antonelli, Fabrizio; Vespignani, Alessandro; Pentland, Alex; Lepri, Bruno
2015-01-01
The study of socio-technical systems has been revolutionized by the unprecedented amount of digital records that are constantly being produced by human activities such as accessing Internet services, using mobile devices, and consuming energy and knowledge. In this paper, we describe the richest open multi-source dataset ever released on two geographical areas. The dataset is composed of telecommunications, weather, news, social networks and electricity data from the city of Milan and the Province of Trentino. The unique multi-source composition of the dataset makes it an ideal testbed for methodologies and approaches aimed at tackling a wide range of problems including energy consumption, mobility planning, tourist and migrant flows, urban structures and interactions, event detection, urban well-being and many others.
A multi-source dataset of urban life in the city of Milan and the Province of Trentino
NASA Astrophysics Data System (ADS)
Barlacchi, Gianni; de Nadai, Marco; Larcher, Roberto; Casella, Antonio; Chitic, Cristiana; Torrisi, Giovanni; Antonelli, Fabrizio; Vespignani, Alessandro; Pentland, Alex; Lepri, Bruno
2015-10-01
The study of socio-technical systems has been revolutionized by the unprecedented amount of digital records that are constantly being produced by human activities such as accessing Internet services, using mobile devices, and consuming energy and knowledge. In this paper, we describe the richest open multi-source dataset ever released on two geographical areas. The dataset is composed of telecommunications, weather, news, social networks and electricity data from the city of Milan and the Province of Trentino. The unique multi-source composition of the dataset makes it an ideal testbed for methodologies and approaches aimed at tackling a wide range of problems including energy consumption, mobility planning, tourist and migrant flows, urban structures and interactions, event detection, urban well-being and many others.
A multi-source dataset of urban life in the city of Milan and the Province of Trentino
Barlacchi, Gianni; De Nadai, Marco; Larcher, Roberto; Casella, Antonio; Chitic, Cristiana; Torrisi, Giovanni; Antonelli, Fabrizio; Vespignani, Alessandro; Pentland, Alex; Lepri, Bruno
2015-01-01
The study of socio-technical systems has been revolutionized by the unprecedented amount of digital records that are constantly being produced by human activities such as accessing Internet services, using mobile devices, and consuming energy and knowledge. In this paper, we describe the richest open multi-source dataset ever released on two geographical areas. The dataset is composed of telecommunications, weather, news, social networks and electricity data from the city of Milan and the Province of Trentino. The unique multi-source composition of the dataset makes it an ideal testbed for methodologies and approaches aimed at tackling a wide range of problems including energy consumption, mobility planning, tourist and migrant flows, urban structures and interactions, event detection, urban well-being and many others. PMID:26528394
Sugars, obesity, and cardiovascular disease: results from recent randomized control trials.
Rippe, James M; Angelopoulos, Theodore J
2016-11-01
The relationship between sugar consumption and various health-related sequelas is controversial. Some investigators have argued that excessive sugar consumption is associated with increased risk of obesity, coronary heart disease, diabetes (T2D), metabolic syndrome, non-alcoholic fatty liver disease, and stimulation of reward pathways in the brain potentially causing excessive caloric consumption. These concerns have influenced organizations such as the World Health Organization, the Scientific Advisory Committee on Nutrition in England not to exceed 5 % of total energy and the Dietary Guidelines for Americans Advisory Committee 2015 to recommend upper limits of sugar consumption not to exceed 10 % of calories. Data from many randomized control trials (RCTs) do not support linkages between sugar consumption at normal levels within the human diet and various adverse metabolic and health-related effects. Fructose and glucose are typically consumed together in roughly equal proportions from high-fructose corn syrup (also known as isoglucose in Europe) or sucrose. The purpose of this review is to present data from recent RCTs and findings from recent systematic reviews and meta-analyses related to sugar consumption and its putative health effects. This review evaluates findings from recent randomized controlled trials, systematic reviews and meta-analyses into the relationship of sugar consumption and a range of health-related issues including energy-regulating hormones, obesity, cardiovascular disease, diabetes, and accumulation of liver fat and neurologic responses. Data from these sources do not support linkages between sugar consumption at normal levels within the human diet and various adverse metabolic and health-related effects.
NASA Astrophysics Data System (ADS)
Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej
2018-02-01
Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.
An energy-aware routing protocol for query-based applications in wireless sensor networks.
Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.
An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks
Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640
Influence factors and forecast of carbon emission in China: structure adjustment for emission peak
NASA Astrophysics Data System (ADS)
Wang, B.; Cui, C. Q.; Li, Z. P.
2018-02-01
This paper introduced Principal Component Analysis and Multivariate Linear Regression Model to verify long-term balance relationships between Carbon Emissions and the impact factors. The integrated model of improved PCA and multivariate regression analysis model is attainable to figure out the pattern of carbon emission sources. Main empirical results indicate that among all selected variables, the role of energy consumption scale was largest. GDP and Population follow and also have significant impacts on carbon emission. Industrialization rate and fossil fuel proportion, which is the indicator of reflecting the economic structure and energy structure, have a higher importance than the factor of urbanization rate and the dweller consumption level of urban areas. In this way, some suggestions are put forward for government to achieve the peak of carbon emissions.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Ignitibility of Exterior Wall Assemblies Using a Radiant Heat Energy Source. NFPA 269 Standard Test Method P... for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption... Plastic Insulation. NFPA 285 Standard Fire Test P Method for Evaluation of Fire Propagation...
NASA Astrophysics Data System (ADS)
Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George
2017-10-01
The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.
The Nitrogen Footprint Tool Network: A Multi-Institution Program To Reduce Nitrogen Pollution
Leach, Allison M.; Leary, Neil; Baron, Jill; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Reguera, Elizabeth; Ryals, Rebecca
2017-01-01
Abstract Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This article uses the Nitrogen Footprint Tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this article, the first seven completed institution nitrogen footprint results are presented. The Nitrogen Footprint Tool Network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher education sustainability community. The Nitrogen Footprint Tool Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as by reducing dependence on fossil fuels for energy. PMID:29350216
Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E
2016-02-01
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin
2016-12-01
The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi. Copyright © 2016 Elsevier B.V. All rights reserved.
The Nitrogen Footprint Tool network: A multi-institution program to reduce nitrogen pollution
Castner, Elizabeth A.; Leah, Allison M.; Leary, Neal; Baron, Jill S.; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Riguera, Elizabeth; Ryals, Rebecca
2017-01-01
Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven completed institution nitrogen footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence on fossil fuels for energy.
Systems modeling and analysis for Saudi Arabian electric power requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mohawes, N.A.
This thesis addresses the long-range generation planning problem in Saudi Arabia up to the year 2000. The first part presents various models for electric energy consumption in the residential and industrial sectors. These models can be used by the decision makers for the purposes of policy analysis, evaluation, and forecasting. Forecasts of energy in each sector are obtained from two different models for each sector. These models are based on two forecasting techniques: (1) Hybrid econometric/time series model. The idea of adaptive smoothing was utilized to produce forecasts under several scenarios. (2) Box-Jenkins time series technique. Box-Jenkins models and forecastsmore » are developed for the monthly number of electric consumers and the monthly energy consumption per consumer. The results obtained indicate that high energy consumption is expected during the coming two decades which necessitate serious energy assessment and optimization. Optimization of a mix of energy sources was considered using the group multiattribute utility (MAU) function. The results of MAU for three classes of decision makers (managerial, technical, and consumers) are developed through personal interactions. The computer package WASP was also used to develop a tentative optimum plan. According to this plan, four heavy-water nuclear power plants (800 MW) and four light-water nuclear power plants (1200 MW) have to be introduced by the year 2000 in addition to sixteen oil-fired power plants (400 MW) and nine gas turbines (100 MW).« less
A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron
Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building managementmore » system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings« less
Moubarac, Jean-Claude; Receveur, Olivier; Cargo, Margaret; Daniel, Mark
2014-02-01
The present study describes the consumption patterns of sweetened food and drink products in a Catholic Middle Eastern Canadian community and examines its associations with physical activity, sedentary behaviours and BMI. A two-stage cross-sectional design was used. In Stage 1 (n 42), 24 h recalls enabled the identification of sweetened products. In Stage 2 (n 192), an FFQ was administered to measure the daily consumption of these products and to collect sociodemographic and behavioural data. Sweetened products were defined as processed culinary ingredients and ultra-processed products for which total sugar content exceeded 20% of total energy. Three Catholic Middle Eastern churches located in Montreal, Canada. Normoglycaemic men and women (18-60 years old). Twenty-six sweetened products represented an average consumption of 75·4 g total sugars/d or 15·1% of daily energy intake (n 190, 56% women). Soft drinks, juices, sweetened coffee, chocolate, cookies, cakes and muffins were the main sources of consumption and mostly consumed between meals. Age (exp (β) = 0·99; P < 0·01), physical activity (exp (β) = 1·08; P < 0·01) and recreational computer use (exp (β) = 1·17; P < 0·01) were independently associated with sweetened product consumption. The association between sweetened product consumption and physical activity was U-shaped. BMI was not significantly associated with sweetened product consumption but all participants regardless of BMI were above the WHO recommendation for free sugars. Being physically active and spending less time using a computer may favour a reduced consumption of sweetened products. Very active individuals may, however, overconsume such products.
Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo
2015-06-01
Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving.
Decentralized energy studies: Compendium of international studies and research
NASA Astrophysics Data System (ADS)
Wallace, C.
1980-03-01
With efficient use of energy, renewable energy sources can supply the majority, if not the totality, of energy supplies in developed nations at real energy prices that double or triple by 2025 (1975 prices). This appears true even in harsh climates with oil dependent industrial economies. Large increases in end-use energy efficiency are cost effective at present prices. Some reports show that cost effective end-use efficiency improvements can reduce energy consumption (per capita, per unit of amenity, or per unit of output) to as much as 90 percent. This was demonstrated by highly disaggregated analyses of end-uses. Such analyses consistently show larger potential for efficiency improvements than can be detected from conventional analyses of more aggregated data. As energy use demands decline due to end use efficiency improvements, energy supply problems subsequently decrease. Lifestyle changes, influenced by social factors, and rising energy prices can substantially reduce demands for energy. Such changes are already discernible in end-use energy studies. When energy efficient capital stock is in place, many end-users of energy will be able to provide a substantial portion of their own energy needs from renewable energy sources that are directly available to them.
NASA Astrophysics Data System (ADS)
Alabbas, Nabeel H.
Despite holding 16% of proved oil reserves in the world, Saudi Arabia might be on an unsustainable path to become a net oil importer by the 2030s. Decades of domestic energy subsidies accompanied by a high population growth rate have encouraged inefficient production and high domestic consumption of fossil fuel energy, which has resulted in environmental degradation, and significant social and economic consequences. In addition, the government's dependence on oil as a main source of revenue (89%) to finance its development programs cannot be sustained due to oil's exhaustible nature and rapidly increasing domestic consumption. The electricity and water sectors consume more energy than other sectors. The literature review revealed that electricity use in Saudi Arabia is following an unsustainable path (7-8% annual growth over the last decade). The water sector is another major energy consumer due to an unprecedented demand for water in the Kingdom (18% of world's total desalinated water output with per capita consumption is twice the world average). Multiple entities have been involved in fragmented planning activities on the supply-side as well as to a certain extent on the demand-side; moreover, comprehensive integrated resource strategic plans have been lacking at the national level. This dissertation established an integrated resource strategic planning (IRSP) model for Saudi Arabia's electricity and water sectors. The IRSP can clearly determine the Kingdom's future vision of its utility sector, including goals, policies, programs, and an execution timetable, taking into consideration economic, environmental and social benefits. Also, a weather-based hybrid end-use econometric demand forecasting model was developed to project electricity demand until 2040. The analytical economic efficiency and technical assessments reveal that Saudi Arabia can supply almost 75% of its electricity from renewable energy sources with a significant achievable potential for saving 26% of peak demand by 2040. However, the development of sustainable energy systems in the country's utility sector will not occur automatically. Thus, several actions are proposed for developing the sustainable energy roadmap, strategies, and policies for Saudi Arabia's utility sector, supporting its position as a new vehicle of growth that facilitates national and socio-economic development and economic diversification plan.
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
Integrated Energy-Water Planning in the Western and Texas Interconnections (Invited)
NASA Astrophysics Data System (ADS)
Tidwell, V. C.
2013-12-01
While thermoelectric power generation accounts for less than one percent of total water consumption in the western U.S, steady growth in demand is projected for this sector. Complexities and heterogeneity in water supply, water demand, and institutional controls make water development a challenging proposition throughout the West. A consortium of National Laboratories, the University of Texas and the Electric Power Research Institute are working with the Western Governors' Association and Western States Water Council to assist the Western Electricity Coordinating Council and the Electric Reliability Council of Texas to integrate water related issues into long-term transmission planning. Specifically, water withdrawal and consumption have been estimated for each western power plant and their susceptibility to climate impacts assessed. To assist with transmission planning, water availability and cost data have been mapped at the 8-digit Hydrologic Unit Code level for the conterminous western U.S. (1208 watersheds). Five water sources were individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped is projected growth in consumptive water demand to 2030. The relative costs (capital and O&M) to secure, convey, and treat the water as necessary have also been estimated for each source of water. These data configured into watershed level supply curves were subsequently used to constrain West-wide transmission planning. Results across a range of alternative energy futures indicate the impact of water availability and cost on the makeup and siting of future power generation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Water budgets at a 8-digit HUC level constructed by aggregating available water (all five sources) and subtracting projected change in demand for 2010-2030.
Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.
Lin, Yu-Hsiu; Hu, Yu-Chen
2018-04-27
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%.
Limits on the maximum attainable efficiency for solid-state lighting
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi
2008-03-01
Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.
Usage of energy reserves in crustaceans during starvation: status and future directions.
Sánchez-Paz, Arturo; García-Carreño, Fernando; Muhlia-Almazán, Adriana; Peregrino-Uriarte, Alma B; Hernández-López, Jorge; Yepiz-Plascencia, Gloria
2006-04-01
In this paper, we review the current knowledge about the usage of carbohydrates, lipids and proteins as energy source by marine crustaceans during starvation. Crustaceans are a large and diverse group including some economically important species. The efforts to culture them for human consumption has prompted the interest to understand the preferences of energy sources to be applied for feed formulation and cost reduction. Important differences have been found among species and appear to be related not only to the biochemistry and physiology of nutrition, but also to the living environment of the crustaceans. Furthermore, crustaceans undergo morphological, physiological and behavioral changes due to their natural growing process that affect their feeding habits, an aspect that should be carefully considered. We discuss the current information on marine crustaceans about energy usage and describe areas of future research, where starvation studies render important insights.
Power Generation for River and Tidal Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan
Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered onemore » of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.« less
Minimization of power consumption during charging of superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy
2015-11-01
The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jerzy; Mijakowski, Maciej; Trząski, Adrian
2017-11-01
Most of the EU member states have already set a definition of nZEB for new buildings and some of the countries also done it for existing buildings. As there is no definition of nZEB for existing buildings in Poland, the paper will include various considerations of such a standard. Next, a case study of educational building retrofitting to a proposed nZEB standard will be presented. The aim of the paper is to present what measures can be used in order to decrease energy consumption in existing building. The measures are divided into three parts: architectural and construction, installations and energy sources. Thus a complexity of the solutions are presented. As the nZEB standard is related to available energy sources, also an influence of local condition will be considered. Building chosen for analysis is located in an area under historic protection which makes the work even more difficult. It was proved that used solutions were chosen not only to reduce energy demand or increase energy production from renewable energy sources, but also to increase social and aesthetic features of the building.
Knowledge, attitudes and practices toward energy drinks among adolescents in Saudi Arabia.
Musaiger, Abdulrahman; Zagzoog, Nisreen
2013-11-27
The objective of this study is to explore the knowledge, attitudes and intake of energy drinks among adolescents in Saudi Arabia. A multi-stage stratified sampling procedure was carried out to select 1061 school children aged 12-19 years, from Jeddah city, Saudi Arabia. A short self-reported questionnaire was administrated in order to collect the data. Of adolescents in the study, 45% drank energy drinks (71.3% males and 35.9% females; P<0.001). Advertisements were the main source of information on energy drinks (43%). The major reasons for consuming energy drinks were taste and flavour (58%), to 'try them' (51.9%) and 'to get energy' (43%), albeit with significant differences between genders (P<0.001). About half of the adolescents did not know the ingredients of these drinks, and 49% did not know that they contain caffeine (P-values <0.006 and <0.001 between genders, respectively). The greater majority (67%) considered energy drinks to be soft drinks. The study indicates the need for Saudi adolescents to be warned on the over-consumption of energy drinks. The study brings to attention the need for educational programmes related to increasing awareness in the community of the health effects related to high consumption of energy drinks.
Change in dietary energy density after implementation of the Texas Public School Nutrition Policy.
Mendoza, Jason A; Watson, Kathy; Cullen, Karen Weber
2010-03-01
Consumption of energy-dense foods has been associated with rising obesity rates and the metabolic syndrome. Reducing dietary energy density is an important strategy to address obesity, but few studies have examined the effect of nutrition policies on children's energy density. The study's objective was to assess the impact of the Texas Public School Nutrition Policy on children's energy density by using a pre- and post-policy evaluation. Analysis of variance/covariance and nonparametric tests compared energy density after the Texas policy change to intakes at baseline. Two years of lunch food records were collected from middle school students in Southeast Texas at three public middle schools: baseline (2001-2002) and 1 year after implementation of the Texas Policy (2005-2006). Students recorded the amount and source of foods consumed. The Texas Public School Nutrition Policy was designed to promote a healthy school environment by restricting portion sizes of high-fat and high-sugar snacks and sweetened beverages, fat content of foods, and serving of high-fat vegetables like french fries. Energy density (kcal/g): energy density-1 was the energy of foods only (no beverages) divided by the gram weight and has been previously associated with obesity and insulin resistance; energy density-2 included all food and beverages to give a complete assessment of all sources of calories. Following implementation of the Texas policy, students' energy density-1 significantly decreased from 2.80+/-1.08 kcal/g to 2.17+/-0.78 kcal/g (P<0.0001). Similarly, energy density-2 significantly decreased from 1.38+/-0.76 kcal/g to 1.29+/-0.53 kcal/g (P<0.0001). In conclusion, the Texas Public School Nutrition Policy was associated with desirable reductions in energy density, which suggests improved nutrient intake as a result of student school lunch consumption. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
A Methodology for the Estimation of the Wind Generator Economic Efficiency
NASA Astrophysics Data System (ADS)
Zaleskis, G.
2017-12-01
Integration of renewable energy sources and the improvement of the technological base may not only reduce the consumption of fossil fuel and environmental load, but also ensure the power supply in regions with difficult fuel delivery or power failures. The main goal of the research is to develop the methodology of evaluation of the wind turbine economic efficiency. The research has demonstrated that the electricity produced from renewable sources may be much more expensive than the electricity purchased from the conventional grid.
Basic repository source term and data sheet report: Lavender Canyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs.
Methods for Analysis of Urban Energy Systems: A New York City Case Study
NASA Astrophysics Data System (ADS)
Howard, Bianca
This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.
Todd, Jessica E
2017-12-01
To document changes in consumption of food away from home (FAFH) and intakes of selected nutrients by working-age adults between 2005-06 and 2013-14, covering the most recent recessionary period and recovery. Means were compared across survey rounds relative to 2005-06. Multivariate regression was used to account for changes in demographic characteristics over time. National Health and Nutrition Examination Survey (NHANES), 2005-2014. Working-age adults born in 1951-80 (n 12 129) and adolescents and young adults born in 1981-90 (n 5197) who reported day 1 dietary intake data. Approximately 34 % of energy consumed by working-age adults came from FAFH (14 % from fast foods) in 2005-06. Levels of FAFH consumption were lowest in 2009-10, at 28 and 11 % of energy from FAFH and fast foods, respectively. Percentage of energy from fast foods was 1·9 percentage points higher in 2013-14. Percentage of energy from saturated fat and total mg of cholesterol consumed were lower in 2009-14, while intake of fibre was higher in 2011-14. At-home foods had less saturated fat and more fibre in 2009-14. The greater the percentage of energy from FAFH in the day, the greater the intakes of fat and cholesterol. Percentage of energy from FAFH was highest among those born in 1981-90 and lowest among those born in 1951-60. FAFH is a significant source of energy, fat and cholesterol among working-age adults. Menu labelling may lower FAFH's energy content and make it easier for consumers to choose more healthful items.
Active optimal control strategies for increasing the efficiency of photovoltaic cells
NASA Astrophysics Data System (ADS)
Aljoaba, Sharif Zidan Ahmad
Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.
Gwin, Jess A; Maki, Kevin C; Leidy, Heather J
2017-12-01
Background: Higher-protein (HP) energy-restriction diets improve weight management to a greater extent than normal-protein (NP) versions. Potential mechanisms of action with regard to assessment of eating behaviors across the day have not been widely examined during energy restriction. Objectives: The objectives of this study were to test whether the consumption of an HP energy-restriction diet reduces carbohydrate and fat intakes through improvements in daily appetite, satiety, and food cravings compared with NP versions and to test whether protein type within the NP diets alters protein-related satiety. Methods: Seventeen overweight women [mean ± SEM age: 36 ± 1 y; body mass index (kg/m 2 ): 28.4 ± 0.1] completed a randomized, controlled-feeding crossover study. Participants were provided with the following ∼1250-kcal/d energy-restricted (-750-kcal/d deficit) diets, each for 6 d: HP [124 g protein/d; 60% from beef and 40% from plant sources (HP-BEEF)] or NP (48 g protein/d) that was protein-type matched (NP-BEEF) or unmatched [100% from plant-based sources (NP-PLANT)]. On day 6 of each diet period, participants completed a 12-h testing day containing repetitive appetite, satiety, and food-craving questionnaires. On day 7, the participants were asked to consume their protein requirement within each respective diet but were provided with a surplus of carbohydrate- and fat-rich foods to consume, ad libitum, at each eating occasion across the day. All outcomes reported were primary study outcomes. Results: The HP-BEEF diet reduced daily hunger by 16%, desire to eat by 15%, prospective food consumption by 14%, and fast-food cravings by 15% but increased daily fullness by 25% compared with the NP-BEEF and NP-PLANT diets (all P < 0.05). However, consuming more protein throughout the day did not reduce the energy consumed ad libitum from the fat- and carbohydrate-rich foods (HP-BEEF: 2000 ± 180 kcal/d; NP-BEEF: 2120 ± 190 kcal/d; NP-PLANT: 2070 ± 180 kcal/d). None of the outcomes differed between the NP-BEEF and NP-PLANT treatments. Conclusions: Although appetite control, satiety, and food cravings improved after an HP energy-restriction diet, increased protein consumption did not reduce carbohydrate and fat intakes throughout the free-living test day in overweight healthy women exposed to highly palatable foods. This trial was registered at clinicaltrials.gov as NCT02614729. © 2017 American Society for Nutrition.
Jády, Attila Gy; Nagy, Ádám M; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László; Madarász, Emília
2016-07-01
While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.
Energy potential from rice husk through direct combustion and fast pyrolysis: A review.
Quispe, Isabel; Navia, Rodrigo; Kahhat, Ramzy
2017-01-01
Rapid population growth and consumption of goods and services imply that demand for energy and resources increases continuously. Energy consumption linked to non-renewable resources contributes to greenhouse gas emissions and enhances resource depletion. In this context, the use of agricultural solid residues such as rice husk, coffee husk, wheat straw, sugar cane bagasse, among others, has been widely studied as an alternative energy source in order to decrease the use of fossil fuels. However, rice husk is among those agricultural residues that are least used to obtain energy in developing countries. Approximately 134 million tonnes of rice husk are produced annually in the world, of which over 90% are burned in open air or discharged into rivers and oceans in order to dispose of them. This review examines the energetic potential of agricultural residues, focused on rice husk. The review describes direct combustion and fast pyrolysis technologies to transform rice husk into energy considering its physical and chemical properties. In addition, a review of existing studies analyzing these technologies from an environmental life cycle thinking perspective, contributing to their sustainable use, is performed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of an Open Smart Energy Gateway for Smart Meter Data Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Janie; McParland, Chuck; Piette, Mary Ann
With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less
Electric Power Monthly, August 1990. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-29
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
Sugar Intake, Obesity, and Diabetes in India
Gulati, Seema; Misra, Anoop
2014-01-01
Sugar and sweet consumption have been popular and intrinsic to Indian culture, traditions, and religion from ancient times. In this article, we review the data showing increasing sugar consumption in India, including traditional sources (jaggery and khandsari) and from sugar-sweetened beverages (SSBs). Along with decreasing physical activity, this increasing trend of per capita sugar consumption assumes significance in view of the high tendency for Indians to develop insulin resistance, abdominal adiposity, and hepatic steatosis, and the increasing “epidemic” of type 2 diabetes (T2DM) and cardiovascular diseases. Importantly, there are preliminary data to show that incidence of obesity and T2DM could be decreased by increasing taxation on SSBs. Other prevention strategies, encompassing multiple stakeholders (government, industry, and consumers), should target on decreasing sugar consumption in the Indian population. In this context, dietary guidelines for Indians show that sugar consumption should be less than 10% of total daily energy intake, but it is suggested that this limit be decreased. PMID:25533007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basalla, G.
1979-07-01
The author challenges the validity of linking energy consumption and civilization levels and suggests that it might be wise to discard the equation. Variations in how individuals choose to use energy invalidate any strict linkage. The confusion caused by equating physical energy with moral, religious and other types of energy is a result of mixing definable sciences with indefinable values. The energy-civilization equation dates to the beginning of the Industrial Revolution, when new energy sources transformed social and economic life and were credited with enhancing civilization. The pessimistic view can also be taken, but the author questions whether declining energymore » use will lead to the decline of civilization as quotes from 18th - 20th Century thinkers indicate. 14 references.« less
Chen, Chun-Yen; Chen, Yu-Chun; Huang, Hsiao-Chen; Ho, Shih-Hsin; Chang, Jo-Shu
2015-09-01
Binary combinations of LEDs with four different colors were used as light sources to identify the effects of multiple wavelengths on the production of eicosapentaenoic acid (EPA) by an isolated microalga Nannochloropsis oceanica CY2. Combining LED-Blue and LED-Red could give the highest EPA productivity of 13.24 mg L(-1) d(-1), which was further enhanced to 14.4 mg L(-1) d(-1) when using semi-batch operations at a 40% medium replacement ratio. A novel photobioreactor with additional immersed light sources improved light penetration efficiency and led to an 38% (0.170-0.235 g L(-1) d(-1)) increase in the microalgae biomass productivity and a 9% decrease in electricity consumption yield of EPA (10.15-9.33 kW-h (g EPA)(-1)) when compared with the control (i.e., without immersed light sources). Operating the immersed LEDs at a flashing-frequency of 9 Hz further lowered the energy consumption yield to 8.87 kW-h (g EPA)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Measurements of the cesium flow from a surface-plasma H/sup -/ ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.V.; Allison, P.W.
1979-01-01
A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannone, Greg; Thomas, John F; Reale, Michael
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This...
NASA Astrophysics Data System (ADS)
Wojdyga, Krzysztof; Malicki, Marcin
2017-11-01
Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of this Energy Engineering Analysis (EEA) for LSAAP is threefold: Develop a systematic plan of projects which will result in reducing energy consumption. Consider renewable energy sources with the objective of establishing an orderly procedure for reducing use of non-renewable energy sources. Determine the feasibility of Total Energy (TE), Selective Energy (SE), and Central Heating Plant (CHP) concepts using alternative fuels. In essence, an assessment of the entire energy picture at LSAAP was undertaken. This report is a summary of that effort. LSAAP was originally built during 1941 and 1942 as a shell loading plant for the Army.more » After World War II, the facility was deactivated until 1951 when it was reactivated as a Government Owned, Contractor Operated (GOCO) facility. Day and Zimmerman was selected as the operator in 1951 and has been the operating contractor ever since. Located just west of Texarkana, Texas, LSAAP encompasses an area of approximately 15,546 acres. The primary mission of LSAAP is to load, assemble and pack ammunition and ammunition components for the Army.« less
Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E
2015-09-15
The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; McManamay, Ryan A; Nagle, Nicholas N
Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may thereforemore » not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.« less
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Ri Yi
2018-06-01
Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.
Self-contained small utility system
Labinov, Solomon D.; Sand, James R.
1995-01-01
A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.
Energy drink consumption and marketing in South Africa.
Stacey, Nicholas; van Walbeek, Corné; Maboshe, Mashekwa; Tugendhaft, Aviva; Hofman, Karen
2017-12-01
Energy drinks are a fast-growing class of beverage containing high levels of caffeine and sugar. Advertising and marketing have been key to their growth in South Africa. This paper documents trends in energy drink consumption and energy drink advertising, and examines the relationship between exposure to energy drink advertising and consumption. Logistic regressions were estimated of categories of energy drink consumption on individual characteristics, as well as exposure to energy drink advertising. Exposure to advertising is measured by reported viewing of channels high in energy drink advertising. Energy drink consumption in South Africa is higher among younger, wealthier males. Spending on energy drink advertising is mostly focused on television. Targeted channels include youth, sports and general interest channels. Viewers of channels targeted by energy drink advertisers have higher odds of any and moderate levels of energy drinks consumption. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes.
Nowak, Dariusz; Jasionowski, Artur
2016-07-29
Energy drinks (EDs) have become widely popular among young adults and, even more so, among adolescents. Increasingly, they are consumed by athletes, particularly those who have just begun their sporting career. Uncontrolled and high consumption of EDs, in addition to other sources of caffeine, may pose a threat to the health of young people. Hence, our objective was to analyze the consumption of EDs among teenagers engaged in sports, including quantity consumed, identification of factors influencing consumption, and risks associated with EDs and EDs mixed with alcohol (AmEDs). The study involved a specially designed questionnaire, which was completed by 707 students, 14.3 years of age on average, attending secondary sports schools. EDs were consumed by 69% of the young athletes, 17% of whom drank EDs quite often: every day or 1-3 times a week. Most respondents felt no effects after drinking EDs, but some reported symptoms, including insomnia, anxiety, tachycardia, nervousness and irritability. The major determinant of the choice of EDs was taste (47%), followed by price (21%). One in ten respondents admitted to consumption of AmEDs. Among the consequences reported were: abdominal pains, nausea, vomiting, amnesia, headache, and hangover. EDs consumption among adolescent athletes was relatively high. Considering the habit of AmEDs and literature data, it is worth emphasizing that it may lead to health problems in the near future, alcohol- or drug-dependence, as well as other types of risk behaviour.
Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes
Nowak, Dariusz; Jasionowski, Artur
2016-01-01
Background: Energy drinks (EDs) have become widely popular among young adults and, even more so, among adolescents. Increasingly, they are consumed by athletes, particularly those who have just begun their sporting career. Uncontrolled and high consumption of EDs, in addition to other sources of caffeine, may pose a threat to the health of young people. Hence, our objective was to analyze the consumption of EDs among teenagers engaged in sports, including quantity consumed, identification of factors influencing consumption, and risks associated with EDs and EDs mixed with alcohol (AmEDs). Methods: The study involved a specially designed questionnaire, which was completed by 707 students, 14.3 years of age on average, attending secondary sports schools. Results: EDs were consumed by 69% of the young athletes, 17% of whom drank EDs quite often: every day or 1–3 times a week. Most respondents felt no effects after drinking EDs, but some reported symptoms, including insomnia, anxiety, tachycardia, nervousness and irritability. The major determinant of the choice of EDs was taste (47%), followed by price (21%). One in ten respondents admitted to consumption of AmEDs. Among the consequences reported were: abdominal pains, nausea, vomiting, amnesia, headache, and hangover. Conclusions: EDs consumption among adolescent athletes was relatively high. Considering the habit of AmEDs and literature data, it is worth emphasizing that it may lead to health problems in the near future, alcohol- or drug-dependence, as well as other types of risk behaviour. PMID:27483299
Milla Tobarra, Marta; García Hermoso, Antonio; Lahoz García, Noelia; Notario Pacheco, Blanca; Lucas de la Cruz, Lidia; Pozuelo Carrascosa, Diana P; García Meseguer, María José; Martínez Vizcaíno, Vicente A
2018-01-19
beverage consumption constitutes a source of children's daily energy intake. Some authors have suggested that consumption of caloric beverages is higher in children with a low socioeconomic position because families limit their spending on healthy food in order to save money. the aim of this study was to explore the relationship between socioeconomic status and Spanish children's beverage consumption. a cross-sectional study was conducted in a sub-sample of 182 children (74 girls) aged 9-11 from the province of Cuenca (Spain). Beverage consumption was assessed using the YANA-C assessment tool, validated for HELENA study. Data for parental socioeconomic status were gathered by using self-reported occupation and education questions answered by parents and classified according to the scale proposed by the Spanish Society of Epidemiology. beverage intake was higher in children belonging to a middle-status family than in those of upper socioeconomic status (p = 0.037). The energy from beverages was similar in most water intake categories, except for water from beverages (p = 0.046). Regarding other beverages categories, middle-status children had higher consumption levels. In contrast, lower status children drank more fruit juices and skimmed milk. All of these do not show statistically significant differences. our study did not find significant associations between beverages consumption and socioeconomic status in children. In fact, intake for most beverage categories was higher in middle-status children than in both other socioeconomic groups. Future research is needed in order to identify this complex relation between socioeconomic inequality and beverage intake behavior.
Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.
ERIC Educational Resources Information Center
Soprovich, William, Comp.
When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…
USDA-ARS?s Scientific Manuscript database
Concord grape juice (CGJ) is a rich source of phenolic antioxidants with a range of putative health benefits. However, high beverage energy and fructose intake may lead to weight gain and insulin resistance, respectively. This study assessed the effects of CGJ consumption for 12-wk on appetite, di...
Hardwood regeneration helps wildlife
Livia Marques; Claire Payne
2008-01-01
Fleshy fruit, or soft mast, is a key food resource for wildlife. Unlike many other wildlife foods, fruits are available throughout the year, particularly when other food sources may be scarce. Fall migratory birds and resident winter birds depend on soft mast because it is easily attained and high in energy. Fruit consumption has also been linked to the survival and...
Alternative Fuels Data Center: Wisconsin Transportation Data for
Compressed Natural Gas (CNG) 41 15 Electric 249 36 Ethanol (E85) 189 1 Hydrogen 0 0 Liquefied Natural Gas Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta ) 68,820 Natural Gas (million cubic feet) 400,877 Conventional Power Plants 76 Generating Capacity
Opportunity and development of bio-based composites
Zhiyong Cai; Jerrold E. Winandy
2005-01-01
Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...
Al-Ghamdi, Sami G; Bilec, Melissa M
2015-04-07
This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency.
Knowledge, Attitudes and Practices toward Energy Drinks among Adolescents in Saudi Arabia
Musaiger, Abdulrahman O.; Zagzoog, Nisreen
2014-01-01
The objective of this study is to explore the knowledge, attitudes and intake of energy drinks among adolescents in Saudi Arabia. A multi-stage stratified sampling procedure was carried out to select 1061 school children aged 12–19 years, from Jeddah city, Saudi Arabia. A short self-reported questionnaire was administrated in order to collect the data. Of adolescents in the study, 45% drank energy drinks (71.3% males and 35.9% females; P<0.001). Advertisements were the main source of information on energy drinks (43%). The major reasons for consuming energy drinks were taste and flavour (58%), to ‘try them’ (51.9%) and ‘to get energy’ (43%), albeit with significant differences between genders (P<0.001). About half of the adolescents did not know the ingredients of these drinks, and 49% did not know that they contain caffeine (P-values <0.006 and <0.001 between genders, respectively). The greater majority (67%) considered energy drinks to be soft drinks. The study indicates the need for Saudi adolescents to be warned on the over-consumption of energy drinks. The study brings to attention the need for educational programmes related to increasing awareness in the community of the health effects related to high consumption of energy drinks. PMID:24576364
In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.
Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook
2011-10-15
Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.
Control algorithms for dynamic windows for residential buildings
Firlag, Szymon; Yazdanian, Mehrangiz; Curcija, Charlie; ...
2015-09-30
This study analyzes the influence of control algorithms for dynamic windows on energy consumption, number of hours of retracted shades during daylight and shade operations. Five different control algorithms - heating/cooling, simple rules, perfect citizen, heat flow and predictive weather were developed and compared. The performance of a typical residential building was modeled with EnergyPlus. The program Widow was used to generate a Bi-Directional Distribution Function (BSDF) for two window configurations. The BSDF was exported to EnergyPlus using the IDF file format. The EMS feature in EnergyPlus was used to develop custom control algorithms. The calculations were made for fourmore » locations with diverse climate. The results showed that: (a) use of automated shading with proposed control algorithms can reduce the site energy in the range of 11.6-13.0%; in regard to source (primary) energy in the range of 20.1-21.6%, (b) the differences between algorithms in regard to energy savings are not high, (c) the differences between algorithms in regard to number of hours of retracted shades are visible, (e) the control algorithms have a strong influence on shade operation and oscillation of shade can occur, (d) additional energy consumption caused by motor, sensors and a small microprocessor in the analyzed case is very small.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-06-01
The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less
Consumption of added sugars is decreasing in the United States.
Welsh, Jean A; Sharma, Andrea J; Grellinger, Lisa; Vos, Miriam B
2011-09-01
The consumption of added sugars (caloric sweeteners) has been linked to obesity, diabetes, and heart disease. Little is known about recent consumption trends in the United States or how intakes compare with current guidelines. We examined trends in intakes of added sugars in the United States over the past decade. A cross-sectional study of US residents ≥2 y of age (n = 42,316) was conducted by using dietary data from NHANES 1999-2008 (five 2-y cycles) and data for added-sugar contents from the MyPyramid Equivalents Database. Mean intakes of added sugars (grams and percentage of total energy intake) were weighted to obtain national estimates over time across age, sex, and race-ethnic groups. Linear trends were tested by using Wald's F tests. Between 1999-2000 and 2007-2008, the absolute intake of added sugars decreased from a mean (95% CI) of 100.1 g/d (92.8, 107.3 g/d) to 76.7 g/d (71.6, 81.9 g/d); two-thirds of this decrease, from 37.4 g/d (32.6, 42.1 g/d) to 22.8 g/d (18.4, 27.3 g/d), resulted from decreased soda consumption (P-linear trend <0.001 for both). Energy drinks were the only source of added sugars to increase over the study period (P-linear trend = 0.003), although the peak consumption reached only 0.15 g/d (0.08, 0.22 g/d). The percentage of total energy from added sugars also decreased from 18.1% (16.9%, 19.3%) to 14.6% (13.7%, 15.5%) (P-linear trend <0.001). Although the consumption of added sugars in the United States decreased between 1999-2000 and 2007-2008, primarily because of a reduction in soda consumption, mean intakes continue to exceed recommended limits.
Consumption of added sugars is decreasing in the United States1234
Sharma, Andrea J; Grellinger, Lisa; Vos, Miriam B
2011-01-01
Background: The consumption of added sugars (caloric sweeteners) has been linked to obesity, diabetes, and heart disease. Little is known about recent consumption trends in the United States or how intakes compare with current guidelines. Objective: We examined trends in intakes of added sugars in the United States over the past decade. Design: A cross-sectional study of US residents ≥2 y of age (n = 42,316) was conducted by using dietary data from NHANES 1999–2008 (five 2-y cycles) and data for added-sugar contents from the MyPyramid Equivalents Database. Mean intakes of added sugars (grams and percentage of total energy intake) were weighted to obtain national estimates over time across age, sex, and race-ethnic groups. Linear trends were tested by using Wald's F tests. Results: Between 1999–2000 and 2007–2008, the absolute intake of added sugars decreased from a mean (95% CI) of 100.1 g/d (92.8, 107.3 g/d) to 76.7 g/d (71.6, 81.9 g/d); two-thirds of this decrease, from 37.4 g/d (32.6, 42.1 g/d) to 22.8 g/d (18.4, 27.3 g/d), resulted from decreased soda consumption (P-linear trend <0.001 for both). Energy drinks were the only source of added sugars to increase over the study period (P-linear trend = 0.003), although the peak consumption reached only 0.15 g/d (0.08, 0.22 g/d). The percentage of total energy from added sugars also decreased from 18.1% (16.9%, 19.3%) to 14.6% (13.7%, 15.5%) (P-linear trend <0.001). Conclusion: Although the consumption of added sugars in the United States decreased between 1999–2000 and 2007–2008, primarily because of a reduction in soda consumption, mean intakes continue to exceed recommended limits. PMID:21753067
Smith, Lindsey P; Ng, Shu Wen; Popkin, Barry M
2013-04-11
It has been well-documented that Americans have shifted towards eating out more and cooking at home less. However, little is known about whether these trends have continued into the 21st century, and whether these trends are consistent amongst low-income individuals, who are increasingly the target of public health programs that promote home cooking. The objective of this study is to examine how patterns of home cooking and home food consumption have changed from 1965 to 2008 by socio-demographic groups. This is a cross-sectional analysis of data from 6 nationally representative US dietary surveys and 6 US time-use studies conducted between 1965 and 2008. Subjects are adults aged 19 to 60 years (n= 38,565 for dietary surveys and n=55,424 for time-use surveys). Weighted means of daily energy intake by food source, proportion who cooked, and time spent cooking were analyzed for trends from 1965-1966 to 2007-2008 by gender and income. T-tests were conducted to determine statistical differences over time. The percentage of daily energy consumed from home food sources and time spent in food preparation decreased significantly for all socioeconomic groups between 1965-1966 and 2007-2008 (p ≤ 0.001), with the largest declines occurring between 1965 and 1992. In 2007-2008, foods from the home supply accounted for 65 to 72% of total daily energy, with 54 to 57% reporting cooking activities. The low income group showed the greatest decline in the proportion cooking, but consumed more daily energy from home sources and spent more time cooking than high income individuals in 2007-2008 (p ≤ 0.001). US adults have decreased consumption of foods from the home supply and reduced time spent cooking since 1965, but this trend appears to have leveled off, with no substantial decrease occurring after the mid-1990's. Across socioeconomic groups, people consume the majority of daily energy from the home food supply, yet only slightly more than half spend any time cooking on a given day. Efforts to boost the healthfulness of the US diet should focus on promoting the preparation of healthy foods at home while incorporating limits on time available for cooking.
2013-01-01
Background It has been well-documented that Americans have shifted towards eating out more and cooking at home less. However, little is known about whether these trends have continued into the 21st century, and whether these trends are consistent amongst low-income individuals, who are increasingly the target of public health programs that promote home cooking. The objective of this study is to examine how patterns of home cooking and home food consumption have changed from 1965 to 2008 by socio-demographic groups. Methods This is a cross-sectional analysis of data from 6 nationally representative US dietary surveys and 6 US time-use studies conducted between 1965 and 2008. Subjects are adults aged 19 to 60 years (n= 38,565 for dietary surveys and n=55,424 for time-use surveys). Weighted means of daily energy intake by food source, proportion who cooked, and time spent cooking were analyzed for trends from 1965–1966 to 2007–2008 by gender and income. T-tests were conducted to determine statistical differences over time. Results The percentage of daily energy consumed from home food sources and time spent in food preparation decreased significantly for all socioeconomic groups between 1965–1966 and 2007–2008 (p ≤ 0.001), with the largest declines occurring between 1965 and 1992. In 2007–2008, foods from the home supply accounted for 65 to 72% of total daily energy, with 54 to 57% reporting cooking activities. The low income group showed the greatest decline in the proportion cooking, but consumed more daily energy from home sources and spent more time cooking than high income individuals in 2007–2008 (p ≤ 0.001). Conclusions US adults have decreased consumption of foods from the home supply and reduced time spent cooking since 1965, but this trend appears to have leveled off, with no substantial decrease occurring after the mid-1990’s. Across socioeconomic groups, people consume the majority of daily energy from the home food supply, yet only slightly more than half spend any time cooking on a given day. Efforts to boost the healthfulness of the US diet should focus on promoting the preparation of healthy foods at home while incorporating limits on time available for cooking. PMID:23577692
Varela-Moreiras, Gregorio; Ruiz, Emma; Valero, Teresa; Avila, José Manuel; del Pozo, Susana
2013-09-01
The Food Consumption Survey, conducted for over 20 years by the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA), is the most reliable source of data to evaluate the food consumption and dietary patterns of Spain. The aim of the present article was to review the diet trends in Spain and its evolution. Food availability assessment per capita per day, which allows the calculation of energy and nutrient intake and comparison with the Recommended Nutrient Intakes for the Spanish population is described. In addition, different markers of the quality of the diet have been also evaluated. The sample consisted of consumption and distribution data, obtained from the nationwide representative Food Consumption Survey for the period 2000- 2012. A two-stage sampling method was applied, where in the first stage the units to be sampled were towns or local entities, and in the second stage households which were going to be part of the final sample from those entities were selected. Units consisted of towns or local entities in the national territory. The data allowed the calculation of energy and nutrient intakes, using the Food Composition Tables (Moreiras et al, 2013). The quality of the diet was also evaluated: the adequacy of the diet in meeting the recommended intakes for energy and nutrients; energy profile; dietary fat quality; dietary protein quality; nutrient density; Mediterranean diet adequacy indices. The present data were compared with previous data obtained by our research group in 1964, 1981 and 1991. Using the most recent data, average intake comprised: milk and derivatives (356 g/person/day), fruits (323 g/person/day), vegetables and greens (339 g/ person/day), cereals and derivatives (197 g/person/day), meat and meat products (181 g/day), fish (88,6 g/person/ day), oils and fats (41,6 g/person/day), sugar and derivatives (25,6 g/person/day), eggs (27,1 g/person/day), legumes (13,9 g/person/day) . There was also a high consumption of non-alcoholic beverages (437 g/person/day) and decreasing for alcoholic beverages (192 g/person/day) compared to previous surveys. In consequence, meat and meat product consumption was higher than the recommendations, whereas for cereals and their derivatives, vegetables and greens, fruit, and legumes and pulses, consumption was below recommendations for the Spanish population (GRUNUMUR, 2004; SENC, 2007). Some staple and traditional Mediterranean foods (bread, potatoes and olive oil) showed a dramatic decline when compared to data from Household Budget Surveys in 1964 data. Energy intake showed a marked decline when compared to the 1960's mean consumption, and show marked differences for food groups contributors. Energy profile shows too much coming from lipids vs carbohydrates and slightly higher from proteins. Food consumption patterns in Spain and energy and nutrient intakes have changed markedly in the last forty years, differing somewhat at present from the traditional and healthy Mediterranean Diet. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.
Unconventional Liquids, Peak Oil and Climate Change
NASA Astrophysics Data System (ADS)
Hughes, J. D.
2015-12-01
Oil is the largest source of primary energy in the world, at 32% of 2014 consumption. Forecasts by the International Energy Agency suggest oil will continue to provide the largest share of global energy through 2040, even with new policies to mitigate greenhouse gas emissions. The IPCC's Representative Concentration Pathway (RCP) scenarios indicate that between 1.5 and 3.8 trillion barrels of oil will be burnt between 2015 and 2100. Various sources suggest that the world has 5 to 6 trillion barrels of remaining recoverable oil, more than half of which are in low grade deposits. Although oil sands and extra heavy oil are claimed to hold 1.5 trillion barrels, assessments of major deposits in the Canadian oil sands and the Venezuela Orinoco Belt, which hold the bulk of these resources, total less than 500 billion barrels of recoverable oil. Kerogen oil (oil shale), which has never been produced in anything but miniscule volumes, comprises an additional trillion barrels of these estimates. These unconventional deposits are very different from the conventional oil of the past as: - they are rate constrained, as they require massive upfront capital investments and lengthy construction periods, and therefore cannot be scaled up quickly in response to declines in conventional production. - they are expensive, both in terms of cost per barrel and the large energy inputs required for production. The best in situ oil sands deposits may yield an energy return of 3:1 and kerogen oil even less if it ever becomes commercially viable. This compares to 10:1 or more for conventional oil. Shale oil (light tight oil), may yield another 300 billion barrels worldwide, but suffers from high decline rates, expensive wells and limited availability of high quality deposits. The most productive and economically viable portions of these unconventional deposits tend to be exploited first, leaving the less productive, higher cost oil for later. As a result, increasing global oil consumption will prove extremely difficult beyond the next few years, even with much higher prices. Long term oil consumption assumptions in RCP4.5, RCP6 and RCP8.5 are therefore too high, given the geological and economic characteristics of remaining recoverable resources. Consumption of other fuels would need to be increased to retain the radiative forcing in these RCP scenarios.
Conservation: Toward firmer ground
NASA Technical Reports Server (NTRS)
1975-01-01
The following aspects of energy conservation were reviewed in order to place the problems in proper perspective: history and goals, conservation accounting-criteria, and a method to overcome obstacles. The effect of changing prices and available supplies of energy sources and their causes on consumption levels during the last few decades were described. Some examples of attainable conservation goals were listed and justified. A number of specific criteria applicable to conservation accounting were given. Finally, a discussion was presented to relate together the following aspects of energy conservation: widespread impact, involvement of government, industry, politics, moral and ethical aspects, urgency and time element.
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Well-to-refinery emissions and net-energy analysis of China's crude-oil supply
NASA Astrophysics Data System (ADS)
Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael
2018-03-01
Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.
The future of energy security in the 21st Century
NASA Astrophysics Data System (ADS)
Gupta, Rajan
2006-10-01
Energy is essential for modern life and is a critical resource that we take for granted. Economies and security of nations depend on reliable and cost-effective access. As the world transitions from conventional oil and natural gas to nuclear, renewables, and unconventional sources we are increasingly confronted by many unsettling questions. Will there be enough cheap oil and gas for preserve the standard of living in the developed world and allow the industrializing world to develop? Will renewable sources provide a significant fraction of our energy needs in the near future? Is global warming already happening as a result of our consumption of fossil fuels? If there is a resource crunch before new sources come on line, will there be conflict or global cooperation? This talk will attempt to answer these questions by examining the global oil and gas resources, geopolitics, and key science and technology issues that need to be addressed by the global community with cooperation and a sense of urgency.
NASA Astrophysics Data System (ADS)
Huang, X. Y.; Zhou, J. Q.; Wang, Z.; Deng, L. C.; Hong, S.
2017-05-01
China is now at a stage of accelerated industrialization and urbanization, with energy-intensive industries contributing a large proportion of economic growth. In this study, we examined industrial energy consumption by decomposition analysis to describe the driving factors of energy consumption in China. Based on input-output (I-O) tables from the World Input-Output Database (WIOD) website and China’s energy use data from 1995 to 2011, we studied the sectorial changes of energy efficiency during the examined period. The results showed that all industries increased their energy efficiency. Energy consumption was decomposed into three factors by the logarithmic mean Divisia index (LMDI) method. The increase in production output was the leading factor that drives up China’s energy consumption. World Trade Organization accession and financial crises had great impact on the energy consumption. Based on these results, a series of energy policy suggestions for decision-makers has been proposed.
Advanced control for ground source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing
Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less
Friis, Karina; Lyng, Jeppe I; Lasgaard, Mathias; Larsen, Finn B
2014-10-01
The objective of this study is to estimate the prevalence of energy drink consumption and examine the associations of socio-demographic factors and health behaviour with energy drink consumption among young adults in Denmark. The study is based on a public health survey from 2010 (n = 3923). Multiple logistic regression analyses were used to analyse the association between weekly consumption of energy drink and the potential explanatory factors of interest. In total, 15.8 % of the young adults drink energy drinks on a weekly basis. Men have higher odds of weekly energy drink consumption than women. The study also shows that young age, being employed and having a low educational level are associated with weekly energy drink consumption. According to health behaviour, daily smoking, high amounts of alcohol consumption, alcoholic binge drinking and being overweight are associated with weekly energy drink consumption. Compared with other European countries the prevalence of energy drink consumption is relatively low in Denmark. In Denmark energy drink consumption is typically a male phenomenon and there is a clear social gradient in the prevalence of energy drink consumption where the intake is far more common among people with low levels of education than among people with higher levels of education. This study also shows that there is some kind of 'add on' effect of energy drinks, meaning that people who also use other stimulants-such as alcohol and cigarettes-are more inclined to consume energy drinks. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad
2017-11-01
Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.
Pereira, Rosangela A; Duffey, Kiyah J; Sichieri, Rosely; Popkin, Barry M
2014-01-01
To examine the patterns of consumption of foods high in solid fats and added sugars (SoFAS) in Brazil. Cross-sectional study; individual dietary intake survey. Food intake was assessed by means of two non-consecutive food records. Foods providing >9·1% of energy from saturated fat, or >1·3% of energy from trans fat, or >13% of energy from added sugars per 100 g were classified as high in SoFAS. Brazilian nationwide survey, 2008-2009. Individuals aged ≥10 years old. Mean daily energy intake was 8037 kJ (1921 kcal), 52% of energy came from SoFAS foods. Contribution of SoFAS foods to total energy intake was higher among women (52%) and adolescents (54%). Participants in rural areas (43%) and in the lowest quartile of per capita family income (43%) reported the smallest contribution of SoFAS foods to total energy intake. SoFAS foods were large contributors to total saturated fat (87%), trans fat (89%), added sugar (98%) and total sugar (96%) consumption. The SoFAS food groups that contributed most to total energy intake were meats and beverages. Top SoFAS foods contributing to saturated fat and trans fat intakes were meats and fats and oils. Most of the added and total sugar in the diet was supplied by SoFAS beverages and sweets and desserts. SoFAS foods play an important role in the Brazilian diet. The study identifies options for improving the Brazilian diet and reducing nutrition-related non-communicable chronic diseases, but also points out some limitations of the nutrient-based criteria.
Holubcikova, Jana; Kolarcik, Peter; Madarasova Geckova, Andrea; Reijneveld, Sijmen A; van Dijk, Jitse P
2017-05-01
Consumption of energy drinks has become popular and frequent among adolescents across Europe. Previous research showed that regular consumption of these drinks was associated with several health and behavioural problems. The aim of the present study was to determine the socio-demographic groups at risk for regular energy drink consumption and to explore the association of regular energy drinks consumption with health and behavioural problems and negative school experiences in adolescents. Data from the Health Behaviour in School-aged Children Study conducted in 2014 in Slovakia were analysed. We assessed socio-demographic characteristics, energy drink consumption, health and behavioural problems and negative school experiences based on self-reports from 8977 adolescents aged 11-15 years (mean age/standard deviation 13/1.33; 50.0% boys). The prevalence of regular energy drink consumption in the present sample was 20.6% (95%CI: 20%-21%). Regular energy drink consumption was more frequent among boys and older adolescents. Adolescents with a medium-level family affluence were less likely to drink energy drinks regularly. Adolescents who consumed energy drinks regularly had more health and behavioural problems and negative school experiences. Adolescents drinking energy drinks are at risk of a wide range of negative outcomes and should be specifically addressed by preventive interventions. What is Known • Energy drink consumption has become popular and frequent among adolescents across Europe. • There is growing evidence that energy drink consumption is related to negative social, emotional and health outcomes, but only a few studies have explored this relationship in adolescents. What is New • Regular energy drink consumption was more frequent among boys and adolescents reporting low family affluence and increased with age. • Adolescents reporting regular energy drink consumption were in higher risk to suffer from health and behavioural problems and negative school experiences.
Caffeine intake and its sources: A review of national representative studies.
Verster, Joris C; Koenig, Juergen
2018-05-24
Aim of this review is to summarize current daily caffeine intake of children, adolescents, and adults, and trends in caffeine intake over the past decade. A literature search was conducted (1997-2015) which yielded 18 reports on nationally representative studies, describing caffeine consumption of over 275,000 children, adolescents and adults. The data revealed that mean total daily caffeine intake in children, adolescents, and adults is below caffeine intake recommendations such as those stated by Health Canada (2.5 mg/kg bw/day for children and adolescents, and 400 mg/day for adults) and the European Food Safety Authority, EFSA (3 mg/kg bw/day for children and adolescents, and 400 mg/day for adults). Total daily caffeine intake has remained stable in the last 10-15 years, and coffee, tea and soft drinks are the most important caffeine sources. Across all age groups, energy drinks contribute little to total caffeine intake. The highest potential for reducing daily caffeine intake is by limiting coffee consumption, and in some countries and age groups, by reducing tea and soft drink consumption.
Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Orozco-Lugo, Aldo; Lara, Mauricio; Galván-Tejada, Giselle M; Olmedo, Oscar
2014-12-02
Wireless Sensor Networks deliver valuable information for long periods, then it is desirable to have optimum performance, reduced delays, low overhead, and reliable delivery of information. In this work, proposed metrics that influence energy consumption are used for a performance comparison among our proposed routing protocol, called Multi-Parent Hierarchical (MPH), the well-known protocols for sensor networks, Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Zigbee Tree Routing (ZTR), all of them working with the IEEE 802.15.4 MAC layer. Results show how some communication metrics affect performance, throughput, reliability and energy consumption. It can be concluded that MPH is an efficient protocol since it reaches the best performance against the other three protocols under evaluation, such as 19.3% reduction of packet retransmissions, 26.9% decrease of overhead, and 41.2% improvement on the capacity of the protocol for recovering the topology from failures with respect to AODV protocol. We implemented and tested MPH in a real network of 99 nodes during ten days and analyzed parameters as number of hops, connectivity and delay, in order to validate our Sensors 2014, 14 22812 simulator and obtain reliable results. Moreover, an energy model of CC2530 chip is proposed and used for simulations of the four aforementioned protocols, showing that MPH has 15.9% reduction of energy consumption with respect to AODV, 13.7% versus DSR, and 5% against ZTR.
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
Ren, Wan-Xia; Geng, Yong; Xue, Bing
2012-10-01
To quantitatively analyze the effects of anthropogenic factors on regional environmental quality is a hot topic in the field of sustainable development research. Taking the typical old industrial city Shenyang in Northeast China as a case, and by using the IPCC method for calculating carbon emission from energy consumption, this paper estimated the carbon emission from energy consumption in the city in 1978-2009, and a time series analysis on the anthropogenic factors driving this carbon emission was made by the STIRPAT model based upon Kaya equation and ridge regression. In 1978-2009, the carbon emission in the city had a slow increase first, slow decrease then, and a rapid increase thereafter. The total carbon emission in 2009 was 4.6 times of that in 1978. Population growth was the main factor driving the growth of the emission, and there existed an equal-proportional variation between the population growth and the carbon emission growth. Urbanization was another main driving factor followed by population growth, and the per capita GDP was positively correlated with the carbon emission. Kuznets curve did not exist for the relationship between economic development and carbon emission in Shenyang. Energy source intensity reduction (representing technology improvement) was the main factor driving the reduction of the total carbon emission.
The analysis of energy consumption of the transport and manipulation process of Fanuc AM100iB robot
NASA Astrophysics Data System (ADS)
Cholewa, A.; Świder, J.; Zbilski, A.
2017-08-01
This article describes test results of energy consumption of Fanuc ArcMate 100iB robot during realization of the transport and manipulation process. The energy consumption test involved the acquisition of values of angular positions of the robot’s encoder shafts and values of tensions and expansions of the electrical currents in three phases of each engine. Based on the simulation results, the analysis of energy consumption was carried out, which specified the tested palletizing process using the set of complete and partial decompositions of the energy consumption of all these factors, which in significant degree impacted the amount of energy taken during the process. Quality of the data provided by the analysis of energy consumption was assessed through validation of results, which involved direct comparison of corresponding parameters, which values were measured and calculated. With regards to the developed analysis of energy consumption, computerized techniques were used to determine the impact of all material factors on the total energy consumption of the machine. The work presents the most significant results of the obtained outcomes.
Optimal Energy Consumption Analysis of Natural Gas Pipeline
Liu, Enbin; Li, Changjun; Yang, Yi
2014-01-01
There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410
Net Zero Energy Military Installations: A Guide to Assessment and Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, S.; Barnett, J.; Burman, K.
2010-08-01
The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less
Improved immunization strategy to reduce energy consumption on nodes traffic
NASA Astrophysics Data System (ADS)
Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong
2017-04-01
The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.
Ground Source Geothermal District Heating and Cooling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, James William
2016-10-21
Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less
Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.
Du, Xu; Liu, Wei; Zhang, Zhe; Mulyadi, Arie; Brittain, Alex; Gong, Jian; Deng, Yulin
2017-03-09
Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl 3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl 3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl 3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frequency analysis of DC tolerant current transformers
NASA Astrophysics Data System (ADS)
Mlejnek, P.; Kaspar, P.
2013-09-01
This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types.
Hydrogen fuel - Universal energy
NASA Astrophysics Data System (ADS)
Prince, A. G.; Burg, J. A.
The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.
The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV
NASA Astrophysics Data System (ADS)
Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying
2018-06-01
For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
Kelly, Jack; Knottenbelt, William
2015-01-01
Many countries are rolling out smart electricity meters. These measure a home's total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the 'ground truth' demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset.
Darr, Christa R; Varner, Dickson D; Teague, Sheila; Cortopassi, Gino A; Datta, Sandipan; Meyers, Stuart A
2016-08-01
Stallion sperm rely primarily on oxidative phosphorylation for production of ATP used in sperm motility and metabolism. The objective of the study was to identify which substrates included in Biggers, Whitten, and Whittingham (BWW) media are key to optimal mitochondrial function through measurements of sperm motility parameters, mitochondrial oxygen consumption, and cellular reactive oxygen species (ROS) production. It was expected that mitochondrial substrates, pyruvate and lactate, would support sperm motility and mitochondrial function better than the glycolytic substrate, glucose, due to direct utilization within the mitochondria. Measurements were performed after incubation in modified BWW media with varying concentrations of lactate, pyruvate, and glucose. The effects of media and duration of incubation on sperm motility, ROS production, and oxygen consumption were determined using a linear mixed-effects model. Duplicate ejaculates from four stallions were used in three separate experiments to determine the effects of substrate availability and concentration on sperm motility and mitochondrial function and the relationship of oxygen consumption with cellular ROS production. The present results indicate that lactate and pyruvate are the most important sources of energy for stallion sperm motility and velocity, and elicit a dose-dependent response. Additionally, lactate and pyruvate are ideal for maximal mitochondrial function, as sperm in these media operate at a very high level of their bioenergetic capability due to the high rate of energy metabolism. Moreover, we found that addition of glucose to the media is not necessary for short-term storage of equine sperm, and may even result in reduction of mitochondrial function. Finally, we have confirmed that ROS production can be the result of mitochondrial dysfunction as well as intense mitochondrial activity. © 2016 by the Society for the Study of Reproduction, Inc.