Science.gov

Sample records for energy source opportunities

  1. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  2. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    PubMed

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.

  3. Land-Rich Colleges Explore Opportunities to Create Alternative-Energy Sources

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    In a time of expensive energy and concerns about climate change, land may be a major asset for colleges, providing a vastly different opportunity than it did in the past, when it was merely a place to set down new buildings, new campuses, or research parks. Since new alternative-energy technologies like wind and solar demand a lot of land--along…

  4. Land-Rich Colleges Explore Opportunities to Create Alternative-Energy Sources

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    In a time of expensive energy and concerns about climate change, land may be a major asset for colleges, providing a vastly different opportunity than it did in the past, when it was merely a place to set down new buildings, new campuses, or research parks. Since new alternative-energy technologies like wind and solar demand a lot of land--along…

  5. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    NASA Astrophysics Data System (ADS)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  6. Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  7. Portfolio Analysis of Renewable Energy Opportunities: Preprint

    SciTech Connect

    Richards, Allison; Deprizio, Jodi; Anderson, Kate; DiOrio, Nick; Elgqvist, Emma; Simpkins, Travis

    2016-11-01

    Time Warner Cable (TWC), now Charter Communications (CC), partnered with the National Renewable Energy Laboratory (NREL) to assess the technical and economic potential for solar photovoltaic (PV), wind, and ground-source heat-pump systems at 696 TWC facilities. NREL identified 306 sites where adding a renewable energy system would provide cost savings over the project life-cycle. In general, the top sites have some combination of high electricity rates ($0.16-$0.29/kWh), significant state incentives, and favorable net-metering policies. If all projects were implemented via third-party power purchase agreements, TWC/CC would save $37 million over 25 years and meet 10.5% of their energy consumption with renewable energy. This paper describes the portfolio screening methodology used to identify and prioritize renewable energy opportunities across the TWC sites, as well as a summary of the potential cost savings that may be realized by implementing these projects. This may provide a template for other companies interested in identifying and prioritizing renewable energy opportunities across a large number of geographically dispersed sites. Following this initial portfolio analysis, NREL will be conducting in-depth analysis of project development opportunities at ten sites and evaluating off-grid solutions that may enable carbon emission reduction and grid independence at select facilities.

  8. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  9. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  10. Opportunities for energy harvesting in automobile factories

    NASA Astrophysics Data System (ADS)

    Adegoke, E. I.; Edwards, R. M.; Whittow, Will; Bindel, Axel; Peca, Marco

    2016-04-01

    This paper investigates the opportunities of deploying distributed sensors within the manufacturing environment of a large scale automobile plant using energy harvesting techniques. Measurements were taken in three domains at the plant in order to characterize ambient energy. Due to the location of the plant, the RF power density for radio access technologies present varied between -127 dBm/cm2 and -113 dBm/cm2. The maximum temperature difference measured within accessible distance from machine parts on the production lines surveyed was 10°C. Indoor lighting was dominant at the plant via fluorescent tubes, with average irradiance of 1 W/m2. The results obtained from this measurement campaign showed that indoor lighting was the most suitable ambient source for energy harvesting.

  11. Energy Sources and Development.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with energy sources and development. Its objective is for the student to be able to discuss energy sources and development related to the historical perspective, biological development, current aspects, and future expectations…

  12. Energy Sources and Development.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with energy sources and development. Its objective is for the student to be able to discuss energy sources and development related to the historical perspective, biological development, current aspects, and future expectations…

  13. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  14. Energy Problems Provide Job Opportunities.

    ERIC Educational Resources Information Center

    Moore, Allen B.

    In response to the problems created by a diminishing energy supply but an increasing energy demand, this second in a series of national reports studies the linkage of vocational education and energy. Through an examination of selected literature with reference to types of energy resources, the author identifies the emerging occupations related to…

  15. Energy Problems Provide Job Opportunities.

    ERIC Educational Resources Information Center

    Moore, Allen B.

    In response to the problems created by a diminishing energy supply but an increasing energy demand, this second in a series of national reports studies the linkage of vocational education and energy. Through an examination of selected literature with reference to types of energy resources, the author identifies the emerging occupations related to…

  16. Diversification of energy sources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  17. Diversification of energy sources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  18. Scientific opportunities at the advanced light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.

    1989-04-01

    The Advanced Light Source (ALS) is a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science and other fields are reflected in Letters of Interest received for the establishment of beamlines.

  19. Energy Crisis vs. Extension Opportunities

    ERIC Educational Resources Information Center

    Liles, Harold R.

    1978-01-01

    Discusses what steps were taken by the Cooperative Extension Service in Oklahoma, after the energy crisis began, to help landowners make better decisions regarding oil and gas leases. Oklahoma's Extension educational efforts in mineral rights management have been successful because they met the needs of the people. (EM)

  20. Energy Sector Impacts and Opportunities

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Martinez, A.; Hallett, K. C.

    2011-12-01

    The power sector is the largest user of freshwater in the U.S. The dominant use of water in power plants is for steam cycle cooling. The current portfolio of electricity generating technologies in the U.S. has highly regionalized and technology-specific requirements for water. Certain areas employ once-through cooling technologies with high withdrawals and low consumptive uses, whereas other areas employ recirculating cooling technologies with relatively low withdrawals but high consumptive uses. As water availability differs widely throughout the nation, assessments of water withdrawal and consumption impacts from the power sector must have a high geographic resolution and consider regional differences. The U.S. electricity portfolio is likely to evolve in coming years, shaped by various energy policies and economic drivers on both the national and regional level, which will impact power sector water demands. It is likely that the U.S. will continue to decarbonize its electricity industry, leading to more low-carbon technologies. However, many low-carbon technologies, such as coal with carbon capture and storage, nuclear, and concentrated solar power, can use more water than the current electricity portfolio average. National- and state-level water policies have been proposed (and enacted) that affect cooling system choices for power plants, with resulting implications for water use as well as power plant installed and operating costs and reliability. Energy policy analyses that do not consider power plant cooling system impacts may miss an important component power plant siting decisions. Similarly, water policies that do not take into consideration potential impacts on power plant operations or comprehensive regional water budget impacts may have deleterious effects on the energy industry. Analysis of future energy scenarios that incorporate technology options and constraints as well as different policies can provide useful insights about likely changes to both

  1. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in

  2. Overview of energy-conservation research opportunities

    SciTech Connect

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  3. Passive acoustic source localization using sources of opportunity.

    PubMed

    Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G

    2015-07-01

    The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database.

  4. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  5. Energy sources in laparoscopy.

    PubMed

    Harrell, Andrew G; Kercher, Kent W; Heniford, B Todd

    2004-09-01

    Traditional monopolar and bipolar electrosurgery remain very useful in laparoscopic surgery. The need for meticulous hemostasis and the tedium of vessel ligation in advanced cases has propelled the development of new energy source devices that have proved to be remarkably helpful in both laparoscopic and open surgery. Energy sources in the form of argon beam coagulation, ultrasonic coagulation, and bipolar vessel sealing systems have revolutionized laparoscopic surgery. Although each of these energy sources has improved the efficiency and safety of minimally invasive techniques, they can also be associated with distressing complications. This report describes the biophysics of these tools, their spectrum of effectiveness, and methods of application that may improve our ability to perform surgery in a safe and proficient manner.

  6. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  7. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  8. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    SciTech Connect

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of the scattering angle component out of the equatorial plane.

  9. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE PAGES

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  10. Research opportunities at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1991-05-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports. Undulators will provide high-brightness radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes to above 10 keV. Scheduled to begin operations as a US Department of Energy national user facility in the spring of 1993, the ALS will support an extensive research program in which soft X-ray and ultraviolet radiation is used to study matter in all its varied gaseous, liquid and solid forms. Participating research teams to implement the initial scientific program have been selected.

  11. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  12. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  13. Environmental Co-Benefit Opportunities of Solar Energy

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Armstrong, A.; Burney, J. A.; Easter, S. B.; Hoffacker, M. K.; Moore, K. A.

    2015-12-01

    Solar energy reduces greenhouse gas emissions by an order of magnitude when substituted for fossil fuels. Nonetheless, the strategic deployment of solar energy—from single, rooftop modules to utility-scale solar energy power plants—can confer additional environmental co-benefits beyond its immediate use as a low carbon energy source. In this study, we identify a diverse portfolio of environmental co-benefit opportunities of solar energy technologies resulting from synergistic innovations in land, food, energy, and water systems. For each opportunity, we provide a demonstrative, quantitative framework for environmental co-benefit valuation—including, equations, models, or case studies for estimating carbon dioxide equivalent (CO2-eq) and cost savings ($US) averted by environmental co-benefit opportunities of solar energy—and imminent research questions to improve certainty of valuations. As land-energy-food-water nexus issues are increasingly exigent in 21st century, we show that environmental co-benefit opportunities of solar energy are feasible in numerous environments and at a wide range of spatial scales thereby able to contribute to local and regional environmental goals and for the mitigation of climate change.

  14. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  15. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  16. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  17. Emission Market Opportunities for Federal Energy Projects

    SciTech Connect

    Vimmerstedt, L.; Shah, C.

    2005-06-01

    This document assists federal agencies in incorporating emissions market opportunities in their energy projects, including emission reduction credit markets and cap and trade. It looks at how potential emissions costs/revenues can be incorporated into project proposals, how groups can apply for emissions allowances, and how agencies can sell emissions allowances and receive the financial benefit. The fact sheet also outlines how FEMP can provide assistance throughout the process.

  18. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  19. Renewable Energy Opportunities Saginaw Chippewa Indian Tribe

    SciTech Connect

    Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

    2008-10-22

    The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

  20. Renewable energy scenario in India: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav

    2016-10-01

    Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources

  1. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  2. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  3. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  4. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  5. The heliospheric energy source

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The solar wind and the heliosphere exist as a consequence of the heat input to the corona, particularly the coronal holes. The necessary energy input to coronal holes has been estimated to be 10 to the 6th erg/sq cm sec, requiring Alfven waves with rms fluid velocities of 100 km/sec. Observational upper limits on coronal fluid velocities are of the order of 25 km/sec, which may not apply to the transparent coronal hole. Alternatively it has been suggested that coronal holes may be heated by agitation from neighboring active regions, suggesting that the vigor of a coronal hole depends upon its location. The Ulysses Mission will provide a direct comparison of the strength of the high speed wind from coronal holes at low latitude and coronal holes at high latitude, from which the nature of the presently unknown energy sources of the coronal holes and the resulting structure of the heliosphere may be better judged. The question is fundamental to the dynamics of the windspheres of all stars.

  6. The heliospheric energy source

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The solar wind and the heliosphere exist as a consequence of the heat input to the corona, particularly the coronal holes. The necessary energy input to coronal holes has been estimated to be 10 to the 6th erg/sq cm sec, requiring Alfven waves with rms fluid velocities of 100 km/sec. Observational upper limits on coronal fluid velocities are of the order of 25 km/sec, which may not apply to the transparent coronal hole. Alternatively it has been suggested that coronal holes may be heated by agitation from neighboring active regions, suggesting that the vigor of a coronal hole depends upon its location. The Ulysses Mission will provide a direct comparison of the strength of the high speed wind from coronal holes at low latitude and coronal holes at high latitude, from which the nature of the presently unknown energy sources of the coronal holes and the resulting structure of the heliosphere may be better judged. The question is fundamental to the dynamics of the windspheres of all stars.

  7. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  8. Energy conservation opportunities in Eastern Europe

    SciTech Connect

    Zellhoeffer, J.W.

    1996-05-01

    Today, Eastern Europe and the member countries of the NIS are facing energy shortages and cost increases of a scale never experienced in America. Even during the energy crisis of the 70`s, when oil prices tripled over a two year period. our economy was not exposed to the problems now facing this region of the world. This paper covers the challenges and opportunities facing those individuals and companies involved in energy efficiency and other technologies that benefit the environment. Unfortunately, the social and economic stress caused by, the five fold average increases in energy costs since 1990 in most Eastern European countries has not been offset by improved living standards, the increased availability of quality goods, or even the ability of citizens to travel freely, In reality, food and raw material costs have gone up so dramatically that most individuals are worse off today than they were six years ago. Compounding this situation is the fact that most school age children have little ambition to continue with their education as a result of the general collapse of most of the more prestigious large industrial and commercial enterprises.

  9. Industrial energy efficiency opportunities in Ukraine

    SciTech Connect

    Somasundaram, S.; Parker, S.; Evans, M.; Brown, D.

    1999-07-01

    plants were chosen for a more detailed energy audit and financial assessment. Results of a detailed engineering analysis and a financial assessment of each plant led to prioritized list of recommended energy efficiency measures. The recommendations made to the plant management at two of these facilities are reported here. In addition, audits were conducted at some of the secondary plants and their results are reported as well. Some specific technologies recommended in the course of this work have included installing a new Western glass furnace at the Gostomel glass plant, which not only saves energy but also increases the volume and quality of glass production. The gas turbine cogeneration plant proposed for the coke-chemical plant will use coke-oven gas, a by-product of the coking process, as the primary fuel. Some of the more generic energy saving measures that could apply to a majority of the industrial facilities include replacing an existing compressed-air system with high-efficiency equipment, upgrading the lighting system, and installation of heat recovery systems. This paper describes the process of identifying opportunities and discusses some of the recommendations made to the plant management at some of these facilities. The paper also provides an update on the implementation plans for some of the recommended energy efficiency measures.

  10. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  11. Science Opportunities at ORNL Neutron Sources

    SciTech Connect

    Anderson, Ian

    2010-02-03

    The Neutron Sciences Directorate at Oak Ridge National Laboratory (ORNL) operates two of the most advanced neutron scattering research facilities in the world: the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). Our vision is to provide unprecedented capabilities for understanding structure and properties across the spectrum of biology, chemistry, physics, and engineering, and to stay at the leading edge of neutron science by developing new instruments, tools, and services. This talk will provide an update on the operations of the two research facilities and highlight the significant research that is emerging. For example, scientists from ORNL are at the forefront of research on a new class of iron-based superconductors based on experiments performed at the Triple-Axis Spectrometer at HFIR and ARCS at SNS. The complementary nature of neutron and x-ray techniques will be discussed to spark discussion among attendees.

  12. Energy Sources: An Historical Perspective.

    ERIC Educational Resources Information Center

    Perry, Constance M.

    1983-01-01

    Putting the present energy situation into an historical perspective provides meaning to today's energy concerns and demonstrates how important energy has always been to our life style. Primary energy sources of the United States from 1850 to the present are examined. (RM)

  13. Mining landforms - A renewable energy development opportunity

    SciTech Connect

    Lombardi, J.A.

    1995-12-01

    A {open_quotes}landforming{close_quotes} land development opportunity unique to metals mining is described. {open_quotes}Landforming{close_quotes}, wherein the earth`s surface is reconfigured with mining waste rock and tails for the capture of renewable energy, is proposed by the United States Bureau of Mines (USBM) to be ecologically acceptable and, in selected cases, economically superior to conventional mineral extraction, reclamation, and minesite abandonment practices. Landforming is primary land construction that uses mining waste and applies the principles of land overlay architecture. Landforms can be layered, shaped, and configured through the use of binders and plastic sheeting to the engineering specifications necessary for the support of physical structures and passage or retention of fluids. Landforms that are terraced and south facing (in the Northern Hemisphere) are an ideal mount for sun-tracking mirror (heliostat) arrays. In {open_quotes}blue sky{close_quotes}. solar-rich environments, the mirrors can be targeted on a common area to form a {open_quotes}solar furnace.{close_quotes} The heat generated at the focal point of the solar array can be used to flash generate steam and run a turbine electric generator. The solar steam power generation cycle coproducers distilled water that can be sprayed onto the surfaces of the landform to create {open_quotes}greenscape.{close_quotes} Waters not consumed or evaporated in the site greening process percolate into and are stored by the landform if it is underlain with plastic. The landform serves, in effect as a shallow aquifer. The terrace-landform development of mineral properties in remote, infrastructurally destitute areas creates renewable energy, sustainable, electric power-water {open_quotes}oases.{close_quotes} The landform development of mineral properties adjacent to metropolitan areas creates utilities expansions and recreational {open_quotes}greenspace{close_quotes} in areas of growing urban need.

  14. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  15. Energy sources for Nigeria

    SciTech Connect

    Okoroji, C.E.I.

    1982-09-01

    A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting from increasing population pressure.

  16. Economics and energy sources.

    PubMed

    Munro, Malcolm G

    2013-01-01

    Energy-based instrumentation has not only facilitated the rapid adoption of laparoscopic surgery, but could be considered essential for the completion of abdominal and pelvic procedures under endoscopic guidance. For decades, relatively simple and generic reusable monopolar and bipolar systems were the only options available. More recently, the available options for energy-based surgical instrumentation have become more crowded with the introduction of ultrasound-based cutting and sealing instruments and proprietary, impedance monitoring radiofrequency coagulation devices. Such instrumentation is presented as being easier to use as well as providing greater safety and efficacy. However, these new instruments typically require the expenditure of capital for proprietary energy generators and are usually designed to be for single use, a circumstance that increases per case costs, a circumstance that begs the question of value. Do the additional costs expended for the more expensive devices translate into reduced complications, faster operating time, or even wider access to minimally invasive procedures because they enable more surgeons to offer the service? Herein is explored the complex economic issues associated with the use of energy-based surgical devices as they apply to minimal access surgery in general and to laparoscopic procedures specifically.

  17. Alternate Propulsion Energy Sources

    DTIC Science & Technology

    1983-12-01

    Fermilab in the USA. The antiprotons are generated by the collision of high energy protons with multiple arrays of thin metal targets. The high...UNCLASSIFIED AD NUMBER ADB088771 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...EdwarsAFB CA 93523erne_ .... • ir cont-rac--o-S Report distribution limited to ... . .y, Critical Technology,14-Ne 4. .. 9A2 M - Other requests for this

  18. Renewable Energy Opportunities at the Kanto Installations, Japan

    SciTech Connect

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-09-24

    promising opportunities include waste-to-energy and ground source heat pumps. Solar photovoltaics (PV) may also prove successful. Other resources were found to be insufficient on the Kanto installations.

  19. [Pollution and alternative energy sources].

    PubMed

    Melino, C

    1989-01-01

    In order to reach higher standards of living, man has always been interested in searching new energy sources. Natural energy from sun, wind and water has been overcame by more sophisticated resources such as coal, vapour, hydroelectricity, natural gas, petroleum, and, at least, nuclear energy. However all these resources present unwanted effects, namely various hazards to man and environment. On this matter society is quering the risk-benefit balance of some energy choices and optimum performance with new safety means to limit dangerousness are being pursued and developed. It is necessary to evaluate carefully every aspect of safety without under-estimating or over-evaluating problems. For each energy source a "real price" has to be paired, even more in the future, since more energy will be required to guarantee the necessary technological progress linked to a better quality of life. In the present review all risks related to different energy sources are described and discussed aiming at defining: 1) specific risks for different sources 2) benefit from their utilization 3) means of defence guaranteeing security for man and environment. Italy is strictly dependent for energy production, which comes for 80% from abroad. An appropriate balance is required considering economical and social factors and real availability of energy. This balance needs therefore to be clearly evaluated hoping in a better future for an alternative energy, less dangerous and more clear, such as that from nuclear fusion.

  20. VEDCO energy installations sources

    SciTech Connect

    McDonald, A.

    1996-12-31

    A process for solid waste management is described. The approach combines materials recovery, recycling, and using refuse-derived fuel for cogeneration. A fluidized bed system is used for combustion. An example of the use of this system is briefly cited; it has extended landfill life up to 100 years for one county and allowed three counties to close municipal landfills. Over 50,000 tons of material are recycled each year, saving more than $100 million on waste disposal. Energy generation saves a chemical company over 3 million gallons of oil annually and allows the local utility company to save 75,000 tons of coal. Air emissions at the chemical company will also be reduced by over 50%.

  1. Seismic energy source

    SciTech Connect

    Trudeau, C.A.

    1987-10-20

    A hydraulically actuated seismic energy apparatus for producing as single impact with the surface of the earth is described including: hydraulic means including a ram cylinder adapted to be vertically disposed above the surface of the earth, and a ram member movable relative to the ram cylinder in response to fluid under pressure between a first upper position and a second lower position where the ram member has face plate and impacts and compresses the earth in the lower position; first pressure responsive means coupled to the ram cylinder for providing a defined volume of fluid at a first actuation pressure to the ram member for accelerating the ram member in a downward direction between the first and second positions until the face plate of the ram member is in proximate spaced relationship to the surface of the earth; and second pressure responsive means coupled to the first pressure responsive means for providing a low pressure fluid chamber to receive return of fluid from the cylinder when a reaction force in the compressed earth overcomes the downward acceleration forces of the ram member at the lower position thereby accelerate the ram member in an upward direction from the lower position toward the upper position.

  2. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    DOE PAGES

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less

  3. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; Boardman, Richard D.; Cherry, Robert S.; Bazilian, Morgan D.

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  4. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; Boardman, Richard D.; Cherry, Robert S.; Bazilian, Morgan D.

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  5. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  6. Global Energy: Supply, Demand, Consequences, Opportunities

    SciTech Connect

    Majumdar, Arun

    2008-08-14

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  7. Energy/environment opportunities for civil engineers

    SciTech Connect

    Clark, D.E. ); White, W.B. ); Machiels, A.J. )

    1988-01-01

    These proceedings collect papers on energy-related aspects of waste management. Topics include: environmental effects of decommissioning nuclear sites, reclamation of uranium failings sites, nuclear power plant risk assessment, energy from waste, and resource recovery systems.

  8. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  9. Antimatter as an Energy Source

    SciTech Connect

    Jackson, Gerald P.

    2009-03-16

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  10. Acoustic sources of opportunity in the marine environment - Applied to source localization and ocean sensing

    NASA Astrophysics Data System (ADS)

    Verlinden, Christopher M.

    Controlled acoustic sources have typically been used for imaging the ocean. These sources can either be used to locate objects or characterize the ocean environment. The processing involves signal extraction in the presence of ambient noise, with shipping being a major component of the latter. With the advent of the Automatic Identification System (AIS) which provides accurate locations of all large commercial vessels, these major noise sources can be converted from nuisance to beacons or sources of opportunity for the purpose of studying the ocean. The source localization method presented here is similar to traditional matched field processing, but differs in that libraries of data-derived measured replicas are used in place of modeled replicas. In order to account for differing source spectra between library and target vessels, cross-correlation functions are compared instead of comparing acoustic signals directly. The library of measured cross-correlation function replicas is extrapolated using waveguide invariant theory to fill gaps between ship tracks, fully populating the search grid with estimated replicas allowing for continuous tracking. In addition to source localization, two ocean sensing techniques are discussed in this dissertation. The feasibility of estimating ocean sound speed and temperature structure, using ship noise across a drifting volumetric array of hydrophones suspended beneath buoys, in a shallow water marine environment is investigated. Using the attenuation of acoustic energy along eigenray paths to invert for ocean properties such as temperature, salinity, and pH is also explored. In each of these cases, the theory is developed, tested using numerical simulations, and validated with data from acoustic field experiments.

  11. Commercial energy audits: headache or opportunity

    SciTech Connect

    Hanneman, J.C.; Crandall, G.C.

    1984-04-12

    A summary of Michigan's 1982 commercial energy audit pilot program illustrates that utilities, shareholders, ratepayers, and private businesses can all benefit from large-scale audit services. Specific benefits to the utilities include market preservation, enhanced community and customer relations, and access to important customer demographic information. The federal Commercial and Apartment Conservation Service (CACS) rules can be more useful than burdensome because they confirm the right and duty of energy utilities to offer energy audits to nonresidential customers. 5 footnotes and references.

  12. Energy source for comet outbursts

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Schuerman, D. W.; Rupprecht, G.

    1974-01-01

    Development of a mechanism explaining the internal source of energy of comet outbursts. A mechanism is proposed which automatically provides a source of particulate matter which creates a huge surface area which contains a substantial percentage of amorphous ice, so that the phase transition of the amorphous ice to a cubic structure provides a release of energy which may be responsible for the outbursts observed in many comets. In addition, the volume into which the transition can propagate is estimated for a spherical comet with a radius of 5 km.

  13. Energy use behaviour: A window of opportunity

    NASA Astrophysics Data System (ADS)

    Roy, Deborah

    2017-06-01

    The environmental impact of electric vehicles depends on the kind of energy used to charge them. They are typically charged at peak times, when extra fossil fuels are needed to meet energy demands. A study shows that e-mails targeting electric vehicle charging for new owners can be effective for promoting greener charging behaviours.

  14. Photovoltaics as a worldwide energy source

    SciTech Connect

    Jones, G.J.

    1991-12-31

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs.

  15. Photovoltaics as a worldwide energy source

    NASA Astrophysics Data System (ADS)

    Jones, G. J.

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity.

  16. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-12-01

    Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

  17. Energy Savings Opportunity Survey, Fort Bliss, Texas. Executive Summary.

    DTIC Science & Technology

    1986-01-01

    This Energy Savings Opportunity Survey (ESOS) at Ft. Bliss Texas was prepared by Engineering Design & Management, Inc., St. Louis, MO., under...common ECOs at the base. These ECOs would include wall and roof insulation, timeclocks, etc.

  18. Opportunities for energy conservation through biotechnology

    SciTech Connect

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  19. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

    2011-11-14

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

  20. Energy-conservation opportunities in lighting

    SciTech Connect

    1981-04-01

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  1. Livestock waste-to-energy opportunities

    USDA-ARS?s Scientific Manuscript database

    The use of animal manure and other organic-based livestock wastes as feedstocks for waste-to-energy production has the potential to convert the livestock waste treatment from a liability into a profit center that can generate annual revenues and diversify farm income. This presentation introduces tw...

  2. Energy Security: Emerging Challenges and Opportunities

    DTIC Science & Technology

    2010-08-01

    conversion device along the transmission has some level of microprocessor-based “ intelligence ” and network interface for monitoring system status...loss of petroleum products, such as natural gas and liquid fuels. The result was a set of system -wide actions that IMCOM may choose to implement to...improve energy security. ERDC/CERL TR-10-15 iii Executive Summary This report identifies system -wide actions that IMCOM can implement to enhance

  3. Overview of energy-conservation research opportunities. Executive summary

    NASA Astrophysics Data System (ADS)

    Hopp, W. J.; Hauser, S. G.; Hane, G. J.; Gurwell, W. E.; Bird, S. P.; Cliff, W. C.; Williford, R. E.; Williams, T. A.; Ashton, W. B.

    1981-11-01

    Research opportunities that are important to developing advanced technologies for efficient energy use are presented. A wide array of attractive technical areas from which specific research and development programs could be implemented are described. Research areas are presented for potential application in each of the major energy end-use sectors. The analysis employs a systematic process for both identifying and screening candidate energy conservation research areas. Aggregate energy consumption was reviewed and explicity criteria were employed to evaluate the technology research areas.

  4. Arctic energy opportunities: US resources and development

    SciTech Connect

    Frye, K.N.

    1986-04-01

    The importance of the Arctic's dual energy and environmental challenges led the US in July 1984, to pass Public Law 98-373 - the Arctic Research and Policy Act of 1984. The purpose of this law is to provide for a comprehensive national policy dealing with national research needs and objectives in the Arctic with particular emphasis on resource development. This policy also emphasizes the need for greater coordination of available research dollars to better focus the rational and planned development of our Arctic resources. This Act sets forth as it principal finding the declaration that the Arctic, onshore and offshore, contains vital energy resources that can reduce the nation's dependence on foreign oil and improve the national balance of payments. It further provides that the Federal Government, in cooperation with state and local governments, should focus its efforts on the collection and characterization of basic data related to biological, material, geophysical, social, and behavioral phenomena in the Arctic. To carry out this new legislation, the President established an Arctic Research Commission and the Interagency Arctic Research Policy Committee that includes the Department of Energy, as well as representatives from the Departments of Commerce, Defense, Interior, State, and other agencies, with the representative of the National Science Foundation serving as the Chairperson. This Interagency Committee is working cooperatively with all parts of the US government and the State of Alaska to develop a five-year Arctic research policy implementation program plan.

  5. Energy in the New Curriculum: An Opportunity for Change

    ERIC Educational Resources Information Center

    Tracy, Charles

    2014-01-01

    The National Curriculum for England has been revised and the statements on energy have some new phrasing and some new ideas. In this article, I will reflect on how these changes might be beneficial, relieving some of the strictures of previous drafts and providing opportunities to talk about energy in new, more constructive ways. I will discuss…

  6. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This fact sheet describes the Small Buildings and Small Portfolios roadmap, which outlines approaches and strategic priorities for the U.S. Department of Energy's Building Technologies Office to pursue over the next three to five years that will support the implementation of high-potential energy efficiency opportunities for small business and building owners and operators.

  7. Energy in the New Curriculum: An Opportunity for Change

    ERIC Educational Resources Information Center

    Tracy, Charles

    2014-01-01

    The National Curriculum for England has been revised and the statements on energy have some new phrasing and some new ideas. In this article, I will reflect on how these changes might be beneficial, relieving some of the strictures of previous drafts and providing opportunities to talk about energy in new, more constructive ways. I will discuss…

  8. Ethanol: A Strategic Energy Source?

    DTIC Science & Technology

    2009-05-04

    REPORT DATE (DD-MM-YYYY) 04-05-2009 2. REPORT TYPE Program Research Paper 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER...radical terrorists richer.” 3 This research project examines the viability of ethanol as an alternative fuel source. It will identify whether an ethanol...Japan in 1941 went to war to secure its energy supplies. The United States must 3 prepare for these shortages if we are to maintain our economic

  9. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  10. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  11. Opportunities for energy conservation in the developing countries

    SciTech Connect

    Koshel, P.; Allen, E.L.; Cecelski, E.; Dougher, R.; Ring, L.

    1981-03-01

    Energy problems faced by developing countries are explored and opportunities for saving energy and for using fuels other than petroleum in the modern sector are assessed. Specific resources assessed include oil and gas, coal, hydropower, and traditional fuels. Trends in commercial energy consumption by the developing countries are assessed and the domestic fuel resources of these countries are examined. Patterns of commercial energy use in several LDCs including Sri Lanka, Haiti, India, Kenya, Egypt, the Phillippines, the Republic of Korea, and Brazil are examined. Sri Lanka and Haiti are the subjects for case studies reported in the appendixes. Opportunities for conservation in the modern sector, which include most industrial activities, transportation, and electric power generation as well as some agricultural activities and large residential and commercial buildings, are discussed. The concluding section explores policies which might be initiated by LDC governments to encourage energy conservation. (MCW)

  12. Opportunities and challenges for a sustainable energy future.

    PubMed

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  13. Gravitational energy sources in Jupiter

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1973-01-01

    Gravitational sources of the intrinsic luminosity of Jupiter are examined in the context of current hydrogen-helium models. When no gravitational separation of matter occurs, the amount of heat which can be released over the remaining lifetime of the planet is necessarily limited by the size of its existing reservoir of thermal energy. This conclusion rests only on the assumption that its interior is relatively cold and degenerate. If gravitational unmixing occurs, the size of the thermal reservoir does not necessarily limit the heat output. If core formation occurs, for example, then the size of the core formed will be a limiting factor. The energy released with the formation of a helium core is computed for Jupiter. A core growth rate, averaged over several billion years, of 20 trillionths of Jupiter's mass per year is required if gravitational separation is to play a significant role in the thermal evolution.

  14. Overview of energy-conservation research opportunities: executive summary

    SciTech Connect

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-11-01

    A study of research opportunities that are important to developing advanced technologies for efficient energy use is presented. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major energy end-use sectors. The analysis employs a systematic process for both identifying and screening candidate energy conservation research areas. The study team was comprehensive in its review of aggregate energy consumption and employed explicit criteria to evaluate the technology research areas.

  15. Transformative research issues and opportunities in energy efficiency

    USDA-ARS?s Scientific Manuscript database

    This article presents a summary of research opportunities in energy efficiency identified in a workshop by a panel of experts assembled for the Civil, Mechanical and Manufacturing Innovation Division of the U.S. National Science Foundation. The workshop and article are restricted to two areas – red...

  16. Hybrid energy sources for embedded sensor nodes

    NASA Astrophysics Data System (ADS)

    Silva, Ramon; Farinholt, Kevin; Park, Gyuhae

    2011-04-01

    In this paper, we present a series of hybrid energy configurations that are designed to provide a robust power source for embedded sensing hardware. The proper management of energy resources is a critical component in the design of any deployed sensing network. For systems that are installed in remote or inaccessible locations, or those with an operational lifespan that exceeds traditional battery technologies, energy harvesting is an attractive alternative. Unfortunately, the dependence on a single energy source (i.e. solar) can cause potential problems when environmental conditions preclude the system from operating at peak performance. In this paper we consider the use of a hybrid energy source that extracts energy from multiple sources and uses this collective energy to power sensing hardware. The sources considered in this work include: solar, vibration, thermal gradients, and RF energy capture. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  17. Renewable Sources of Energy and Development.

    ERIC Educational Resources Information Center

    Diatta, Christian Sina

    1979-01-01

    Reviewed are the status of conventional sources of energy, prospects for the development of alternative sources of energy, and the consequences of that development on countries that are in the process of industrialization. (BT)

  18. Renewable Sources of Energy and Development.

    ERIC Educational Resources Information Center

    Diatta, Christian Sina

    1979-01-01

    Reviewed are the status of conventional sources of energy, prospects for the development of alternative sources of energy, and the consequences of that development on countries that are in the process of industrialization. (BT)

  19. Economics of alternative energy sources.

    PubMed

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  20. Alternative Sources of Energy: A Course in Energy Education.

    ERIC Educational Resources Information Center

    Gupta, Gian

    1983-01-01

    Describes a course designed to familiarize students with alternative sources of energy, with emphasis on problem-solving strategies. Includes list of major topics/subtopics addressed and list of textbooks and recommended readings on alternative energy sources. (JN)

  1. Alternative Sources of Energy: A Course in Energy Education.

    ERIC Educational Resources Information Center

    Gupta, Gian

    1983-01-01

    Describes a course designed to familiarize students with alternative sources of energy, with emphasis on problem-solving strategies. Includes list of major topics/subtopics addressed and list of textbooks and recommended readings on alternative energy sources. (JN)

  2. Using Energy Profiles to Identify University Energy Reduction Opportunities

    ERIC Educational Resources Information Center

    Maistry, Nandarani; Annegarn, Harold

    2016-01-01

    Purpose: The purpose of this paper is to outline efforts at the University of Johannesburg, a large metropolitan university in Gauteng province, to examine energy efficiency within the context of the green campus movement, through the analysis of electricity consumption patterns. The study is particularly relevant in light of the cumulative 230…

  3. Using Energy Profiles to Identify University Energy Reduction Opportunities

    ERIC Educational Resources Information Center

    Maistry, Nandarani; Annegarn, Harold

    2016-01-01

    Purpose: The purpose of this paper is to outline efforts at the University of Johannesburg, a large metropolitan university in Gauteng province, to examine energy efficiency within the context of the green campus movement, through the analysis of electricity consumption patterns. The study is particularly relevant in light of the cumulative 230…

  4. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  5. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  6. Towards a sustainable energy future: realities and opportunities.

    PubMed

    Armstrong, Lynda

    2011-05-13

    My purpose in this paper is threefold. First, I would like to examine why the world needs us to produce more energy. Second, I will look at the range of energy sources available for a sustainable future. A number of myths have grown up around the various energy sources and their relative contribution to addressing the global energy challenge: I will seek to dispel some of those. Third, I want to highlight what I see as an urgent need: for more informed decision making and more action in this complex area.

  7. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  8. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  9. Materials and innovations for large blade structures : research opportunities in wind energy technology.

    SciTech Connect

    Ashwill, Thomas D.

    2009-05-01

    The significant growth in wind turbine installations in the past few years has fueled new scenarios that envision even larger expansion of U.S. wind electricity generation from the current 1.5% to 20% by 2030. Such goals are achievable and would reduce carbon dioxide emissions and energy dependency on foreign sources. In conjunction with such growth are the enhanced opportunities for manufacturers, developers, and researchers to participate in this renewable energy sector. Ongoing research activities at the National Renewable Energy Laboratory and Sandia National Laboratories will continue to contribute to these opportunities. This paper focuses on describing the current research efforts at Sandia's wind energy department, which are primarily aimed at developing large rotors that are lighter, more reliable and produce more energy.

  10. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  11. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  12. Renewable energy sources for sustainable tourism in the Carpathian region

    NASA Astrophysics Data System (ADS)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  13. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    SciTech Connect

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  14. Assuring Supply Through New Energy Alternatives and Opportunities: The Defense Energy Support Center

    DTIC Science & Technology

    2009-04-27

    an energy and fuel supplier, DESC is sup- porting programs and initiatives that involve renewable energy , synthetic paraffinic kerosene, waste-to...overseeing their energy sustainment needs for the contract duration. BRANCHING INTO RENEWABLE ENERGY DESC recently developed the Renewable...projects intended to use renewable energy sources to supply power to installations. Solar Energy and Hydrogen The Defense Energy Supply Center has

  15. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    SciTech Connect

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

    2008-09-01

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  16. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  17. GeoPowering the West: Geothermal Energy--The Bountiful, Clean Energy Source for the West

    SciTech Connect

    Not Available

    2002-04-01

    General fact sheet describing U.S. Department of Energy's GeoPowering the West program. Geothermal energy represents a major economic opportunity for the American West, an area characterized by a steadily increasing population that requires reliable sources of heat and power. GeoPowering the West is pursuing this opportunity by: (1) Bringing together national, state and local stakeholders for state-sponsored geothermal development workshops; (2) Working with public power companies and rural electric cooperatives to promote use of geothermal power; (3) Promoting increased federal use of geothermal energy; (4) Helping American Indians identify and develop geothermal resources on tribal lands; and (5) Sponsoring non-technical educational workshops.

  18. Sustainable energy in china: the closing window of opportunity

    SciTech Connect

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  19. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    SciTech Connect

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  20. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.

    PubMed

    de Kok, Stefan; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2012-06-01

    Free-energy (ATP) conservation during product formation is crucial for the maximum product yield that can be obtained, but often overlooked in metabolic engineering strategies. Product pathways that do not yield ATP or even demand input of free energy (ATP) require an additional pathway to supply the ATP needed for product formation, cellular maintenance, and/or growth. On the other hand, product pathways with a high ATP yield may result in excess biomass formation at the expense of the product yield. This mini-review discusses the importance of the ATP yield for product formation and presents several opportunities for engineering free-energy (ATP) conservation, with a focus on sugar-based product formation by Saccharomyces cerevisiae. These engineering opportunities are not limited to the metabolic flexibility within S. cerevisiae itself, but also expression of heterologous reactions will be taken into account. As such, the diversity in microbial sugar uptake and phosphorylation mechanisms, carboxylation reactions, product export, and the flexibility of oxidative phosphorylation via the respiratory chain and H(+) -ATP synthase can be used to increase or decrease free-energy (ATP) conservation. For product pathways with a negative, zero or too high ATP yield, analysis and metabolic engineering of the ATP yield of product formation will provide a promising strategy to increase the product yield and simplify process conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Implementation of the Energy Efficiency Directive: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Zīgurs, A.; Sarma, U.

    2015-12-01

    Discussions in Latvia are ongoing regarding the optimum solution to implementing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Directive 2012/27/EU). Without a doubt, increased energy efficiency contributes significantly to energy supply security, competitive performance, increased quality of life, reduced energy dependence and greenhouse gas (GHG) emissions. However, Directive 2012/27/EU should be implemented with careful planning, evaluating every aspect of the process. This study analyses a scenario, where a significant fraction of target energy efficiency is achieved by obliging energy utilities to implement user-end energy efficiency measures. With implementation of this scheme towards energy end-use savings, user payments for energy should be reduced; on the other hand, these measures will require considerable investment. The energy efficiency obligation scheme stipulates that these investments must be paid by energy utilities; however, they will actually be covered by users, because the source of energy utilities' income is user payments for energy. Thus, expenses on such measures will be included in energy prices and service tariffs. The authors analyse the ways to achieve a balance between user gains from energy end-use savings and increased energy prices and tariffs as a result of obligations imposed upon energy utilities. Similarly, the suitability of the current regulatory regime for effective implementation of Directive 2012/27/EU is analysed in the energy supply sectors, where supply tariffs are regulated.

  2. Opportunities for public water utilities in the market of energy from water.

    PubMed

    Mol, S S M; Kornman, J M; Kerpershoek, A J; van der Helm, A W C

    2011-01-01

    An inventory is made of the possibilities to recover sustainable energy from the water cycle by identifying different water flows in a municipal environment as a sustainable energy source. It is discussed what role public water utilities should play in the market of energy from water. This is done for Waternet, the public water utility of Amsterdam, by describing experiences on two practical applications for aquifer thermal energy storage and energy recovery from drinking water. The main conclusion is that public water utilities can substantially contribute to the production of sustainable energy, especially by making use of heat and cold from the water cycle. Public water utilities have the opportunity to both regulate and enter the market for energy from water.

  3. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    SciTech Connect

    McMillan, Colin; Boardman, Richard; McKellar, Michael; Sabharwall, Piyush; Ruth, Mark; Bragg-Sitton, Shannon

    2016-12-01

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  4. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  5. Energy [R]Evolution: Opportunities for Decarbonizing Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.

    2016-12-01

    The future of conventional energy in Canada is uncertain. World oil prices have suffered steep declines recently and there are no strong arguments for recovery in the foreseeable future. The country is now engaged in serious debates and discussions over the value of GHG emissions, pipelines, oil and gas operations, and renewable energy. Oilsands deposits in northern Alberta require long-term investment and decades of consistent sales to repay those investments. The election of more progressive governments in Alberta and Canada may provide the national and global credibility and opportunity to address the environmental problems caused by Oilsands and other fossil fuel developments. The discussion will focus on the possible ways forward for Canada to diversify the regional and national economy with renewable energy networks, thereby meeting our Paris GHG emission reduction commitments. The end goal of this work is to see the Canadian economy decarbonized within two decades.

  6. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Klein, Andy; Lance, Jack

    2007-03-21

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  7. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities.

  8. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Andy Klein; Jack Lance

    2006-07-01

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  9. Obesity, Energy Balance and Cancer: New Opportunities for Prevention

    PubMed Central

    Hursting, Stephen D.; DiGiovanni, John; Dannenberg, Andrew J.; Azrad, Maria; LeRoith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A.

    2012-01-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition and exercise is considered as is the importance of the newly-emerging field of stem cell research as a model for studying energy balance and cancer prevention. PMID:23034147

  10. Obesity, energy balance, and cancer: new opportunities for prevention.

    PubMed

    Hursting, Stephen D; Digiovanni, John; Dannenberg, Andrew J; Azrad, Maria; Leroith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A

    2012-11-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-I, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition, and exercise is considered as is the importance of the newly emerging field of stem cell research as a model for studying energy balance and cancer prevention.

  11. California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California

    SciTech Connect

    2011-12-01

    A spate of recently enacted energy legislation and associated program changes is providing numerous opportunities to help California federal energy managers cut costs and meet their renewables, energy efficiency and GHG emissions goals. In April 2011, Governor Jerry Brown approved the nation’s most ambitious renewable portfolio standard (RPS), which requires 33% of the state’s electricity to come from renewable energy sources by 2020. Policy changes that will support the RPS include expanded eligibility rules that fill previous gaps in incentives for certain sizes of on-site renewable energy systems. Program updates described in this document include: $200 million more in funding for California Solar Initiative rebates to commercial and industrial customers; an increase in the eligible system size for the Feed-In-Tariff (FIT) from 1.5MW to 3MW; and pending changes that may allow customer-side systems to sell tradable renewable energy credits (TRECs) to entities with RPS compliance obligations in California.

  12. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  13. Renewable Energy Opportunities at Fort Drum, New York

    SciTech Connect

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  14. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  15. Clean Energy Finance: Challenges and Opportunities of Early-Stage Energy Investing (Presentation)

    SciTech Connect

    Heap, D.; Pless, J.; Aieta, N.

    2013-12-01

    Characterized by a changing landscape and new opportunities, today's increasingly complex energy decision space will need innovative financing and investment models to appropriately assess risk and profitability. This report provides an overview of the current state of clean energy finance across the entire spectrum but with a focus on early stage investing, and it includes insights from investors across all investment classes. Further, this report aims to provide a roadmap with the mechanisms, limitations, and considerations involved in making successful investments by identifying risks, challenges, and opportunities in the clean energy sector.

  16. Delays in Tapping Energy Sources

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1975-01-01

    Summarizes factors that will create severe energy shortages by 1980. Indicates that conservation is not enough, and the quickest path toward relief is the expansion of surface mining of low-sulfur coal in the Rocky Mountain states. (GS)

  17. Delays in Tapping Energy Sources

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1975-01-01

    Summarizes factors that will create severe energy shortages by 1980. Indicates that conservation is not enough, and the quickest path toward relief is the expansion of surface mining of low-sulfur coal in the Rocky Mountain states. (GS)

  18. Energy investment advisory series No. 3: Investment opportunities in the Persian Gulf energy sector

    SciTech Connect

    Hadgen, R.E.

    1994-12-01

    Sometimes the greatest investment opportunities are in those areas where the least progress seems to be taking place. This report describes energy-based developments taking place in the Persian/Arabian Gulf. The 8 Gulf states are building their nations; each has large minority groups and swelling populations; their economies are built on one product (hydrocarbons). Large expatriate populations, being integrated into local societies and economies, have led to hostility and guarded access to contacts with the outside world. Gulf nations cannot benefit from any oil price rise as they did in the past, as their populations have grown too rapidly. Policies change daily and can be changed back to original ones as well as into new ones. Since the oil and gas industries are the primary source of government revenue, oil and gas are likely to remain longest under government control. A breakdown of energy-base investment potentials in the Middle East is tabulated: upstream oil, refining, domestic oil marketing, upstream gas, LNG, electricity, petrochemical.

  19. Energy Savings Certificate Markets: Opportunities and Implementation Barriers

    SciTech Connect

    Friedman, B.; Bird, L.; Barbose, G.

    2009-07-01

    Early experiences with energy savings certificates (ESCs) have revealed their merits and the challenges associated with them. While in the United States ESC markets have yet to gain significant traction, lessons can be drawn from early experiences in the states of Connecticut and New York, as well as from established markets in Italy, France, and elsewhere. The staying power of European examples demonstrates that ESCs can help initiate more efficiency projects. This article compares ESCs with renewable energy certificates (RECs), looks at the unique opportunities and challenges they present, and reviews solutions and best practices demonstrated by early ESC markets. Three major potential ESC market types are also reviewed: compliance, voluntary, and carbon. Additionally, factors that will benefit ESC markets in the United States are examined: new state EEPS policies, public interest in tools to mitigate climate change, and the growing interest in a voluntary market for ESCs.

  20. The RHIC Beam Energy Scan: Present Challenges and Coming Opportunities

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna

    2015-10-01

    The RHIC Beam Energy Scan is mapping the phase diagram of QCD, creating and probing quark-gluon plasma ``doped'' to varying degrees with an excess of quarks over antiquarks. Recent data from the first phase of the scan challenge us to understand intriguing non-monotonic collision energy dependence (and therefore doping dependence) of various observables. They hint at a reduction in the QGP pressure, long anticipated in collisions that form QGP at temperatures not far above the crossover region. As the collision energy is lowered, possible signs of the turning off of effects driven by the chiral anomaly, signaling the approximate restoration of chiral symmetry, have been seen. And, there are tantalizing indications of a substantial drop and a subsequent substantial rise in a fluctuation observable that is particularly sensitive to critical fluctuations and that has been predicted to do exactly that the doping increases if a critical point on the phase diagram is approached. Each of these points to opportunities for discovery in the second phase of the scan (BES-II), coming in 2019-20, with much higher statistics data at the low energies where the most tantalizing effects reside. Today, though, the ball is squarely in the theorists' court: the data demand a concerted, multifaceted, theoretical response, building a quantitative framework for modeling the salient features of lower energy heavy ion collisions. If we respond well to this present challenge, BES-II can turn today's trends and features into discoveries, conclusions, and new understanding.

  1. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  2. Future Physics Opportunities in Beam Energy Scan at RHIC

    NASA Astrophysics Data System (ADS)

    Xu, Nu

    2015-10-01

    In the first phase of the beam energy scan program (BES-I) at RHIC, we have collected data from Au +Au collisions at the center of mass energy range from 7.7 GeV to 39 GeV, corresponding to the baryonic chemical potential of 420 MeV to 120 MeV, respectively. We have observed the disappearance of the suppression of leading hadrons at large pT, break down of the quark scaling in the identified particle elliptic flow, the net-proton directed flow slope dv1/dy shows a minimum with negative sign, and a non-monotonical behavior of the net-proton correlation function (the fourth order) at the energy less than 20 GeV. All of these observations indicate that the property of the medium at high baryon density is dramatically different from that created at the RHIC top energy where the baryon density is small and partonic interactions are dominant. In this talk I will first review what we have learned in RHIC BES-I. Then I will discuss the opportunities in the future bean energy scan program in order to address key questions regarding the QCD phase structure including the illusive critical point. I will stress that adequate detector upgrades, focused at the large baryon density region, are essential for the physics program.

  3. Opportunities

    ERIC Educational Resources Information Center

    Estkowski, Terri

    2008-01-01

    In life, each person is offered opportunities, one after the other, until life ceases. For the author, one of those opportunities was to attend the Kalamazoo Area Mathematics and Science Center (KAMSC), an NCSSSMST school. While attending KAMSC as a member of its inaugural class required a bit of imagination regarding the opportunity at hand, and…

  4. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    EPA Pesticide Factsheets

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  5. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  6. Finding radiant-energy sources

    NASA Technical Reports Server (NTRS)

    Schaffer, G. J.

    1978-01-01

    Antenna is scanned in orthogonal directions to pinpoint interfering sources. Satellite system locates ground-based microwave transmitter to accuracy of about 100 miles. When data on misalinement of satellite antenna boresight are used to correct antenna pointing, accuracy is improved to better than 70 miles.

  7. Finding radiant-energy sources

    NASA Technical Reports Server (NTRS)

    Schaffer, G. J.

    1978-01-01

    Antenna is scanned in orthogonal directions to pinpoint interfering sources. Satellite system locates ground-based microwave transmitter to accuracy of about 100 miles. When data on misalinement of satellite antenna boresight are used to correct antenna pointing, accuracy is improved to better than 70 miles.

  8. A new approach to wind energy: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng

    2015-03-01

    Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.

  9. Locating solar and wind energy sources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Renewable energy sources such as solar and wind power hold out the promise of providing energy that does not produce greenhouse gases. One obstacle to realizing production of energy from the Sun and from wind, however, has been determining where these energy sources can best be tapped.A new project called the Solar and Wind Energy Survey Assessment (SWERA) plans to map the solar and wind resources of 13 developing countries, and link these findings with a Geographical Information System so that potential developers can find sites online.

  10. Looking for alternative energy sources.

    PubMed

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  11. Sources of Information on Wind Energy (Brochure)

    SciTech Connect

    Not Available

    2001-12-01

    As wind technology continues to mature and the wind industry becomes an increasingly respected member of the energy producing community, a growing number of people require more information about wind energy. Whether you are a business manager, utility engineer, scientific researcher, or an interested energy user, this brochure provides helpful information sources.

  12. Agriculture: An often-overlooked opportunity for energy conservation

    SciTech Connect

    Lee, A.H.W.; Zarnikau, J.W.

    1997-12-01

    One of the most important agricultural regions in the US is the Panhandle region, the Southern region of America`s Great Plains. In recent years, there has been renewed interest in agricultural energy efficiency in the Panhandle region which covers Eastern New Mexico, Texas Panhandle, and Oklahoma Panhandle. The declining prices for agricultural products has prompted local farmers and agribusinesses to control costs so as to maintain profitability. In the Panhandle region, electricity is provided primarily by Southwestern Public Service (SPS) Company. Four different types of agricultural activities or establishments--irrigation pumping, feed lots, grain elevators, and cotton gins--account for over three-quarters of SPS`s retail sales of electricity to the agricultural sector. Although the focus of this article is to explore cost-effective energy-efficiency opportunities in the Panhandle agricultural sector, most of the measures can be applied to other agricultural regions in the US. Specific energy efficiency measures are identified and potential energy savings are quantified.

  13. Co-location opportunities for renewable energy and agriculture

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Macknick, Jordan; Lobell, David; Field, Christopher; Elchinger, Michael; Stoltenberg, Blaise

    2015-04-01

    Solar energy installations in arid and semi-arid regions are rapidly increasing, due to technological advances and policy changes. Large-scale expansion of solar infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We explored opportunities to co-locate solar infrastructures and agricultural crops or biofuel feedstocks to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in comparison to location-specific agricultural /biofuel crops in different arid regions of the world. The life cycle analyses show that co-located systems are economically viable in some areas and may provide opportunities for electrification and stimulate economic growth in rural areas. The water inputs for cleaning solar panels (photo voltaic) or mirrors (concentrated solar) and dust suppression are similar to amounts required for the desert-adapted crops (e.g. agave, aloe) considered in the study, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. Arid and semi arid regions of the world are experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of high value non-food crops in prime agricultural lands.

  14. Energy baseline and energy efficiency resource opportunities for the Forest Products Laboratory, Madison, Wisconsin

    SciTech Connect

    Mazzucchi, R.P.; Richman, E.E.; Parker, G.B.

    1993-08-01

    This report provides recommendations to improve the energy use efficiency at the Forest Products Laboratory in Madison, Wisconsin. The assessment focuses upon the four largest buildings and central heating plant at the facility comprising a total of approximately 287,000 square feet. The analysis is comprehensive in nature, intended primarily to determine what if any energy efficiency improvements are warranted based upon the potential for cost-effective energy savings. Because of this breadth, not all opportunities are developed in detail; however, baseline energy consumption data and energy savings concepts are described to provide a foundation for detailed investigation and project design where warranted.

  15. Transformative research issues and opportunities in alternative energy generation and storage.

    SciTech Connect

    Rockett, A.; Chung, Y. W.; Blaschek, H.; Butterfield, S.; Chance, R. R.; Ferekides, C.; Robinson, M.; Snyder, S. W; Thackeray, M.

    2011-01-01

    This article presents a summary of research issues and opportunities in alternative energy source research identified by panels of experts assembled by the Engineering Directorate of the US National Science Foundation. The objective was to identify transformative research issues and opportunities to make alternative energy sources viable. The article presents motivations for energy research, grand challenges, and specific challenges in the research areas covered. The grand challenges identified for the United States include supplying 30% of US electricity from photovoltaics by 2030, supplying 25% of US electricity from wind by 2025, displacing 30% of US hydrocarbon use by 2030 with bio-based products, and providing a practical 250-300 W h/kg energy storage system by 2025. Similar challenges could be outlined along the same lines for the remainder of the world. Examples of specific areas of research focus identified as promising include high performance p-type transparent conductors, multijunction thin-film photovoltaic devices, defects in chalcogenide semiconductors, experimental study and numerical modeling of the fluid mechanics of airflow as applied to wind turbines, improved materials for wind turbines, methods for creating high energy density transportable biological feedstocks, biorefinery processes yielding infrastructure-compatible biofuels and biochemicals directly, and improved electrodes and electrolytes for Li ion batteries. Arguments for each of these as research priorities are given.

  16. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  17. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  18. Chemical engineering challenges and investment opportunities in sustainable energy.

    PubMed

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  19. Recovery opportunities for metals and energy from sewage sludges.

    PubMed

    Mulchandani, Anjali; Westerhoff, Paul

    2016-09-01

    Limitations on current wastewater treatment plant (WWTP) biological processes and solids disposal options present opportunities to implement novel technologies that convert WWTPs into resource recovery facilities. This review considered replacing or augmenting extensive dewatering, anaerobic digestion, and off-site disposal with new thermo-chemical and liquid extraction processes. These technologies may better recover energy and metals while inactivating pathogens and destroying organic pollutants. Because limited direct comparisons between different sludge types exist in the literature for hydrothermal liquefaction, this study augments the findings with experimental data. These experiments demonstrated 50% reduction in sludge mass, with 30% of liquefaction products converted to bio-oil and most metals sequestered within a small mass of solid bio-char residue. Finally, each technology's contribution to the three sustainability pillars is investigated. Although limiting hazardous materials reintroduction to the environment may increase economic cost of sludge treatment, it is balanced by cleaner environment and valuable resource benefits for society.

  20. Fusion as a future energy source

    NASA Astrophysics Data System (ADS)

    Ward, D. J.

    2016-11-01

    Fusion remains the main source of energy generation in the Universe and is indirectly the origin of nearly all terrestrial energy (including fossil fuels) but it is the only fundamental energy source not used directly on Earth. Here we look at the characteristics of Earth-based fusion power, how it might contribute to future energy supply and what that tells us about the future direction of the R&D programme. The focus here is Magnetic Confinement Fusion although many of the points apply equally to inertial confinement fusion.

  1. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  2. Opportunities for Condensed Matter Research at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2004-03-01

    The Advanced Photon Source is the Western Hemisphere's most brilliant source of x-rays. This 3rd-generation 7-GeV synchrotron source can accomodate 34 insertion device ports, of which 30 are committed, and 24 are currently operating. In Fiscal Year 2002, we had 2767 unique users carry out at least one experiment at the source, of which 35research in materials science or condensed matter physics. Techniques commonly used by condensed matter scientists include single-crystal and powder diffraction, high-pressure studies, inelastic scattering, absorption and fluorescence spectroscopy, magnetic scattering and fluctuation spectroscopy. Access to the Advanced Photon Source can be either as a general user (www.aps.anl.gov) or as a partner user. Proposals from general users are encouraged, and beamtime is granted based on competitive review. Our capacity to accomodate more general users continues to increase. Typically, partner users build specialized equipment which is made available to general users. Many of our sectors have been built and operated by external Collaborative Access Teams, which support general users who enter through the APS centralized system. With the help of partnerships, the APS continues to evolve state-of-the-art beamlines of interest to condensed matter scientists, in areas such as inelastic scattering and nano-imaging. The Advanced Photon Source is closely connected with the new Center for Nanoscale Materials User Facility at Argonne. In this talk I will present notable examples of recent condensed matter physics experiments which utilized the unique capabilities of existing beamlines, and discuss future beamlines at the Advanced Photon Source.

  3. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect

    McIntosh, Jane; Schumacher, Leon

    2014-10-23

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings

  4. Workshop on Energy Research Opportunities for Physics Graduates & Postdocs

    SciTech Connect

    Kate Kirby

    2010-03-14

    Young people these days are very concerned about the environment. There is also a great deal of interest in using technology to improve energy efficiency. Many physics students share these concerns and would like to find ways to use their scientific and quantitative skills to help overcome the environmental challenges that the world faces. This may be particularly true for female students. Showing physics students how they can contribute to environmental and energy solutions while doing scientific research which excites them is expected to attract more physicists to work on these very important problems and to retain more of the best and the brightest in physical science. This is a major thrust of the 'Gathering Storm' report, the 'American Competitiveness Initiative' report, and several other studies. With these concerns in mind, the American Physical Society (APS) and more specifically, the newly formed APS Topical Group on Energy Research and Applications (GERA), organized and conducted a one-day workshop for graduate students and post docs highlighting the contributions that physics-related research can make to meeting the nation's energy needs in environmentally friendly ways. A workshop program committee was formed and met four times by conference call to determine session topics and to suggest appropriate presenters for each topic. Speakers were chosen not only for their prominence in their respective fields of energy research but also for their ability to relate their work to young people. The workshop was held the day before the APS March Meeting on March 14, 2009 in Portland, OR. The workshop was restricted to approximately 80 young physicists to encourage group discussion. Talks were planned and presented at a level of participants with a physics background but no special knowledge of energy research. Speakers were asked to give a broad overview of their area of research before talking more specifically about their own work. The format was designed with

  5. Neutron science opportunities at pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-12-31

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes.

  6. Audit Report on "The Department of Energy's Opportunity for Energy Savings Through Improved Management of Facility Lighting"

    SciTech Connect

    2010-06-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) highlighted the importance of reducing the Nation's dependence on foreign oil and conserving scarce energy resources. The Department of Energy, as the designated lead agency for promoting new technologies, providing leadership for energy conservation and helping Federal agencies reduce energy costs, plays a pivotal role in achieving the Recovery Act's energy related goals. The Department spends nearly $300 million per year in energy costs for its 9,000 buildings at 24 sites. Electricity costs, totaling $190 million, account for close to two-thirds of the Department's total energy expenditures, with roughly 40 percent or $76 million of those costs attributable to the cost of lighting. New lighting technologies and advanced lighting systems offer the Department the opportunity to significantly reduce energy consumption; decrease operating costs at its sites throughout the country; and, demonstrate the benefits of using new lighting technologies that are currently being developed in its laboratories and by other sources. Because of its energy conservation leadership role, we initiated this audit to determine whether the Department's facilities had implemented lighting conservation measures.

  7. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    SciTech Connect

    Gleason, T.C.J.

    1992-06-01

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

  8. National Renewable Energy Laboratory Renewable Energy Opportunity Assessment for USAID Mexico

    SciTech Connect

    Watson, Andrea; Bracho, Ricardo; Romero, Rachel; Mercer, Megan

    2015-11-13

    The United States Agency for International Development (USAID) Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program is designing its second phase of assistance to the Government of Mexico (GOM). In preparation for program design, USAID has asked the National Renewable Energy Laboratory (NREL) to assist in identifying options for enabling renewable energy in Mexico and reducing greenhouse gas (GHG) emissions in the energy sector. The NREL team conducted a literature review and consulted with over 20 Mexican agencies and organizations during a two-week temporary duty assignment (TDY) to Mexico to identify gaps, opportunities, and program theme areas for Mexico.

  9. Energy Sources of T-Tauri Stars

    NASA Astrophysics Data System (ADS)

    Calvet, N.; Albarran, J.

    1984-06-01

    We empirically estimated the total energy loss from the atmospheric regions above the photo sphere in T Tauri stars. We have also estimated the flux input into the atmosphere by magnetohydrodynamic (MHD) aves produced in the subphotospheric convection zone. Within the uncertainties of both theory and observations, this flux seems to represent the basic energy input into the atmosphere provided that a large surface coverage of magnetic regions exists. In addition to this basic energy input from the convection zone the T Tauri atmospheres must have other energy sources, originating in the stellar surfitee. Among those we can include the flux of energy carried by Alfven waves resulting from the action of surface material motions on magnetic flux tubes, as well as dissipation and annihilation of magnetic fields in flare events. The observed decrease in emission line fluxes with luminosity seems to indicate that MHD wave fluxes heat the chromosphere, while the uppermost atmospheric regions require another source of heating.

  10. Central airport energy systems using alternate energy sources

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  11. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  12. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  13. Biomass energy opportunities on former sugarcane plantations in Hawaii

    SciTech Connect

    Phillips, V.D.; Tvedten, A.E.; Lu, W.

    1995-11-01

    Electricity produced from burning sugarcane bagasse has provided as much as 10 percent of Hawaii`s electricity supply in the past. As sugarcane production has ceased on the islands of Oahu and Hawaii and diminished on Maui and Kauai, the role of biomass energy will be reduced unless economically viable alternatives can be identified. An empirical biomass yield and cost system model linked to a geographical information system has been developed at the University of Hawaii. This short-rotation forestry decision support system was used to estimate dedicated biomass feedstock supplies and delivered costs of tropical hardwoods for ethanol, methanol, and electricity production. Output from the system model was incorporated in a linear programming optimization model to identify the mix of tree plantation practices, wood processing technologies, and end-products that results in the highest economic return on investment under given market situations. An application of these decision-support tools is presented for hypothetical integrated forest product systems established at two former sugarcane plantations in Hawaii. Results indicate that the optimal profit opportunity exists for the production of medium density fibreboard and plywood, with annual net return estimates of approximately $3.5 million at the Hamakua plantation on the island of Hawaii and $2.2 million at the Waialua plantation on Oahu. Sensitivity analyses of the effects of different milling capacities, end-product market prices, increased plantation areas, and forced saw milling were performed. Potential economic credits for carbon sequestration and wastewater effluent management were estimated. While biofuels are not identified as an economical viable component, energy co-products may help reduce market risk via product diversification in such forestry ventures.

  14. Alternative energy sources for surgical atrial ablation.

    PubMed

    Williams, Mathew R; Garrido, Mauricio; Oz, Mehmet C; Argenziano, Michael

    2004-01-01

    As less complex modifications of the Maze procedure have been developed, a number of energy sources have been introduced to facilitate the creation of electrically isolating lesions within the atria. These include cryoablation, radiofrequency, microwave, laser, and focused ultrasound. Although each of these sources works slightly differently, the goal of all thermal sources is to heat tissue to a temperature (50 degrees C) above which irreversible electrical isolation occurs. These sources have been utilized both endocardially in arrested heart procedures as well as epicardially in the beating heart setting. There are several obstacles to the use of these sources epicardially, mostly related to the heat sink effect of endocardial blood. Several recent modifications have been introduced that will hopefully increase the efficacy of these sources in beating heart applications.

  15. Controlling hazardous energy sources (lockout/tagout)

    NASA Technical Reports Server (NTRS)

    Dominguez, Manuel B.

    1991-01-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  16. Controlling hazardous energy sources (lockout/tagout)

    NASA Astrophysics Data System (ADS)

    Dominguez, Manuel B.

    1991-10-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  17. 75 FR 28801 - Energy Efficiency and Conservation Block Grant Program: Funding Opportunity Announcement (DE-FOA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... of Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program: Funding Opportunity Announcement (DE-FOA-0000013) AGENCY: Office of Energy Efficiency and Renewable Energy... grants of the Energy Efficiency and Conservation Block Grant (EECBG) Program of the American Recovery...

  18. Low energy source for seismic operation

    SciTech Connect

    Martin, P.N.

    1980-09-23

    A lightweight, mobile, low-energy seismic source comprises an industrial shotgun, having a solid projectile combined with a base structure to support the gun in a substantially vertical position, slightly above the surface of the earth. The muzzle velocity of the projectile is sufficiently high that it can provide up to 9,000 foot pounds of energy impacting on the earth, which is comparable to that of some of the larger weight drop machines. Wheels or carrying bars can be provided for manual transport of the source.

  19. Bamboo as a renewable energy source

    SciTech Connect

    Molini, A.E.; Irizarry, J.G.

    1982-08-01

    Our complete dependence upon imported fossil fuels forces us to make a conscientious evaluation of the other energy sources the authors have readily available. Some of the approximately 1000 species of bamboo of some 50 genera, which range from plants the size of field grass to giants 120 ft. high and one ft. in diameter, and which grow from sea level in the tropics to 10,000 ft. mountain slopes, appear to be excellent alternate renewable energy sources. This paper presents the results obtained from a recently initiated research effort on the subject.

  20. Materials and neutronic research at the Low Energy Neutron Source

    NASA Astrophysics Data System (ADS)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  1. A Time of Opportunity: Energy, Extension, and Economic Development

    ERIC Educational Resources Information Center

    Franklin, Nancy; Humphrey, Jordan; Roth, Greg W.; Jackson, Daney G.

    2010-01-01

    If adversity brings opportunity, great opportunity may now be on the doorstep. The dual forces of an economy transitioning from an industrial focus to an innovation imperative, and a global financial downturn of massive proportions are leaving families, organizations,and communities scrambling for relief, solutions, and hope. Meanwhile, a…

  2. Forest biomass as an energy source

    Treesearch

    P.E. Laks; R.W. Hemingway; A. Conner

    1979-01-01

    The Task Force on Forest Biomass as an Energy Source was chartered by the Society of American Foresters on September 26, 1977, and took its present form following an amendment to the charter on October 5, 1977. It built upon the findings of two previous task forces, the Task Force on Energy and Forest Resources and the Task Force for Evaluation of the CORRIM Report (...

  3. Energy Savings Opportunity Survey, Fort McPherson, Georgia. Volume I.

    DTIC Science & Technology

    1992-09-01

    energy savings projects. The results are included as ECO 19; economics are based on design , bid, and construction, direct by the Government, rather...The purpose of the study was to analyze energy requirements and energy conservation opportunities ( ECOs ) for selected buildings at Fort McPherson...Georgia. The study analyzes energy requirements and energy conservation opportunities ( ECOs ) for selected buildings at Fort McPherson, Georgia. ECOs

  4. Energy scavenging sources for biomedical sensors.

    PubMed

    Romero, E; Warrington, R O; Neuman, M R

    2009-09-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.

  5. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    NASA Astrophysics Data System (ADS)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  6. 25 CFR Appendix B to Subpart B - Sources of Tribal Transportation Training and Education Opportunities

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Opportunities B Appendix B to Subpart B Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND..., Subpt. B, App. B Appendix B to Subpart B—Sources of Tribal Transportation Training and Education.... 140 (b)(c) 12. Other funding sources identified in § 170.150 (Transit) 13. Department of Labor...

  7. 25 CFR Appendix B to Subpart B - Sources of Tribal Transportation Training and Education Opportunities

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Opportunities B Appendix B to Subpart B Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND..., Subpt. B, App. B Appendix B to Subpart B—Sources of Tribal Transportation Training and Education.... 140 (b)(c) 12. Other funding sources identified in § 170.150 (Transit) 13. Department of Labor...

  8. 25 CFR Appendix B to Subpart B - Sources of Tribal Transportation Training and Education Opportunities

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Opportunities B Appendix B to Subpart B Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND..., Subpt. B, App. B Appendix B to Subpart B—Sources of Tribal Transportation Training and Education.... 140 (b)(c) 12. Other funding sources identified in § 170.150 (Transit) 13. Department of Labor...

  9. 25 CFR Appendix B to Subpart B - Sources of Tribal Transportation Training and Education Opportunities

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Opportunities B Appendix B to Subpart B Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND..., Subpt. B, App. B Appendix B to Subpart B—Sources of Tribal Transportation Training and Education.... 140 (b)(c) 12. Other funding sources identified in § 170.150 (Transit) 13. Department of Labor work...

  10. Microbial production of energy sources from biomass

    NASA Astrophysics Data System (ADS)

    Righelato, R. C.

    1980-02-01

    The biochemical options available for the microbial production of energy sources from biomass is reviewed and some of the technology available for microbial conversion is discussed with particular reference to present limitations and how they may be overcome. Attention is given to the chemical process of anaerobic fermentation emphasizing the chemical reaction of glucose into pyruvic acid. The capital costs and energy consumption of ethanol and methane and their production are discussed. It is concluded that anaerobic fermentation of carbohydrates and digestion of biomass-containing effluents can be used as methods for achieving greater energy availability.

  11. Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint

    SciTech Connect

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    2016-09-01

    Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded both by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.

  12. Biological sources of energy from the sea

    NASA Astrophysics Data System (ADS)

    Phlips, E. J.

    1982-02-01

    The use of marine plants and microscopic organisms as possible future energy sources is examined. Parallels are drawn between the coming depletion of fossil fuel resources and the first energy crisis on earth, when evolving cells began to use up the stores of organic molecules in the ocean, and photosynthesis, in the form of plant biomass, is considered as a possible solution to the present energy crisis. The energy potential of marine biomass, specifically the seaweeds, microscopic algae and photosynthetic bacteria, is then assessed, and experimental attempts at the culturing of such organisms, are noted. Microbial energy technologies, principally the replacement of chemical processes requiring fossil fuels with biological conversion systems and direct biomass conversion into hydrogen and methane fuels, are then examined. Possible applications of techniques involving genetic engineering and cell-free systems to future bioenergy research are indicated, and the impetus to the rapid development of solar energy posed by the problems of pollution and availability of present energy sources is emphasized.

  13. A Web Based Puzzle for Energy Sources

    ERIC Educational Resources Information Center

    Secken, Nilgun

    2006-01-01

    At present many countries in the world consume too much fossil fuels such as petroleum, natural gas and coal to meet their energy needs. These fossil fuels are not renewable; their sources are limited and reducing gradually. More importantly they have been becoming more expensive day by day and their damage to the environment has been increasing.…

  14. The high energy source 3C 273

    NASA Technical Reports Server (NTRS)

    Vonmontigny, Corinna

    1990-01-01

    The properties of 3C 273 are reviewed and an attempt is made to find an answer to the question why 3C 273 is the only extragalactic source so far, which was detected at energies greater than or equal to 50 MeV.

  15. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  16. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  17. Control apparatus for spectral energy source

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1967-01-01

    Automatic light-controlling system for dc arc emission spectrographs controls the vaporization rate of the sample and stabilizes the dc arc. The output energy is regulated such that advantage can be taken of the highly sensitive dc arc source without sacrificing the desired precision.

  18. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  19. Power conversion from environmentally scavenged energy sources.

    SciTech Connect

    Druxman, Lee Daniel

    2007-09-01

    As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

  20. Kansas Energy Sources: A Geological Review

    SciTech Connect

    Merriam, Daniel F.; Brady, Lawrence L.; Newell, K. David

    2012-03-15

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

  1. Kansas Energy Sources: A Geological Review

    USGS Publications Warehouse

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  2. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  3. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  5. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  7. Radiogenic metabolism: an alternative cellular energy source.

    PubMed

    Benford, M S

    2001-01-01

    The concept of 'healing energy' is commonly used in complementary and alternative medicine; however, efforts to define this concept using contemporary scientific theory, and measure it using modern scientific methods, have been limited to date. Recent experimental testing by Benford et al. observed a uniform, substantial, and consistent decrease in gamma radiation during alternative healing sessions, thus supporting a new energy-balance paradigm hypothesizing ionizing radiation as an alternative cellular energy source. This hypothesis extends the known elements of radiogenic metabolism to potentially explain a number of presumably biopositive energy-related phenomena, including fasting and radiation hormesis, as well as to demystify unexplained anomalies such as idiopathic thermogenesis, halos and auras, and incorruptibility of human corpses.

  8. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect

    McConnell, Ben W; Hadley, Stanton W; Xu, Yan

    2011-08-01

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and

  9. Multi-source energy harvester power management

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Tiwari, Rashi; Garcia, Ephrahim

    2011-03-01

    Much of the work on improving energy harvesting systems currently focuses on tasks beyond geometric optimization and has shifted to using complex feedback control circuitry. While the specific technique and effectiveness of the circuits have varied, an important goal is still out of reach for many desired applications: to produce sufficient and sustained power. This is due in part to the power requirements of the control circuits themselves. One method for increasing the robustness and versatility of energy harvesting systems which has started to receive some attention would be to utilize multiple energy sources simultaneously. If some or all of the present energy sources were harvested, the amount of constant power which could be provided to the system electronics would increase dramatically. This work examines two passive circuit topologies, parallel and series, for combining multiple piezoelectric energy harvesters onto a single storage capacitor using an LTspice simulation. The issue of the relative phase between the two piezoelectric signals is explored to show that the advantages of both configurations are significantly affected by increased relative phase values.

  10. Fusion - An energy source for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Fillo, J. A.; Powell, J.; Steinberg, M.

    1980-05-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  11. Emerging Wind Energy Opportunities in the Federal Sector

    SciTech Connect

    Robichaud, Robi

    2016-08-08

    Robi Robichaud made this presentation as part of an Energy Technology session at the Energy Exchange event, which is sponsored by the U.S. Department of Energy. The presentation discusses a wind energy industry update, technology trends, financing options at federal facilities, and creative approaches for developing wind projects at federal facilities.

  12. Supernova Remnants associated with high energy sources

    NASA Astrophysics Data System (ADS)

    Duvidovich, L.; Petriella, A.; Giacani, E.; Dubner, G.

    2017-10-01

    We carried out a study of the distribution and kinematic of the molecular gas in the direction of the Galactic supernova remnants (SNRs) G40.5-0.5 and G298.6-0.0, which have been associated with the gamma-ray sources MGRO J1908+06 and 3FGL J1214.0-6236, respectively. The aim of the present work is to establish the origin of the very high energy (VHE).

  13. Locally Appropriate Energy Strategies for the Developing World: A focus on Clean Energy Opportunities in Borneo

    NASA Astrophysics Data System (ADS)

    Shirley, Rebekah Grace

    This dissertation focuses on an integration of energy modeling tools to explore energy transition pathways for emerging economies. The spate of growth in the global South has led to a global energy transition, evidenced in part by a surge in the development of large scale energy infrastructure projects for the provision of reliable electricity service. The rational of energy security and exigency often usher these large scale projects through to implementation with minimal analysis of costs: social and environmental impact, ecological risk, or opportunity costs of alternative energy transition pathways foregone. Furthermore, development of energy infrastructure is inherently characterized by the involvement of a number of state and non-state actors, with varying interests, objectives and access to authority. Being woven through and into social institutions necessarily impacts the design, control and functionality of infrastructure. In this dissertation I therefore conceptualize energy infrastructure as lying at the intersection, or nexus, of people, the environment and energy security. I argue that energy infrastructure plans and policy should, and can, be informed by each of these fields of influence in order to appropriately satisfy local development needs. This case study explores the socio-techno-environmental context of contemporary mega-dam development in northern Borneo. I describe the key actors of an ongoing mega-dam debate and the constellation of their interaction. This highlights the role that information may play in public discourse and lends insight into how inertia in the established system may stymie technological evolution. I then use a combination of power system simulation, ecological modeling and spatial analysis to analyze the potential for, and costs and tradeoffs of, future energy scenarios. In this way I demonstrate reproducible methods that can support energy infrastructure decision making by directly addressing data limitation barriers. I

  14. Master Limited Partnerships and Real Estate Investment Trusts: Opportunities and Potential Complications for Renewable Energy

    SciTech Connect

    Feldman, D.; Settle, E.

    2013-11-01

    Master Limited Partnerships (MLPs) and Real Estate Investment Trusts (REITs) are two proposed investment vehicles which have the potential to lower renewable energy assets' high cost of capital; a critical factor in the Department of Energy's goal for renewable energy to achieve grid-parity with traditional sources of electric generation. Due to current U.S. federal income tax laws, regulations, and administrative interpretations, REITs and MLPs cannot finance a significant portion of the cost of renewable energy assets. Efforts are underway to alter these rules by changing the definition of 'real property' (REIT) and 'qualified income' (MLP). However, even with rule changes, both investment vehicles have structural challenges to efficiently finance renewable energy assets. Among them are 1) effectively utilizing the U.S. federal income tax incentives; 2) administratively structuring the investments to not be overly onerous or complicated, given the potential for pooling a relatively large amount of small assets; and 3) attracting and retaining a large enough investment community to participate in the funding opportunities. This report summarizes these challenges so that if proposed federal changes are made, stakeholders have an understanding of the possible outcomes.

  15. Offshore energy boom providing opportunities outside Medicare's umbrella.

    PubMed

    Robb, N

    1998-09-08

    Physicians upset by limits imposed by the medicare system are getting a chance to spread their entrepreneurial wings on the East Coast. A boom in offshore exploration, led by Newfoundland's massive Hibernia project, has led to numerous business opportunities for physicians.

  16. Offshore energy boom providing opportunities outside medicare's umbrella

    PubMed Central

    Robb, N

    1998-01-01

    Physicians upset by limits imposed by the medicare system are getting a chance to spread their entrepreneurial wings on the East Coast. A boom in offshore exploration, led by Newfoundland's massive Hibernia project, has led to numerous business opportunities for physicians. PMID:9757185

  17. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  18. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  19. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  20. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  1. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  2. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  3. The Energy Problem and Social Education: Some Opportunities, Quandaries, and Goals.

    ERIC Educational Resources Information Center

    Allen, Rodney F.

    This paper examines the need for energy education, discusses classroom opportunities and quandaries for teaching about energy, and provides some suggestions for social studies educators. Two recent studies show that there is a real need for energy education. First, the Education Commission of the United States surveyed the energy knowledge and…

  4. Opportunity knocks - the sustainable energy industry and climate change

    SciTech Connect

    Price, B.; Keegan, P.

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  5. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  6. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  7. Energy-Saving Opportunities for Manufacturing Enterprises (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This fact sheet English/Chinese describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing enterprises reduce industrial energy intensity.

  8. The Clean Air Act and Renewable Energy: Opportunities, Barriers, and Options

    SciTech Connect

    Wooley, D.R.; Morss, E.M.; Fang, J.M.

    2001-03-01

    This paper examines the opportunities, obstacles, and potential options to promote renewable energy under the CAA and related programs. It deals, in sequence, with the regulation of SO2, NOx, regional haze/particulate matter, and CO2. For each pollutant, the paper discusses the opportunities, barriers, and options for boosting renewables under the CAA. It concludes by comparing the options discussed. The paper is based on a project on environmental regulation and renewable energy in electricity generation conducted by the National Renewable Energy Laboratory for the Office of Power Technologies, Office of Energy Efficiency and Renewable Energy, US Department of Energy.

  9. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    SciTech Connect

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  10. Cyanate as an energy source for nitrifiers.

    PubMed

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-08-06

    Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

  11. Biochar As a Renewable Energy Source

    NASA Astrophysics Data System (ADS)

    Stein, Richard

    2011-11-01

    Biochar is a form of charcoal prepared by heating biomass in limited air. It is porous and has high surface area, maintaining much of the morphology of the biomass. The heat for its preparation arises primarily from burning volatiles emitted upon heating. About half the chemical energy in the biomass is contained in the biochar, about 40% is used for the conversion, and about 10% may be used as a local heat source. The biochar can serve as a soil additive where it acts as a template for the growth of bacteria and fungi which then lead to improved growth of biomass by as much as several hundred percent. It remains inert in the soil for many years. Thus, it sequesters the carbon, originally coming from the carbon dioxide absorbed during the photosynthesis occurring during the growth of the biomass. Its use reduces fertilizer and water needs and to pollution arising from the run-off of fertilizer and emission of noxious vapors. Its use is best done at a local level, close to sources of biomass from farm and forest waste. The Pioneer Valley Biochar Initiative along with the Center of Agriculture of the University of Massachusetts, Amherst is promoting the use of biochar on local farms which reduces their dependence on energy arising from fossil fuel and nuclear sources.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  13. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  14. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  15. Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration

    SciTech Connect

    Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

    2010-10-01

    As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energy’s (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

  16. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    SciTech Connect

    Not Available

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  17. Radiant Energy Power Source for Jet Aircraft

    SciTech Connect

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  18. Challenges and opportunities for animal conservation from renewable energy development

    Treesearch

    T.A. Katzner; J.A. Johnson; D.M. Evans; T.W.J. Garner; M.E. Gompper; R. Altwegg; T.A. Branch; I.J. Gordon; N. Pettorelli

    2013-01-01

    Global climate change is among the greatest threats confronting both human and natural systems (IPCC, 2007). A substantial component of greenhouse gas (GHG) emissions is from energy production, generated via the burning of fossil fuels, especially coal, natural gas and refined petroleum. Given that reduction in global energy consumption is unlikely over the next...

  19. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  20. Energy codes and the building design process: Opportunities for improvement

    SciTech Connect

    Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

    1994-05-01

    The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

  1. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  2. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  3. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  4. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  5. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  6. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    SciTech Connect

    Mathew, Paul; Coleman, Philip; Wallace, Nancy; Issler, Paulo; Kolstad, Lenny; Sahadi, Robert

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  7. Energy Savings Opportunity Survey, Energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky. Phase I, Volume 1, Sections 1-4.

    DTIC Science & Technology

    1993-11-12

    opportunities ( ECOs ) evaluated were lighting efficiency improvements, instantaneous water heaters, heat recovery from hot refrigerant gases, absorption chiller...Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment

  8. Energy Savings Opportunity Survey, Energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky, Final Report - Phase 2; Executive Summary.

    DTIC Science & Technology

    1993-11-24

    opportunities ( ECOs ) evaluated were lighting efficiency improvements, peak-shaving generators, chiller replacement, variable speed circulation pumps...in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment Program

  9. Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science

    SciTech Connect

    Hemminger, John C.; Sarrao, John; Crabtree, George; Flemming, Graham; Ratner, Mark

    2015-11-01

    expressed at the atomic and electronic scales, it can dominate the macroscopic properties of materials and chemical reactions such as superconductivity and efficient photosynthesis. In recent years, enormous progress has been made in recognizing, manipulating, and exploiting quantum coherence. This progress has already elucidated the role that symmetry plays in protecting coherence in key materials, taught us how to use light to manipulate atoms and molecules, and provided us with increasingly sophisticated techniques for controlling and probing the charges and spins of quantum coherent systems. With the arrival of new sources of coherent light and electron beams, thanks in large part to investments by the U.S. Department of Energy’s Office of Basic Energy Sciences (BES), there is now an opportunity to engineer coherence in heterostructures that incorporate multiple types of materials and to control complex, multistep chemical transformations. This approach will pave the way for quantum information processing and next-generation photovoltaic cells and sensors. Revolutionary Advances in Models, Mathematics, Algorithms, Data, and Computing Science today is benefiting from a convergence of theoretical, mathematical, computational, and experimental capabilities that put us on the brink of greatly accelerating our ability to predict, synthesize, and control new materials and chemical processes, and to understand the complexities of matter across a range of scales. Imagine being able to chart a path through a vast sea of possible new materials to find a select few with desired properties. Instead of the time-honored forward approach, in which materials with desired properties are found through either trial-and-error experiments or lucky accidents, we have the opportunity to inversely design and create new materials that possess the properties we desire. The traditional approach has allowed us to make only a tiny fraction of all the materials that are theoretically possible. The

  10. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  11. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  12. Report of the Energy Field Institute V on western energy opportunities, problems, and policy issues

    SciTech Connect

    Hepworth, J.C.; Foss, M.M.

    1982-12-01

    The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During the field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.

  13. Review of studies of research opportunities in energy conservation

    SciTech Connect

    Hane, G.J.; Williams, T.A.; Hauser, S.G.

    1984-04-01

    This study attempted to systematically identify, screen and review many of the 27 remaining major studies across the end-use areas. The method used to identify and review the studies, the scope of this effort, the types of studies reviewed, and the R and D opportunities identified are discussed. The actual report reviews are included. The review format and the kinds of information sought from each report are discussed. The general categories of the material are described; the types of information presented are summarized; and gaps in the literature are discussed. A discussion of R and D needs and comments of the specific needs presented and their temporal and evolutionary characteristics are included. The findings of the review are summarized and the researchers contacted for information are listed.

  14. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  15. Integrated Food-Energy Systems: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Locke, K. A.; Laser, M.; Raker, M.; Gooch, C.; Kapuscinski, A. R.

    2015-12-01

    Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. This is likely because IFES can have widely different configurations, from co-located renewable energy production on cropland to agroforestry. As a first step in creating a synthesis of IFES, our research team constructed a taxonomy using exploratory data analysis of diverse IFES cases (Gerst et al., 2015, ES&T 49:734-741). It was found that IFES may be categorized by type of primary product produced (plant- or animal-based food or energy) and the degree and direction of vertical supply chain coordination. To further explore these implications, we have begun a study of a highly-coordinated, animal-driven IFES: dairy farms with biogas production from anaerobic digestion of manure. The objectives of the research are to understand the barriers to adoption and the potential benefits to the farms financial resilience and to the environment. To address these objectives, we are interviewing 50 farms across New York and Vermont, collecting information on farmer decision-making and farm operation. These results will be used to calibrate biophysical and economic models of the farm in order understand the future conditions under which adoption of an IFES is beneficial.

  16. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  17. Navigating the new deregulated landscape: Opportunities and risks for wind energy

    SciTech Connect

    Fossum, D.J.; Hill, D.R.

    1997-12-31

    Major changes in the law governing the electric industry are underway, fundamentally altering how the generation and sale of electric power is regulated and how electric power is marketed in the United States. Legislative and regulatory initiatives promoting competition will create a variety of opportunities, and commensurate risks, for power generators, marketers, brokers, sellers, and purchasers. To succeed in the new marketplace, suppliers of renewable energy must understand the changes occurring on the state and federal levels, and position themselves to take advantage of the opportunities available. In this environment, monitoring and participating in state and federal legislative and regulatory efforts will be crucial for maximizing opportunities for wind energy.

  18. Energy futures: Trading opportunities for the 1980's

    SciTech Connect

    Treat, J.E.; Cowie, S.; Davidson, F.E.; Duffy, M.; Miller, J.E.; Errera, S.; Gotthelf, P.; Murphy, T.D.; Rouquette, G.A.; Verlerger, P.K.

    1984-01-01

    This text gives a broad background in both theory and practice of energy futures trading. It details successful contract requirements. It analyzes fundamental and technical pricing and using both to manage risk and achieve trading objectives. Hedging strategy, financial aspects of trading, accounting procedures, internal control systems and tax implications are all expertly covered. The book concludes with the potential impact of futures trading on the structure of world markets. Contents: Energy futures: an overview; Exchanges and their contracts; Fundamental analysis and the theory of hedging; The principles of technical analysis; Putting it all together; Integrated trading strategies; Energy futures; Financing and exposure management in the oil industry; Accounting principles, taxation, and internal control; The potential impacts of trading in oil futures on the world oil market; Appendix; Glossary; Index.

  19. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  20. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  1. Gas hydrates - new source of energy and new Geotechnical hazards

    NASA Astrophysics Data System (ADS)

    Chistyakov, V.

    2012-04-01

    Constantly growing demand for energy carriers, limitation and irretrievability of their now in use resources have forced to turn in the end of XX century the close attention on searches of the no conventional sources possessing both more significant potential resources, and an opportunity of their constant completion. Sources of the energy carrier of organic carbon most widespread by the Earth resources of gas hydrates are prevailing and by different estimations on the order or exceed resources of hydrocarbon raw material used nowadays more. Gas hydrates - the firm crystal connections formed water (liquid water, an ice, water vapor) and low-molecular waterproof natural gases such as carbohydrates (mainly methane), 2, N2 and others, whose crystal structure effectively compresses gas: each cubic meter of hydrate can yield over 160 m3 of methane. Natural gas hydrates occur on earth in three kinds of environments: deep-water subaquactic regions, permafrost and glacier shields. The current estimates show that the amount of energy in these gas hydrates is twice total fossil fuel reserves, indicating a huge source of energy, which can be exploited in the right economical conditions. Despite of appeal of use gas hydrates as the perspective and ecologically more pure fuel with possessing huge resources, investigation and development of their deposits can lead to a number of the negative consequences connected with hazards arising difficulties for maintenance of their technical and ecological safety of carrying out. Furthermore, these gas hydrates are a safety hazard to drilling operation, as they could become unstable under typical wellborn conditions and produce large quantities of gas. The decomposition of natural gas hydrates in porous media could also be responsible for sub sea landslides and global weather changes. Recent studies show that they might provide an opportunity for CO2 sequestering. Scales of arising problems including Geoethical can change from local up to

  2. The Energy Opportunity: A View from an Electric Industry.

    ERIC Educational Resources Information Center

    Young, H. J.

    1978-01-01

    Stresses the rapid expansion of electric power use in the United States and contends that the current emphasis must be on expanding the generating capacity of electricity from coal and nuclear fuels. Journal available from Energy Information Associates, Inc., P. O. Box 18076, Capitol Hill Station, Denver, Colorado 80218. (KC)

  3. The Energy Opportunity: A View from an Electric Industry.

    ERIC Educational Resources Information Center

    Young, H. J.

    1978-01-01

    Stresses the rapid expansion of electric power use in the United States and contends that the current emphasis must be on expanding the generating capacity of electricity from coal and nuclear fuels. Journal available from Energy Information Associates, Inc., P. O. Box 18076, Capitol Hill Station, Denver, Colorado 80218. (KC)

  4. Optofluidic opportunities in global health, food, water and energy

    NASA Astrophysics Data System (ADS)

    Chen, Yih-Fan; JiangLj, Mm, Aj,; Vo Contributed Equally To This Paper., Li; Mancuso, Matthew; Jain, Aadhar; Oncescu, Vlad; Erickson, David

    2012-07-01

    Optofluidics is a rapidly advancing field that utilizes the integration of optics and microfluidics to provide a number of novel functionalities in microsystems. In this review, we discuss how this approach can potentially be applied to address some of the greatest challenges facing both the developing and developed world, including healthcare, food shortages, malnutrition, water purification, and energy. While medical diagnostics has received most of the attention to date, here we show that some other areas can also potentially benefit from optofluidic technology. Whenever possible we briefly describe how microsystems are currently used to address these problems and then explain why and how optofluidics can provide better solutions. The focus of the article is on the applications of optofluidic techniques in low-resource settings, but we also emphasize that some of these techniques, such as those related to food production, food safety assessment, nutrition monitoring, and energy production, could be very useful in well-developed areas as well.

  5. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  6. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  7. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  8. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  9. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  10. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  11. Hybrid Energy: Combining Nuclear and Other Energy Sources

    SciTech Connect

    Kim, Jong Suk; Garcia, Humberto E.

    2015-02-01

    The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate at full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a

  12. Review of biomass as a source of energy for Poland

    SciTech Connect

    Leszczynski, S.; Brzychczyk, P.; Sekula, R.

    1997-10-01

    To the present day, biomass has not been considered as an energy source for Poland, and over 95% of energy is generated through fossil fuel combustion. However, it is necessary to search for new energy sources because of high prices of traditional energy carriers and massive environmental pollution caused by these fuels. Biomass seems to be one of the best renewable energy sources. Basic components of biomass in Poland and estimations of energetic resources of biomass are presented.

  13. Hydrothermal energy: a source of energy for alcohol production

    SciTech Connect

    Stiger, R.R.

    1980-01-01

    A small scale (1 gal/hr) biomass-to-alcohol still was built at the Raft River Geothermal Site to investigate difficulties in geothermal assisted biomass conversion. The unit was successfully operated, producing 95% (190 proof) ethanol from sugar beet juice. The unit was designed and built in less than eight weeks from surplus equipment using commercially available design information. This small-scale still demonstrated that 95% ethanol can be produced from sugar beet beer containing 8 to 10% alcohol using geothermal energy and present commercial technology. The geothermal resource provided both an energy source and process water. Recently, Bechtel National, Incorporated, of San Francisco, California completed a study to analyze the economic feasibility of producing ethanol from potatoes, wheat, and sugar beets using geothermal resources available in the Raft River Region of Idaho. The study concluded that a 20 million gallon per year facility can be built that will supply alcohol at $1.78 per gallon using geothermal energy. (MHR)

  14. US Clean Energy Sector and the Opportunity for Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Inge, Carole Cameron

    2011-01-01

    The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).

  15. Real world financing opportunities for energy conservation projects

    SciTech Connect

    Tramonte, D.J.

    1988-01-01

    Do you have the resources, dollars, people expertise and general know-how to do all the energy conservation measures. If you have the funds, do it yourself. Historically you would save more if you hired a private concern because that is the only job the contractor does for you. You have other hats to wear and fires to put out. Using third-party financing can be a good decision based on your specific needs. Procrastination is not the answer - the cost of delay is extensive. Financing energy conservation measures is no different from financing your automobile or home. If the benefits outweigh the negatives, the answer is obvious. Remember, in any case of using private sector financing, your are joining a partnership arrangement. The only way to succeed is to be honest with each other on the front end. There need not be any surprises. Any reputable company will gladly have your attorney evaluate all agreements, amortization schedules, and attachments. Real world financing alternatives will continue to change as the market matures. It's not too good to be true. It is no more than a vehicle to make the efforts of capital improvements streamlined. The money or financing is the catalyst to the project and makes the other areas meld.

  16. Cost and Energy Savings Opportunities with Heating, Air Conditioning and Lighting Systems in Schools.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Great potential exists for saving energy and operating costs with a wide variety of heat conservation systems. Two major electric services--space conditioning and lighting--afford cost and energy savings opportunities. These services are detailed in checklist fashion in this brochure, with the suggestions included under space conditioning…

  17. Manufacturing Energy Intensity and Opportunity Analysis for Fiber-Reinforced Polymer Composites and Other Lightweight Materials

    SciTech Connect

    Liddell, Heather; Brueske, Sabine; Carpenter, Alberta; Cresko, Joseph

    2016-09-22

    With their high strength-to-weight ratios, fiber-reinforced polymer (FRP) composites are important materials for lightweighting in structural applications; however, manufacturing challenges such as low process throughput and poor quality control can lead to high costs and variable performance, limiting their use in commercial applications. One of the most significant challenges for advanced composite materials is their high manufacturing energy intensity. This study explored the energy intensities of two lightweight FRP composite materials (glass- and carbon-fiber-reinforced polymers), with three lightweight metals (aluminum, magnesium, and titanium) and structural steel (as a reference material) included for comparison. Energy consumption for current typical and state-of-the-art manufacturing processes were estimated for each material, deconstructing manufacturing process energy use by sub-process and manufacturing pathway in order to better understand the most energy intensive steps. Energy saving opportunities were identified and quantified for each production step based on a review of applied R&D technologies currently under development in order to estimate the practical minimum energy intensity. Results demonstrate that while carbon fiber reinforced polymer (CFRP) composites have the highest current manufacturing energy intensity of all materials considered, the large differences between current typical and state-of-the-art energy intensity levels (the 'current opportunity') and between state-of-the-art and practical minimum energy intensity levels (the 'R&D opportunity') suggest that large-scale energy savings are within reach.

  18. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  19. Identification of energy conservation research opportunities: a review and synthesis of the literature

    SciTech Connect

    Hopp, W.J.; Hane, G.J.; Gurwell, W.E.; Hauser, S.G.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1982-03-01

    Thirty-eight studies of energy conservation research opportunities are reviewed. The 38 studies chosen for review include many of the major efforts in the identification of energy conservation research and development (R and D) opportunities and provide a representative sample of the types of studies that have been performed. The sample includes studies that focus on specific energy use (e.g., auto transport), as well as studies that focus on specific types of research (e.g., materials science). The sample also includes studies that can be further contrasted in terms of long-term vs. short-term projects, evolutionary vs. revolutionary ideas, generic vs. process-specific activities, and technology base research vs. hardware development. Each of these perspectives contributes toward assuring coverage of the breadth of energy conservation R and D opportunities. In each review the technical or end-use focus is described, the research ideas identified in the study are listed, and a critical summary is given. The reviews also indicate whether the studies present end-use consumption data, estimate potential energy savings, estimate times to commercialization, summarize existing research programs, or describe the identification methodology. In Section 2.0 the various research studies are compared. In Section 3.0 the characteristics of an aggregate list of research ideas are discussed. The characteristics were collected from the research opportunities studies, which are included in Appendix A. Appendix A contains a compilation of energy conservation R and D opportunities arranged by energy end-use applications. Appendix B contains an outline of the format followed in writing the critical reviews of the studies, the individual study reviews, and the extended bibliography of 88 studies that describe energy conservation research opportunities.

  20. Geothermal energy: opportunities for California commerce. Final report

    SciTech Connect

    Not Available

    1982-08-01

    This report provides a preliminary engineering and economic assessment of five direct use projects using low and moderate temperature geothermal resources. Each project site and end-use application was selected because each has a high potential for successful, near-term (2 to 5 years) commercial development. The report also includes an extensive bibliography, and reference and contact lists. The five projects are: Wendel Agricultural Complex, East Mesa Livestock Complex, East Mesa Vegetable Dehydration Facility, Calapatria Heating District and Bridgeport Heating District. The projects involve actual investors, resource owners, and operators with varying financial commitments for project development. For each project, an implementation plan is defined which identifies major barriers to development and methods to overcome them. All projects were determined to be potentially feasible. Three of the projects cascade heat from a small-scale electric generator to direct use applications. Small-scale electric generation technology (especially in the 0.5 to 3 MW range) has recently evolved to such a degree as to warrant serious consideration. These systems provide a year-round heating load and substantially improve the economic feasibility of most direct use energy projects using geothermal resources above 200/sup 0/F.

  1. Geothermal energy: opportunities for California commerce. Phase I report

    SciTech Connect

    Longyear, A.B.

    1981-12-01

    The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight direct use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.

  2. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  3. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  4. Future evolution of distributed systems for smart grid - The challenges and opportunities to using decentralized energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.

  5. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of

  6. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    SciTech Connect

    Ravindranath, N.H.; Meili, A.; Anita, R.

    1998-11-01

    Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase

  7. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  8. The energy services revolution: New opportunities for commercial and industrial end-users

    SciTech Connect

    Hoggard, J.

    1997-07-01

    The changing energy services industry presents significant cost-control opportunities for end-users. However, the transition period from a monopoly to a deregulated market will be chaotic and confusing. For end-users, knowing who to turn to is the first step in taking advantage of the energy services revolution. For energy and energy services providers, bridging the gap between what suppliers perceive as key customer needs and what large energy users actually want will be the key in producing mutually successful ventures.

  9. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    SciTech Connect

    Zogg, Robert; Goetzler, William; Ahlfeldt, Christopher; Hiraiwa, Hirokazu; Sathe, Amul; Sutherland, Timothy

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  10. Energy cost and energy sources during a simulated firefighting activity.

    PubMed

    Perroni, Fabrizio; Tessitore, Antonio; Cortis, Cristina; Lupo, Corrado; D'artibale, Emanuele; Cignitti, Lamberto; Capranica, Laura

    2010-12-01

    This study aimed to 1) analyze the energy requirement (VO2eq) and the contribution of the aerobic (VO2ex), anaerobic alactic (VO2al), and anaerobic lactic (VO2la-) energy sources of a simulated intervention; 2) ascertain differences in mean VO2 and heart rate (HR) during firefighting tasks; and 3) verify the relationship between time of job completion and the fitness level of firefighters. Twenty Italian firefighters (age = 32 ± 6 yr, VO2peak = 43.1 ± 4.9 mL·kg·min) performed 4 consecutive tasks (i.e., child rescue; 250-m run; find an exit; 250-m run) that required a VO2eq of 406.26 ± 73.91 mL·kg (VO2ex = 86 ± 5%; VO2al = 9 ± 3%; VO2la- = 5 ± 3%). After 30 minutes, the recovery HR (108 ± 15 beats·min) and VO2 (8.86±2.67mL·kg·min) were higher (p < 0.0001) than basal values (HR = 66 ± 8 beats·min; VO2 = 4.57 ± 1.07 mL·kg·min), indicating that passive recovery is insufficient in reducing the cardiovascular and thermoregulatory strain of the previous workload. Differences (p < 0.001) between tasks emerged for mean VO2 and HR, with a lack of significant correlation between the time of job completion and the firefighters' aerobic fitness. These findings indicate that unpredictable working conditions highly challenge expert firefighters who need adequate fitness levels to meet the requirements of their work. Practically, to enhance the fitness level of firefighters, specific interval training programs should include a wide variety of tasks requiring different intensities and decision-making strategies.

  11. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  12. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  13. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  14. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  15. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  16. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  17. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  18. Panchromatic spectral energy distributions of Herschel sources

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  19. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  20. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  1. Tackling U.S. energy challenges and opportunities: preliminary policy recommendations for enhancing energy innovation in the United States

    SciTech Connect

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew; Jones, Charles

    2009-02-18

    The report offers preliminary recommendations for near-term actions to strengthen the U.S. effort to develop and deploy advanced energy technologies. The report comes as the Obama Administration and the 111th U.S. Congress face enormous challenges and opportunities in tackling the pressing security, economic, and environmental problems posed by the energy sector. Improving the technologies of energy supply and end-use is a prerequisite for surmounting these challenges in a timely and cost-effective way, and this report elaborates on how policy can support develop of these important energy technologies.

  2. Energy accounting for solar and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Devine, W. D., Jr.

    Shortcomings in energy data collection, display and accounting practices are of minor consequence in an economy of today in which most end use services are provided via fossil fuels and electricity. However, the emergence of a variety of alternative technologies that might be used to provide these services suggests that present accounting practices be reexamined and a more appropriate system devised. The paper proposes an energy accounting framework based upon the actual services provided to end users. An energy service is a measure of the service actually provided to ultimate consumers by their own use of energy, quantified, for example, using units of work or of heat at various temperatures. Fifteen categories of energy service are described and some of their characteristics are identified. The proposed energy accounting framework consists of two matrices - an energy service matrix and an energy carrier matrix. The energy service matrix displays quantities of energy carriers used to provide energy services. The energy carrier matrix displays quantities of energy carriers used to produce and distribute energy carriers to ultimate consumers.

  3. Energy use in the U.S. steel industry: An historical perspective and future opportunities

    SciTech Connect

    Stubbles, John

    2000-09-01

    Renowned industry expert Dr. John Stubbles has projected the energy savings that the U.S. steel industry could reasonably expect to achieve in the report, Energy Use in the U.S. Steel Industry: Historical Perspective and Future Opportunities (PDF 432 KB). The report examines the potential impacts of state-of-the-art technologies and operating practices, as well as structural changes in the industry itself.

  4. Energy Savings Opportunity Survey (ESOS), White Sands Missile Range, New Mexico.

    DTIC Science & Technology

    1992-11-01

    The purpose of this study is to analyze the application of selected Energy Conservation Opportunities ( ECOs ) to designated buildings and systems at...the White Sands Missile Range (WSMR). The study has nine elements: (1) Perform, a field survey of designated buildings. (2) Evaluate ten ECOs applied...selectively to 45 buildings in the Main Post Area. (General ECOs ). (3) Evaluate six specified ECOs at Building P300. (4) Perform complete energy

  5. Opportunities for a forest energy industry in a developing country: an example from Moldova

    Treesearch

    Vitalie Gulca; Robert Deal

    2010-01-01

    Developing sustainable energy from forest biomass presents both opportunities and challenges for the future generations of Moldova. Located in the southeastern part of Europe between Ukraine and Romania, Moldova is a relatively poor country with limited natural resources compared with other developing European countries such as Albania or Bosnia. This lack of fossil...

  6. Evaluation of Chiller Plant Energy Conservation Opportunities at Fort Hood, Texas.

    DTIC Science & Technology

    1997-06-01

    performance of major plants and associated distribution systems, and to identify relevant energy conservation opportunities ( ECOs ). Significant effort...vendors and manufacturers, and reviews of previous studies. Performance was documented with field measurements. Subsequent analyses of ECOs were...performed with simplified bin methods consistent with first-order conclusions and recommendations required from this work. Results for all ECOs were heavily

  7. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  8. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    SciTech Connect

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  9. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  10. Energy savings opportunity survey, energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky, final report - phase 2; executive summary. Final report

    SciTech Connect

    1993-11-24

    Systems Corp surveyed and completed energy analyses for 112 buildings, two generators, four chillers, and roadway lighting. The energy conservation opportunities (ECOs) evaluated were lighting efficiency improvements, peak-shaving generators, chiller replacement, variable speed circulation pumps, EMCS expansion, and Commissary lighting. Cost estimates were prepared using M-CACES. Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment Program (ECIP) projects. The projects that were developed represent $187,203 in annual savings with favorable simple paybacks and savings to investment ratios (SIRs).

  11. Energy savings opportunity survey, Energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky, final report - phase I. Executive summary. Final report

    SciTech Connect

    1993-11-12

    Systems Corp surveyed and completed energy analyses for 98 buildings, fifteen chiller plants, and roadway lighting. The energy conservation opportunities (ECOs) evaluated were lighting efficiency improvements, instantaneous water heaters, heat recovery from hot refrigerant gases, absorption chiller replacements, and ground water coupled heat pumps. Cost estimates were prepared using M-CACES. Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment Program (ECIP) projects. The projects that were developed represent $2,257,000 in annual savings with favorable simple paybacks and saving to investment ratios (SIRs).

  12. Opportunities and barriers for a crop-based energy sector in Ontario

    NASA Astrophysics Data System (ADS)

    Klupfel, Ellen Joanne

    This study investigates the existing opportunities and barriers for expanding the crop-based energy sector in Ontario. The investigation takes place at a time when growing concerns about sustainability---environmental, social, and economic---are encouraging the exploration of alternatives to energy systems based on fossil fuels, and concerns around the future viability of rural communities are making agriculturally-based and rural-based energy production systems attractive to many. To explore opportunities and barriers for the crop-based energy sector, this thesis addresses the question: What is the political-economic context within which the crop-based energy sector operates in Ontario? Taking an institutional approach, the study involved 26 interviews with individuals whose organizations influence Ontario's crop-based energy sector (that includes the biofuels ethanol and biodiesel), developed a model outlining relationships between the crop-based energy sector and other sectors of the economy, as well as the state, and implemented a survey of Ontario Members of Provincial Parliament's perspectives on biofuels. This research examines the balance of power of knowledge, production, security, finance, and technology for Ontario's crop-based energy sector. The overall balance of power currently rests with the petroleum sector. Through force field analysis, the study also identifies the key opportunities and barriers for the growth and development of the biofuels sector. These opportunities include climate change and rural development agendas, and the barriers include the petroleum sector, cost of production, and some sectors of the state. A few overarching conclusions emerge from this research: (1) Change in Ontario's crop-based energy sector is driven foremost by political and economic forces; (2) Climate change is the most significant driving force for the development and expansion of Ontario's crop-based energy sector; (3) Production cost and resistance from the

  13. Alternate policies for alternate energy sources

    SciTech Connect

    Hall, F.F.

    1985-09-01

    Some ''alternates within alternates'' are studied and possible improvement of our energy policies are explored. The viability of a hydrogen fuel economy is reviewed. Methanol, ethanol or ammonia versus hydrogen is one area of interest. Others include liquid hydrogen versus jet fuels, the use of geothermal, solar, wind or water energy for production of hydrogen gas versus development of deep earth supplies of natural gas is another. Energy enhancement as opposed to energy conservation is investigated with regard to polar climate and what might be done to improve natural energy balances, particularly in the northern hemisphere. Pumping Arctic Ocean water out into the Pacific Ocean via the Bering Strait would be an energy debit as opposed to energy gains such as biomass conversion of future plant growth throughout the Siberian and Canadian tundra regions and presently very arid desert regions, improved access to northern region fuel, metal ore and mineral resources, year-round shipping and fishing fleet operations in the Arctic Ocean and development of the tremendous Greenland hydro-electric power potential.

  14. Development of a high-energy distributed energy source electromagnetic railgun with improved energy conversion efficiency

    SciTech Connect

    Tower, M.M.; Haight, C.H.

    1984-03-01

    Vought Corporation in cooperation with the Center for Electromechanics at the University of Texas (CEM-UT) has developed under sponsorship by the Defense Advanced Research Projects Agency (DARPA) and the Army Armament, Munitions, and Chemical Command (AMCCOM) a high-energy distributed energy source (DES) electromagnetic (EM) railgun accelerator. This paper discusses the development and current status of the DES railgun which has the design capability to launch projectile masses up to 60 grams to the 3-4 km/sec velocity regime with energy conversion efficiencies above 35 percent. These goals are being accomplished through utilization of scaled-energy CEM-UT railgun experiments for sequenced timing/staging and a full energy (575 kJ) design at Vought for high efficiency capability. The operational Vought single-pulse railgun forms the baseline for the full energy testing.

  15. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  16. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  17. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  18. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  19. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  20. Analysis of Different Methods for Computing Source Energy in the Context of Zero Energy Buildings

    SciTech Connect

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David; Pless, Shanti

    2016-08-26

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from site energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.

  1. Military Base Off-Taker Opportunities for Tribal Renewable Energy Projects

    SciTech Connect

    Nangle, J.

    2013-05-01

    This white paper surveys DOD installations that could have an increased potential interest in the purchase of energy from renewable energy projects on tribal lands. Identification of likely purchasers of renewable energy is a first step in the energy project development process, and this paper aims to identify likely electricity customers that tribal commercial-scale projects could serve. This white paper builds on a geospatial analysis completed in November 2012 identifying 53 reservations within 10 miles of military bases (DOE 2012). This analysis builds on those findings by further refining the list of potential opportunity sites to 15 reservations (Table ES-1), based on five additional factors: 1) The potential renewable resources required to meet the installation energy loads; 2) Proximity to transmission lines; 3) Military installation energy demand; 4) State electricity prices; 5) Local policy and regulatory environment.

  2. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  3. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect

    Not Available

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  5. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  6. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  7. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  8. Occupations in energy-related industries: opportunities for minority youth. Final report

    SciTech Connect

    Not Available

    1981-03-19

    This study of job opportunities in the energy industry for minority youth (16 to 24 years old) was precipitated by two factors: (1) the unusually high unemployment rate for minority youth in the United States; and (2) the question of whether or not the expanding domestic energy industry offered job opportunities to assist in reducing that high unemployment rate. As recently as March 16, 1981, US Department of Labor Secretary Raymond Donovan expressed the Reagan Administration's determination to tackle the persistent problems of minority teen-age unemployment, which has been running at a national average of 40.8% in 1981, having reached 43% in some urban areas during the years 1976 and 1980. Secretary Donovan emphasized his approach would be to encourage jobs for youth in private industry. Through the development of an analytical model, Minority-Emphasized Regional Demand and Supply Analysis, this study attempts a projection of job opportunities and minority youth availability in the energy industries in 18 energy producing states.

  9. Isomer Energy Source for Space Propulsion Systems

    DTIC Science & Technology

    2004-03-01

    Reactor (PBR) fission designs, while the isomer hafnium - 178 - m2 was investigated in a PBR configuration. Energy storage levels of 1.3 GJ/g are possible...as a means of energy storage. Nuclear spin isomers, in particular, the isomer hafnium - 178 - m2 (178Hfm2) stores approximately 2.446 MeV per atom or...Delta IV-H 1st and 2nd stage vehicles. Analysis of historical fission designs along with the isomer hafnium - 178 - m2 in a particle bed configuration

  10. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution.

    SciTech Connect

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division; DESY

    2008-02-01

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  11. Final report. Renewable energy and energy efficiency in Mexico: Barriers and opportunities

    SciTech Connect

    Ashford, Mike

    2000-09-28

    The report describes the prospects for energy efficiency and greenhouse gas emissions reductions in Mexico, along with renewable energy potential. A methodology for developing emissions baselines is shown, in order to prepare project emissions reductions calculations. An application to the USIJI program was also prepared through this project, for a portfolio of energy efficiency projects.

  12. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  13. Education and Training in New and Renewable Sources of Energy.

    ERIC Educational Resources Information Center

    Beresovski, T.; And Others

    1981-01-01

    Identifies past and present efforts and future directions for UNESCO activities related to energy but focusing on alternative energy sources. Reports results of an international survey and analysis of programs, facilities, and needs in alternative energy education and training. Outlines curricula for policymakers, specialists, and technicians. (DC)

  14. Education and Training in New and Renewable Sources of Energy.

    ERIC Educational Resources Information Center

    Beresovski, T.; And Others

    1981-01-01

    Identifies past and present efforts and future directions for UNESCO activities related to energy but focusing on alternative energy sources. Reports results of an international survey and analysis of programs, facilities, and needs in alternative energy education and training. Outlines curricula for policymakers, specialists, and technicians. (DC)

  15. HH55 and its energy source

    SciTech Connect

    Heyer, M.H.; Graham, J.A. )

    1990-02-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star. 28 refs.

  16. HH55 and its energy source

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Graham, J. A.

    1990-01-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star.

  17. HH55 and its energy source

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Graham, J. A.

    1990-01-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star.

  18. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  19. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    SciTech Connect

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  20. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    SciTech Connect

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  1. Generation and Use of Thermal Energy in the Industrial Sector and Opportunities to Reduce its Carbon Emissions

    SciTech Connect

    Colin McMillan; Richard Boardman; Michael McKellar; Piyush Sabharwall; Mark Ruth

    2016-09-01

    Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generation and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports

  2. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  3. Searchers for a new energy source; Tesla, Moray, and Bearden

    SciTech Connect

    Johnson, G.L. )

    1992-01-01

    Tesla, Moray, Bearden, and others have claimed the existence of another source of energy besides those presently in use. Like sun and wind, this source is available without regard to political boundaries. If true, the development of this energy source would be one of the most important events of the century. It seems that every time mankind reaches a limit of growth due to exhaustion of inexpensive energy supplies, another energy sources is discovered and developed. England had essentially depleted its resources of timber when the technology to mine and burn coal was developed, for example. After coal, technologies for oil, gas, hydro, nuclear fission, wind, photovoltaic, etc. were developed. With each new development, the world was able to support a greater population at a higher standard of living than before. Today, however, many developing countries have reached a limit in improving the quality of life, due in part to the lack of an adequate and economical energy supply. The developed nations are worried about global warming, acid rain, and nuclear waste. The recent excitement about cold fusion illustrated the keen desire for a new energy source, one operating on scientific principles that perhaps are unknown or poorly developed at the present time. a number of researchers have claimed that such a new energy sources exists. This source would be in addition to cold fusion if cold fusion is shown to be valid. Three of the most famous researchers with this belief have been Tesla, Moray, and Bearden. This article discusses each of their concepts.

  4. The energy situation. [emphasizing various energy sources, costs, and environmental effects

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Energy reserves from the principal energy sources other than petroleum and natural gas are summarized. It was found that energy sources are being consumed at rates which exceed the ability to replace them through new discoveries and technology improvements. The costs and implications to environment for using coal and nuclear energy are discussed. Tables are presented on energy consumption, cost of reclamation, and water power capacity.

  5. The energy situation. [emphasizing various energy sources, costs, and environmental effects

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Energy reserves from the principal energy sources other than petroleum and natural gas are summarized. It was found that energy sources are being consumed at rates which exceed the ability to replace them through new discoveries and technology improvements. The costs and implications to environment for using coal and nuclear energy are discussed. Tables are presented on energy consumption, cost of reclamation, and water power capacity.

  6. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    SciTech Connect

    McMillan, Colin A.; Boardman, Richard; McKellar, Michael; Sabharwall, Piyush; Ruth, Mark; Bragg-Sitton, Shannon

    2016-11-01

    herein as solar industrial process heat [SIPH]), and geothermal energy sources. The possibility of applying electrical heating and greater use of hydrogen is also considered, although these opportunities are not discussed in as much detail.

  7. Alternative energy sources could support life on Europa

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.

    Energy pervades the solar system in a variety of forms, including electromagnetic and particle radiation, magnetism, heat, kinetic motion, and gravitational interactions. Life on Earth is sustained by the conversion of light and chemical energy into proton gradients across membranes that drive the phosphorylation of high-energy intermediate metabolites.The use of light and reduced chemical bonds as energy sources is not surprising on Earth, where the intensity of light is strong and an oxidizing atmosphere favors energy-yielding chemical reactions. However, any naturally occurring energy gradient that generates charge separation across boundary layers could theoretically yield the free energy needed to sustain life. Using specific, plausible examples from Jupiter's ice-covered satellite Europa, we propose that alternative energy sources could sustain life where neither light nor an oxidizing atmosphere is available.

  8. Asia`s energy future: The case of coal -- opportunities and constraints

    SciTech Connect

    Johnson, C.J.

    1997-12-31

    In this paper the author presents his views about the changing energy mix in Asia to the year 2020, and why the importance of coal will continue. The topics of the paper include Asia`s energy mix compared with the rest of the world including nuclear power, hydropower, solar and wind energy, oil, coal, and natural gas; the economics of coal and natural gas; coal production and consumption; new energy sources; Asia`s energy mix in the year 2020; resource depletion and conclusions. 4 figs., 1 tab.

  9. History of energy sources and their utilization in Nigeria

    SciTech Connect

    Ogunsola, O.I. )

    1990-01-01

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  10. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  11. Energy Engineering Analysis Program. Energy savings opportunity survey, Fort Huachuca, Arizona. Volume III, programming documents

    SciTech Connect

    1994-12-31

    Insulation is considered for selected buildings. Energy savings are evaluated using energy simulations employing the Carrier HAP program. Weather data is only available for large cities. El Paso Texas was selected as the closest city with a somewhat similar climate; results are adjusted based on Fort Huachuca and El Paso meteorological data.

  12. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  13. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  14. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    NASA Astrophysics Data System (ADS)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  15. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  16. The 1992 conference on Latin America's Energy Industry: New opportunities for growth through international investment and trade

    SciTech Connect

    Not Available

    1992-01-01

    Liberal economic and political reforms in Latin America, a declining oil market in the US, and world events such as last year's Persian Gulf Crisis are making foreign investment in Latin America's energy sector increasingly attractive. The Persian Gulf crisis indicated the US must diversify oil sources; increased competition and deregulation in electric power generation and gas production are providing more opportunities for independent power producers at home and abroad; and Latin America's need for foreign financial and technical assistance are providing an important pull'' factor. Electricity needs in the developing world wig be huge in the years to come. In Latin America and the Caribbean, 66,500 mg of new capacity will be required by 1999. The developing world will require US $100 billion in energy investment a year. But Latin American countries will have trouble obtaining funds. The region will need to rely heavily on private international sources to finance future energy requirements. Multilateral development bank participation win remain critical, however, serving as a catalyst for government reform and private investment in the sector. In particular, World Bank lending will be focused on countries with a clear commitment to pricing reform, regulatory reform, competitive markets, non-market barriers, and technology transfer. Opportunities for foreign participation in the Latin American oil sector are particularly large in Ecuador, Peru, Argentina, and Venezuela. Mexico's plans for reform in the oil sector, a delicate issue in that country, appear to be less defined and likely to occur farther into the future. The conference made clear that a regulatory entity is needed even when the sector is owned by the government. Regulatory processes must be fair and transparent in order to ensure adequate financial and technical performance.

  17. The 1992 conference on Latin America`s Energy Industry: New opportunities for growth through international investment and trade

    SciTech Connect

    Not Available

    1992-12-01

    Liberal economic and political reforms in Latin America, a declining oil market in the US, and world events such as last year`s Persian Gulf Crisis are making foreign investment in Latin America`s energy sector increasingly attractive. The Persian Gulf crisis indicated the US must diversify oil sources; increased competition and deregulation in electric power generation and gas production are providing more opportunities for independent power producers at home and abroad; and Latin America`s need for foreign financial and technical assistance are providing an important ``pull`` factor. Electricity needs in the developing world wig be huge in the years to come. In Latin America and the Caribbean, 66,500 mg of new capacity will be required by 1999. The developing world will require US $100 billion in energy investment a year. But Latin American countries will have trouble obtaining funds. The region will need to rely heavily on private international sources to finance future energy requirements. Multilateral development bank participation win remain critical, however, serving as a catalyst for government reform and private investment in the sector. In particular, World Bank lending will be focused on countries with a clear commitment to pricing reform, regulatory reform, competitive markets, non-market barriers, and technology transfer. Opportunities for foreign participation in the Latin American oil sector are particularly large in Ecuador, Peru, Argentina, and Venezuela. Mexico`s plans for reform in the oil sector, a delicate issue in that country, appear to be less defined and likely to occur farther into the future. The conference made clear that a regulatory entity is needed even when the sector is owned by the government. Regulatory processes must be fair and transparent in order to ensure adequate financial and technical performance.

  18. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  19. Internal energy and fragmentation of ions produced in electrospray sources.

    PubMed

    Gabelica, Valérie; De Pauw, Edwin

    2005-01-01

    This review addresses the determination of the internal energy of ions produced by electrospray ionization (ESI) sources, and the influence of the internal energy on analyte fragmentation. A control of the analyte internal energy is crucial for several applications of electrospray mass spectrometry, like structural studies, construction of reproducible and exportable spectral libraries, analysis of non-covalent complexes. Sections II and III summarize the Electrospray mechanisms and source design considerations which are relevant to the problem of internal energy, and Section IV gives an overview of the inter-relationships between ion internal energy, reaction time scale, and analyte fragmentation. In these three sections we tried to make the most important theoretical elements understandable by all ESI users, and their understanding requires a minimal background in physical chemistry. We then present the different approaches used to experimentally determine the ion internal energy, as well as various attempts in modeling the internal energy uptake in electrospray sources. Finally, a tentative comparison between electrospray and other ionization sources is made. As the reader will see, although many reports appeared on the subject, the knowledge in the field of internal energy of ions produced by soft ionization sources is still scarce, because of the complexity of the system, and this is what makes this area of research so interesting. The last section presents some perspectives for future research.

  20. Energy Investment Advisory Series No. 2. Investment opportunities in Indochina`s energy sector

    SciTech Connect

    Hagen, R.E.

    1994-12-01

    Indochina is well positioned to join Asia`s recent record of impressive economic growth. Vietnam, with the largest population and its long coast, seems poised to be the first nation in Indochina to succeed. It, and to a lesser extent Laos and Cambodia, are well positioned to take advantage of future tends in energy and energy-related markets. Electricity, hydro, renewables and nuclear are discussed as well as oil and gas. Areas of the energy industry in which investment might be possible in each country are tabulated.

  1. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  2. Comparative studies of energy sources in gynecologic laparoscopy.

    PubMed

    Law, Kenneth S K; Lyons, Stephen D

    2013-01-01

    Energy sources incorporating "vessel sealing" capabilities are being increasingly used in gynecologic laparoscopic surgery although conventional monopolar and bipolar electrosurgery remain popular. The preference for one device over another is based on a combination of factors, including the surgeon's subjective experience, availability, and cost. Although comparative clinical studies and meta-analyses of laparoscopic energy sources have reported small but statistically significant differences in volumes of blood loss, the clinical significance of such small volumes is questionable. The overall usefulness of the various energy sources available will depend on a number of factors including vessel burst pressure and seal time, lateral thermal spread, and smoke production. Animal studies and laboratory-based trials are useful in providing a controlled environment to investigate such parameters. At present, there is insufficient evidence to support the use of one energy source over another.

  3. [Applications of GIS in biomass energy source research].

    PubMed

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  4. Fresnel cup reflector directs maximum energy from light source

    NASA Technical Reports Server (NTRS)

    Laue, E. G.; Youngberg, C. L.

    1964-01-01

    To minimize shielding and overheating, a composite Fresnel cup reflector design directs the maximum energy from a light source. It consists of a uniformly ellipsoidal end surface and an extension comprising a series of confocal ellipsoidal and concentric spherical surfaces.

  5. Cassava as an energy source: a selected bibliography

    SciTech Connect

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  6. Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations

    SciTech Connect

    Anderson, E.; Antkowiak, M.; Butt, R.; Davis, J.; Dean, J.; Hillesheim, M.; Hotchkiss, E.; Hunsberger, R.; Kandt, A.; Lund, J.; Massey, K.; Robichaud, R.; Stafford, B.; Visser, C.

    2011-08-01

    The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks.

  7. Energy sources for laparoscopic partial nephrectomy--critical appraisal.

    PubMed

    Rubinstein, Mauricio; Moinzadeh, Alireza; Colombo, Jose R; Favorito, Luciano A; Sampaio, Francisco J; Gill, Inderbir S

    2007-01-01

    Laparoscopic partial nephrectomy (LPN) has emerged as a viable alternative for the conventional open nephron-sparing surgery (NSS). So far, an adequate renal parenchymal cutting and hemostasis, as well as caliceal repair remains technically challenging. Numerous investigators have developed techniques using different energy sources to simplify the technically demanding LPN. Herein we review these energy sources, discussing perceived advantages and disadvantages of each technique.

  8. The importance of the different kinds of energy sources for energy future of Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  9. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  10. Sources of high-energy protons in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Simpson, J. A.

    1980-01-01

    The passage of Pioneer 11 through Saturn's magnetosphere revealed an especially intense region of high-energy particle fluxes that places unique constraints on models for sources of high-energy protons in the innermost radiation zones. Of special interest is the flux of protons with energies above 35 MeV which was measured with a fission cell in the innermost magnetosphere between the A ring and the orbit of Mimas. The negative phase space density gradients derived from the proton and electron observations in this region imply that steady-state inward diffusion from the outer magnetosphere is not an adequate source for these high-energy protons. In the present paper, the nature of the Crand source at Saturn is examined, and its significance for injection of high-energy protons into the region inside L = 4 is estimated.

  11. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  12. Alternative energy sources and new energy technologies for Turkish rural areas

    SciTech Connect

    Ultanir, M.O.

    1983-12-01

    Modern agriculture is an energy consumer sector, also agriculture is an energy conversion process. In addition to biomass energy's raw materials are harvested by agriculture. The concept of energy in agriculture, energy is one of the main and outstanding factor which renders the realization of the overall development of the agriculture and rural areas. Agricultural income depends on total mechanical power in agricultural mechanization; general energy consumption of rural sector; cultural energy consumption by agricultural inputs which are fertilizer, pesticides, indirect energy in machinery, irrigation equipments, buildings and other services; direct energy consumption in agricultural mechanization which are fuel and electricity etc. In general, energy input in the rural areas is classified as direct and indirect. Direct energy input reflects demands for mechanical energy, electrical energy and heat energy. Indirect energy consists of inputs which have been produced by industrial sector and introduced into rural sector. Although conventional energy sources, especially petroleum products are used in meeting direct energy input requirements, alternative energy sources may be used as well in this respect. Especially emphasis is being given to new and renewable alternative sources for heat and electrical energy requirements.

  13. Biogas as a source of rural energy

    SciTech Connect

    Kalia, A.K.

    2000-01-01

    The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

  14. Measureable characteristics of extraterrestrial sources of high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Learned, J.; Stecker, F. W.

    1979-01-01

    Calculations were carried out to determine the characteristics of extraterrestial neutrino sources that could be observed in a high energy ( 1 TeV) neutrino detector given an adequate source intensity. Measureable quantities such as y and the ratio of muonless to muon containing events can, potentially, reveal source characteristics such as charge state (matter or antimatter), density, and local particle spectrum. Comparisons were made with the flux of atmospheric neutrinos including the effects of prompt neutrinos.

  15. Development of new business opportunities for minorities in nuclear energy. Final report

    SciTech Connect

    Spight, C.

    1980-12-15

    In Part I of this report the basis for the optimal development of new business opportunities for minorities in nuclear energy programs is defined within the successful completion of all contract tasks. The basis presented consists of an identification of a set of qualified minority-owned small businesses, a defined reservoir of highly trained minorities with applicable expertise, a policy context for the development of opportunities, and a proposed networking structure for information transfer/professional development. In Part II a contractor-focused analysis of the structure of the nuclear industry, a breakdown of the DOE nuclear program by region and functional area, and a directory of minority-owned small businesses by region are presented.

  16. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  17. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  18. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-10-14

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  19. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  20. Writable electrochemical energy source based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  1. Multi-source energy harvester for wildlife tracking

    NASA Astrophysics Data System (ADS)

    Wu, You; Zuo, Lei; Zhou, Wanlu; Liang, Changwei; McCabe, Michael

    2014-03-01

    Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional way of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking device with multi-source energy harvester with advantage of high efficiency and reliability is investigated and developed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will remarkably extend the duration of wild life tracking. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. The rotational electromagnetic energy harvester can mechanically rectify the irregular bidirectional motion into unidirectional motion has been modeled and demonstrated.

  2. Energy sources, self-organization, and the origin of life.

    PubMed

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  3. Energy Sources, Self-organization, and the Origin of Life

    NASA Astrophysics Data System (ADS)

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  4. Evolution, opportunity and challenges of transboundary water and energy problems in Central Asia.

    PubMed

    Guo, Lidan; Zhou, Haiwei; Xia, Ziqiang; Huang, Feng

    2016-01-01

    Central Asia is one of the regions that suffer the most prominent transboundary water and energy problems in the world. Effective transboundary water-energy resource management and cooperation are closely related with socioeconomic development and stability in the entire Central Asia. Similar to Central Asia, Northwest China has an arid climate and is experiencing a water shortage. It is now facing imbalanced supply-demand relations of water and energy resources. These issues in Northwest China and Central Asia pose severe challenges in the implementation of the Silk Road Economic Belt strategy. Based on the analysis of water and energy distribution characteristics in Central Asia as well as demand characteristics of different countries, the complexity of local transboundary water problems was explored by reviewing corresponding historical problems of involved countries, correlated energy issues, and the evolution of inter-country water-energy cooperation. With references to experiences and lessons of five countries, contradictions, opportunities, challenges and strategies for transboundary water-energy cooperation between China and Central Asia were discussed under the promotion of the Silk Road Economic Belt construction based on current cooperation conditions.

  5. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  6. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  7. Co-location opportunities for renewable energy and agriculture in Northwestern India: Tradeoffs and Synergies

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Macknick, J.; Lobell, D. B.; Field, C. B.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B.

    2014-12-01

    Solar energy installations in arid and semi-arid regions of India are rapidly increasing, due to technological advances and policy support. Even though solar energy provides several benefits such as reduction of greenhouse gases, reclamation of degraded land, and improving the quality of life, the deployment of large-scale solar energy infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We investigated whether water consumption for solar energy development in northwestern India could impact other water and land uses, and explored opportunities to co-locate solar infrastructures and agricultural crops to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in northwestern India in comparison to Aloe vera cultivation, a widely promoted land use in the region. The life cycle analyses show that co-located systems are economically viable in some rural areas and may provide opportunities for rural electrification and stimulate economic growth. The water inputs for cleaning solar panels and dust suppression are similar to amounts required for aloe, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. The northwestern region of India is experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of non-food crops (e.g. Aloe) in prime agricultural lands.

  8. California at a Crossroads: Crisis & Opportunity. EdSource's 33rd Annual Forum on California Education. Forum Report

    ERIC Educational Resources Information Center

    EdSource, 2010

    2010-01-01

    The 2010 EdSource Forum, held on March 19 in Santa Clara, focused on the obstacles and opportunities in the road ahead for public schools and community colleges. The Forum included four sessions. Two are covered in this report: (1) A sobering discussion of California's fiscal crisis by Legislative Analyst Mac Taylor; and (2) A lively Q&A…

  9. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  10. Energy-Based Acoustic Source Localization Methods: A Survey.

    PubMed

    Meng, Wei; Xiao, Wendong

    2017-02-15

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions.

  11. Energy-Based Acoustic Source Localization Methods: A Survey

    PubMed Central

    Meng, Wei; Xiao, Wendong

    2017-01-01

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions. PMID:28212281

  12. Capturing Energy-Saving Opportunities: Improving Building Efficiency in Rajasthan through Energy Code Implementation

    SciTech Connect

    Tan, Qing; Yu, Sha; Evans, Meredydd; Mathur, Jyotirmay; Vu, Linh D.

    2016-05-01

    India adopted the Energy Conservation Building Code (ECBC) in 2007. Rajasthan is the first state to make ECBC mandatory at the state level. In collaboration with Malaviya National Institute of Technology (MNIT) Jaipur, Pacific Northwest National Laboratory (PNNL) has been working with Rajasthan to facilitate the implementation of ECBC. This report summarizes milestones made in Rajasthan and PNNL's contribution in institutional set-ups, capacity building, compliance enforcement and pilot building construction.

  13. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  15. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  16. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  17. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  18. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  20. Integration and Penetration Opportunities of Alternative Energy, Fuels, and Technologies within Military Systems, Logistics, and Operations

    DTIC Science & Technology

    2010-01-01

    industry estimates have shown that approximately 70 percent of processed crude oil is currently imported to the United States for further processing and...33 D. Feedstock, Production and Availability Metrics ....................................... 34 E. Residual Waste and Byproducts... industrial parks, and military installations continue to represent the largest consumer of non- renewable energy sources derived from fossil-fuel-based

  1. Geothermal, an alternate energy source for power generation

    SciTech Connect

    Espinosa, H.A.

    1985-02-01

    The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

  2. Daylighting as a design and energy strategy: Overview of opportunities and conflicts

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-06-01

    The potentials and problems associated with using daylight both to improve visual performance and interior aesthetics and to reduce electrical lighting energy consumption and peak electric loads are reviewed. Use of daylighting as a design strategy is not always synonymous with effective use of daylighting as an energy-saving strategy unless both approaches are jointly pursued by the design team. Criteria for visual performance, disability and discomfort glare, historical perspectives on daylight utilization, building form as a limit to daylight penetration, beam sunlighting strategies, luminous efficacy of daylight versus efficient electric light sources, comparative thermal impacts, peak load and load management potential, and nonenergy benefits are reviewed. Although the energy benefits of daylighting can be oversold, it is concluded that in most cases a solid understanding of the energy and design issues should produce energy efficiency and pleasing working environments.

  3. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  4. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    SciTech Connect

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  5. Climate for Collaboration: Analysis of US and EU Lessons and Opportunities in Energy and Climate Policy

    SciTech Connect

    De Vita, A.; de Connick, H.; McLaren, J.; Cochran, J.

    2009-11-01

    A deepening of cooperation between the United States and the European Union requires mutual trust, and understanding of current policies, challenges and successes. Through providing such understanding among policymakers, industry and other stakeholders in both economies, opportunities for transatlantic cooperation on climate change and energy policy emerge. This paper sets out by discussing the environmental, legislative, and economic contexts of the EU and US as related to climate. This context is essential to understanding how cap-and-trade, renewable energy and sustainable transportation policies have taken shape in the EU and the US, as described in Chapter 3.1. For each of these policies, a barrier analysis and discussion is provided. Chapter 4 builds off this improved understanding to listobservations and possible lessons learned. The paper concludes with recommendations on topics where EU and US interests align, and where further cooperation could prove beneficial.

  6. Energy Saving Opportunities Survey (ESOS), West Point, Volume 1 - narrative report

    SciTech Connect

    1986-08-01

    In the winter of 1980, the Army Corp of Engineers (COE), Baltimore District, advertised through the Commerce Business Daily for the services of an A/E firm with expertise in performing energy conservation surveys. The services of Bernard Johnson Incorporated (B/I) were retained in May, 1981, under contract number DACA-31-81-C-0112. The purpose of this contract is to investigate a number of buildings, identified within the scope of work, for a set of energy conservation projects and determine their economic feasibility on a life-cycle basis. Notice to proceed for West Point was issued by the Baltimore COE on September 2, 1983. Field surveys began in October of 1983 leading to preliminary submittal in January, 1984. The preliminary report provided the user with the results of the screening analysis of the projects within the scope of work based on the surveys. The Interim report submitted in August 1984 included energy saving and cost analyses representing approximately 70% of the entire effort. This report represents the Pre-Final submittal of West Point Energy Savings Opportunities Survey (ESOS). It is an update of the Interim Report, which incorporates the review comments, as well as, completes over 95% of all saving and cost calculations for the energy conservation options for each building and provides programming documentation. Developed projects have resulted in total annual energy savings of 176,800 MBTU which constitutes nearly 11.3% of the total energy consumption of West Point, at an estimated construction cost of $3,838,000. Implementation of energy conservation options are expected to produce an annual dollar saving on the order of $1,154,000.

  7. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  8. Understanding and accepting fusion as an alternative energy source

    NASA Astrophysics Data System (ADS)

    Goerz, D. A.

    1987-12-01

    Fusion, the process that powers our Sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on Earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the Moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical.

  9. Analysis of energy sources for Mycoplasma penetrans gliding motility.

    PubMed

    Jurkovic, Dominika A; Hughes, Michael R; Balish, Mitchell F

    2013-01-01

    Mycoplasma penetrans, a potential human pathogen found mainly in HIV-infected individuals, uses a tip structure for both adherence and gliding motility. To improve our understanding of the molecular mechanism of M. penetrans gliding motility, we used chemical inhibitors of energy sources associated with motility of other organisms to determine which of these is used by M. penetrans and also tested whether gliding speed responded to temperature and pH. Mycoplasma penetrans gliding motility was not eliminated in the presence of a proton motive force inhibitor, a sodium motive force inhibitor, or an agent that depletes cellular ATP. At near-neutral pH, gliding speed increased as temperature increased. The absence of a clear chemical energy source for gliding motility and a positive correlation between speed and temperature suggest that energy derived from heat provides the major source of power for the gliding motor of M. penetrans.

  10. Note: Localization based on estimated source energy homogeneity

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G.; Mâløy, Knut Jørgen

    2016-09-01

    Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

  11. Note: Localization based on estimated source energy homogeneity.

    PubMed

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G; Måløy, Knut Jørgen

    2016-09-01

    Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    SciTech Connect

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  13. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  14. Development of a continuous broad-energy-spectrum electron source

    NASA Technical Reports Server (NTRS)

    Adamo, R. C.; Nanevicz, J. E.

    1985-01-01

    The development of a practical prototype, large-area, continuous-spectrum, multienergy electron source to simulate the lower energy (approx = 1 to 30 keV) portion of the geosynchronous orbit electron environment was investigated. The results of future materials-charging tests using this multienergy source should significantly improve the understanding of actual in-orbit charging processes and should help to resolve some of the descrepancies between predicted and observed spacecraft materials performance.

  15. Characterizing Energy Harvesting Opportunities from Ambient Vibrations in an Office Building and from Pumps

    NASA Astrophysics Data System (ADS)

    Vincent, Taylor A.

    Increasing integrated circuit functionality and decreasing layout area over the past few decades has made power efficiency one of the most important requirements in all applications of electronic circuitry. Energy harvesting systems continue to address the increasingly apparent gap between silicon performance and battery energy density by providing an external source of power to a system. The focus of this paper will be the use of piezoelectric energy harvesting, which is the harvesting of vibrational power through piezoelectric ceramics. Piezoelectric ceramics have an inherent crystalline structure which allows them to transform the energy from a mechanical strain into electrical charge. This characteristic allows them to absorb the mechanical energy from their surroundings and transform it into electrical energy that has the potential to drive an electrical circuit. Specifically, this work strives to quantify the accelerations found in industrial and office settings and examine whether these vibrations are realistically applicable to be used in an actual circuit. This project complements another project, which examines the use of solar cells to power a low-power e-ink paper sensor circuit and focuses on attempting to see if there is a vibrational power source that could be used where the solar cells cannot harness enough power.

  16. Energy savings opportunity survey, Energy Engineering Analysis Program, Fort Buchanan, Puerto Rico. Volume 1 - executive summary. Final report

    SciTech Connect

    1989-07-28

    This is the Executive Summary of the Final Report required under Contract No. DACA 21-87-C-0508 between the Savannah District Corps of Engineers (COE) and the Systems Engineering and Analysis Division (SEAD), Planning Research Corporation (PRC). The contract calls for an Energy Savings Opportunity Survey (ESOS) Energy Engineering Analysis Program (EEAP) at Fort Buchanan and its associated U.S. Army Reserve (USAR) Centers, Puerto Rico. The ECO`s identified and recommended in this survey are listed in section 4. In summary, for the total program, 19 projects, if implemented, will save: 11,101 MBtu`s of electrical energy or 3,252,622 kilowatt-hours, annually, saving $260,321 per year for an investment of $957,143. The projects will pay for themselves in 3.7 years and the Savings-to-Investment Ratio (SIR) will be 7.6. In addition to the individual energy-saving projects that are the primary results of this study, four general recommendations are called for.

  17. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  19. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  20. Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.

    ERIC Educational Resources Information Center

    Cappiello, Jane E.; O'Neil, Karen E.

    This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…

  1. Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.

    ERIC Educational Resources Information Center

    Cappiello, Jane E.; O'Neil, Karen E.

    This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…

  2. Alternate Funding Sources for the International Atomic Energy Agency

    SciTech Connect

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  3. The use of hydrazine as an alternate source of energy

    NASA Technical Reports Server (NTRS)

    Carvalho, J. A., Jr.; Bressan, C.; Ferreira, J. L.

    1984-01-01

    The potentials of using hydrazine as an alternative source of energy was studied. Three chemical reactions are considered: oxidation with air, oxidation with hydrogen peroxide, and thermocatalytic decomposition. Performance data of gasoline, ethylic alcohol, and propane are compared. An item about the NO(x) emissions by the various investigated reactions is included. Promising results are shown, mainly those regarding the available energy per unit volume of unburned gases (vaporized fuel and oxidizer).

  4. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  5. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  6. Energy Management Challenges and Opportunities with Increased Intermittent Renewable Generation on the California Electrical Grid

    NASA Astrophysics Data System (ADS)

    Eichman, Joshua David

    Renewable resources including wind, solar, geothermal, biomass, hydroelectric, wave and tidal, represent an opportunity for environmentally preferred generation of electricity that also increases energy security and independence. California is very proactive in encouraging the implementation of renewable energy in part through legislation like Assembly Bill 32 and the development and execution of Renewable Portfolio Standards (RPS); however renewable technologies are not without challenges. All renewable resources have some resource limitations, be that from location, capacity, cost or availability. Technologies like wind and solar are intermittent in nature but represent one of the most abundant resources for generating renewable electricity. If RPS goals are to be achieved high levels of intermittent renewables must be considered. This work explores the effects of high penetration of renewables on a grid system, with respect to resource availability and identifies the key challenges from the perspective of the grid to introducing these resources. The HiGRID tool was developed for this analysis because no other tool could explore grid operation, while maintaining system reliability, with a diverse set of renewable resources and a wide array of complementary technologies including: energy efficiency, demand response, energy storage technologies and electric transportation. This tool resolves the hourly operation of conventional generation resources (nuclear, coal, geothermal, natural gas and hydro). The resulting behavior from introducing additional renewable resources and the lifetime costs for each technology is analyzed.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  8. Testing Special Relativity at High Energies with Astrophysical Sources

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  9. Testing Special Relativity at High Energies with Astrophysical Sources

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  10. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide

  11. Energy sources of the high latitude upper atmosphere

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  12. In Theory: Dark Energy as a Power Source

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Russell, David; Tangmatitham, Matipon

    2017-01-01

    In theory, it is possible to use the dark energy of the universe as a power source. In practice, the amount of energy that could be liberated in a local setting is many orders of magnitude too small to be useful or even detectable. Nevertheless, in the interests of education and amusement, simple machines that could, in theory, extract local power from the gravitationally repulsive cosmological constant are discussed. The gravitational neutral buoyancy distance -- the distance where local Newtonian gravity balances cosmological dark energy in a concordance cosmology -- is computed between two point objects of low mass.

  13. Production of low energy spread ion beams with multicusp sources

    NASA Astrophysics Data System (ADS)

    Y., Lee; Perkins, L. T.; Gough, R. A.; Hoffmann, M.; Kunkel, W. B.; N. Leung, K.; Sarstedt, M.; Vujic, J.; Weber, M.; Williams, M. D.

    1996-02-01

    The use of multicusp sources to generate ion beams with narrow energy spread has been investigated. It is found that the presence of a magnetic filter can reduce the longitudinal energy spread significantly. This is achieved by creating a uniform plasma potential distribution in the discharge chamber region, eliminating ion production in the extraction chamber and in the sheath of the exit aperture and by minimizing the probability of charge exchange processes in the extraction chamber. An energy spread as low as 1 eV has been measured.

  14. Challenges and opportunities for implementing sustainable energy strategies in coastal communities of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Etcheverry, Jose R.

    and state level aimed at fostering renewable energy and efficiency initiatives that enhance energy security, protect the environment, and also increase economic opportunities in El Vizcaino and elsewhere in Mexico. Chapter six concludes the thesis by providing: a summary of all key findings, a broad analysis of the implications of the research, and an overview of future lines of inquiry.

  15. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  16. High energy pulsewidth tunable CPA free picosecond source

    NASA Astrophysics Data System (ADS)

    Pouysegur, Julien; Guichard, Florent; Zaouter, Yoann; Hanna, Marc; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Georges, Patrick

    2016-03-01

    A hybrid ytterbium-doped fiber - bulk laser source generating up to 116MW peak power for 3ps pulse duration at 50kHz repetition rate and 1030nm wavelength is presented. Tunability of the pulse duration is made by spectral compression occurring into the seeder. Divided Pulse Amplification scheme is investigated to study energy capabilities of the setup.

  17. A Directory of Federal Sources of Information on Solar Energy.

    ERIC Educational Resources Information Center

    Dierker, Janet

    This directory lists federal solar energy programs and sources of information. Each listing gives a brief description of the nature of the program or type of information that is available. In addition, names, addresses, and phone numbers of contact personnel are given. The listings are grouped by agency or branch of the government. (BB)

  18. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  19. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  20. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  1. Cassava: a basic energy source in the tropics

    SciTech Connect

    Cock, J.H.

    1982-11-19

    Cassava (Manihot esculenta) is the fourth most important source of food energy in the tropics. More than two-thirds of the total production of this crop is used as food for humans, with lesser amounts being used for animal feed and industrial purposes. The ingestion of high levels of cassava has been associated with chronic cyanide toxicity in parts of Africa, but this appears to be related to inadequate processing of the root and poor overall nutrition. Although cassava is not a complete food it is important as a cheap source of calories. The crop has a high yield potential under good conditions, and compared to other crops it excels under suboptimal conditions, thus offering the possibility of using marginal land to increase total agricultural production. Breeding programs that bring together germ plasm from different regions coupled with improved agronomic practices can markedly increase yields. The future demand for fresh cassava may depend on improved storage methods. The markets for cassava as a substitute for cereal flours in bakery products and as an energy source in animal feed rations are likely to expand. The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water. 7 figures, 8 tables.

  2. Source Energy and Emission Factors for Energy Use in Buildings (Revised)

    SciTech Connect

    Deru, M.; Torcellini, P.

    2007-06-01

    This document supports the other measurement procedures and all building energy-monitoring projects by providing methods to calculate the source energy and emissions from the energy measured at the building. Energy and emission factors typically account for the conversion inefficiencies at the power plant and the transmission and distribution losses from the power plant to the building. The energy and emission factors provided here also include the precombustion effects, which are the energy and emissions associated with extracting, processing, and delivering the primary fuels to the point of conversion in the electrical power plants or directly in the buildings.

  3. Optical arc sensor using energy harvesting power source

    SciTech Connect

    Choi, Kyoo Nam Rho, Hee Hyuk

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  4. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  5. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  6. Eddy energy sources and flux in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  7. Preserving Source Location Privacy for Energy Harvesting WSNs.

    PubMed

    Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng

    2017-03-30

    Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.

  8. Preserving Source Location Privacy for Energy Harvesting WSNs

    PubMed Central

    Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng

    2017-01-01

    Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes. PMID:28358341

  9. Electrical energy sources for organic synthesis on the early Earth.

    PubMed

    Chyba, C; Sagan, C

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 x 10(19) J yr-1 and 6 x 10(19) J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended values for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 x 10(18) J yr-1 and 5 x 10(17) J yr-1.

  10. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  11. A quest for sources of ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko

    2012-03-01

    The origin of ultrahigh energy cosmic rays (UHECRs, particles arriving on the Earth with energy 10^17- 10^21 eV) is still a mystery. I will review the experimental and theoretical efforts that are being deployed by the community to solve this long-standing enigma, including the recent results from the Auger Observatory. I will discuss the observable signatures that help narrow down the list of possible candidate sources, namely the distribution of the arrival directions of UHECRs in the sky, their energy spectrum, their chemical composition, and their multi-messenger signatures (in neutrinos, gamma-rays and gravitational waves). I will focus in particular on one candidate source that has been little discussed in the literature: young rotation-powered pulsars. The production of UHECRs in these objects could give a picture that is surprisingly consistent with the latest data measured with the Auger Observatory.

  12. Method to look for imprints of ultrahigh energy nuclei sources

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Semikoz, D. V.

    2011-04-01

    We propose a new method to search for heavy nuclei sources, on top of background, in the Ultra-High Energy Cosmic Ray data. We apply this method to the 69 events recently published by the Pierre Auger Collaboration [P. Abreu (Pierre Auger Observatory Collaboration), Astropart. Phys.APHYEE0927-6505 34, 314 (2010).10.1016/j.astropartphys.2010.08.010] and find a tail of events for which it reconstructs the source at a few degrees from the Virgo galaxy cluster. The reconstructed source is located at ≃8.5° from M87. The probability to have such a cluster of events in some random background and reconstruct the source position in any direction of the sky is about 7×10-3. The probability to reconstruct the source at less than 10° from M87 in a data set already containing such a cluster of events is about 4×10-3. This may be a hint at the Virgo cluster as a bright ultrahigh energy nuclei source. We investigate the ability of current and future experiments to validate or rule out this possibility, and discuss several alternative solutions which could explain the existing anisotropy in the Auger data.

  13. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    SciTech Connect

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  17. Climate Convention Implementation: An Opportunity for the Pacific Island Nations to Move Toward Sustainable Energy Systems

    PubMed

    Yu; Taplin; Gilmour

    1997-07-01

    / The impacts of global warming are among the more serious environmental threats for the Pacific Island countries. These nations justifiably argue that developed countries should give immediate priority to the implementation of climate change mitigation policies because of the severe nature of potential greenhouse impacts for the Pacific Islands. Another immediate priority acknowledged by these nations is the need for development of adaptation policies that plan for adjustment or adaptation, where possible, to the foreshadowed impacts of climate change. This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of greenhouse gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions.KEY WORDS: Pacific Islands; Climate change; Renewable energy; Framework Convention on Climate Change.

  18. Constraining high-energy cosmic neutrino sources: Implications and prospects

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Waxman, Eli

    2016-11-01

    We consider limits on the local (z =0 ) density (n0) of extragalactic neutrino sources set by the nondetection of steady high-energy neutrino sources producing ≳50 TeV muon multiplets in the present IceCube data, taking into account the redshift evolution, luminosity function, and neutrino spectrum of the sources. We show that the lower limit depends moderately on source spectra and strongly on redshift evolution. We find n0≳10-8- 10-7 Mpc-3 for standard candle sources evolving rapidly, ns∝(1+z ) 3 , and n0≳10-6- 10-5 Mpc-3 for nonevolving sources. The corresponding upper limits on their neutrino luminosity are Lνμ eff≲1 042- 1 043 erg s-1 and Lνμ eff≲1 041- 1 042 erg s-1 , respectively. Applying these results to a wide range of classes of potential sources, we show that powerful "blazar" jets associated with active galactic nuclei are unlikely to be the dominant sources. For almost all other steady candidate source classes (including starbursts, radio galaxies, and galaxy clusters and groups), an order of magnitude increase in the detector sensitivity at ˜0.1 - 1 PeV will enable a detection (as point sources) of the few brightest objects. Such an increase, which may be provided by next-generation detectors like IceCube-Gen2 and an upgraded KM3NET, can improve the limit on n0 by more than 2 orders of magnitude. Future gamma-ray observations (by Fermi, the High-Altitude Water Cherenkov Observatory, and the Cherenkov Telescope Array) will play a key role in confirming the association of the neutrinos with their sources.

  19. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-08-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results. We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  20. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect

    Mills, G

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  1. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect

    Mills, G. . Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  2. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    SciTech Connect

    Macknick, J.; Beatty, B.; Hill, G.

    2013-12-01

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  3. Efficiency of utilization of various sources of energy for growth.

    PubMed Central

    Donato, K; Hegsted, D M

    1985-01-01

    The relative efficiency of dietary sucrose, protein sources, and fats in depositing body protein and fat (total energy) was directly estimated in young rats by feeding graded levels of each as supplements to a fixed amount of a basal diet that was presumably adequate in all essential nutrients except for energy. Under these conditions, the net gain in total body energy was a linear function of the amount of supplement added and the data fulfill the criteria of a valid slope-ratio bioassay. The available energy measured by this technique for sucrose and protein were similar, as would be expected. Dietary fat, however, was a more efficient source of energy. Compared to sucrose with 3.94 kcal/g (1 cal = 4.184 J), the average potency of dietary fat was 11.1 kcal/g, or approximately 124% of the expected value of 9 kcal/g. Fat supplements increased the deposition of body fat even when total energy intake was severely limited. The Atwater value of 9 kcal per g of fat is not appropriate under these conditions and probably not under other conditions. PMID:3860827

  4. Multiwavelength observations of unidentified high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

  5. Solar photovoltaic as an energy source for India

    SciTech Connect

    Anantha, A.

    1997-12-31

    Solar photovoltaic based power and energy systems are gaining recognition due to the availability and high solar insolation in most parts of India and its inherent advantage of direct conversion to power unlike a solar thermal system. Its application in remote areas, its advantage as a stand alone system, its environmental friendliness and its inexhaustibility are some of the positive features of this wonderful source of energy. However, the limitations of day and night cycle and high costs in comparison to other sources of energy apply partial brakes on its ready acceptance. More and more research is called for in the area of solar photovoltaics along with discovery of alternative materials with higher efficiency of conversion, reduced panel areas per kW and effective, economic and durable storage systems for sustained production of power. This source alone, if costs can be reduced substantially, can meet the entire requirement of the country. Solar photovoltaics can also be utilized for bulk power for grid interconnected applications. It has a good scope for utilization on the hybrid system, for pumping of drinking water and remote area power systems. This paper discusses all the features of the solar photovoltaic system, its cost comparison with other sources, its merits and demerits as of now, Government policy support, R and D efforts in India and strategies for commercialization.

  6. Radioactivity as a significant energy source in prebiotic synthesis.

    PubMed

    Garzón, L; Garzón, M L

    2001-01-01

    Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.

  7. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  8. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop

    NASA Astrophysics Data System (ADS)

    This was the eleventh edition of the series of Frascati Workshops on "Multifrequency Behaviour of High Energy Cosmic Sources" undoubtedly a largely accepted biennial meeting in which an updated experimental and theoretical panorama is depicted. This edition took place on the 31st anniversary of the first historical "multifrequency" workshop about "Multifrequency Behaviour of Galactic Accreting Sources", held in Vulcano in September 1984. This surely renders the Frascati Workshop Series the oldest among the many devoted to "Multifrequency Studies of Cosmic Sources". The study of the physics governing the cosmic sources was the main goal of the workshop. A session devoted to the ongoing and next generation ground- and space-based experiments gave the actual prospects for the first decades of this millennium. The following items have been reviewed: Cosmology: Cosmic Background, Clusters of Galaxies Extragalactic Sources: Active Galaxies, Normal Galaxies Gamma-Rays Burst: Experiments versus Theories Galactic Sources: Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources,Nucleosynthesis. The Astrophysics with the Ongoing and Future Experiments: Space-Based Experiments, Ground-Based Experiments. The workshop included a few 30-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 20-minute talks discussed the ongoing and planned ground- and space-based experiments. The cadence of the workshop is biennial. The participation is only by invitation.

  9. Mono-energy coronary angiography with a compact light source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  10. Energy sources and their development for application in medical devices.

    PubMed

    Rasouli, Mahdi; Phee, Louis Soo Jay

    2010-09-01

    Electronic medical devices have become an indispensable part of modern healthcare. Currently, a wide variety of electronic medical devices are being used to monitor physiological parameters of the body, perform therapy and supplement or even entirely replace complex biological functions. Cardiac pacemakers, cardioverter-defibrillators and cochlear implants are a few examples of such medical devices. Proper functionality of these devices relies heavily on the continuous supply of a sufficient amount of electricity to them. In this sense, a reliable, safe and convenient method for the provision of energy is very crucial. Various approaches have been developed to fulfil the divergent and challenging energy requirements of medical devices. In this article, we present a brief overview of the energy requirements of medical devices and review the existing and emerging energy sources for application in these devices, particularly wearable and implantable devices.

  11. Climate convention implementation: An opportunity for the Pacific Island nations to move toward sustainable energy systems

    SciTech Connect

    Yu, Xiaojiang; Taplin, R.; Gilmour, A.J.

    1997-07-01

    The impacts of global warming are among the more serious environmental threats for the Pacific Island countries. These nations justifiably argue that developed countries should give immediate priority to the implementation of climate change mitigation policies because of the severe nature of potential greenhouse impacts for the Pacific Islands. Another immediate priority acknowledged by these nations is the need for development of adaptation policies that plan for adjustment or adaptation, where possible, to the foreshadowed impacts of climate change. This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of green-house gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions. 61 refs., 1 fig., 6 tabs.

  12. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  13. Inspection and assessment of energy conservation opportunities at Ellis Island National Park, Ellis Island, New York

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.; Richman, E.E.

    1992-12-01

    Ellis Island is a National Park Service (NPS) facility located in New York Harbor that hosts two million visitors per year. The main building houses exhibits and artifacts, food and gift concessions, and staff work and office spaces in a 200,000-square-foot floor area. Heating and cooling of the main building are provided by a central heating and cooling plant, housed in an adjacent 20,000-square-foot building, with distribution by nine main fan systems and perimeter radiators. Energy end-use estimates were obtained by reconciling connected load characteristics with billing data. The energy-use intensities are about 40 kWh/ft[sup 2]-yr for electricity and 170,000 Btu/ft[sup 2]-yr for natural gas. Energy use is higher than expected for facilities of this type in this region. This high energy use is due to a number of factors. A large fraction of the lighting is provided by incandescent lamps. Constant-volume air-handlers and reheat coils are used in most of the exhibit spaces. Tight temperature and humidity control is achieved in these spaces at the expense of substantial energy use for simultaneous heating and cooling. The large window area is made up of entirely of single-glazed units. Ventilation is controlled by time schedules, not occupant load. Most motors and pumps are single-speed rather than the more efficient variable speed drive type. A preliminary assessment of the potential for energy conservation has been made after a site inspection and analysis of utility bills, building plans, and other information. The electric savings potential is over 30% using available, generally cost-effective technologies. The fossil fuel savings potential is over 1,500 MBtu per year and could be much higher because 10,000 MBtu/yr of natural gas consumption could not be accounted for in our analysis. Cost-effective Energy Conservation Opportunities were identified in the areas of lighting, HVAC, central plant, envelope, motors, and other equipment and loads.

  14. Inspection and assessment of energy conservation opportunities at Ellis Island National Park, Ellis Island, New York

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.; Richman, E.E.

    1992-12-01

    Ellis Island is a National Park Service (NPS) facility located in New York Harbor that hosts two million visitors per year. The main building houses exhibits and artifacts, food and gift concessions, and staff work and office spaces in a 200,000-square-foot floor area. Heating and cooling of the main building are provided by a central heating and cooling plant, housed in an adjacent 20,000-square-foot building, with distribution by nine main fan systems and perimeter radiators. Energy end-use estimates were obtained by reconciling connected load characteristics with billing data. The energy-use intensities are about 40 kWh/ft{sup 2}-yr for electricity and 170,000 Btu/ft{sup 2}-yr for natural gas. Energy use is higher than expected for facilities of this type in this region. This high energy use is due to a number of factors. A large fraction of the lighting is provided by incandescent lamps. Constant-volume air-handlers and reheat coils are used in most of the exhibit spaces. Tight temperature and humidity control is achieved in these spaces at the expense of substantial energy use for simultaneous heating and cooling. The large window area is made up of entirely of single-glazed units. Ventilation is controlled by time schedules, not occupant load. Most motors and pumps are single-speed rather than the more efficient variable speed drive type. A preliminary assessment of the potential for energy conservation has been made after a site inspection and analysis of utility bills, building plans, and other information. The electric savings potential is over 30% using available, generally cost-effective technologies. The fossil fuel savings potential is over 1,500 MBtu per year and could be much higher because 10,000 MBtu/yr of natural gas consumption could not be accounted for in our analysis. Cost-effective Energy Conservation Opportunities were identified in the areas of lighting, HVAC, central plant, envelope, motors, and other equipment and loads.

  15. Initiation of reactive blast waves by external energy sources

    NASA Astrophysics Data System (ADS)

    Liñán, Amable; Kurdyumov, Vadim N.; Sánchez, Antonio L.

    2012-11-01

    This article is devoted to the analysis of the direct initiation, by concentrated centrally-symmetric external energy sources, of self-sustained detonation waves in gaseous reactive mixtures. The dynamics of the detonation front will be described in the fast reaction limit, when the thickness of the reaction layer that follows the shock front is very small compared with the shock radius. At early times, after starting the external thermal energy deposition, the detonation front, associated with a strongly expanding flow, is overdriven; thus it is reached by expansion waves that decrease its velocity towards the Chapman-Jouguet (CJ) value, for which the expansion waves can no longer reach the front. The decay occurs for detonation radii such that the energy released by the external source equals the heat released by the chemical reaction. For planar detonations the CJ velocity is only approached asymptotically for large times, while for cylindrical and spherical detonations the flow divergence provides an additional decay mechanism associated with the front curvature that causes the transition to the constant CJ velocity to occur at a finite value of the detonation radius. The time evolution of the flow field and the corresponding variation with deposition time of the transition radius is computed for energy sources of constant heating rate. The analysis includes a detailed quantitative description of the near-front flow structure for times close to the transition time, given here for the first time, along with the study of the evolution towards the Zel'dovich-Taylor cylindrical or spherical self-similar flow structure, which corresponds to a CJ detonation front ideally initiated at the center without any external energy source. The asymptotic decay to CJ is also described for planar detonations initiated with energy sources of constant heating rate and finite nonzero deposition time. A brief discussion will be given on how the reaction may be quenched by the flow

  16. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  17. Dust Obscured Blazars as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; de Vries, K. D.; van Eijndhoven, N.

    2016-08-01

    Active Galactic Nuclei (AGN) are believed to be among the most promising sources of the ultra-high-energy cosmic ray flux. A hadronic component which is accelerated in the high energy environment of an AGN immediately implies the production of high-energy neutrinos. Nevertheless, no clear correlation between AGN and the high-energy cosmic-neutrino flux obtained by IceCube has been found so-far, putting strong limits on the neutrino production at AGN. We discuss a specific type of AGN for which an enhanced neutrino production is expected. This specific sub-set is given by AGN with their high-energy jet directed toward Earth, which is obscured by surrounding dust or gas, defining Dust Obscured Blazars. This type of AGN is predicted to have an enhanced neutrino emission due to the interaction of a possible hadronic component inside the AGN-jet with the surrounding matter. From two different galaxy catalogs, we have selected a sample of nearby sources with the characteristics of Dust Obscured Blazars. This selection is based on observations in the X-ray and radio bands. The data is consequently used to investigate the column density of the surrounding matter, providing an estimate for the neutrino production enhancement due to the nucleon-matter interactions in a beam dump scenario for various dust or gas compositions.

  18. New insights on tsunami genesis and energy source

    NASA Astrophysics Data System (ADS)

    Song, Y. Tony; Mohtat, Ali; Yim, Solomon C.

    2017-05-01

    Conventional tsunami theories suggest that earthquakes with significant vertical motions are more likely to generate tsunamis. In tsunami models, the vertical seafloor elevation is directly transferred to the sea-surface as the only initial condition. However, evidence from the 2011 Tohoku earthquake indicates otherwise; the vertical seafloor uplift was only 3-5 m, too small to account for the resultant tsunami. Surprisingly, the horizontal displacement was undeniably larger than anyone's expectation; about 60 m at the frontal wedge of the fault plate, the largest slip ever recorded by in situ instruments. The question is whether the horizontal motion of seafloor slopes had enhanced the tsunami to become as destructive as observed. In this study, we provide proof: (1) combining various measurements from the 2011 Tohoku event, we show that the earthquake transferred a total energy of 3.1e + 15 joule to the ocean, in which the potential energy (PE) due to the vertical seafloor elevation (including seafloor uplift/subsidence plus the contribution from the horizontal displacement) was less than a half, while the kinetic energy (KE) due to the horizontal displacement velocity of the continental slope contributed a majority portion; (2) using two modern state-of-the-art wave flumes and a three-dimensional tsunami model, we have reproduced the source energy and tsunamis consistent with observations, including the 2004 Sumatra event. Based on the unified source energy formulation, we offer a competing theory to explain why some earthquakes generate destructive tsunamis, while others do not.

  19. Sustainability of hydropower as source of renewable and clean energy

    NASA Astrophysics Data System (ADS)

    Luis, J.; Sidek, L. M.; Desa, M. N. M.; Julien, P. Y.

    2013-06-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  20. A study of an advanced confined linear energy source

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Heidemann, W. B.

    1971-01-01

    A literature survey and a test program to develop and evaluate an advanced confined linear energy source were conducted. The advanced confined linear energy source is an explosive or pyrotechnic X-Cord (mild detonating fuse) supported inside a confining tube capable of being hermetically sealed and retaining all products of combustion. The energy released by initiation of the X-Cord is transmitted through the support material to the walls of the confining tube causing an appreciable change in cross sectional configuration and expansion of the tube. When located in an assembly that can accept and use the energy of the tube expansion, useful work is accomplished through fracture of a structure, movement of a load, reposition of a pin, release of a restraint, or similar action. The tube assembly imparts that energy without release of debris or gases from the device itself. This facet of the function is important to the protection of men or equipment located in close proximity to the system during the time of function.

  1. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  2. Creating a Project on Difference Equations with Primary Sources: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Ruch, David

    2014-01-01

    This article discusses the creation of a student project about linear difference equations using primary sources. Early 18th-century developments in the area are outlined, focusing on efforts by Abraham De Moivre (1667-1754) and Daniel Bernoulli (1700-1782). It is explained how primary sources from these authors can be used to cover material…

  3. Critical source area management of agricultural phosphorus: experiences, challenges and opportunities

    USDA-ARS?s Scientific Manuscript database

    The concept of critical source areas of phosphorus (P) loss produced by coinciding source and transport factors has been studied since the mid 1990s. It is widely recognized that identification of such areas has led to targeting of management strategies and conservation practices that more effectiv...

  4. Creating a Project on Difference Equations with Primary Sources: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Ruch, David

    2014-01-01

    This article discusses the creation of a student project about linear difference equations using primary sources. Early 18th-century developments in the area are outlined, focusing on efforts by Abraham De Moivre (1667-1754) and Daniel Bernoulli (1700-1782). It is explained how primary sources from these authors can be used to cover material…

  5. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  6. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  7. Directory of financing sources for foreign energy projects

    SciTech Connect

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  8. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    PubMed

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  9. Surgical Ablation of Atrial Fibrillation Using Energy Sources

    PubMed Central

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery. PMID:26934404

  10. Hydrogen is an energy source for hydrothermal vent symbioses.

    PubMed

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  11. A unique opportunity to discover how energy is transported through Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Badman, Sarah

    2012-10-01

    The Japanese Aerospace Exploration Agency {JAXA} EUV spectroscopic mission, EXCEED, will be launched to low-Earth orbit in August 2013. EXCEED's primary mission goal is to simultaneously observe the Jovian aurora and Io plasma torus {IPT} with unprecedented temporal resolution, quasi-continuously {50 min per 100 min orbit} for at least two full months. We propose a multi-wavelength campaign of coordinated observations using HST and NOAO facilities that, together with the observations by EXCEED, provide a unique opportunity to discover how energy is transferred throughout Jupiter's vast, dynamic magnetosphere and its interaction with the solar wind. EXCEED spectral imaging of ion emission lines will reveal temporal and spatial variations in the IPT, to diagnose the dynamics in the inner magnetosphere, and relate the dynamics to Jupiter's auroral intensity and spectra. These novel observations will reveal plasma heating and electron precipitation driven by both local and global disturbances. Coordinated high spatial-resolution HST-STIS images of the UV aurora are essential to reveal the global morphology of the aurora, i.e. to pinpoint where the energy deposited in the upper atmosphere originates in the magnetosphere. Simultaneous visible wavelength observations of the IPT by WIYN will provide the low-energy component of the ion emission spectrum to identify heating and density fluctuations of the local plasma. Coordinated observations of the infrared {IR} aurora by Gemini will reveal the ionospheric heating and cooling in the corresponding auroral regions. These observations will provide a huge, novel science return for a small investment of HST and NOAO observation time.

  12. Ion sources for energy extremes of ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Johnson, B. M.; Batalin, V. A.; Kropachev, G. N.; Kuibeda, R. P.; Kulevoy, T. V.; Kolomiets, A. A.; Pershin, V. I.; Petrenko, S. V.; Rudskoy, I.; Seleznev, D. N.; Bugaev, A. S.; Gushenets, V. I.; Litovko, I. V.; Oks, E. M.; Yushkov, G. Yu.; Masunov, E. S.; Polozov, S. M.; Poole, H. J; Storozhenko, P. A.

    2008-02-15

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P{sup 2+} [8.6 pmA (particle milliampere)], P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+}Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  13. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  14. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are

  15. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  16. Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Manthiram, Arumugam

    2011-03-01

    Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.

  17. Dietary sources of energy and macronutrient intakes among Flemish preschoolers.

    PubMed

    De Keyzer, Willem; Lin, Yi; Vereecken, Carine; Maes, Lea; Van Oyen, Herman; Vanhauwaert, Erika; De Backer, Guy; De Henauw, Stefaan; Huybrechts, Inge

    2011-11-01

    This study aims to identify major food sources of energy and macronutrients among Flemish preschoolers as a basis for evaluating dietary guidelines. Three-day estimated diet records were collected from a representative sample of 696 Flemish preschoolers (2.5-6.5 years old; participation response rate: 50%). For 11 dietary constituents, the contribution of 57 food groups was computed by summing the amount provided by the food group for all individuals divided by the total intake of the respective nutrient for all individuals. Bread (12%), sweet snacks (12%), milk (6%), flavoured milk drinks (9%), and meat products (6%) were the top five energy contributors. Sweet snacks were among the top contributors to energy, total fat, all fatty acids, cholesterol, and complex and simple carbohydrates. Fruit juices and flavoured milk drinks are the main contributors to simple carbohydrates (respectively 14% and 18%). All principal food groups like water, bread and cereals, vegetables, fruit, milk and spreadable fats were under-consumed by more than 30% of the population, while the food groups that were over-consumed consisted only of low nutritious and high energy dense foods (sweet snacks, sugared drinks, fried potatoes, sauces and sweet spreads). From the major food sources and gaps in nutrient and food intakes, some recommendations to pursue the nutritional goals could be drawn: the intake of sweet snacks and sugar-rich drinks (incl. fruit juices) should be discouraged, while consumption of fruits, vegetables, water, bread and margarine on bread should be encouraged.

  18. Dietary sources of energy and macronutrient intakes among Flemish preschoolers

    PubMed Central

    2011-01-01

    This study aims to identify major food sources of energy and macronutrients among Flemish preschoolers as a basis for evaluating dietary guidelines. Three-day estimated diet records were collected from a representative sample of 696 Flemish preschoolers (2.5-6.5 years old; participation response rate: 50%). For 11 dietary constituents, the contribution of 57 food groups was computed by summing the amount provided by the food group for all individuals divided by the total intake of the respective nutrient for all individuals. Bread (12%), sweet snacks (12%), milk (6%), flavoured milk drinks (9%), and meat products (6%) were the top five energy contributors. Sweet snacks were among the top contributors to energy, total fat, all fatty acids, cholesterol, and complex and simple carbohydrates. Fruit juices and flavoured milk drinks are the main contributors to simple carbohydrates (respectively 14% and 18%). All principal food groups like water, bread and cereals, vegetables, fruit, milk and spreadable fats were under-consumed by more than 30% of the population, while the food groups that were over-consumed consisted only of low nutritious and high energy dense foods (sweet snacks, sugared drinks, fried potatoes, sauces and sweet spreads). From the major food sources and gaps in nutrient and food intakes, some recommendations to pursue the nutritional goals could be drawn: the intake of sweet snacks and sugar-rich drinks (incl. fruit juices) should be discouraged, while consumption of fruits, vegetables, water, bread and margarine on bread should be encouraged. PMID:22958525

  19. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    SciTech Connect

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  20. The Potential of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.