Sample records for energy source terms

  1. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2014-01-01 2014-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  2. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2012-01-01 2012-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  3. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2010-01-01 2010-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  4. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2013-01-01 2013-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  5. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2011-01-01 2011-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  6. 10 CFR 40.41 - Terms and conditions of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Terms and conditions of licenses. 40.41 Section 40.41 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.41 Terms and... the regulations in this part shall confine his possession and use of source or byproduct material to...

  7. An Overview of the Energy Crisis

    ERIC Educational Resources Information Center

    Walters, Edward A.; Wewerka, Eugene M.

    1975-01-01

    Concludes that coal will be the major U.S. energy source in the near future despite the significant problems associated with an increase in coal consumption. Provides advantages and disadvantages for the four major long-term energy sources: nuclear fission, nuclear fusion, geothermal sources, and solar energy. (MLH)

  8. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.174 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  9. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.174 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  10. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.174 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  11. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.174 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  12. 48 CFR 217.175 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electricity from renewable energy sources. 217.175 Section 217.175 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.175 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  13. America's Energy Potential: A Summary and Explanation; Committee on Interior and Insular Affairs, U.S. House of Representatives, Ninety-Third Congress, First Session. [Committee Print].

    ERIC Educational Resources Information Center

    Udall, Morris K.

    This report reviews America's current energy position. The energy sources studied include oil and gas, coal, nuclear energy, solar energy, and geothermal energy. Each source is analyzed in terms of current use, technology for extracting and developing the energy, research and development funding, and projections for future consumption and…

  14. Definitions of Health Terms: Nutrition

    MedlinePlus

    ... and balanced diet. Food and drink provide the energy and nutrients you need to be healthy. Understanding ... in the blood and the main source of energy for your body. Source : NIH MedlinePlus Calories A ...

  15. Economic dispatch optimization for system integrating renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  16. An investigation on nuclear energy policy in Turkey and public perception

    NASA Astrophysics Data System (ADS)

    Coskun, Mehmet Burhanettin; Tanriover, Banu

    2016-11-01

    Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework.

  17. Introduction to energy sources. [Monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    Energy resources are reviewed in lay terms in an effort to increase the public's awareness of energy issues. Summaries of the principal sources of energy describe availability, technological requirements, and environmental impacts. The emphasis is placed on making energy use more efficient and the implications of shifting to centralized power plants, with more reliance on electricity. The purpose of this monograph is to demonstrate that energy issues can be examined and assessed by non-experts.

  18. Short-term energy outlook. Volume 2. Methodology

    NASA Astrophysics Data System (ADS)

    1983-05-01

    Recent changes in forecasting methodology for nonutility distillate fuel oil demand and for the near-term petroleum forecasts are discussed. The accuracy of previous short-term forecasts of most of the major energy sources published in the last 13 issues of the Outlook is evaluated. Macroeconomic and weather assumptions are included in this evaluation. Energy forecasts for 1983 are compared. Structural change in US petroleum consumption, the use of appropriate weather data in energy demand modeling, and petroleum inventories, imports, and refinery runs are discussed.

  19. Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions

    NASA Astrophysics Data System (ADS)

    Buddala, Santhoshi Snigdha

    Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.

  20. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    PubMed

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The use of mud as an alternative source for bioelectricity using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Darmawan, Raden; Widjaja, Arief; Juliastuti, Sri Rachmania; Hendrianie, Nuniek; Hidaya, Chanifah; Sari, Dessy Rosita; Suwito, Morimura, Shigeru; Tominaga, Masato

    2017-05-01

    Alternative energy sources to substitute fossil-based energy is expected, as the fossil energy reserves decreasing every day. Mud is considered to be economical as the material sources for generating the electricity where it could be found easily and abundantly in Indonesia. The existence of a lot of mud that contains organic material has great potential as a source of electrical energy using microbial fuel cells (MFCs). It provides a promising technology by degrading organic compounds to yield the sustainable energy. The different sampling sites were determined to find out the electricity production, i.e. mud from soil water, brackish water and sea water using an anode immersed of 10 cm2. The results suggest that the electricity generation of the three areas are 0.331, 0.327 and 0.398 V (in terms of voltage); 0.221, 0.050 and 0.325 mA (in terms of electric current), respectively. It is investigated that the mud obtained the sea water exhibits the highest power potential compared to that obtained from the brackish and soil water.

  2. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    DTIC Science & Technology

    2017-07-31

    Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email

  3. The History of Nuclear Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-01-31

    This is one in a series of publications on nuclear energy. The intent of the series is to present a public overview of various energy sources and it is not intended as an exhaustive treatment of the subject matter. The pamphlet traces the history of discoveries about atoms through more modern-day use of atoms a a valuable source of energy. Included is a detailed chronology and a glossary of terms.

  4. Exact relations for energy transfer in self-gravitating isothermal turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2017-11-01

    Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011), 10.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013), 10.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.

  5. Definitions of Health Terms: Fitness

    MedlinePlus

    ... more. Source : National Heart, Lung, and Blood Institute Energy Balance The balance between calories you get from ... Institute of Diabetes and Digestive and Kidney Diseases Energy Consumed Energy is another word for calories. What ...

  6. Documentation of volume 3 of the 1978 Energy Information Administration annual report to congress

    NASA Astrophysics Data System (ADS)

    1980-02-01

    In a preliminary overview of the projection process, the relationship between energy prices, supply, and demand is addressed. Topics treated in detail include a description of energy economic interactions, assumptions regarding world oil prices, and energy modeling in the long term beyond 1995. Subsequent sections present the general approach and methodology underlying the forecasts, and define and describe the alternative projection series and their associated assumptions. Short term forecasting, midterm forecasting, long term forecasting of petroleum, coal, and gas supplies are included. The role of nuclear power as an energy source is also discussed.

  7. Dynamic power balance analysis in JET

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Silburn, S. A.; Challis, C. D.; Eich, T.; Iglesias, D.; King, D.; Sieglin, B.; Contributors, JET

    2017-12-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms.

  8. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    PubMed

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  9. The importance of geospatial data to calculate the optimal distribution of renewable energies

    NASA Astrophysics Data System (ADS)

    Díaz, Paula; Masó, Joan

    2013-04-01

    Specially during last three years, the renewable energies are revolutionizing the international trade while they are geographically diversifying markets. Renewables are experiencing a rapid growth in power generation. According to REN21 (2012), during last six years, the total renewables capacity installed grew at record rates. In 2011, the EU raised its share of global new renewables capacity till 44%. The BRICS nations (Brazil, Russia, India and China) accounted for about 26% of the total global. Moreover, almost twenty countries in the Middle East, North Africa, and sub-Saharan Africa have currently active markets in renewables. The energy return ratios are commonly used to calculate the efficiency of the traditional energy sources. The Energy Return On Investment (EROI) compares the energy returned for a certain source and the energy used to get it (explore, find, develop, produce, extract, transform, harvest, grow, process, etc.). These energy return ratios have demonstrated a general decrease of efficiency of the fossil fuels and gas. When considering the limitations of the quantity of energy produced by some sources, the energy invested to obtain them and the difficulties of finding optimal locations for the establishment of renewables farms (e.g. due to an ever increasing scarce of appropriate land) the EROI becomes relevant in renewables. A spatialized EROI, which uses variables with spatial distribution, enables the optimal position in terms of both energy production and associated costs. It is important to note that the spatialized EROI can be mathematically formalized and calculated the same way for different locations in a reproducible way. This means that having established a concrete EROI methodology it is possible to generate a continuous map that will highlight the best productive zones for renewable energies in terms of maximum energy return at minimum cost. Relevant variables to calculate the real energy invested are the grid connections between production and consumption, transportation loses and efficiency of the grid. If appropriate, the spatialized EROI analysis could include any indirect costs that the source of energy might produce, such as visual impacts, food market impacts and land price. Such a spatialized study requires GIS tools to compute operations using both spatial relations like distances and frictions, and topological relations like connectivity, not easy to consider in the way that EROI is currently calculated. In a broader perspective, by applying the EROI to various energy sources, a comparative analysis of the efficiency to obtain different source can be done in a quantitative way. The increase in energy investment is also accompanied by the increase of manufactures and policies. Further efforts will be necessary in the coming years to provide energy access through smart grids and to determine the efficient areas in terms of cost of production and energy returned on investment. The authors present the EROI as a reliable solution to address the input and output energy relationship and increase the efficiency in energy investment considering the appropriate geospatial variables. The spatialized EROI can be a useful tool to consider by decision makers when designing energy policies and programming energy funds, because it is an objective demonstration of which energy sources are more convenient in terms of costs and efficiency.

  10. Blazar Jet Physics in the Age of Fermi

    DTIC Science & Technology

    2010-11-23

    in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  11. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinne, A.; Morrison, A. D.

    1977-01-01

    Photovoltaics is subject of an extensive technology assessment in terms of its net energy potential as an alternate energy source. Reduction of quartzite pebbles, refinement, crystal growth, cell processing and panel building are evaluated for energy expenditure compared to direct, indirect, and overhead energies.

  12. Energy Spectra of Abundant Cosmic-ray Nuclei in Sources, According to the ATIC Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panov, A. D.; Sokolskaya, N. V.; Zatsepin, V. I., E-mail: panov@dec1.sinp.msu.ru

    One of the main results of the ATIC (Advanced Thin Ionization Calorimeter) experiment is a collection of energy spectra of abundant cosmic-ray nuclei: protons, He, C, O, Ne, Mg, Si, and Fe measured in terms of energy per particle in the energy range from 50 GeV to tens of teraelectronvolts. In this paper, the ATIC energy spectra of abundant primary nuclei are back-propagated to the spectra in sources in terms of magnetic rigidity using a leaky-box approximation of three different GALPROP-based diffusion models of propagation that fit the latest B/C data of the AMS-02 experiment. It is shown that themore » results of a comparison of the slopes of the spectra in sources are weakly model dependent; therefore the differences of spectral indices are reliable data. A regular growth of the steepness of spectra in sources in the range of magnetic rigidity of 50–1350 GV is found for a charge range from helium to iron. This conclusion is statistically reliable with significance better than 3.2 standard deviations. The results are discussed and compared to the data of other modern experiments.« less

  13. The Electrification of Energy: Long-Term Trends and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Jeffrey Y.; Fouquet, Roger; Schubert, E. Fred

    Here, we present and analyze three powerful long-term historical trends in energy, particularly electrical energy, as well as the opportunities and challenges associated with these trends. The first trend is from a world containing a diversity of energy currencies to one whose predominant currency is electricity, driven by electricity’s transportability, exchangeability, and steadily decreasing cost. The second trend is from electricity generated from a diversity of sources to electricity generated predominantly by free-fuel sources, driven by their steadily decreasing cost and long-term abundance. These trends necessitate a just-emerging third trend: from a grid in which electricity is transported uni-directionally, tradedmore » at near-static prices, and consumed under direct human control; to a grid in which electricity is transported bi-directionally, traded at dynamic prices, and consumed under human-tailored agential control. Early acceptance and appreciation of these trends will accelerate their remaking of humanity’s energy landscape into one in which energy is much more affordable, abundant and efficiently deployed than it is today; with major economic, geo-political, and environmental benefits to human society.« less

  14. Energy: Options and Issues.

    ERIC Educational Resources Information Center

    Walker, Harry O.

    This book is intended to provide basic information about energy. The first three chapters describe energy supply and demand, uses and sources, and common energy terms. The next two chapters explain environmental and biological effects of energy systems. Twelve chapters that follow outline past history and technological knowledge of the following…

  15. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Yanji; Song Junling; Cui Cunyan

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  16. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less

  17. Alternative uses of highway rights-of-way : accommodating renewable energy technologies

    DOT National Transportation Integrated Search

    2012-01-01

    In recent years, the capacity, generation, and consumption of energy derived from renewable sources have grown significantly on a global level. To increase renewable energy production in the near term, state and local transportation agencies have rec...

  18. Antimatter Requirements and Energy Costs for Near-Term Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.

  19. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  20. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  1. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.A.

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less

  2. New energy Era: Short Term and Long Term.

    ERIC Educational Resources Information Center

    Beckwith, Robert

    This paper examines the causes and effects of the 1973 oil embargo imposed by OPEC. The author notes that since the embargo, little positive action has been taken to reduce American dependence upon a very limited and very expensive energy source. In order to achieve any degree of independence, it will be necessary to repidly expand coal and…

  3. The MIT/OSO 7 catalog of X-ray sources - Intensities, spectra, and long-term variability

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Laird, F. N.; Clark, G. W.; Hearn, D. R.; Sprott, G. F.; Li, F. K.; Bradt, H. V.; Lewin, W. H. G.; Schnopper, H. W.; Winkler, P. F.

    1979-01-01

    This paper is a summary of the observations of the cosmic X-ray sky performed by the MIT 1-40-keV X-ray detectors on OSO 7 between October 1971 and May 1973. Specifically, mean intensities or upper limits of all third Uhuru or OSO 7 cataloged sources (185 sources) in the 3-10-keV range are computed. For those sources for which a statistically significant (greater than 20) intensity was found in the 3-10-keV band (138 sources), further intensity determinations were made in the 1-15-keV, 1-6-keV, and 15-40-keV energy bands. Graphs and other simple techniques are provided to aid the user in converting the observed counting rates to convenient units and in determining spectral parameters. Long-term light curves (counting rates in one or more energy bands as a function of time) are plotted for 86 of the brighter sources.

  4. Energy Harvesting Research: The Road from Single Source to Multisource.

    PubMed

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  6. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for custody and long-term care of uranium or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.28 General license for custody and...

  7. Energy for Development: Third World Options. Worldwatch Paper 15.

    ERIC Educational Resources Information Center

    Hayes, Denis

    Focusing on the need for energy to sustain economic development on a long-term basis, the document examines energy options of the post-petroleum era in developing nations. Nuclear power and solar power are the most important among proposed alternative energy sources. Limited applicability of nuclear technology to the Third World is discussed.…

  8. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    PubMed

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  9. Survey of ion plating sources

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  10. Large Energy Development Projects: Lessons Learned from Space and Politics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Harrison H.

    2005-04-15

    The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will providemore » an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components.« less

  11. Hydraulic transients: a seismic source in volcanoes and glaciers.

    PubMed

    Lawrence, W S; Qamar, A

    1979-02-16

    A source for certain low-frequency seismic waves is postulated in terms of the water hammer effect. The time-dependent displacement of a water-filled sub-glacial conduit is analyzed to demonstrate the nature of the source. Preliminary energy calculations and the observation of hydraulically generated seismic radiation from a dam indicate the plausibility of the proposed source.

  12. Rural energy survey and cost-effectiveness analysis of renewable-energy technologies for a Philippine Island community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, F.R.

    1982-01-01

    This study presents the methodology and results of: (1) a rural energy survey that was conducted in a Philippine island community; and (2) a cost-effectiveness analysis of selected conventional and renewable-energy technologies. The rural energy survey section compares different survey techniques and analyzes energy utilization by providing: (1) a breakdown of energy flows and use patterns; (2) information on energy prices, ownership patterns, social relations, and their effects in terms of differential access to energy sources; (3) per household and per capita consumption figures; and (4) a village energy-consumption table. Correlation analysis is used to determine if the stratified, independentmore » socio-economic variables are indicators for dependent energy variables. Results of the economic analysis indicate that renewable-energy technologies are already least-cost alternatives to diesel generation in the village case study. The sensitivity analysis also shows that these technologies remain the least-cost options even if their capital costs were underestimated. The findings of the study are useful to the current Philippine renewable-energy program in terms of providing: (1) information essential for determining end-users' priority energy needs and for improving technology choice and project design; and (2) justification for promoting auto-generation based on renewable energy sources as alternatives to diesel fuel.« less

  13. Energy sources, self-organization, and the origin of life.

    PubMed

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  14. Energy Sources, Self-organization, and the Origin of Life

    NASA Astrophysics Data System (ADS)

    Boiteau, Laurent; Pascal, Robert

    2011-02-01

    The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.

  15. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Arnold Y.; Lau, Pick -Wei; Feliciano, Daniel

    Dietary restriction increases the longevity of many organisms, but the cell signaling and organellar mechanisms underlying this capability are unclear. We demonstrate that to permit long-term survival in response to sudden glucose depletion, yeast cells activate lipid-droplet (LD) consumption through micro-lipophagy (µ-lipophagy), in which fat is metabolized as an alternative energy source. AMP-activated protein kinase (AMPK) activation triggered this pathway, which required Atg14p. More gradual glucose starvation, amino acid deprivation or rapamycin did not trigger µ-lipophagy and failed to provide the needed substitute energy source for long-term survival. During acute glucose restriction, activated AMPK was stabilized from degradation and interactedmore » with Atg14p. This prompted Atg14p redistribution from ER exit sites onto liquid-ordered vacuole membrane domains, initiating µ-lipophagy. Our findings that activated AMPK and Atg14p are required to orchestrate µ-lipophagy for energy production in starved cells is relevant for studies on aging and evolutionary survival strategies of different organisms.« less

  16. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation

    DOE PAGES

    Seo, Arnold Y.; Lau, Pick -Wei; Feliciano, Daniel; ...

    2017-04-10

    Dietary restriction increases the longevity of many organisms, but the cell signaling and organellar mechanisms underlying this capability are unclear. We demonstrate that to permit long-term survival in response to sudden glucose depletion, yeast cells activate lipid-droplet (LD) consumption through micro-lipophagy (µ-lipophagy), in which fat is metabolized as an alternative energy source. AMP-activated protein kinase (AMPK) activation triggered this pathway, which required Atg14p. More gradual glucose starvation, amino acid deprivation or rapamycin did not trigger µ-lipophagy and failed to provide the needed substitute energy source for long-term survival. During acute glucose restriction, activated AMPK was stabilized from degradation and interactedmore » with Atg14p. This prompted Atg14p redistribution from ER exit sites onto liquid-ordered vacuole membrane domains, initiating µ-lipophagy. Our findings that activated AMPK and Atg14p are required to orchestrate µ-lipophagy for energy production in starved cells is relevant for studies on aging and evolutionary survival strategies of different organisms.« less

  17. Benefits and hazards of dietary carbohydrate.

    PubMed

    Connor, William E; Duell, P Barton; Connor, Sonja L

    2005-11-01

    Since the dawn of civilization, carbohydrate has comprised the largest source of energy in the diet for most populations. The source of the carbohydrate has been from plants in the form of complex carbohydrate high in fiber. Only in affluent cultures has sugar contributed so much of the total energy. When carbohydrate is consumed as a major component of a plant-based diet, a high-carbohydrate, low-fat diet is associated with low plasma levels of total and low-density lipoprotein cholesterol, less coronary heart disease, less diabetes, and less obesity. Very low-carbohydrate (ketogenic) diets may provide short-term solutions but do not lead to a long-term solution for most people.

  18. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  19. Aquifer thermal energy storage. International symposium: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less

  20. Fuel-conservative engine technology

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.

    1975-01-01

    Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.

  1. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  2. Importance of hard coal in electricity generation in Poland

    NASA Astrophysics Data System (ADS)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  3. Climate Neutral Campus Key Terms and Definitions | Climate Neutral Research

    Science.gov Websites

    energy costs: The amount of money the building owner pays the utility for electricity, fuels, and reliable services is equal to the amount of money the utility pays the owner for renewable energy as much emissions-free renewable energy as it uses from emissions-producing energy sources. Emissions

  4. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    NASA Astrophysics Data System (ADS)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  5. Effects of Varying Nitrogen Sources on Amino Acid Synthesis Costs in Arabidopsis thaliana under Different Light and Carbon-Source Conditions

    PubMed Central

    Nikoloski, Zoran

    2015-01-01

    Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization. PMID:25706533

  6. Effects of varying nitrogen sources on amino acid synthesis costs in Arabidopsis thaliana under different light and carbon-source conditions.

    PubMed

    Arnold, Anne; Sajitz-Hermstein, Max; Nikoloski, Zoran

    2015-01-01

    Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.

  7. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxesmore » and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.« less

  8. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  9. Total energy management for nursing homes and other long-term care institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less

  10. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    NASA Astrophysics Data System (ADS)

    Conte, V.; Moro, D.; Grosswendt, B.; Colautti, P.

    2013-07-01

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/μm value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a 137Cs gamma source and a cylindrical TEPC equipped with a precision internal 244Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to 137Cesium sources, with an overall uncertainty of about 5%.

  11. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  12. Low-grade geothermal energy conversion by organic Rankine cycle turbine generator

    NASA Astrophysics Data System (ADS)

    Zarling, J. P.; Aspnes, J. D.

    Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

  13. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federalmore » rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.« less

  14. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, D.; Brunett, A.; Passerini, S.

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less

  15. Porous elastic system with nonlinear damping and sources terms

    NASA Astrophysics Data System (ADS)

    Freitas, Mirelson M.; Santos, M. L.; Langa, José A.

    2018-02-01

    We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.

  16. Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2016-07-01

    In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.

  17. Efficient RF energy harvesting by using a fractal structured rectenna system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.

    2014-04-01

    A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.

  18. Performance comparison of single axis tracking and 40° solar panels for sunny weather

    NASA Astrophysics Data System (ADS)

    Chua, Yaw Long; Yong, Yoon Kuang; Koh, Yit Yan

    2017-09-01

    The rapid increment in human population and economy growth had led to the rise of the energy demand globally. With the rapid diminishing fossil fuels based energy sources, renewable energy sources had been introduced due to its unlimited availability especially solar energy which is a sustainable and reliable energy. This research was conducted to study and compare the efficiency of the single axis tracking solar panel with a 40° inclined angle solar panel in sunny weather condition. The results indicated that the output generated by the solar panel was directly affected by the angle which the solar panel facing the sun. In terms of performance the single axis tracking solar panel emerged to be more efficient with greater energy generated.

  19. Ohm's Law and Solar Energy. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Gates, Earl; And Others

    This courseware evaluation rates the Ohm's Law and Solar Energy program developed by the Iowa Department of Public Instruction. (The program--not contained in this document--covers Ohm's law and resistance problems, passive solar energy, and project ideas and sources.) Part A describes the program in terms of subject area (construction and…

  20. Antimatter Production for Near-Term Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities which could exist within the early part of next century. Results show that although it may be impractical to consider systems which rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-ten-n production capabilities. In fact, such systems could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $60 million per mission.

  1. COMPARATIVE POTENCY OF COMPLEX MIXTURES: USE OF SHORT-TERM GENETIC BIOASSAYS IN CANCER RISK ASSESSMENT

    EPA Science Inventory

    The primary problem regarding the introduction of new energy sources is whether they will alter the mutagenicity, carcinogenicity and potential human cancer risk from combustion emissions. New risk assessment methodologies utilizing data from short-term bioassays, therefore, are ...

  2. An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.

    2000-01-01

    A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.

  3. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Short-Term Energy Outlook Supplement March 1998)

    EIA Publications

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  4. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  5. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  6. Biofuels as an Alternative Energy Source for Aviation-A Survey

    NASA Technical Reports Server (NTRS)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  7. Parametrized energy spectrum of cosmic-ray protons with kinetic energies down to 1 GeV

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    A new estimation of the interstellar proton spectrum is made in which the source term of primary protons is taken from shock acceleration theory and the cosmic ray propagation calculation is based on a proposed nonuniform galactic disk model.

  8. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  9. Hybrid Hydro Renewable Energy Storage Model

    NASA Astrophysics Data System (ADS)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  10. Work, heat, and oxygen cost

    NASA Technical Reports Server (NTRS)

    Webb, P.

    1973-01-01

    Human energy is discussed in terms of the whole man. The physical work a man does, the heat he produces, and the quantity of oxygen he takes from the air to combine with food, the fuel source of his energy, are described. The daily energy exchange, work and heat dissipation, oxygen costs of specific activities, anaerobic work, and working in space suits are summarized.

  11. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2011-09-30

    source term parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and...I. Total energy and peak frequency. Coastal Engineering (29), 47-78. Zijlema, M. Computation of wind -wave spectra in coastal waters with SWAN on unstructured grids Coastal Engineering, 2010, 57, 267-277 ...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to

  12. A System of Systems (SoS) Approach to transforming to a low carbon resource-efficient energy system: Insights for the European Union (EU)

    NASA Astrophysics Data System (ADS)

    Madani, K.; Jess, T.; Mahlooji, M.; Ristic, B.

    2015-12-01

    The world's energy sector is experiencing a serious transition from reliance on fossil fuel energy sources to extensive reliance on renewable energies. Europe is leading the way in this transition to a low carbon economy in an attempt to keep climate change below 2oC. Member States have committed themselves to reducing greenhouse gas emissions by 20% and increasing the share of renewables in the EU's energy mix to 20% by 2020. The EU has now gone a step further with the objective of reducing greenhouse gas emissions by 80-95% by 2050. Nevertheless, the short-term focus of the European Commission is at "cost-efficient ways" to cut its greenhouse gas emissions which forgoes the unintended impacts of a large expansion of low-carbon energy technologies on major natural resources such as water and land. This study uses the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015) to evaluate the Relative Aggregate Footprint (RAF) of energy sources in different European Union (EU) member states. RAF reflects the overall resource-use efficiency of energy sources with respect to four criteria: carbon footprint, water footprint, land footprint, and economic cost. Weights are assigned to the four resource use efficiency criteria based on each member state's varying natural and economic resources to examine the changes in the desirability of energy sources based on regional resource availability conditions, and to help evaluating the overall resource use efficiency of the EU's energy portfolio. A longer-term strategy in Europe has been devised under the "Resource Efficient Europe" flagship imitative intended to put the EU on course to using resources in a sustainable way. This study will highlight the resource efficiency of the EU's energy sector in order to assist in a sustainable transition to a low carbon economy in Europe. ReferenceHadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.

  13. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  14. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE PAGES

    Cardall, Christian Y.

    2017-12-15

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  15. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    PubMed

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  16. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  17. Basic repository source term and data sheet report: Lavender Canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs.

  18. 10 CFR 40.71 - Modification and revocation of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Modification and revocation of licenses. 40.71 Section 40.71 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Modification and Revocation of Licenses § 40.71 Modification and revocation of licenses. (a) The terms and conditions of each...

  19. Hydrogen: A Future Energy Mediator?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Hydrogen may be the fuel to help the United States to a non fossil energy source. Although hydrogen may not be widely used as a fuel until after the turn of the century, special applications may become feasible in the short term. Costs, uses, safety, and production methods are discussed. (BT)

  20. Power Grab

    ERIC Educational Resources Information Center

    Jacobs, Paula

    2009-01-01

    Peter Pistorino says there is a name for the way he thinks a school district should launch an energy conservation initiative: an "envelope" approach. The term refers to looking at the outside package of a structure to check for inefficiencies: Examine the observable, external sources of energy loss such as the doors, windows, insulation,…

  1. Path to Market for Compact Modular Fusion Power Cores

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore

    2012-08-01

    The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.

  2. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; hide

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  3. Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach

    NASA Astrophysics Data System (ADS)

    Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun

    2017-10-01

    Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.

  4. Source Term Model for Vortex Generator Vanes in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2004-01-01

    A source term model for an array of vortex generators was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the side force created by a vortex generator vane. The model is obtained by introducing a side force to the momentum and energy equations that can adjust its strength automatically based on the local flow. The model was tested and calibrated by comparing data from numerical simulations and experiments of a single low profile vortex generator vane on a flat plate. In addition, the model was compared to experimental data of an S-duct with 22 co-rotating, low profile vortex generators. The source term model allowed a grid reduction of about seventy percent when compared with the numerical simulations performed on a fully gridded vortex generator on a flat plate without adversely affecting the development and capture of the vortex created. The source term model was able to predict the shape and size of the stream-wise vorticity and velocity contours very well when compared with both numerical simulations and experimental data. The peak vorticity and its location were also predicted very well when compared to numerical simulations and experimental data. The circulation predicted by the source term model matches the prediction of the numerical simulation. The source term model predicted the engine fan face distortion and total pressure recovery of the S-duct with 22 co-rotating vortex generators very well. The source term model allows a researcher to quickly investigate different locations of individual or a row of vortex generators. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  5. Influence of heat conducting substrates on explosive crystallization in thin layers

    NASA Astrophysics Data System (ADS)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  6. Radiological analysis of plutonium glass batches with natural/enriched boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    2000-06-22

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use ofmore » enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B{sub 2}O{sub 3}. Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling of these materials less difficult and will reduce radiation exposure to operating workers.« less

  7. Energy resources - cornucopia or empty barrel?

    USGS Publications Warehouse

    McCabe, P.J.

    1998-01-01

    Over the last 25 yr, considerable debate has continued about the future supply of fossil fuel. On one side are those who believe we are rapidly depleting resources and that the resulting shortages will have a profound impact on society. On the other side are those who see no impending crisis because long-term trends are for cheaper prices despite rising production. The concepts of resources and reserves have historically created considerable misunderstanding in the minds of many nongeologists. Hubbert-type predictions of energy production assume that there is a finite supply of energy that is measurable; however, estimates of resources and reserves are inventories of the amounts of a fossil fuel perceived to be available over some future period of time. As those resources/reserves are depleted over time, additional amounts of fossil fuels are inventoried. Throughout most of this century, for example, crude oil reserves in the United States have represented a 10-14-yr supply. For the last 50 yr, resource crude oil estimates have represented about a 60-70-yr supply for the United States. Division of reserve or resource estimates by current or projected annual consumption therefore is circular in reasoning and can lead to highly erroneous conclusions. Production histories of fossil fuels are driven more by demand than by the geologic abundance of the resource. Examination of some energy resources with well-documented histories leads to two conceptual models that relate production to price. The closed-market model assumes that there is only one source of energy available. Although the price initially may fall because of economies of scale long term, prices rise as the energy source is depleted and it becomes progressively more expensive to extract. By contrast, the open-market model assumes that there is a variety of available energy sources and that competition among them leads to long-term stable or falling prices. At the moment, the United States and the world approximate the open-market model, but in the long run the supply of fossil fuel is finite, and prices inevitably will rise unless alternate energy sources substitute for fossil energy supplies; however, there appears little reason to suspect that long-term price trends will rise significantly over the next few decades.Over the last 25 years, considerable debate has continued about the future supply of fossil fuel. On one side are those who believe that resources are rapidly depleting and that the resulting shortages will have a profound impact on society. On the other side are those who see no impending crisis because longterm trends are for cheaper prices despite rising production. This paper examines historic trends and clarify the foundations on which one may build one's predictions.

  8. Recent skyshine calculations at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyarenko, P.

    1997-12-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshinemore » dose maps.« less

  9. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.

    2007-10-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.

  10. Source-term development for a contaminant plume for use by multimedia risk assessment models

    NASA Astrophysics Data System (ADS)

    Whelan, Gene; McDonald, John P.; Taira, Randal Y.; Gnanapragasam, Emmanuel K.; Yu, Charley; Lew, Christine S.; Mills, William B.

    2000-02-01

    Multimedia modelers from the US Environmental Protection Agency (EPA) and US Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: MEPAS, MMSOILS, PRESTO, and RESRAD. These models represent typical analytically based tools that are used in human-risk and endangerment assessments at installations containing radioactive and hazardous contaminants. The objective is to demonstrate an approach for developing an adequate source term by simplifying an existing, real-world, 90Sr plume at DOE's Hanford installation in Richland, WA, for use in a multimedia benchmarking exercise between MEPAS, MMSOILS, PRESTO, and RESRAD. Source characteristics and a release mechanism are developed and described; also described is a typical process and procedure that an analyst would follow in developing a source term for using this class of analytical tool in a preliminary assessment.

  11. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  12. On the effect of using the Shapiro filter to smooth winds on a sphere

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Balgovind, R. C.

    1984-01-01

    Spatial differencing schemes which are not enstrophy conserving nor implicitly damping require global filtering of short waves to eliminate the build-up of energy in the shortest wavelengths due to aliasing. Takacs and Balgovind (1983) have shown that filtering on a sphere with a latitude dependent damping function will cause spurious vorticity and divergence source terms to occur if care is not taken to ensure the irrotationality of the gradients of the stream function and velocity potential. Using a shallow water model with fourth-order energy-conserving spatial differencing, it is found that using a 16th-order Shapiro (1979) filter on the winds and heights to control nonlinear instability also creates spurious source terms when the winds are filtered in the meridional direction.

  13. Numerical modeling of materials processing applications of a pulsed cold cathode electron gun

    NASA Astrophysics Data System (ADS)

    Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.

    1998-04-01

    A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.

  14. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    hour: the amount of energy available from one gigawatt in one hour. HFCS High - fructose corn syrup HHV High -heat value HICE Hydrogen internal combustion...63 Ethanol derived from corn .................................................... 63...particular, alternate fuels and energy sources are to be assessed in terms of multiple parameters, to include (but not limited to) stability, high & low

  15. Energy and human health.

    PubMed

    Smith, Kirk R; Frumkin, Howard; Balakrishnan, Kalpana; Butler, Colin D; Chafe, Zoë A; Fairlie, Ian; Kinney, Patrick; Kjellstrom, Tord; Mauzerall, Denise L; McKone, Thomas E; McMichael, Anthony J; Schneider, Mycle

    2013-01-01

    Energy use is central to human society and provides many health benefits. But each source of energy entails some health risks. This article reviews the health impacts of each major source of energy, focusing on those with major implications for the burden of disease globally. The biggest health impacts accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels and electricity in the world's poor households is a particularly serious risk for health. Although energy efficiency brings many benefits, it also entails some health risks, as do renewable energy systems, if not managed carefully. We do not review health impacts of climate change itself, which are due mostly to climate-altering pollutants from energy systems, but do discuss the potential for achieving near-term health cobenefits by reducing certain climate-related emissions.

  16. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  17. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan Bin; Choudhury, Imtiaz Ahmed; Taha, Zahari Bin

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  18. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.

    PubMed

    Bell, L W; Moore, A D; Thomas, D T

    2017-12-04

    Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop-livestock farms across diverse regions and climates.

  19. Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Kakoulaki, Georgia; Vousdoukas, Michalis; Voukouvalas, Evangelos; Feyen, Luc; Besio, Giovanni

    2018-06-01

    Parameterizing the dissipative effects of small, unresolved coastal features, is fundamental to improve the skills of wave models. The established technique to deal with this problem consists in reducing the amount of energy advected within the propagation scheme, and is currently available only for regular grids. To find a more general approach, Mentaschi et al., 2015b formulated a technique based on source terms, and validated it on synthetic case studies. This technique separates the parameterization of the unresolved features from the energy advection, and can therefore be applied to any numerical scheme and to any type of mesh. Here we developed an open-source library for the estimation of the transparency coefficients needed by this approach, from bathymetric data and for any type of mesh. The spectral wave model WAVEWATCH III was used to show that in a real-world domain, such as the Caribbean Sea, the proposed approach has skills comparable and sometimes better than the established propagation-based technique.

  20. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    NASA Astrophysics Data System (ADS)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  1. PHYSICS OF OUR DAYS: Dark energy and universal antigravitation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2008-03-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century.

  2. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less

  3. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  4. 40 CFR 424.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution... part 401 shall apply to this subpart. (b) The term Mwh shall mean megawatt hour(s) of electrical energy...

  5. NuSTAR view of the central region of M31

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Kong, A. K. H.

    2018-04-01

    Our neighbouring large spiral galaxy, the Andromeda galaxy (M31 or NGC 224), is an ideal target to study the X-ray source population of a nearby galaxy. NuSTAR observed the central region of M31 in 2015 and allows studying the population of X-ray point sources at energies higher than 10 keV. Based on the source catalogue of the large XMM-Newton survey of M31, we identified counterparts to the XMM-Newton sources in the NuSTAR data. The NuSTAR data only contain sources of a brightness comparable (or even brighter) than the selected sources that have been detected in XMM-Newton data. We investigate hardness ratios, spectra, and long-term light curves of individual sources obtained from NuSTAR data. Based on our spectral studies, we suggest four sources as possible X-ray binary candidates. The long-term light curves of seven sources that have been observed more than once show low (but significant) variability.

  6. Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran

    2011-01-01

    A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.

  7. Use of Renewable Energy in Contingency Operations

    DTIC Science & Technology

    2007-04-01

    generators to provide energy (Appendix B). Currently, the Biomass generators 13 utilizes coconut husks , bamboo, and wood as fuel sources to produce...America is addicted to oil ? encouraging Federal agencies to lead the way in developing more reliable alternative energy programs. In July 2006, MG...dependent of foreign oil . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 60

  8. Fermi large area telescope second source catalog

    DOE PAGES

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; ...

    2012-03-28

    Here, we present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are fluxmore » measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. Furthermore, we provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. Finally, the 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.« less

  9. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, P. L.; Ajello, M.; Allafort, A.

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurementsmore » in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.« less

  10. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons at Long Standoff Distances

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Sterbentz, J. W.; Yoon, W. Y.; Norman, D. R.

    2009-12-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung) or as a set of one or more discrete photon energies (i.e., monoenergetic). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). Our previous paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). This paper will pursue higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions in air and for an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening air environment.

  11. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  12. Global solutions and finite time blow-up for fourth order nonlinear damped wave equation

    NASA Astrophysics Data System (ADS)

    Xu, Runzhang; Wang, Xingchang; Yang, Yanbing; Chen, Shaohua

    2018-06-01

    In this paper, we study the initial boundary value problem and global well-posedness for a class of fourth order wave equations with a nonlinear damping term and a nonlinear source term, which was introduced to describe the dynamics of a suspension bridge. The global existence, decay estimate, and blow-up of solution at both subcritical (E(0) < d) and critical (E(0) = d) initial energy levels are obtained. Moreover, we prove the blow-up in finite time of solution at the supercritical initial energy level (E(0) > 0).

  13. Harvesting systems for multiple products an update for the United States

    Treesearch

    Bryce J. Stokes

    1998-01-01

    As expected, currently and for years to come, the demand for energy will increase, especially for transportation. Other increases will be for natural gas for residential and industriai use, and for renewables as a response to environmental awareness. However, for the short term, economics dictate energy source selection and use; bioenergy has not been competitive....

  14. Renewable Electricity Policy in Germany, 1974 to 2005

    ERIC Educational Resources Information Center

    Lauber, Volkmar; Mez, Lutz

    2006-01-01

    Of the large industrial countries, Germany is clearly leading with regard to new renewable energy sources, occupying first rank in terms of installed capacity for wind energy and second for photovoltaics. This is not because of an exceptional natural resource base but because of public policy in this area, despite the fact that this policy was…

  15. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  16. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  17. Towards sustainable and renewable systems for electrochemical energy storage.

    PubMed

    Tarascon, Jean-Marie

    2008-01-01

    Renewable energy sources and electric automotive transportation are popular topics in our belated energy-conscious society, placing electrochemical energy management as one of the major technological developments for this new century. Besides efficiency, any new storage technologies will have to provide advantages in terms of cost and environmental footprint and thus rely on sustainable materials that can be processed at low temperature. To meet such challenges future devices will require inspiration from living organisms and rely on either bio-inspired or biomimetic approaches.

  18. Role of large scale energy systems models in R and D planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, J.

    1980-11-01

    Long-term energy policy deals with the problem of finite supplies of convenient energy sources becoming more costly as they are depleted. The development of alternative technologies to provide new sources of energy and extend the lives of current ones is an attractive option available to government. Thus, one aspect of long-term energy policy involves investment in R and D. The importance of the problems addressed by R and D to the future of society (especially with regard to energy) dictates adoption of a cogent approach to resource allocation and to the designation of priorities for R and D. It ismore » hoped that energy systems models when properly used can provide useful inputs to this process. The influence of model results on energy policy makers who are not knowledgable about flaws or uncertainties in the models, errors in assumptions in model inputs which can result in faulty forecasts, the overall usefulness of energy system models, and model limitations are discussed. It is suggested that the large scale energy systems models currently used for assessing a broad spectrum of policy issues need to be replaced with reasonably simple models capable of dealing with uncertainty in a straightforward manner, and their methodologies and the meaning of their results should be transparent, especially to those removed from the modeling process. Energy models should be clearly related to specific issues. Methodologies should be clearly related to specific decisions, and should allow adjustments to be easily made for alternative assumptions and for additional knowledge gained during the evolution of the energy system. (LCL)« less

  19. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  20. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  1. Thermal electron heating rate: A derivation

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1983-01-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) = O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons; (2) a heating term evaluated on the energy surface m(e)/2 = E(T) at the transition between Maxwellian and tail electrons at E(T); and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two.

  2. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  3. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  4. The North American Energy System: Overview of the 3rd Chapter of SOCCR-2

    NASA Astrophysics Data System (ADS)

    Marcotullio, P. J.

    2016-12-01

    North America, including Canada, Mexico and the United States, has a large and complex energy system, which includes the extraction and conversion of primary energy sources and their storage, transmission, distribution and ultimate end use in the building, transportation and industrial sectors. The chapter overviews this system focusing on our understanding of the energy trends and system feedback dynamics, key drivers of change, and subsequent carbon emissions and the basis for carbon management. We also put the carbon emissions from the North American system in global context. Highlights include the changes to the system (sources, fuel mix, drivers, infrastructure, etc.,) over the past decade, and a review of scenarios that provide glimpses into future emissions levels and meeting the requirements for decarbonization in the medium and longer term.

  5. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  6. ENERGY AND OUR ENVIRONMENT: A SYSTEMS AND LIFE ...

    EPA Pesticide Factsheets

    This is a presentation to the North Carolina BREATE Conference on March 28, 2017. This presentation provides an overview of energy modeling capabilities in ORD, and includes examples related to scenario development, water-energy nexus, bioenergy, etc. The focus is on system approaches as well as life cycle assessment data and tools. Provide an overview of system and life cycle approaches to modeling medium to long-term changes in drivers of changes in emissions sources.

  7. An Artificial Neural System for Autonomous Undersea Vehicles

    DTIC Science & Technology

    1988-07-01

    Neutralization System (MNS) have provided remote operation capability, but suffer from the drag and short range of an umbilical cable. On-board energy ...link altogether. The loss of the hard wire umbilical cables in these two later systems, however, forced the vehicles to carry their own energy supply...submersibles. One is an energy source or renewal strategy that will sustain long-term voyages; the other is an effec- tive on-board computer that will

  8. Fermi Large Area Telescope Second Source Catalog

    NASA Astrophysics Data System (ADS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  9. Improving Energy Security for Air Force Installations

    NASA Astrophysics Data System (ADS)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  10. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  11. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  12. Solar-powered irrigation systems. Technical progress report, July 1977--January 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-02-28

    Dispersed solar thermal power systems applied to farm irrigation energy needs are analyzed. The 17 western states, containing 84% of nationwide irrigated croplands and consuming 93% of nationwide irrigation energy, have been selected to determine were solar irrigation systems can compete most favorably with conventional energy sources. Financial analysis of farms, according to size and ownership, was accomplished to permit realistic comparative analyses of system lifetime costs. Market potential of optimized systems has been estimated for the 17-state region for near-term (1985) and intermediate-term (2000) applications. Technical, economic, and institutional factors bearing on penetration and capture of this market aremore » being identified.« less

  13. The Effect of Growth Environment and Salinity on Lipid Production and Composition of Salicornia virginica

    NASA Technical Reports Server (NTRS)

    Bomani, Bilal Mark McDowell; Link, Dirk; Kail, Brian; Morreale, Bryan; Lee, Eric S.; Gigante, Bethany M.; Hendricks, Robert C.

    2014-01-01

    Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general.

  14. Follow-up of high energy neutrinos detected by the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Values of current energy technology costs and prices, available from a variety of sources, can sometimes vary. While some of this variation can be due to differences in the specific materials or configurations assumed, it can also reflect differences in the definition and context of the terms "cost" and "price." This fact sheet illustrates and explains this latter source of variation in a case study of automotive lithium-ion batteries.

  16. Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2013-09-01

    By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.

  17. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  18. Anaerobic fitness tests: what are we measuring?

    PubMed

    Van Praagh, Emmanuel

    2007-01-01

    Anaerobic fitness, during growth and development, has not received the same attention from researchers as aerobic fitness. This is surprising given the level of anaerobic energy used daily during childhood and adolescence. During physical activity and sport, the child is spontaneously more attracted to short-burst movements than to long-term activities. It is, however, well known that in anaerobic activities such as sprint cycling, sprint running or sprint swimming, the child's performance is distinctly poorer than that of the adult. This partly reflects the child's lesser ability to generate mechanical energy from chemical energy sources during short-term high-intensity work or exercise. Direct measurements of the rate or capacity of anaerobic pathways for energy turnover presents several ethical and methodological difficulties. Therefore, rather than measure energy supply, pediatric exercise scientists have concentrated on measuring short-term power output by means of standardized protocol tests such as short-term cycling power tests, running tests or vertical jump tests. There is, however, no perfect test and, therefore, it is important to acknowledge the benefits and limitations of each testing method. Mass-related short-term power output was shown to increase dramatically during growth and development, whereas the corresponding increase in peak blood lactate was considerably lower. This suggests that the observed difference between children and adolescents during short-term power output testing may be related to neuromuscular factors, hormonal factors and improved motor coordination.

  19. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  20. Demand-driven biogas production by flexible feeding in full-scale - Process stability and flexibility potentials.

    PubMed

    Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael

    2017-08-01

    For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandstätter, Markus; Rollinger, Bob

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device hasmore » been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.« less

  2. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    PubMed

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  3. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  4. The Elusive Excited Quintet [superscript 5]D of Tb(III): A Source of Luminescence and Resonance Energy Transfer in Terbium Compounds

    ERIC Educational Resources Information Center

    Klier, Kamil

    2010-01-01

    The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…

  5. Signature of inverse Compton emission from blazars

    NASA Astrophysics Data System (ADS)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  6. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  7. Alcohol, appetite and energy balance: is alcohol intake a risk factor for obesity?

    PubMed

    Yeomans, Martin R

    2010-04-26

    The increased recognition that the worldwide increase in incidence of obesity is due to a positive energy balance has lead to a focus on lifestyle choices that may contribute to excess energy intake, including the widespread belief that alcohol intake is a significant risk factor for development of obesity. This brief review examines this issue by contrasting short-term laboratory-based studies of the effects of alcohol on appetite and energy balance and longer-term epidemiological data exploring the relationship between alcohol intake and body weight. Current research clearly shows that energy consumed as alcohol is additive to that from other dietary sources, leading to short-term passive over-consumption of energy when alcohol is consumed. Indeed, alcohol consumed before or with meals tends to increase food intake, probably through enhancing the short-term rewarding effects of food. However, while these data might suggest that alcohol is a risk factor for obesity, epidemiological data suggests that moderate alcohol intake may protect against obesity, particularly in women. In contrast, higher intakes of alcohol in the absence of alcohol dependence may increase the risk of obesity, as may binge-drinking, however these effects may be secondary to personality and habitual beverage preferences. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Volume Averaging Study of the Capacitive Deionization Process in Homogeneous Porous Media

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2015-05-05

    Ion storage in porous electrodes is important in applications such as energy storage by supercapacitors, water purification by capacitive deionization, extraction of energy from a salinity difference and heavy ion purification. In this paper, a model is presented to simulate the charge process in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Transport between the electrolyte solution and the chargedmore » wall is described using the Gouy–Chapman–Stern model. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Finally, the source terms that appear in the average equations are calculated using numerical computations. An alternative way to deal with the source terms is proposed.« less

  9. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  10. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.

  11. A Systematic Search for Short-term Variability of EGRET Sources

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.; Griffis, N. J.; Bertsch, D. L.; Hartman, R. C.; Thompson, D. J.; Kniffen, D. A.; Bloom, S. D.

    2000-01-01

    The 3rd EGRET Catalog of High-energy Gamma-ray Sources contains 170 unidentified sources, and there is great interest in the nature of these sources. One means of determining source class is the study of flux variability on time scales of days; pulsars are believed to be stable on these time scales while blazers are known to be highly variable. In addition, previous work has demonstrated that 3EG J0241-6103 and 3EG J1837-0606 are candidates for a new gamma-ray source class. These sources near the Galactic plane display transient behavior but cannot be associated with any known blazers. Although, many instances of flaring AGN have been reported, the EGRET database has not been systematically searched for occurrences of short-timescale (approximately 1 day) variability. These considerations have led us to conduct a systematic search for short-term variability in EGRET data, covering all viewing periods through proposal cycle 4. Six 3EG catalog sources are reported here to display variability on short time scales; four of them are unidentified. In addition, three non-catalog variable sources are discussed.

  12. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  13. Magnetic Reconnection Driven by Thermonuclear Burning

    NASA Astrophysics Data System (ADS)

    Gatto, R.; Coppi, B.

    2017-10-01

    Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.

  14. Part 1 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora A.; Bellan, Josette

    2004-01-01

    This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

  15. Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.

    PubMed

    Raisali, G; Hajiloo, N; Hamidi, S; Aslani, G

    2006-08-01

    Study of the shield performance of a thallium-203 production target room has been investigated in this work. Neutron and gamma-ray equivalent dose rates at various points of the maze are calculated by simulating the transport of streaming neutrons, and photons using Monte Carlo method. For determination of neutron and gamma-ray source intensities and their energy spectrum, we have applied SRIM 2003 and ALICE91 computer codes to Tl target and its Cu substrate for a 145 microA of 28.5 MeV protons beam. The MCNP/4C code has been applied with neutron source term in mode n p to consider both prompt neutrons and secondary gamma-rays. Then the code is applied for the prompt gamma-rays as the source term. The neutron-flux energy spectrum and equivalent dose rates for neutron and gamma-rays in various positions in the maze have been calculated. It has been found that the deviation between calculated and measured dose values along the maze is less than 20%.

  16. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond

    NASA Astrophysics Data System (ADS)

    John Perkins, L.

    The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.

  17. Common uses and cited complications of energy in surgery.

    PubMed

    Sankaranarayanan, Ganesh; Resapu, Rajeswara R; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu

    2013-09-01

    Instruments that apply energy to cut, coagulate, and dissect tissue with minimal bleeding facilitate surgery. The improper use of energy devices may increase patient morbidity and mortality. The current article reviews various energy sources in terms of their common uses and safe practices. For the purpose of this review, a general search was conducted through NCBI, SpringerLink, and Google. Articles describing laparoscopic or minimally invasive surgeries using single or multiple energy sources are considered, as are articles comparing various commercial energy devices in laboratory settings. Keywords, such as laparoscopy, energy, laser, electrosurgery, monopolar, bipolar, harmonic, ultrasonic, cryosurgery, argon beam, laser, complications, and death were used in the search. A review of the literature shows that the performance of the energy devices depends upon the type of procedure. There is no consensus as to which device is optimal for a given procedure. The technical skill level of the surgeon and the knowledge about the devices are both important factors in deciding safe outcomes. As new energy devices enter the market increases, surgeons should be aware of their indicated use in laparoscopic, endoscopic, and open surgery.

  18. Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line

    NASA Astrophysics Data System (ADS)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.

  19. Renewable Energy Sources in Formation of South Urals Modern Urban Systems

    NASA Astrophysics Data System (ADS)

    Khudyakov, A. Ju; Shabiev, S. G.

    2017-11-01

    The article considers the vital problems of renewable energy sources using by the example of the South Urals as a part of a general energy system of the Russian Federation, makes a forecast and gives recommendations on the application of specific technologies: solar energy, wind energy, deep heat energy and geothermal energy. It also considers the influence of the climatology on selection of the development pattern for the alternative energy industry. The article contains an example of wind energy used as a driver of the Karabash company town development in the Chelyabinsk region. The development of the economic energy sector is extremely important for the Russian Federation, both from the point of view of strategic security and from the point of view of integration into a modern development on the principles of Sustainable Development. To provide a full understanding of the role of alternative energy in the energy sector of the country, the article presents the materials illustrating the regional potential in terms of alternative energy sources use. This article is a part of the global research on the settlement system evolution in the South Urals. The authors studied the historical, geographical, demographic, economic characteristics of the region. Finally, a forecast for development at the regional level was made. Some of the aforementioned results were obtained due to the testing research in the learning process of the students from the South Ural State University (national research university).

  20. The Development of Lifecycle Data for Hydrogen Fuel Production and Delivery

    DOT National Transportation Integrated Search

    2017-10-01

    An evaluation of renewable hydrogen production technologies anticipated to be available in the short, mid- and long-term timeframes was conducted. Renewable conversion pathways often rely on a combination of renewable and fossil energy sources, with ...

  1. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  2. A Non-Linear Model for Elastic Dielectric Crystals with Mobile Vacancies

    DTIC Science & Technology

    2009-07-01

    crystals, vacancies typically carry an electric charge [18,37]. Such charged vacancies notably influence dielectric properties and elec- trical loss...characteristics of capacitors, oscillators, and tunable fil- ters [19], for example those comprised of perovskite ceramic crystals such as barium titanate...thermomechanical and thermoelectrical couplings, respectively, and the final term capturing non-mechanical sources of heat energy. 3.3. Representative free energy

  3. Nuclear Power; Past, present and future

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2017-04-01

    This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?

  4. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  5. Effect of Americium-241 Content on Plutonium Radiation Source Terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    1998-12-28

    The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less

  6. Very High Energy Emission from the Binary System Cyg X-3

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Sinitsyna, V. Yu.

    2018-03-01

    Cyg X-3 is actively studied in the entire range of the electromagnetic spectrum from the radio band to ultrahigh energies. Based on the detection of ultrahigh-energy gamma-ray emission, it has been suggested that Cyg X-3 could be one of the most powerful sources of charged cosmic-ray particles in the Galaxy. We present the results of long-term observations of the Cygnus X-3 region at energies 800 GeV-100 TeV by the SHALON mirror Cherenkov telescope. In 1995 the SHALON observations revealed a new Galactic source of very high energy gamma-ray emission coincident in its coordinates with the microquasar Cyg X-3. To reliably identify the detected source with Cyg X-3, an analysis has been performed and an orbital period of 4.8 h has been found, which is a signature of Cyg X-3. A series of flares in Cyg X-3 at energies >800 GeV and their correlation with the activity in the X-ray and radio bands have been observed. The results obtained in a wide energy range for Cyg X-3, including those during the periods of relativistic jet events, are needed to find the connection and to understand the different components of an accreting binary system.

  7. The free energies of partially open coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Smith, D. F.

    1993-01-01

    A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.

  8. Formulation of US international energy policies

    NASA Astrophysics Data System (ADS)

    1980-09-01

    To find out how the United States develops international energy policy, GAO reviewed five major energy issues covering the period from early 1977 through 1979. The issues are: vulnerabilities to petroleum supply interruptions; long term national security strategy on imported oil prices; export of U.S. oil and gas production equipment and technology to the Soviety Union; World Bank initiatives to assist in financing oil and gas exploration and development in oil-importing developing countries; and the role of gas imports relative to the nation's future sources of gas.

  9. NEC violation in mimetic cosmology revisited

    DOE PAGES

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-06-28

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show thatmore » mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. Finally, we also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.« less

  10. NEC violation in mimetic cosmology revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show thatmore » mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. Finally, we also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.« less

  11. Optimum rocket propulsion for energy-limited transfer

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Landis, Geoffrey A.

    1991-01-01

    In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of Saturn.

  12. Strategic Energy Planning (Area 1) Consultants Reports to Citizen Potawatomi Nation Federally Recognized Indian Tribe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Marvin; Bose, James; Beier, Richard

    2004-12-01

    The assets that Citizen Potawatomi Nation holds were evaluated to help define the strengths and weaknesses to be used in pursuing economic prosperity. With this baseline assessment, a Planning Team will create a vision for the tribe to integrate into long-term energy and business strategies. Identification of energy efficiency devices, systems and technologies was made, and an estimation of cost benefits of the more promising ideas is submitted for possible inclusion into the final energy plan. Multiple energy resources and sources were identified and their attributes were assessed to determine the appropriateness of each. Methods of saving energy were evaluatedmore » and reported on and potential revenue-generating sources that specifically fit the tribe were identified and reported. A primary goal is to create long-term energy strategies to explore development of tribal utility options and analyze renewable energy and energy efficiency options. Associated goals are to consider exploring energy efficiency and renewable economic development projects involving the following topics: (1) Home-scale projects may include construction of a home with energy efficiency or renewable energy features and retrofitting an existing home to add energy efficiency or renewable energy features. (2) Community-scale projects may include medium to large scale energy efficiency building construction, retrofit project, or installation of community renewable energy systems. (3) Small business development may include the creation of a tribal enterprise that would manufacture and distribute solar and wind powered equipment for ranches and farms or create a contracting business to include energy efficiency and renewable retrofits such as geothermal heat pumps. (4) Commercial-scale energy projects may include at a larger scale, the formation of a tribal utility formed to sell power to the commercial grid, or to transmit and distribute power throughout the tribal community, or hydrogen production, and propane and natural-gas distribution systems.« less

  13. Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review

    PubMed Central

    Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

    2014-01-01

    Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. Conclusions We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake. PMID:24454704

  14. Teaching about Transportation.

    ERIC Educational Resources Information Center

    Paine, Carolyn; Arnold, Anne Jurmu

    1983-01-01

    A teaching unit on transportation compares the costs of various modes of transportation--private automobile, bus, and bicycle--in terms of energy efficiency and air pollution. Class projects on transportation are suggested, along with sources of further information and a reading list for children. (PP)

  15. Identifying and reducing error in cluster-expansion approximations of protein energies.

    PubMed

    Hahn, Seungsoo; Ashenberg, Orr; Grigoryan, Gevorg; Keating, Amy E

    2010-12-01

    Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy. The method consists of several steps. First, for a given protein structure, a training set of sequences with known energies is generated. Next, this training set is used to expand energy as a function of clusters consisting of single residues, residue pairs, and higher order terms, if required. The accuracy of the sequence-based expansion is monitored and improved using cross-validation testing and iterative inclusion of additional clusters. As a trade-off for evaluation speed, the cluster-expansion approximation causes prediction errors, which can be reduced by including more training sequences, including higher order terms in the expansion, and/or reducing the sequence space described by the cluster expansion. This article analyzes the sources of error and introduces a method whereby accuracy can be improved by judiciously reducing the described sequence space. The method is applied to describe the sequence-stability relationship for several protein structures: coiled-coil dimers and trimers, a PDZ domain, and T4 lysozyme as examples with computationally derived energies, and SH3 domains in amphiphysin-1 and endophilin-1 as examples where the expanded pseudo-energies are obtained from experiments. Our open-source software package Cluster Expansion Version 1.0 allows users to expand their own energy function of interest and thereby apply cluster expansion to custom problems in protein design. © 2010 Wiley Periodicals, Inc.

  16. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  17. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  18. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  19. A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1993-01-01

    This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.

  20. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiencymore » programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different cost recovery approaches that integrate alternative revenue sources. We also analyze alternative lost fixed cost recovery approaches to better understand how to mitigate the erosion of utility shareholder returns in states that have adopted (and achieved) very aggressive savings targets.« less

  1. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  2. Conversion of Grazed Pastures to Energy Cane as a Biofuel Feedstock Alters Soil GHG Fluxes

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; Bernacchi, C.; DeLucia, E. H.

    2013-12-01

    Changes in land use profoundly affect climate through variations in soil Greenhouse Gas (GHG) exchange. The need for alternative energies is accelerating land use change as marginal land or managed ecosystems are being converted to highly productive second-generation bioenergy crops such as energy cane (Saccharum spp. L). Although the deployment of energy cane is a promising strategy to meet global bioenergy industry demands, few studies have investigated soil GHG fluxes in these crops and sub-tropical low-intensity grazing pasture (bahiagrass, Paspalum notatum L., as forage for cattle, Bos taurus L.) with which they are competing for land. Here, we showed that soil N2O fluxes in bioenergy crops were higher (>250%) than those observed in pastures following fertilization when soil moisture and temperature were high. In the absence of recent fertilization, the N2O source strength in energy cane and pasture sites was similar. Under drier and cooler soil conditions, both pastures and bioenergy crops were weak sources of N2O even when energy cane plots were recently fertilized. Soils on grazed pastures were sources of CH4 during the wet season but became sinks under drier, colder conditions. Energy cane plantations were weak sources of CH4 over a complete wet-dry seasonal cycle. The heterotrophic component of soil respiration was larger (139-155%) in pastures than in energy cane crops, suggesting lower decomposition of SOC in bioenergy crops. In terms of global warming potential, grazed pastures were stronger (120-150%) soil GHG emitters than energy cane crops over a complete wet-dry seasonal cycle. Moreover, pastures became a substantial source of GHG emitters when including estimates of CH4 flux from cattle. Our results suggest that the conversion of pasture to energy cane will be beneficial in relation to GHGs emitted from soils and cattle. Improved understanding of land use impact on soil GHG dynamics will provide valuable information for decision makers debating sustainable bioenergy policies.

  3. Auroral Proper Motion in the Era of AMISR and EMCCD

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.

    2016-12-01

    The term "aurora" is a catch-all for luminosity produced by the deposition of magnetospheric energy in the outer atmosphere. The use of this single phenomenological term occludes the rich variety of sources and mechanisms responsible for the excitation. Among these are electron thermal conduction (SAR arcs), electrostatic potential fields ("inverted-V" aurora), wave-particle resonance (Alfvenic aurora, pulsating aurora), pitch-angle scattering (diffuse aurora), and direct injection of plasma sheet particles (PBIs, substorms). Much information about auroral energization has been derived from the energy spectrum of primary particles, which may be measured directly with an in situ detector or indirectly via analysis of the atmospheric response (e.g., auroral spectroscopy, tomography, ionization). Somewhat less emphasized has been the information in the B_perp dimension. Specifically, the scale-dependent motions of auroral forms in the rest frame of the ambient plasma provide a means of partitioning both the source region and the source mechanism. These results, in turn, affect ionospheric state parameters that control the M-I coupling process-most notably, the degree of structure imparted to the conductance field. This paper describes recent results enabled by the advent of two technologies: high frame-rate, high-resolution imaging detectors, and electronically steerable incoherent scatter radar (the AMISR systems). In addition to contributing to our understanding of the aurora, these results may be used in predictive models of multi-scale energy transfer within the disturbed geospace system.

  4. Literature review of the energy sources for performing laparoscopic colorectal surgery

    PubMed Central

    Hotta, Tsukasa; Takifuji, Katsunari; Yokoyama, Shozo; Matsuda, Kenji; Higashiguchi, Takashi; Tominaga, Toshiji; Oku, Yoshimasa; Watanabe, Takashi; Nasu, Toru; Hashimoto, Tadamichi; Tamura, Koichi; Ieda, Junji; Yamamoto, Naoyuki; Iwamoto, Hiromitsu; Yamaue, Hiroki

    2012-01-01

    Laparoscopic surgery for colorectal disease has become widespread as a minimally invasive treatment. This is important because the increasing availability of new devices allows us to perform procedures with a reduced length of surgery and decreased blood loss. We herein report the results of a literature review of energy sources for laparoscopic colorectal surgery, focused especially on 6 studies comparing ultrasonic coagulating shears (UCS) and other instruments. We also describe our laparoscopic dissection techniques using UCS for colorectal cancer. The short-term outcomes of surgeries using UCS and Ligasure for laparoscopic colorectal surgery were superior to conventional electrosurgery. Some authors have reported that the length of surgery or blood loss when Ligasure was used for laparoscopic colorectal surgery is less than when UCS was used. On the other hand, a recent study demonstrated that there were no significant differences between the short-term outcomes of UCS and Ligasure for laparoscopic colorectal surgery. It is therefore suggested that the choice of technique used should be made according to the surgeon’s preference. We also describe our laparoscopic dissection techniques using UCS (Harmonic ACE) for colorectal cancer with regard to the retroperitoneum dissection, dissection technique, dissection technique around the feeding artery, and various other dissection techniques. We therefore review the outcomes of using various energy sources for laparoscopic colorectal surgery and describe our laparoscopic dissection techniques with UCS (Harmonic ACE) for colorectal cancer. PMID:22347536

  5. Hydrogen use projections and supply options

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1976-01-01

    Two projections of future hydrogen demand, based on the Ford technical fix and the Westinghouse nuclear electric economy energy supply and demand scenarios, are analyzed. It is suggested that hydrogen use will increase during the remainder of this century by at least a factor of five, and perhaps by a factor of twenty. Primary energy sources for producing hydrogen are discussed in terms of the transition from low to high demand for hydrogen.

  6. The potential contribution of geothermal energy to electricity supply in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Chandrasekharam, D.; Lashin, Aref; Al Arifi, Nassir

    2016-10-01

    With increase in demand for electricity at 7.5% per year, the major concern of Saudi Arabia is the amount of CO2 being emitted. The country has the potential of generating 200×106 kWh from hydrothermal sources and 120×106 terawatt hour from Enhanced Geothermal System (EGS) sources. In addition to electricity generation and desalination, the country has substantial source for direct application such as space cooling and heating, a sector that consumes 80% of the electricity generated from fossil fuels. Geothermal energy can offset easily 17 million kWh of electricity that is being used for desalination. At least a part of 181,000 Gg of CO2 emitted by conventional space cooling units can also be mitigated through ground-source heat pump technology immediately. Future development of EGS sources together with the wet geothermal systems will make the country stronger in terms of oil reserves saved and increase in exports.

  7. Extended lattice Boltzmann scheme for droplet combustion.

    PubMed

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  8. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  9. High energy variability of 3C 273 during the AGILE multiwavelength campaign of December 2007-January 2008

    NASA Astrophysics Data System (ADS)

    Pacciani, L.; Donnarumma, I.; Vittorini, V.; D'Ammando, F.; Fiocchi, M. T.; Impiombato, D.; Stratta, G.; Verrecchia, F.; Bulgarelli, A.; Chen, A. W.; Giuliani, A.; Longo, F.; Pucella, G.; Vercellone, S.; Tavani, M.; Argan, A.; Barbiellini, G.; Boffelli, F.; Caraveo, P. A.; Cattaneo, P. W.; Cocco, V.; Costa, E.; Del Monte, E.; Di Cocco, G.; Evangelista, Y.; Feroci, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Marisaldi, M.; Mereghetti, S.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Prest, M.; Rapisarda, M.; Soffitta, P.; Trifoglio, M.; Tosti, G.; Trois, A.; Vallazza, E.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Pittori, C.; Salotti, L.

    2009-01-01

    Context: We report the results of a 3-week multi-wavelength campaign targeting the flat spectrum radio quasar 3C 273 carried out with the AGILE gamma-ray mission, covering the 30 MeV-50 GeV and 18-60 keV, the REM observatory (covering the near-IR and optical), Swift (near-UV/Optical, 0.2-10 keV and 15-50 keV), INTEGRAL (3-200 keV) and Rossi XTE (2-12 keV). This is the first observational campaign including gamma-ray data, after the last EGRET observations, more than 8 years ago. Aims: This campaign has been organized by the AGILE team with the aim of observing, studying and modelling the broad band energy spectrum of the source, and its variability on a week timescale, testing the emission models describing the spectral energy distribution of this source. Methods: Our study was carried out using simultaneous light curves of the source flux from all the involved instruments, in the different energy ranges, to search for correlated variability. Then a time-resolved spectral energy distribution was used for a detailed physical modelling of the emission mechanisms. Results: The source was detected in gamma-rays only in the second week of our campaign, with a flux comparable to the level detected by EGRET in June 1991. We found an indication of a possible anti-correlation between the emission at gamma-rays and at soft and hard X-rays, supported by the complete set of instruments. Instead, optical data do not show short term variability, as expected for this source. Only in two preceding EGRET observations (in 1993 and 1997) 3C 273 showed intra-observation variability in gamma-rays. In the 1997 observation, flux variation in gamma-rays was associated with a synchrotron flare. The energy-density spectrum with almost simultaneous data partially covers the regions of synchrotron emission, the big blue bump, and the inverse-Compton. We adopted a leptonic model to explain the hard X/gamma-ray emissions, although from our analysis hadronic models cannot be ruled out. In the adopted model, the soft X-ray emission is consistent with combined synchrotron-self Compton and external Compton mechanisms, while hard X and gamma-ray emissions are compatible with external Compton from thermal photons of the disk. Under this model, the time evolution of the spectral energy distribution is well interpreted and modelled in terms of an acceleration episode of the electron population, leading to a shift in the inverse Compton peak towards higher energies.

  10. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  11. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    NASA Astrophysics Data System (ADS)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  13. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  14. Energy decay of a viscoelastic wave equation with supercritical nonlinearities

    NASA Astrophysics Data System (ADS)

    Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya

    2018-06-01

    This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: u_{tt}- k(0) Δ u - \\int \\limits _0^{&infty } k'(s) Δ u(t-s) ds +|u_t|^{m-1}u_t =|u|^{p-1}u, { in } Ω × (0,T), u(x,t)=u_0(x,t), \\quad { in } Ω × (-∞,0]), where Ω is a bounded domain in R^3 with a Dirichlét boundary condition and u_0 represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u_0 is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k'(s) as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778-3812, 2014, J Differ Equ 262:1956-1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞.

  15. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  16. Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Taira, T.; Aizu, E.; Hiraiwa, H.; Kobayashi, T.; Niu, K.; Ohta, I.; Golden, R. L.; Koss, T. A.

    1980-01-01

    The results of a series of emulsion exposures, beginning in Japan in 1968 and continued in the U.S. since 1975, which have yielded a total balloon-altitude exposure of 98,700 sq m sr s, are presented. The data are discussed in terms of several models of cosmic-ray propagation. Interpreted in terms of the energy-dependent leaky-box model, the spectrum results suggest a galactic electron residence time of 1.0(+2.0, -0.5) x 10 to the 7th yr, which is consistent with results from Be-10 observations. Finally, the possibility that departures from smooth power law behavior in the spectrum due to individual nearby sources will be observable in the energy range above 1 TeV is discussed.

  17. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.

  18. Review of magnetostrictive vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  19. Derivation and application of the reciprocity relations for radiative transfer with internal illumination

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.

    1975-01-01

    A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.

  20. Factors of Renewable Energy Deployment and Empirical Studies of United States Wind Energy

    NASA Astrophysics Data System (ADS)

    Can Sener, Serife Elif

    Considered essential for countries' development, energy demand is growing worldwide. Unlike conventional sources, the use of renewable energy sources has multiple benefits, including increased energy security, sustainable economic growth, and pollution reduction, in particular greenhouse gas emissions. Nevertheless, there is a considerable difference in the share of renewable energy sources in national energy portfolios. This dissertation contains a series of studies to provide an outlook on the existing renewable energy deployment literature and empirically identify the factors of wind energy generation capacity and wind energy policy diffusion in the U.S. The dissertation begins with a systematic literature review to identify drivers and barriers which could help in understanding the diverging paths of renewable energy deployment for countries. In the analysis, economic, environmental, and social factors are found to be drivers, whereas political, regulatory, technical potential and technological factors are not classified as either a driver or a barrier (i.e., undetermined). Each main category contains several subcategories, among which only national income is found to have a positive impact, whereas all other subcategories are considered undetermined. No significant barriers to the deployment of renewable energy sources are found over the analyzed period. Wind energy deployment within the states related to environmental and economic factors was seldom discussed in the literature. The second study of the dissertation is thus focused on the wind energy deployment in the United States. Wind energy is among the most promising clean energy sources and the United States has led the world in per capita newly installed generation capacity since 2000. In the second study, using a fixed-effects panel data regression analysis, the significance of a number of economic and environmental factors are investigated for 39 states from 2000 to 2015. The results suggested that the increase in economic factors is related to a significant increase in the installed wind energy capacity, whereas, the increase in environmental factors is related to a significant decrease in the installed wind capacity. The final study explores the factors of diffusion of state- and local-level wind energy support policies which are considered fundamental factors of the continuum and development of wind power in the United States. To reveal the internal determinants of state's wind energy policy diffusion, we further narrow the scope and control for the geographical region in the final study. We limit our analysis to seven neighboring Midwestern states, which are located in the center of United States wind energy corridor. Using data from 2008 to 2015, the study investigates the significance of the following internal factors: wind power potential, per capita gross state product, unemployment rate, per capita value of the agriculture sector, number of establishments in agricultural sector, and state government control. Through the addition of interaction terms, the study also considers the behavioral differences in the explanatory variables under Republican and non-Republican state governance. Our findings suggest that the economic development potential and related environmental benefits were the common motivation for state- and local-level policy makers. Lastly, technical terms and agricultural sector presence provides additional motives for the state level diffusion of wind energy policies. The findings of this dissertation are expected to contribute to the understanding of how countries and states might best stimulate and support renewable energy, and in particular wind energy, deployment.

  1. Energy droughts in a 100% renewable electricity mix

    NASA Astrophysics Data System (ADS)

    Raynaud, Damien; Hingray, Benoît; François, Baptiste; Creutin, Jean-Dominique

    2017-04-01

    During the 21st conference of parties, 175 countries agreed on limiting the temperature increase due to global warming to 2°C above preindustrial levels. Such an ambitious goal necessitates a deep transformation of our society in order to reduce greenhouse gas (GHG) emissions. Europe has started its energy transition years ago by, for instance, increasing the share of renewables in the European electricity generation and should continue in this direction. Variable renewable energies (VRE) and especially those driven by weather conditions (namely wind, solar and hydro power from river flow), are expected to play a key role in achieving the GHG reduction target. However, these renewables are often criticized for their intermittency and for the resulting difficult integration in the power supply system, especially for large shares of VRE in the energy mix. Assessing the feasibility of electricity generation using large contributions of VRE requires a deep understanding and characterization of the VRE spatiotemporal variations. In the last decade, many studies have focused on the short-term intermittency of VRE generation, but the persistency and the characteristics of periods of low/high electricity generation have been rarely studied. Yet, these particular situations require some demanding adaptations of the power supply system in term of back-up sources or production curtailment respectively. This study focuses on what we call "energy droughts" which, by analogy with hydrological or meteorological droughts, are defined as periods of very low energy production. We consider in turn "energy droughts" associated to wind, solar and hydro power (run-of-the-river). Their characteristics are estimated for 12 European regions being subjected to different climatic regimes. For each region and energy source, "droughts" are evaluated from a 30-yr time series of power generation (1983-2012). These series are simulated by using a suite of weather-to-energy conversion models with generic power systems (generic wind, solar and hydro power plant) and observations or pseudo-observations of meteorological drivers. The daily river discharge series required for hydro power are generated using a hydrological model. Our results demonstrate the diversity of characteristics of energy droughts not only from one energy source to the other, but also depending on the region and on the season considered. Wind power generally presents short but frequent energy droughts whereas hydro-power-related droughts are rare but generally long lasting. Solar power is mainly driven by the length of daytime resulting in long winter "solar drought" in Northern regions. We finally assess the energy droughts characteristics of an energy mix for which the three VRE sources are combined. The proportions of wind, solar and hydro power considered in the regional mixes are based on the work of François et al. (2016b). Mixing VRE sources efficiently reduces both duration and frequency of energy droughts leading to a more reliable power supply. References : François, B., Hingray, B., Raynaud, D., Borga, M., Creutin, J.D., 2016b. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renew. Energy 87, 686-696. doi:10.1016/j.renene.2015.10.064

  2. Automorphic properties of low energy string amplitudes in various dimensions

    NASA Astrophysics Data System (ADS)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2010-04-01

    This paper explores the moduli-dependent coefficients of higher-derivative interactions that appear in the low-energy expansion of the four-supergraviton amplitude of maximally supersymmetric string theory compactified on a d torus. These automorphic functions are determined for terms up to order ∂6R4 and various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various logarithms, although the string theory expressions are finite. This analysis includes intriguing representations of SL(d) and SO(d,d) Eisenstein series in terms of toroidally compactified one and two-loop string and supergravity amplitudes.

  3. Preparing aircraft propulsion for a new era in energy and the environment

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Nored, D. L.; Grobman, J. S.; Feiler, C. E.; Petrash, D. A.

    1980-01-01

    Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.

  4. Experimental and numerical study of impact of voltage fluctuate, flicker and power factor wave electric generator to local distribution

    NASA Astrophysics Data System (ADS)

    Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan

    2017-10-01

    Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.

  5. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  6. The IEA/ORAU Long-Term Global Energy- CO2 Model: Personal Computer Version A84PC

    DOE Data Explorer

    Edmonds, Jae A.; Reilly, John M.; Boden, Thomas A. [CDIAC; Reynolds, S. E. [CDIAC; Barns, D. W.

    1995-01-01

    The IBM A84PC version of the Edmonds-Reilly model has the capability to calculate both CO2 and CH4 emission estimates by source and region. Population, labor productivity, end-use energy efficiency, income effects, price effects, resource base, technological change in energy production, environmental costs of energy production, market-penetration rate of energy-supply technology, solar and biomass energy costs, synfuel costs, and the number of forecast periods may be interactively inspected and altered producing a variety of global and regional CO2 and CH4 emission scenarios for 1975 through 2100. Users are strongly encouraged to see our instructions for downloading, installing, and running the model.

  7. AMOEBA 2.0: A physics-first approach to biomolecular simulations

    NASA Astrophysics Data System (ADS)

    Rackers, Joshua; Ponder, Jay

    The goal of the AMOEBA force field project is to use classical physics to understand and predict the nature of interactions between biological molecules. While making significant advances over the past decade, the ultimate goal of predicting binding energies with ``chemical accuracy'' remains elusive. The primary source of this inaccuracy comes from the physics of how molecules interact at short range. For example, despite AMOEBA's advanced treatment of electrostatics, the force field dramatically overpredicts the electrostatic energy of DNA stacking interactions. AMOEBA 2.0 works to correct these errors by including simple, first principles physics-based terms to account for the quantum mechanical nature of these short-range molecular interactions. We have added a charge penetration term that considerably improves the description of electrostatic interactions at short range. We are reformulating the polarization term of AMOEBA in terms of basic physics assertions. And we are reevaluating the van der Waals term to match ab initio energy decompositions. These additions and changes promise to make AMOEBA more predictive. By including more physical detail of the important short-range interactions of biological molecules, we hope to move closer to the ultimate goal of true predictive power.

  8. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less

  9. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    PubMed

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  10. History of surgery for atrial fibrillation.

    PubMed

    Edgerton, Zachary J; Edgerton, James R

    2009-12-01

    There is a rich history of surgery for atrial fibrillation. Initial procedures were aimed at controlling the ventricular response rate. Later procedures were directed at converting atrial fibrillation to normal sinus rhythm. These culminated in the Cox Maze III procedure. While highly effective, the complexity and morbidity of the cut and sew Maze III limited its adoption. Enabling technology has developed alternate energy sources designed to produce a transmural atrial scar without cutting and sewing. Termed the Maze IV, this lessened the morbidity of the procedure and widened the applicability. Further advances in minimal access techniques are now being developed to allow totally thorascopic placement of all the left atrial lesions on the full, beating heart, using alternate energy sources.

  11. Glossary of CERCLA-related terms and acronyms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-10-01

    This glossary contains CERCLA-related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended, related federal rulemakings (e.g., 40 CFR 300, National Oil and Hazardous Substances Pollution Contingency Plan), assorted guidance documents prepared by the US Environmental Protection Agency (EPA), and DOE Order 5400.4. The source of each term is noted after the term. Terms presented in this document reflect revised and new definitionsmore » published before June 1, 1991. 20 refs.« less

  12. Multicriteria analysis for sources of renewable energy using data from remote sensing

    NASA Astrophysics Data System (ADS)

    Matejicek, L.

    2015-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more preferred classes for utilization of sources of renewable energy due to an increase area of reclaimed sites. Using data from remote sensing, such as the multispectral images and the CORINE land cover datasets, can reduce the financial resources currently required for finding and assessing suitable areas.

  13. Using particle swarm optimization to enhance PI controller performances for active and reactive power control in wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Cherkaoui, M.; Hbib, M.

    2018-05-01

    Recently, renewable energy sources are impacting seriously power quality of the grids in term of frequency and voltage stability, due to their intermittence and less forecasting accuracy. Among these sources, wind energy conversion systems (WECS) received a great interest and especially the configuration with Doubly Fed Induction Generator. However, WECS strongly nonlinear, are making their control not easy by classical approaches such as a PI. In this paper, we continue deepen study of PI controller used in active and reactive power control of this kind of WECS. Particle Swarm Optimization (PSO) is suggested to improve its dynamic performances and its robustness against parameters variations. This work highlights the performances of PSO optimized PI control against classical PI tuned with poles compensation strategy. Simulations are carried out on MATLAB-SIMULINK software.

  14. Measurement And Calculation of High-Energy Neutron Spectra Behind Shielding at the CERF 120-GeV/C Hadron Beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, N.; /SLAC; Taniguchi, S.

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeVmore » and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.« less

  15. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  16. Teaching Energy to a General Audience

    NASA Astrophysics Data System (ADS)

    Baski, Alison; Hunnicutt, Sally

    2010-02-01

    A new, interdisciplinary course entitled ``Energy!'' has been developed by faculty in the physics and chemistry departments to meet the university's science and technology general education requirement. This course now enrolls over 400 students each semester in a single lecture where faculty from both departments co-teach throughout the term. Topics include the fundamentals of energy, fossil fuels, global climate change, nuclear energy, and renewable energy sources. The students represent an impressive range of majors (science, engineering, business, humanities, etc.) and comprise freshmen to seniors. To effectively teach this diverse audience and increase classroom engagement, in-class ``clickers'' are used with guided questions to teach concepts, which are then explicitly reinforced with online LON-CAPAfootnotetextFree open-source distributed learning content management and assessment system (www.lon-capa.org) homework. This online system enables immediate feedback in a structured manner, where students can practice randomized versions of problems for homework, quizzes, and exams. The course is already in high demand after only two semesters, in part because it is particularly relevant to students given the challenging energy and climate issues facing the nation and world. )

  17. The role of nuclear energy in mitigating greenhouse warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhousemore » warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.« less

  18. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  19. Energy as a Constraint on Habitability in the Subsurface

    NASA Astrophysics Data System (ADS)

    Hoehler, T.

    2008-12-01

    All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.

  20. TRANSPORTATION FUEL FROM CELLULOSIC BIOMASS: A COMPARATIVE ASSESSMENT OF ETHANOL AND METHANOL OPTIONS

    EPA Science Inventory

    Future sources of renewable fuel energy will be needed to supplement or displace petroleum. Biomass can be converted to ethanol or methanol, either having good properties as motor fuel, but distinctly different production technology. Those technologies are compared in terms of ...

  1. Development, beam characterization and chromosomal effectiveness of X-rays of RBC characteristic X-ray generator.

    PubMed

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Takatsuji, Toshihiro; Ejima, Yosuke; Saigusa, Shin; Tachibana, Akira; Sasaki, Masao S

    2006-06-01

    A characteristic hot-filament type X-ray generator was constructed for irradiation of cultured cells. The source provides copper K, iron K, chromium K, molybdenum L, aluminium K and carbon K shell characteristic X-rays. When cultured mouse m5S cells were irradiated and frequencies of dicentrics were fitted to a linear-quadratic model, Y = alphaD + betaD2, the chromosomal effectiveness was not a simple function of photon energy. The alpha-terms increased with the decrease of the photon energy and then decreased with further decrease of the energy with an inflection point at around 10 keV. The beta-terms stayed constant for the photon energy down to 10 keV and then increased with further decrease of energy. Below 10 keV, the relative biological effectiveness (RBE) at low doses was proportional to the photon energy, which contrasted to that for high energy X- or gamma-rays where the RBE was inversely related with the photon energy. The reversion of the energy dependency occurred at around 1-2 Gy, where the RBE of soft X-rays was insensitive to X-ray energy. The reversion of energy-RBE relation at a moderate dose may shed light on the controversy on energy dependency of RBE of ultrasoft X-rays in cell survival experiments.

  2. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  3. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Anderson, S G; Barty, C J

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less

  4. Beamed Energy Propulsion: Research Status And Needs--Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkan, Mitat

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrin, Tess E.; Davis, Robert G.; Wilkerson, Andrea M.

    This GATEWAY project evaluated four field installations to better understand the long-term performance of a number of LED products, which can hopefully stimulate improvements in designing, manufacturing, specifying, procuring, and installing LED products. Field studies provide the opportunity to discover and investigate issues that cannot be simulated or uncovered in a laboratory, but the installed performance over time of commercially available LED products has not been well documented. Improving long-term performance can provide both direct energy savings by reducing the need to over-light to account for light loss and indirect energy savings through better market penetration due to SSL’s competitivemore » advantages over less-efficient light source technologies. The projects evaluated for this report illustrate that SSL use is often motivated by advantages other than energy savings, including maintenance savings, easier integration with control systems, and improved lighting quality.« less

  6. Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources

    NASA Astrophysics Data System (ADS)

    Kazeminezhad, Mohammad Hossein; Siadatmousavi, Seyed Mostafa

    2017-07-01

    The third-generation wave model, WAVEWATCH III, was employed to simulate bulk wave parameters in the Persian Gulf using three different wind sources: ERA-Interim, CCMP, and GFS-Analysis. Different formulations for whitecapping term and the energy transfer from wind to wave were used, namely the Tolman and Chalikov (J Phys Oceanogr 26:497-518, 1996), WAM cycle 4 (BJA and WAM4), and Ardhuin et al. (J Phys Oceanogr 40(9):1917-1941, 2010) (TEST405 and TEST451 parameterizations) source term packages. The obtained results from numerical simulations were compared to altimeter-derived significant wave heights and measured wave parameters at two stations in the northern part of the Persian Gulf through statistical indicators and the Taylor diagram. Comparison of the bulk wave parameters with measured values showed underestimation of wave height using all wind sources. However, the performance of the model was best when GFS-Analysis wind data were used. In general, when wind veering from southeast to northwest occurred, and wind speed was high during the rotation, the model underestimation of wave height was severe. Except for the Tolman and Chalikov (J Phys Oceanogr 26:497-518, 1996) source term package, which severely underestimated the bulk wave parameters during stormy condition, the performances of other formulations were practically similar. However, in terms of statistics, the Ardhuin et al. (J Phys Oceanogr 40(9):1917-1941, 2010) source terms with TEST405 parameterization were the most successful formulation in the Persian Gulf when compared to in situ and altimeter-derived observations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet.more » Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.« less

  8. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  9. A simple optical system delivering a tunable micrometer pink beam that can compensate for heat-induced deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reininger, Ruben; Liu, Zunping; Doumy, Gilles

    2015-06-09

    The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) revealsmore » that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick–Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.« less

  10. Spatio-temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier

    NASA Astrophysics Data System (ADS)

    Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.

    2000-06-01

    Climatic processes, operating at a range of scales, drive energy fluxes at the glacier surface which control meltwater generation and ultimately runoff. Nevertheless, to date, most glacier microclimate research has been both temporally (short-term) and spatially (single station) restricted. This paper addresses this knowledge gap by reporting on a detailed, empirical study which characterizes spatio-temporal variations in and linkages between glacier microclimate, surface energy and mass exchanges within a small glacierized cirque (Taillon Glacier, French Pyrénées) over two melt seasons. Data collected at five automatic weather stations (AWSs) and over ablation stake networks suggest that topoclimates, altitude and transient snowline position primarily determine the distribution of glacier energy receipt and, in turn, snow- and ice-melt patterns. Generally net radiation is the dominant energy source, followed by sensible heat, while latent heat is an energy sink. However, the magnitude and partitioning of energy balance terms, and consequently ablation, vary across the glacier both seasonally and with prevailing weather conditions. Importantly, this paper demonstrates that such monitoring programmes are required to truly represent and provide a sound basis for modelling glacier energy and mass-balances in both space and time.

  11. Generalized reference fields and source interpolation for the difference formulation of radiation transport

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham

    2010-03-01

    In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.

  12. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.

    PubMed

    Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep

    2016-02-01

    Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.

  13. Beamed Energy Propulsion: Research Status And Needs--Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkan, Mitat

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.« less

  14. Particle transport in low-energy ventilation systems. Part 1: theory of steady states.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.

  15. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  16. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    NASA Astrophysics Data System (ADS)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  17. Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study

    EPA Science Inventory

    The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...

  18. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Developments in Earth-based radio technology are reported. The Deep Space Network is discussed in terms of its advanced systems, network and facility engineering and implementation, operations, and energy sources. Problems in pulse communication and radio frequency interference are addressed with emphasis on pulse position modulation and laser beam collimation.

  19. Geothermal Grows Up

    ERIC Educational Resources Information Center

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  20. Does the Method of Weight Loss Effect Long-Term Changes in Weight, Body Composition or Chronic Disease Risk Factors in Overweight or Obese Adults? A Systematic Review

    PubMed Central

    Washburn, Richard A.; Szabo, Amanda N.; Lambourne, Kate; Willis, Erik A.; Ptomey, Lauren T.; Honas, Jeffery J.; Herrmann, Stephen D.; Donnelly, Joseph E.

    2014-01-01

    Background Differences in biological changes from weight loss by energy restriction and/or exercise may be associated with differences in long-term weight loss/regain. Objective To assess the effect of weight loss method on long-term changes in weight, body composition and chronic disease risk factors. Data Sources PubMed and Embase were searched (January 1990-October 2013) for studies with data on the effect of energy restriction, exercise (aerobic and resistance) on long-term weight loss. Twenty articles were included in this review. Study Eligibility Criteria Primary source, peer reviewed randomized trials published in English with an active weight loss period of >6 months, or active weight loss with a follow-up period of any duration, conducted in overweight or obese adults were included. Study Appraisal and Synthesis Methods Considerable heterogeneity across trials existed for important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and grouped by comparisons (e.g. diet vs. aerobic exercise, diet vs. diet + aerobic exercise etc.) and study design (long-term or weight loss/follow-up). Results Forty percent of trials reported significantly greater long-term weight loss with diet compared with aerobic exercise, while results for differences in weight regain were inconclusive. Diet+aerobic exercise resulted in significantly greater weight loss than diet alone in 50% of trials. However, weight regain (∼55% of loss) was similar in diet and diet+aerobic exercise groups. Fat-free mass tended to be preserved when interventions included exercise. PMID:25333384

  1. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-01-01

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414

  2. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin; Zinaman, Owen; Logan, Jeffrey

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distributionmore » edge' subsectors: industrial, residential, commercial, and transportation end uses.« less

  3. Simultaneous optical flow and source estimation: Space–time discretization and preconditioning

    PubMed Central

    Andreev, R.; Scherzer, O.; Zulehner, W.

    2015-01-01

    We consider the simultaneous estimation of an optical flow field and an illumination source term in a movie sequence. The particular optical flow equation is obtained by assuming that the image intensity is a conserved quantity up to possible sources and sinks which represent varying illumination. We formulate this problem as an energy minimization problem and propose a space–time simultaneous discretization for the optimality system in saddle-point form. We investigate a preconditioning strategy that renders the discrete system well-conditioned uniformly in the discretization resolution. Numerical experiments complement the theory. PMID:26435561

  4. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis over a long time period while past studies, to our knowledge, have used less than 10 year time period. References: Vautard, R., Thais, F., Tobin, I., Bréon, F.-M., de Lavergne, J.-G.D., Colette, A., Yiou, P., and Ruti, P.M. (2014). Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun. 5, 3196. Haylock, M.R., Hofstra, N., Tank, A.M.G.K., Klok, E.J., Jones, P.D., New, M., 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res.-Atmos. 113. doi:10.1029/2008JD010201 GRDC (Global Runoff Data Center), 1999. Long-term mean monthly discharges of selected GRDC stations, Global Runoff Data Centre, Koblenz, Germany.

  5. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  6. WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X; Baad, M; Reiser, I

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  7. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Duan, Zhe

    2017-01-01

    In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.

  8. High energy X-ray observations of CYG X-3 from from OSO-8: Further evidence of a 34.1 day period

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1981-01-01

    The X-ray source Cyg X-3 (=4U2030+40) was observed with the high energy X-ray spectrometer on OSO-8 for two weeks in 1975 and in 1976 and for one week in 1977. No change in spectral shape and intensity above 23 keV was observed from year to year. No correlation is observed between the source's intensity and the phase of the 34.1 day period discovered by Molteni, et al. (1980). The pulsed fraction of the 4.8 hour light curve between 23 and 73 keV varies from week to week, however, and the magnitude of the pulsed fraction appears to be correlated with the 34.1 day phase. No immediate explanation of this behavior is apparent in terms of previously proposed models of the source.

  9. Solar particle abundances at energies of greater than 1 MeV per nucleon and the role of interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Reames, D. V.; Von Rosenvinge, T. T.

    1991-01-01

    The abundances of elements in large solar energetic-particle events in the energy range of 2-12 MeV per nucleon are examined. It is confirmed that the abundances relative to mean values vary approximately monotonically as a function of mass, except for He-4; some events show a gradual depletion of heavy ions, whereas a small number displays a gradual increase. A further organization of abundance data is shown, which depends on the longitude of the source region. Enhancements in Fe/C and other heavy elements relative to C occur when source regions are near west 60 deg; the enhancements are attributed to the sampling of a flare-heated material. Depletions of these elements are found to be greatest for source regions near central meridian; they are matched by a steepening of the spectrum and can be understood in terms of diffusive shock acceleration.

  10. The interaction of sound with a poroelastic ground

    NASA Astrophysics Data System (ADS)

    Hickey, C. J.

    2012-12-01

    An airborne acoustic wave impinging on the surface of the ground provides a good mechanical source for investigating the near surface. Since the ground is porous, the impinging sound wave induces motion of the fluid within the pores as well as vibrating the solid framework. The most complete understanding of the interaction of airborne sound with the ground is to treat the ground as a poroelastic or poroviscoelastic medium. This treatment predicts that three types of waves can propagate in a ground with a deformable framework: two compressional waves, the fast or Type I and slow or Type II wave and one shear wave. Model calculations of the energy partition and an air-soil interface predict that most of the energy is partitioned into the Type II compressional wave, less into the Type I compressional wave, and little energy is partitioned into the shear wave. However, when measuring the solid motion of the soil one must consider how much of that wave energy is in terms of solid velocity. The deformation associated with Type II compressional wave has only a small contribution from the solid component whereas the bulk deformation of the Type I compressional wave has a solid to fluid deformation ratio of approximately one. This modeling suggests that the soil solid velocity induced by an acoustic source is associated with the Type I compressional wave. In other words, the airborne source is simply an inefficient seismic source.

  11. Drive beam stabilisation in the CLIC Test Facility 3

    NASA Astrophysics Data System (ADS)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  12. Who owns the long term? Perspectives from global business leaders.

    PubMed

    Lévy, Maurice; Eskew, Mike; Bernotat, Wulf H; Barner, Marianne

    2007-01-01

    Day-to-day management is challenging enough for CEOs. How do they manage for the long term as well? We posed that question to four top executives of global companies. According to Maurice Levy, chairman and CEO of Publicis Groupe, building the future is really about building the present and keeping close to the front line--those who deal with your customers and markets. He also attributes his company's success in large part to knowing when to take action: In a market where clients' needs steer your long-term future, timing is everything. UPS Chairman and CEO Mike Eskew emphasizes staying true to your vision and values over the long run, despite meeting obstacles along the way. It took more than 20 years, and many lessons learned, to produce consistent profits in what is today the company's fastest-growing and most profitable business: international small packages. Wulf H. Bernotat, CEO of E.ON, examines the challenges facing business leaders and politicians as they try to balance energy needs against potential environmental damage. He calls for educating people about consumption and waste, and he maintains that a diverse and reliable mix of energy sources is the only way to ensure a secure supply while protecting our environment. Finally, Marianne Barner, the director of corporate communications and ombudsman for children's issues at IKEA, discusses how the company is taking steps to improve the environment and be otherwise socially responsible. For example, it's partnering with NGOs to address child labor issues and, on its own, is working to help mitigate climate change. IKEA's goals include using renewable sources for 100% of its energy needs and cutting its overall energy consumption by 25%.

  13. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less

  14. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less

  15. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    PubMed

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  16. Parameter Measurement Methods for Interfacing Hydraulic Systems with Microelectronic Instruments and Controllers.

    DTIC Science & Technology

    1983-11-01

    successfully. I- Accession For NTIS -GO iiiONa DTIC TAB t Unannounced - Justificatio Distribution/ I Availability Codes vail and/or DIst Special IA-11...terms of initial signal power. An active sensor must be excited externally. Such a sensor receives its power from an external source and merely modulates...electrons in the material to gain L enough energy to be emitted. The voltage source causes a positive potential to be felt on the collector, thus causing the

  17. An Investigation into the Comparative Costs of Additive Manufacture vs. Machine from Solid for Aero Engine Parts

    DTIC Science & Technology

    2006-05-01

    welding power sources are not totally efficient at converting power drawn from the wall into heat energy used for the welding process . TIG sources are...Powder bed + Laser • Wire + Laser • Wire + Electron Beam • Wire + TIG Each system has its own unique attributes in terms of process variables...relative economics of producing a near net shape by Additive Manufacturing (AM) processes compared with traditional machine from solid processes (MFS

  18. Modified two-sources quantum statistical model and multiplicity fluctuation in the finite rapidity region

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipak; Sarkar, Sharmila; Sen, Sanjib; Roy, Jaya

    1995-06-01

    In this paper the behavior of factorial moments with rapidity window size, which is usually explained in terms of ``intermittency,'' has been interpreted by simple quantum statistical properties of the emitting system using the concept of ``modified two-source model'' as recently proposed by Ghosh and Sarkar [Phys. Lett. B 278, 465 (1992)]. The analysis has been performed using our own data of 16Ag/Br and 24Ag/Br interactions at a few tens of GeV energy regime.

  19. Documentation concerning KKP development work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, S.; Thomas, I.; Rushford, M.

    1994-12-22

    Fabrication has been completed on a 16 level KPP on a 5-inch diameter aperture fused silica using lithographic techniques and wet etching of fused silica in a buffered hydrofluoric acid solution. The experimentally measured far-field intensity pattern displays the desired top-hat envelope and has a superimposed speckle on it. The far-field contains 90% of the incident energy inside the 640 {mu}m region. This is a significant improvement over the binary RPP`s in terms of the far-field profile control and energy concentration. Sources contributing to the energy loss are identified and efforts are underway to overcome these limitations.

  20. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    PubMed

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  1. Effect of macronutrient composition on short-term food intake and weight loss.

    PubMed

    Bellissimo, Nick; Akhavan, Tina

    2015-05-01

    The purpose of this review is to describe the role of macronutrient composition on the suppression of short-term food intake (FI) and weight loss. The effects of macronutrient composition on short-term FI will be reviewed first, followed by a brief examination of longer-term clinical trials that vary in effects of dietary macronutrient composition on weight loss. The objectives were: 1) to examine the effect of macronutrient composition on the suppression of short-term FI, 2) to determine whether some macronutrient sources suppress FI beyond their provision of energy, 3) to assess the combined effects of macronutrients on FI and glycemic response, and 4) to determine whether knowledge of the effect of macronutrients on short-term FI has led to greater success in spontaneous weight loss, adherence to energy-restricted diets, and better weight maintenance after weight loss. Although knowledge of macronutrient composition on short-term FI regulation has advanced our understanding of the role of diet composition on energy balance, it has yet to lead to greater success in long-term weight loss and weight maintenance. It is clear from this review that many approaches based on manipulating dietary macronutrient composition can help people lose weight as long as they follow the diets. However, only by evaluating the interaction between the physiologic systems that govern FI and body weight may the benefits of dietary macronutrient composition be fully realized. © 2015 American Society for Nutrition.

  2. Three-Dimensional Model Synthesis of the Global Methane Cycle

    NASA Technical Reports Server (NTRS)

    Fung, I.; Prather, M.; John, J.; Lerner, J.; Matthews, E.

    1991-01-01

    A synthesis of the global methane cycle is presented to attempt to generate an accurate global methane budget. Methane-flux measurements, energy data, and agricultural statistics are merged with databases of land-surface characteristics and anthropogenic activities. The sources and sinks of methane are estimated based on atmospheric methane composition and variations, and a global 3D transport model simulates the corresponding atmospheric responses. The geographic and seasonal variations of candidate budgets are compared with observational data, and the available observations are used to constrain the plausible methane budgets. The preferred budget includes annual destruction rates and annual emissions for various sources. The lack of direct flux measurements in the regions of many of these fluxes makes the unique determination of each term impossible. OH oxidation is found to be the largest single term, although more measurements of this and other terms are recommended.

  3. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  4. A Monte Carlo Simulation for Understanding Energy Measurements of Beta Particles Detected by the UCNb Experiment

    NASA Astrophysics Data System (ADS)

    Feng, Chi; UCNb Collaboration

    2011-10-01

    It is theorized that contributions to the Fierz interference term from scalar interaction beyond the Standard Model could be detectable in the spectrum of neutron beta-decay. The UCNb experiment run at the Los Alamos Neutron Science Center aims to accurately measure the neutron beta-decay energy spectrum to detect a nonzero interference term. The instrument consists of a cubic ``integrating sphere'' calorimeter attached with up to 4 photomultiplier tubes. The inside of the calorimeter is coated with white paint and a thin UV scintillating layer made of deuterated polystyrene to contain the ultracold neutrons. A Monte Carlo simulation using the Geant4 toolkit is developed in order to provide an accurate method of energy reconstruction. Offline calibration with the Kellogg Radiation Laboratory 140 keV electron gun and conversion electron sources will be used to validate the Monte Carlo simulation to give confidence in the energy reconstruction methods and to better understand systematics in the experiment data.

  5. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  6. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  7. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    PubMed

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of energy infrastructure were probably reducing the amount of source habitat within the ARPA landscape. Our source-sink map provides managers with a means of prioritizing habitats for conservation planning based on source and sink dynamics. The spatial identification of high value (i.e., primary source) as well as suboptimal (i.e., primary sink) habitats allows for informed energy development to minimize effects on local wildlife populations.

  8. An Institutional Approach to Understanding Energy Transitions

    NASA Astrophysics Data System (ADS)

    Koster, Auriane Magdalena

    Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will contribute to our understanding of how energy transitions at different scales can be accomplished in developing countries and what it takes for innovation to spread in a society.

  9. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  10. Overview of Hydrometeorologic Forecasting Procedures at BC Hydro

    NASA Astrophysics Data System (ADS)

    McCollor, D.

    2004-12-01

    Energy utility companies must balance production from limited sources with increasing demand from industrial, business, and residential consumers. The utility planning process requires a balanced, efficient, and effective distribution of energy from source to consumer. Therefore utility planners must consider the impact of weather on energy production and consumption. Hydro-electric companies should be particularly tuned to weather because their source of energy is water, and water supply depends on precipitation. BC Hydro operates as the largest hydro-electric company in western Canada, managing over 30 reservoirs within the province of British Columbia, and generating electricity for 1.6 million people. BC Hydro relies on weather forecasts of watershed precipitation and temperature to drive hydrologic reservoir inflow models and of urban temperatures to meet energy demand requirements. Operations and planning specialists in the company rely on current, value-added weather forecasts for extreme high-inflow events, daily reservoir operations planning, and long-term water resource management. Weather plays a dominant role for BC Hydro financial planners in terms of sensitive economic responses. For example, a two percent change in hydropower generation, due in large part to annual precipitation patterns, results in an annual net change of \\50 million in earnings. A five percent change in temperature produces a \\5 million change in yearly earnings. On a daily basis, significant precipitation events or temperature extremes involve potential profit/loss decisions in the tens of thousands of dollars worth of power generation. These factors are in addition to environmental and societal costs that must be considered equally as part of a triple bottom line reporting structure. BC Hydro water resource managers require improved meteorological information from recent advancements in numerical weather prediction. At BC Hydro, methods of providing meteorological forecast data are changing as new downscaling and ensemble techniques evolve to improve environmental information supplied to water managers.

  11. Environmental impact assessment of solid waste management in Beijing City, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yan; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Tsinghua University, 100084 Beijing; Christensen, Thomas H.

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significantmore » environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.« less

  12. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage can be minimized. Furthermore, the model can be used to design efficient monitoring programs to detect possible variations of the host rock due construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.

  13. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  14. Cosmological implications of scalar field dark energy models in f(T,𝒯 ) gravity

    NASA Astrophysics Data System (ADS)

    Salako, Ines G.; Jawad, Abdul; Moradpour, Hooman

    After reviewing the f(T,𝒯 ) gravity, in which T is the torsion scalar and 𝒯 is the trace of the energy-momentum tensor, we refer to two cosmological models of this theory in agreement with observational data. Thereinafter, we consider a flat Friedmann-Robertson-Walker (FRW) universe filled by a pressureless source and look at the terms other than the Einstein terms in the corresponding Friedmann equations, as the dark energy (DE) candidate. In addition, some cosmological features of models, including equation of states and deceleration parameters, are addressed helping us in getting the accelerated expansion of the universe in quintessence era. Finally, we extract the scalar field as well as potential of quintessence, tachyon, K-essence and dilatonic fields for both f(T,𝒯 ) models. It is observed that the dynamics of scalar field as well as the scalar potential of these models indicate an accelerated expanding universe in these models.

  15. Management of Ultimate Risk of Nuclear Power Plants by Source Terms - Lessons Learned from the Chernobyl Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genn Saji

    2006-07-01

    The term 'ultimate risk' is used here to describe the probabilities and radiological consequences that should be incorporated in siting, containment design and accident management of nuclear power plants for hypothetical accidents. It is closely related with the source terms specified in siting criteria which assures an adequate separation of radioactive inventories of the plants from the public, in the event of a hypothetical and severe accident situation. The author would like to point out that current source terms which are based on the information from the Windscale accident (1957) through TID-14844 are very outdated and do not incorporate lessonsmore » learned from either the Three Miles Island (TMI, 1979) nor Chernobyl accident (1986), two of the most severe accidents ever experienced. As a result of the observations of benign radionuclides released at TMI, the technical community in the US felt that a more realistic evaluation of severe reactor accident source terms was necessary. In this background, the 'source term research project' was organized in 1984 to respond to these challenges. Unfortunately, soon after the time of the final report from this project was released, the Chernobyl accident occurred. Due to the enormous consequences induced by then accident, the one time optimistic perspectives in establishing a more realistic source term were completely shattered. The Chernobyl accident, with its human death toll and dispersion of a large part of the fission fragments inventories into the environment, created a significant degradation in the public's acceptance of nuclear energy throughout the world. In spite of this, nuclear communities have been prudent in responding to the public's anxiety towards the ultimate safety of nuclear plants, since there still remained many unknown points revolving around the mechanism of the Chernobyl accident. In order to resolve some of these mysteries, the author has performed a scoping study of the dispersion and deposition mechanisms of fuel particles and fission fragments during the initial phase of the Chernobyl accident. Through this study, it is now possible to generally reconstruct the radiological consequences by using a dispersion calculation technique, combined with the meteorological data at the time of the accident and land contamination densities of {sup 137}Cs measured and reported around the Chernobyl area. Although it is challenging to incorporate lessons learned from the Chernobyl accident into the source term issues, the author has already developed an example of safety goals by incorporating the radiological consequences of the accident. The example provides safety goals by specifying source term releases in a graded approach in combination with probabilities, i.e. risks. The author believes that the future source term specification should be directly linked with safety goals. (author)« less

  16. Numerical and experimental evaluations of the flow past nested chevrons

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Foss, J. K.; Spalart, P. R.

    1989-01-01

    An effort is made to contribute to the development of CFD by relating the successful use of vortex dynamics in the computation of the pressure drop past a planar array of chevron-shaped obstructions. An ensemble of results was used to compute the loss coefficient k, stimulating an experimental program for the assessment of the measured loss coefficient for the same geometry. The most provocative result of this study has been the representation of kinetic energy production in terms of vorticity source terms.

  17. Photovoltaic village power application: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Poley, W. A.; Scudder, L. R.

    1978-01-01

    The village power application represents a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in both the government and commercial sectors. The foreign demand and sources of funding for village power systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 12 MW min and a foreign market of about 10 GW exists.

  18. Photovoltaic water pumping applications: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Scudder, L. R.; Poley, W. A.; Cusick, J. P.

    1978-01-01

    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist.

  19. Non-diffusive ignition of a gaseous reactive mixture following time-resolved, spatially distributed energy deposition

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.

    2014-01-01

    Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.

  20. Energy yields in the prebiotic synthesis of hydrogen cyanide and formaldehyde

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Miller, S. L.

    1986-01-01

    Prebiotic experiments are usually reported in terms of carbon yields, i.e., the yield of product based on the total carbon in the system. These experiments usually involve a large input of energy and are designed to maximize the yields of product. However, large inputs of energy result in multiple activation of the reactants and products. A more realistic prebiotic experiment is to remove the products of the activation step so they are not exposed a second time to the energy source. This is equivalent to transporting the products synthesized in the primitive atmosphere to the ocean, and thereby protecting them from destruction by atmospheric energy sources. Experiments of this type, using lower inputs of energy, give energy yields (moles of products/joule) which can be used to estimate the relative importance of the different energy sources on the primitive earth. Simulated prebiotic atmospheres containing either CH4, CO or CO2 with N2, H2O and variable amounts of H2 were subjected to a high frequency Tesla coil. Samples of the aqueous phase were taken at various time intervals from 1 hr to 7 days, and the energy yields were obtained by extrapolation to zero time. The samples were analyzed for HCN with the cyanide electrode and for H2CO by chromotropic acid. The spark energy was estimated by calorimetry. The temperature rise in an insulated discharge flask was compared with the temperature rise from a resistance heater in the same flask. These results will be compared with calculated production rates of HCN and H2CO from lightning and a number of photochemical processes on the primitive Earth.

  1. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 5.Challenge to Innovative Technologies and the Expected Market Appeal

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji

    This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.

  2. Annual review of energy. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollander, J.M.; Simmons, M.K.; Wood, D.O.

    1980-01-01

    The many continuing efforts around the world to deal with the issues of energy supply, demand, and environmental impact are reviewed. This volume carries reviews of recent developments in solar-photovoltaic technology and inertial-confinement fusion as long-term options. Progress in some important nearer-term energy-supply areas is reviewed by contributions in the fields of battery energy storage and coal clean-up technology. In the area of energy sociology, the interesting and poorly understood topic of public opinion about energy is reviewed. The subject of energy economics is represented by a review of the role of governmental incentives in energy production. Topics related tomore » the environmental aspects of energy technologies include coastal flooding from atmospheric carbon dioxide warming, risks of liquefied natural gas and petroleum gas, and the environmental impacts of renewable energy sources. Continuing the practice of earlier volumes to review the energy perspective of a particular region or country, Volume 5 carries a review of emerging energy technologies in island environments, typified by the case of Hawaii. Finally, the energy problem from the perspective of developing countries is reviewed by two papers, the first on renewable energy resources for developing countries, and the second on the problem of energy for the people of Asia and the Pacific. A separate abstract was prepared for each of the 12 reviews for the Energy Data Base (EDB); all will appear in Energy Abstracts for Policy Analysis (EAPA) and three in Energy Research Abstracts (ERA).« less

  3. The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Li, Kuoang

    2018-04-01

    China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.

  4. Common Uses and Cited Complications of Energy in Surgery

    PubMed Central

    Sankaranarayanan, Ganesh; Resapu, Rajeswara R.; Jones, Daniel B.; Schwaitzberg, Steven; De, Suvranu

    2013-01-01

    Background Instruments that apply energy to cut, coagulate and dissect tissue with minimal bleeding facilitate surgery. The improper use of energy devices may increase patient morbidity and mortality. The current article reviews various energy sources in terms of their common uses and safe practices. Methods For the purpose of this review, a general search was conducted through NCBI, SpringerLink and Google. Articles describing laparoscopic or minimally invasive surgeries using a single or multiple energy sources are considered, as are the articles comparing various commercial energy devices in laboratory settings. Keywords such as ‘laparoscopy’, ‘energy’, ‘laser’, ‘electrosurgery’, ‘monopolar’, ‘bipolar’, ‘harmonic’, ‘ultrasonic’, ‘cryosurgery’, ‘argon beam’, ‘laser’, ‘complications’, and ‘death’ were used in the search. Results and Conclusion A review of the literature shows that the performance of the energy devices depends upon the type of procedure. There is no consensus as to which device is optimal for a given procedure. The technical skill level of the surgeon and the knowledge about the devices are both important factors in deciding safe outcomes. As new energy devices enter the market increases, surgeons should be aware of their indicated use in laparoscopic, endoscopic and open surgery. PMID:23609857

  5. The Nature of Sustainability as Viewed by European Students

    ERIC Educational Resources Information Center

    Lockley, John; Jarrath, Martin

    2013-01-01

    Sustainability as a concept, though well understood in general terms, is often politically captured by interest groups and as such expressed through issues like concern for global climate change or the need to develop more efficient energy sources, to address regional, national or international priorities. Education for sustainability as a concept…

  6. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  7. 76 FR 14587 - Defense Federal Acquisition Regulation Supplement; Multiyear Contract Authority for Electricity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...-AG48 Defense Federal Acquisition Regulation Supplement; Multiyear Contract Authority for Electricity... 10 years for the purchase of electricity from sources of renewable energy, as that term is defined in... electricity under such contract is cost effective; and (2) It would not be possible to purchase electricity...

  8. Alternative Fuels Data Center: Colorado Transportation Data for Alternative

    Science.gov Websites

    (nameplate, MW) 2,478 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains Jan. 26, 2016 Video Video thumbnail for Partnerships Cement Long-Term Success for Northern Colorado Duo Partnerships Cement

  9. Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results

    PubMed Central

    Velayudhan, D. E.; Kim, I. H.; Nyachoti, C. M.

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included. PMID:25557670

  10. Characterization of dietary energy in Swine feed and feed ingredients: a review of recent research results.

    PubMed

    Velayudhan, D E; Kim, I H; Nyachoti, C M

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included.

  11. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  12. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  13. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  14. The Role of Inverse Compton Scattering in Solar Coronal Hard X-Ray and γ-Ray Sources

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.

    2012-05-01

    Coronal hard X-ray (HXR) and continuum γ-ray sources associated with the impulsive phase of solar flares have been the subject of renewed interest in recent years. They have been interpreted in terms of thin-target, non-thermal bremsstrahlung emission. This interpretation has led to rather extreme physical requirements in some cases. For example, in one case, essentially all of the electrons in the source must be accelerated to non-thermal energies to account for the coronal HXR source. In other cases, the extremely hard photon spectra of the coronal continuum γ-ray emission suggest that the low-energy cutoff of the electron energy distribution lies in the MeV energy range. Here, we consider the role of inverse Compton scattering (ICS) as an alternate emission mechanism in both the ultra- and mildly relativistic regimes. It is known that relativistic electrons are produced during powerful flares; these are capable of upscattering soft photospheric photons to HXR and γ-ray energies. Previously overlooked is the fact that mildly relativistic electrons, generally produced in much greater numbers in flares of all sizes, can upscatter extreme-ultraviolet/soft X-ray photons to HXR energies. We also explore ICS on anisotropic electron distributions and show that the resulting emission can be significantly enhanced over an isotropic electron distribution for favorable viewing geometries. We briefly review results from bremsstrahlung emission and reconsider circumstances under which non-thermal bremsstrahlung or ICS would be favored. Finally, we consider a selection of coronal HXR and γ-ray events and find that in some cases the ICS is a viable alternative emission mechanism.

  15. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  16. Inner Source and Interstellar Pickup Ions observed by MMS-HPCA

    NASA Astrophysics Data System (ADS)

    Gomez, Roman; Fuselier, Stephen; Burch, James L.; Mukherjee, Joey; Valek, Phillip W.; Allegrini, Frederic; Desai, Mihir I.

    2017-04-01

    Pickup Ions in the solar system are either of interstellar origin, or come from an inner source whose existence is confirmed, but which has not been directly observed. The Hot Plasma Composition Analyzer of the Magnetospheric Multiscale mission (MMS-HPCA) measures the energy and directional flux of ions with M/Q from 1 eV/e to 40 keV/e and is used measure the composition and dynamics of reconnection plasmas near the earth. During the first phase of the mission, from 1 September 2015 to 8 March 2016, the spacecraft at 12 Earth Radii apogee swept through the dayside from 1800 to 0600 local time. Although the apogee was designed to maximize encounters with the magnetopause, there were many instances when the spacecraft crossed the bow shock and sampled the solar wind. In November and December, while the spacecraft were downstream of the interstellar neutral focusing cone, HPCA detected pick up ions, such as He+, O+, and Ne+. He+ was distributed in an energy range of 14 eV - 20.6 keV, peaking at 757 eV; presumably of interstellar origin. O+ was observed in the energy range of 390 eV - 10.6 keV, and also seems to come from the interstellar medium. Ne+ was observed to be tightly distributed around a center energy of 5.5 keV, which implies an inner source origin. The mass - energy - angle analysis of these pick up ion distributions is presented, and their interpretation in terms of interstellar and inner source ions is discussed.

  17. Adaptive control of the packet transmission period with solar energy harvesting prediction in wireless sensor networks.

    PubMed

    Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan

    2015-04-24

    A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  18. High-resolution synchrotron-based Fourier transform spectroscopy of [image omitted] in the 120-350 cm-1 far-infrared region

    NASA Astrophysics Data System (ADS)

    Moruzzi, G.; Murphy, R. J.; Lees, R. M.; Predoi-Cross, A.; Billinghurst, B. E.

    2010-09-01

    The Fourier transform spectrum of the ? isotopologue of methanol has been recorded in the 120-350 cm-1 far-infrared region at a resolution of 0.00096 cm-1 using synchrotron source radiation at the Canadian Light Source. The study, motivated by astrophysical applications, is aimed at generating a sufficiently accurate set of energy level term values for the ground vibrational state to allow prediction of the centres of the quadrupole hyperfine multiplets for astronomically observable sub-millimetre transitions to within an uncertainty of a few MHz. To expedite transition identification, a new function was added to the Ritz program in which predicted spectral line positions were generated by an adjustable interpolation between the known assignments for the ? and ? isotopologues. By displaying the predictions along with the experimental spectrum on the computer monitor and adjusting the predictions to match observed features, rapid assignment of numerous ? sub-bands was possible. The least squares function of the Ritz program was then used to generate term values for the identified levels. For each torsion-K-rotation substate, the term values were fitted to a Taylor-series expansion in powers of J(J + 1) to determine the substate origin energy and effective B-value. In this first phase of the study we did not attempt a full global fit to the assigned transitions, but instead fitted the sub-band J-independent origins to a restricted Hamiltonian containing the principal torsional and K-dependent terms. These included structural and torsional potential parameters plus quartic distortional and torsion-rotation interaction terms.

  19. Global Energy and Aviation Concerns

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, Dave; Anast, Peter; Lowery, Nathan

    2006-01-01

    Renewable energy sources are usually diffuse and require large facilities. Biofuels work better, are more economical to produce for ground transportation, but sharply increase competition for food croplands. Noble laureate Richard Smalley (deceased-2005) conceptual 20 TWe power generation covers hundreds x hundreds of miles. Combined with Fuller s superconducting power grid system would enable renewable planetary energy. A solar-wind project in Australia will have a 7km diameter collector interfacing with a 1 km tower to extract 200 MW from wind turbines mounted at the base. GE Energy s 3.5MW Wind Turbine is large and placing this in perspective, it is as if one were rotating a Boeing 747-200; the blade diameter is that large. Wind turbines are rapidly gaining popularity in Europe and photovoltaic (PV) is expected to also expand rapidly. It becomes clear that we need (and still have time) to develop new sources of energy. Hf 178 bombarded by X-rays produces Gamma-rays for heating. The reaction stops when the X-rays stop; the half life is about 30 years and seems manageable vs 30 000 years. Water splitting needs to be perused as do ultra fast ultra intense laser applications in terms of fusion and new materials developments including new ways to strip and re-bind hydrogen into fuels. New methods and tools for development are being found in quantum mechanical applications to macro-systems and need to be developed into a set of new tool boxes for development of these new energy sources.

  20. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  1. DCCA analysis of renewable and conventional energy prices

    NASA Astrophysics Data System (ADS)

    Paiva, Aureliano Sancho Souza; Rivera-Castro, Miguel Angel; Andrade, Roberto Fernandes Silva

    2018-01-01

    Here we investigate the inter-influence of oil prices and renewable energy sources. The non-stationary time series are scrutinized within the Detrended Cross-Correlation Analysis (DCCA) framework, where the resulting DCCA coefficient provides a useful and reliable index to the evaluate the cross correlation between events at the same time instant as well as at a suitably chosen time lags. The analysis is based on the quotient of two successive daily closing oil prices and composite indices of renewable energy sources in USA and Europe in the period 2006-2015, which was subject to several social and economic driving forces, as the increase of social pressure in favor of the use of non-fossil energy sources and the worldwide economic crisis that started in 2008. The DCCA coefficient is evaluated for different window sizes, extracting information for short and long term correlation between the indices. Particularly, strong correlation between the behavior of the two distinct economic sectors are observed for large time intervals during the worst period of the economic crisis (2008-2012), hinting at a very cautious behavior of the economic agents. Before and after this period, the behavior of two economic sectors are overwhelmingly uncorrelated or very weakly correlated. The results reported here may be useful to select proper strategies in future similar scenarios.

  2. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    NASA Astrophysics Data System (ADS)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  3. Battery technologies for large-scale stationary energy storage.

    PubMed

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  4. Projected wood energy impact on US forest wood resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skog, K.E.

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price ofmore » wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).« less

  5. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will require exploration of chemistries beyond the Li-ion battery for a system consisting of low cost active materials and promising device performance. (Abstract shortened by ProQuest.).

  6. Hydrogeochemistry of the drinking water sources of Derebogazi Village (Kahramanmaras) and their effects on human health.

    PubMed

    Uras, Yusuf; Uysal, Yagmur; Arikan, Tugba Atilan; Kop, Alican; Caliskan, Mustafa

    2015-06-01

    The aim of this study was to investigate the sources of drinking water for Derebogazi Village, Kahramanmaras Province, Turkey, in terms of hydrogeochemistry, isotope geochemistry, and medical geology. Water samples were obtained from seven different water sources in the area, all of which are located within quartzite units of Paleozoic age, and isotopic analyses of (18)O and (2)H (deuterium) were conducted on the samples. Samples were collected from the region for 1 year. Water quality of the samples was assessed in terms of various water quality parameters, such as temperature, pH, conductivity, alkalinity, trace element concentrations, anion-cation measurements, and metal concentrations, using ion chromatography, inductively coupled plasma (ICP) mass spectrometry, ICP-optical emission spectrometry techniques. Regional health surveys had revealed that the heights of local people are significantly below the average for the country. In terms of medical geology, the sampled drinking water from the seven sources was deficient in calcium and magnesium ions, which promote bone development. Bone mineral density screening tests were conducted on ten females using dual energy X-ray absorptiometry to investigate possible developmental disorder(s) and potential for mineral loss in the region. Of these ten women, three had T-scores close to the osteoporosis range (T-score < -2.5).

  7. Recent Progress on Spherical Torus Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configurationmore » can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.« less

  8. Summaries of FY 1996 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and ismore » also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.« less

  9. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  10. Modeling mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale diffusivity κM and for the mesoscale kinetic energy K in terms of the large-scale fields. The predicted κM( z) agrees with that of heuristic models. The complete mesoscale model in isopycnal coordinates is presented in Appendix D and can be used in coarse resolution ocean global circulation models.

  11. EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.

    USGS Publications Warehouse

    Chouet, Bernard

    1985-01-01

    A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.

  12. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  13. A novel approach for characterizing broad-band radio spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  14. Miniature Electron Sources for Tomorrow’s Vacuum THz Devices (MiPRI)

    DTIC Science & Technology

    2006-07-01

    Microwaves, Proceedings of the Fourth Workshop on High Power RF, 22 V. L. Bratman, N. S . Ginzburg, N. F. Kovalev, G. S . Nusinovich, and M. edited by R. M...3Po Kalynov, N. G. Kolganov, V. N. Manuilov, F. S . Rusin, S . V. Samsonov, and A. V. Savilov, in High Energy Density and High Power RF: 7th When this...showed that this will enable the design of future THz sources operating with relatively high efficiency at high power levels. 15. SUBJECT TERMS THz

  15. Modified two-sources quantum statistical model and multiplicity fluctuation in the finite rapidity region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.; Sarkar, S.; Sen, S.

    1995-06-01

    In this paper the behavior of factorial moments with rapidity window size, which is usually explained in terms of ``intermittency,`` has been interpreted by simple quantum statistical properties of the emitting system using the concept of ``modified two-source model`` as recently proposed by Ghosh and Sarkar [Phys. Lett. B 278, 465 (1992)]. The analysis has been performed using our own data of {sup 16}O-Ag/Br and {sup 24}Mg-Ag/Br interactions at a few tens of GeV energy regime.

  16. Measurement of basic characteristics and gain uniformity of a triple GEM detector

    NASA Astrophysics Data System (ADS)

    Patra, Rajendra Nath; Singaraju, Rama N.; Biswas, Saikat; Ahammed, Zubayer; Nayak, Tapan K.; Viyogi, Yogendra P.

    2017-08-01

    Large area Gas Electron Multiplier (GEM) detectors have been the preferred choice for tracking devices in major nuclear and particle physics experiments. Uniformity over surface of the detector in terms of gain, energy resolution and efficiency is crucial for the optimum performance of these detectors. In the present work, detailed performance study of a 10×10 cm2 triple GEM detector operated using Ar and CO2 gas mixtures in proportions of 70:30 and 90:10, has been made by making a voltage scan of the efficiency with 106Ru-Rh β-source and cosmic rays. The gain and energy resolution of the detector were studied using the X-ray spectrum of 55Fe source. The uniformity of the detector has been investigated by dividing the detector in 7×7 zones and measuring the gain and energy resolution at the centre of each zone. The variations of the gain and energy resolution have been found to be 8.8% and 6.7%, respectively. These studies are essential to characterise GEM detectors before their final use in the experiments.

  17. Probing the matter and dark energy sources in a viable Big Rip model of the Universe

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh

    2014-08-01

    Chevallier-Polarski-Linder (CPL) parametrization for the equation of state (EoS) of dark energy in terms of cosmic redshift or scale factor have been frequently studied in the literature. In this study, we consider cosmic time-based CPL parametrization for the EoS parameter of the effective cosmic fluid that fills the fabric of spatially flat and homogeneous Robertson-Walker (RW) spacetime in General Relativity. The model exhibits two worthy features: (i) It fits the observational data from the latest H(z) and Union 2.1 SN Ia compilations matching the success of ΛCDM model. (ii) It describes the evolution of the Universe from the matter-dominated phase to the recent accelerating phase similar to the ΛCDM model but leads to Big Rip end of the Universe contrary to the everlasting de Sitter expansion in the ΛCDM model. We investigate the matter and dark energy sources in the model, in particular, behavior of the dynamical dark energy responsible for the Big Rip end of Universe.

  18. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  19. Model documentation report: Residential sector demand module of the national energy modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies,more » market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.« less

  20. Public acceptance of nuclear power among Malaysian students

    NASA Astrophysics Data System (ADS)

    Muhamad Pauzi, Anas; Saad, Juniza Md; Arif Abu Bakar, Asyraf; Hannan Damahuri, Abdul; Syukri, Nur Syamim Mohd

    2018-01-01

    Malaysian government’s aim to include nuclear energy for electricity generation has triggered various reactions from all especially the public. The objective of this study is to have a better understanding on the knowledge, sources of information of nuclear power and sources of energy chosen by Malaysian in 20 years’ time. Besides that, we want to examine the level of acceptance and perception of Malaysian towards nuclear energy and we want to identify the correlation between public perceptions with the acceptance towards nuclear power in Malaysia, and also to study the differences between perception and acceptance of nuclear power with gender and educational level. For this research methodology, the research questions are given orally or through paper-pencil and also social networking site such as Facebook or through electronic media application such as WhatsApp and Google docs. The data were analysed using a SPSS version 22.0 (Statistical Package for the Social Sciences). Results showed that more than 50% of the respondents have the knowledge of nuclear energy. A part of from that, only 39 % are confident government can afford to build NPP in Malaysia and 41 % disagree nuclear energy is the best option for future energy. From analysis using SPSS 22 we estimate negative perception will give a negative acceptance in term of support towards the use of nuclear energy in power generation in Malaysia. There are also slight correlation that the higher the level of education of Malaysian, the more negative the perception of Malaysian in accepting nuclear energy as source of power in Malaysia. Therefore in shaping a positive acceptance of NPP in Malaysia, the authorities need to educate the people with the knowledge of nuclear in order to overcome the negative perception towards nuclear power.

  1. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  2. Acetylenotrophy: A hidden but ubiquitous microbial metabolism?

    USGS Publications Warehouse

    Akob, Denise M.; Sutton, John M.; Fierst, Janna L.; Haase, Karl B.; Baesman, Shaun; Luther, George; Miller, Laurence G.; Oremland, Ronald S.

    2018-01-01

    Acetylene (IUPAC name: ethyne) is a colorless, gaseous hydrocarbon, composed of two triple bonded carbon atoms attached to hydrogens (C2H2). When microbiologists and biogeochemists think of acetylene, they immediately think of its use as an inhibitory compound of certain microbial processes and a tracer for nitrogen fixation. However, what is less widely known is that anaerobic and aerobic microorganisms can degrade acetylene, using it as a sole carbon and energy source and providing the basis of a microbial food web. Here, we review what is known about acetylene degrading organisms and introduce the term 'acetylenotrophs' to refer to the microorganisms that carry out this metabolic pathway. In addition, we review the known environmental sources of acetylene and postulate the presence of an hidden acetylene cycle. The abundance of bacteria capable of using acetylene and other alkynes as an energy and carbon source suggests that there are energy cycles present in the environment that are driven by acetylene and alkyne production and consumption that are isolated from atmospheric exchange. Acetylenotrophs may have developed to leverage the relatively high concentrations of acetylene in the pre-Cambrian atmosphere, evolving later to survive in specialized niches where acetylene and other alkynes were produced.

  3. Kinetic energy budgets in areas of intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.

    1980-01-01

    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.

  4. The Journal of Physical Chemistry A. Time-Dependent Quantum Molecular Dynamics Workshop, Brian Head, Utah, March 13-17, 1999. Volume 103, Number 47

    DTIC Science & Technology

    1999-11-25

    reactions the situation is more complicated since many of the modes are in the process of changing from free rotors to nearly harmonic bending motions ...are dihedral angles between the CH3 planes and the CC axis (see text). Heavy solid contours denote repulsive regions ( energies higher than that of...while vi is the source term describing the rate of formation of ethane in energy state i from the free methyl radicals. The effective bimolecular

  5. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    NASA Astrophysics Data System (ADS)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.

  6. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    PubMed

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.

  7. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  8. Availability of added sugars in Brazil: distribution, food sources and time trends.

    PubMed

    Levy, Renata Bertazzi; Claro, Rafael Moreira; Bandoni, Daniel Henrique; Mondini, Lenise; Monteiro, Carlos Augusto

    2012-03-01

    To describe the regional and socio-economic distribution of consumption of added sugar in Brazil in 2002/03, particularly products, sources of sugar and trends in the past 15 years. The study used data from Household Budget Surveys since the 1980s about the type and quantity of food and beverages bought by Brazilian families. Different indicators were analyzed: % of sugar calories over the total diet energy and caloric % of table sugar fractions and sugar added to processed food/ sugar calories of diet. In 2002/03, of the total energy available for consumption, 16.7% came from added sugar in all regional and socio-economic strata. The table sugar/ sugar added to processed food ratio was inversely proportional to increase in income. Although this proportion fell in the past 15 years, sugar added to processed food doubled, especially in terms of consumption of soft drinks and cookies. Brazilians consume more sugar than the recommended levels determined by the WHO and the sources of consumption of sugar have changed significantly.

  9. Energy neutral and low power wireless communications

    NASA Astrophysics Data System (ADS)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a convex optimization problem, and the properties of these optimal policies are identified. In the second part of this thesis, low power transceiver design is considered for millimeter wave communication systems. In particular, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance.

  10. Capacity Fading Mechanism of the Commercial 18650 LiFePO4-Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study.

    PubMed

    Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian

    2018-02-07

    In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.

  11. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  12. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  13. Economics of alternative energy sources.

    PubMed

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  14. Group discussions regarding consumer energy conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The results of a series of group discussions conducted to investigate consumer attitudes and motivations as they relate to energy conservation are described. Specifically, the study was designed to cast light on the following questions: (1) the background climate of opinion that acts as a frame of reference for energy conservation communications; (2) classification of consumers in terms of adherence to or rejection of a conservation ethic; (3) the relation of energy waste and conservation to the standard of living aspirations of Americans; (4) the dominant kinds of motivations that are likely to influence receptivity to communications designed to promotemore » energy conservation; (5) compatibility of counter-culture values with the conservation ethic; (6) kinds of beliefs held regarding the future role of alternative energy sources; (7) the likely effectiveness of economic incentives to energy conservation; (8) differences between teenager and pre-teen attitudes from adult attitudes.« less

  15. Annual energy review 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector formore » 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).« less

  16. A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone

    NASA Technical Reports Server (NTRS)

    Dare, P. M.; Smith, P. J.

    1983-01-01

    The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.

  17. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  18. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGES

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  20. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  1. Energy Consumption Trends in Energy Scarce and Rich Countries: Comparative Study for Pakistan and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Gazder, Uneb

    2017-11-01

    Energy crisis is raising serious concerns throughout the world. There has been constant rise in energy consumption corresponding to the increase in global population. This sector affects the other pillars of national economy including industries and transportation. Because of these reasons, the traditional fossil-based energy sources are depleting rapidly, resulting in high and unstable energy prices. Saudi Arabia and Pakistan, although different from each other in terms of their economic stability and political systems, still rely heavily on the traditional fossil fuels. This paper presents the comparison of these two countries in terms of their energy consumption and factors affecting it. These factors include, but not limited to, economic development, and growth in population and other sectors such as; industries, transportation, etc. The comparison is also made with the regional and global energy consumption trends and these countries. Moreover, regression models were built to predict energy consumption till 2040 and compare the growth in this sector and share in global energy demand. Energy consumption in oil-rich countries (Saudi Arabia) has been driven through its economic development, while for energy insecure country (Pakistan) it is mainly because of population growth. It was also found that in the next two decades the share of Pakistan in the global energy demand will increase. This concludes that population growth will have more impact on energy consumption than economic growth. It could mean that the shift in energy sector would shift towards sustenance instead of using energy for commercial or industrial usage. Conference Track: Policy and Finance and Strategies

  2. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  3. Accreting, highly magnetized neutron stars at the Eddington limit: a study of the 2016 outburst of SMC X-3

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios

    2018-06-01

    Aims: We study the temporal and spectral characteristics of SMC X-3 during its recent (2016) outburst to probe accretion onto highly magnetized neutron stars (NSs) at the Eddington limit. Methods: We obtained XMM-Newton observations of SMC X-3 and combined them with long-term observations by Swift. We performed a detailed analysis of the temporal and spectral behavior of the source, as well as its short- and long-term evolution. We have also constructed a simple toy-model (based on robust theoretical predictions) in order to gain insight into the complex emission pattern of SMC X-3. Results: We confirm the pulse period of the system that has been derived by previous works and note that the pulse has a complex three-peak shape. We find that the pulsed emission is dominated by hard photons, while at energies below 1 keV, the emission does not pulsate. We furthermore find that the shape of the pulse profile and the short- and long-term evolution of the source light-curve can be explained by invoking a combination of a "fan" and a "polar" beam. The results of our temporal study are supported by our spectroscopic analysis, which reveals a two-component emission, comprised of a hard power law and a soft thermal component. We find that the latter produces the bulk of the non-pulsating emission and is most likely the result of reprocessing the primary hard emission by optically thick material that partly obscures the central source. We also detect strong emission lines from highly ionized metals. The strength of the emission lines strongly depends on the phase. Conclusions: Our findings are in agreement with previous works. The energy and temporal evolution as well as the shape of the pulse profile and the long-term spectra evolution of the source are consistent with the expected emission pattern of the accretion column in the super-critical regime, while the large reprocessing region is consistent with the analysis of previously studied X-ray pulsars observed at high accretion rates. This reprocessing region is consistent with recently proposed theoretical and observational works that suggested that highly magnetized NSs occupy a considerable fraction of ultraluminous X-ray sources.

  4. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy. PMID:18641166

  5. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Tlili, I.

    2018-06-01

    In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is modelled in terms of PDE's with initial and boundary conditions and solved analytically via Laplace transform method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright's function. These solutions are significantly controlled by the variations of parameters including thermal Grashof number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume fraction and Caputo time fractional parameters.

  6. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  7. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    PubMed

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  8. Weather Driven Renewable Energy Analysis, Modeling New Technologies

    NASA Astrophysics Data System (ADS)

    Paine, J.; Clack, C.; Picciano, P.; Terry, L.

    2015-12-01

    Carbon emission reduction is essential to hampering anthropogenic climate change. While there are several methods to broach carbon reductions, the National Energy with Weather System (NEWS) model focuses on limiting electrical generation emissions by way of a national high-voltage direct-current transmission that takes advantage of the strengths of different regions in terms of variable sources of energy. Specifically, we focus upon modeling concentrating solar power (CSP) as another source to contribute to the electric grid. Power tower solar fields are optimized taking into account high spatial and temporal resolution, 13km and hourly, numerical weather prediction model data gathered by NOAA from the years of 2006-2008. Importantly, the optimization of these CSP power plants takes into consideration factors that decrease the optical efficiency of the heliostats reflecting solar irradiance. For example, cosine efficiency, atmospheric attenuation, and shadowing are shown here; however, it should be noted that they are not the only limiting factors. While solar photovoltaic plants can be combined for similar efficiency to the power tower and currently at a lower cost, they do not have a cost-effective capability to provide electricity when there are interruptions in solar irradiance. Power towers rely on a heat transfer fluid, which can be used for thermal storage changing the cost efficiency of this energy source. Thermal storage increases the electric stability that many other renewable energy sources lack, and thus, the ability to choose between direct electric conversion and thermal storage is discussed. The figure shown is a test model of a CSP plant made up of heliostats. The colors show the optical efficiency of each heliostat at a single time of the day.

  9. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although lessmore » credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)« less

  10. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  12. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  13. Photovoltaic village power application: assessment of the near-term market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenblum, L.; Bifano, W.J.; Poley, W.A.

    1978-01-01

    A preliminary assessment of the near-term market for photovoltaic village power applications is presented. One of the objectives of the Department of Energy's (DOE) National Photovoltaic Program is to stimulate the demand for photovoltaic power systems so that appropriate markets will be developed in the near-term to support the increasing photovoltaic production capacity also being developed by DOE. The village power application represents such a potential market for photovoltaics. The price of energy for photovoltaic systems is compared to that of utility line extensions and diesel generators. The potential ''domestic''' demand (including the 50 states of the union plus themore » areas under legal control of the U.S. government) is defined in both the goverment and commercial sectors. The foreign demand and sources of funding for village power systems in the developing countries are also discussed briefly. It is concluded that a near-term domestic market of at least 12 MW (peak) and a foreign market of about 10 GW (peak) exists and that significant market penetration should be possible beginning in the 1981--82 period.« less

  14. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2016-09-19

    We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.

  15. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures.

    PubMed

    Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui

    2018-04-21

    The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.

  16. HOW GAS-DYNAMIC FLARE MODELS POWERED BY PETSCHEK RECONNECTION DIFFER FROM THOSE WITH AD HOC ENERGY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, D. W.; Klimchuk, J. A.

    Aspects of solar flare dynamics, such as chromospheric evaporation and flare light curves, have long been studied using one-dimensional models of plasma dynamics inside a static flare loop, subjected to some energy input. While extremely successful at explaining the observed characteristics of flares, all such models so far have specified energy input ad hoc, rather than deriving it self-consistently. There is broad consensus that flares are powered by magnetic energy released through reconnection. Recent work has generalized Petschek’s basic reconnection scenario, topological change followed by field line retraction and shock heating, to permit its inclusion in a one-dimensional flare loop model. Heremore » we compare the gas dynamics driven by retraction and shocking to those from more conventional static loop models energized by ad hoc source terms. We find significant differences during the first minute, when retraction leads to larger kinetic energies and produces higher densities at the loop top, while ad hoc heating tends to rarify the loop top. The loop-top density concentration is related to the slow magnetosonic shock, characteristic of Petschek’s model, but persists beyond the retraction phase occurring in the outflow jet. This offers an explanation for observed loop-top sources of X-ray and EUV emission, with advantages over that provided by ad hoc heating scenarios. The cooling phases of the two models are, however, notably similar to one another, suggesting that observations at that stage will yield little information on the nature of energy input.« less

  17. Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.

    1996-03-01

    The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less

  18. Essays on Infrastructure Design and Planning for Clean Energy Systems

    NASA Astrophysics Data System (ADS)

    Kocaman, Ayse Selin

    The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including long-term investments and storage, capturing the stochastic nature of hourly supply and demand data. We mathematically model two hybrid energy generation and allocation systems where time variability of energy sources and demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional hydro power stations (incoming stream flows are stored in large dams and water release is deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped from lower reservoir to upper reservoir during periods of low demand to be released for generation when demand is high). Aim of the models is to determine optimal sizing of infrastructure needed to match demand and supply in a most reliable and cost effective way. An innovative contribution of this work is the establishment of a new perspective to energy modeling by including fine-grained sources of uncertainty such as stream flow and solar radiations in hourly level as well as spatial location of supply and demand and transmission network in national level. In addition, we compare the conventional and the pumped hydro power systems in terms of reliability and cost efficiency and quantitatively show the improvement provided by including pumped hydro storage. The model will be presented with a case study of India and helps to answer whether solar energy in addition to hydro power potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could be almost completely phased out from electricity generation.

  19. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  20. Can we save energy by taxing it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boshier, J.F.

    1978-01-01

    The political and economic implications of using investment tax credits and energy-source taxes to promote energy conservation are examined and the conclusion is reached that taxes for a controlled increase in energy prices will allow better management of the transition period, but that the proposed conservation tax credit is inadequate to reverse the trend toward energy-intensive equipment. If labor costs fall relative to capital and energy costs, it will be possible to meet the goal of full employment as well as the goal of energy conservation. Policies that promote full employment, such as the wage subsidy, will further these goals,more » which will also be encouraged by policies to stimulate investment by lowering capital costs. Inconsistencies in the National Energy Plan, such as the policy to increase spendable income, are more likely to increase consumption than conserve energy. Taxes on energy are compared under the three categories of product taxes, general (or Btu) taxes, and tariffs in terms of effectiveness and social, economic, and political effects.« less

  1. Bragg-Fresnel optics: New field of applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigirev, A.

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnelmore » optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.« less

  2. Investigating competing uses of unevenly distributed resources in Nicaragua applying the Climate, Land Use (Food), Energy and Water strategies framework

    NASA Astrophysics Data System (ADS)

    Ramos, Eunice; Sridharan, Vignesh; Howells, Mark

    2017-04-01

    The distribution of resources in Nicaragua is not even, as it is the case in many countries in the world. However, in the particular case of water resources, commonly used by different sectors and essential to basic human activities, their availability differs along the main drainage basins and is often mismatched with sectoral demands. For example, the population is distributed unevenly, with 80% being located in water scarce areas of the Pacific and Central region of Nicaragua. Agricultural activities also take place in regions where water resources are vulnerable. The spatial distribution of water and energy resources, population and land use in Nicaragua allowed for the identification of three target regions for the analysis: the Pacific coast, the Dry Corridor zone, and the Atlantic region. Each of these zones has different challenges on which the CLEWs assessment focused on. Water sources in the Pacific coast are mostly groundwater, and uncertainty exists related to the long-term availability of such source. This is also the region where most of the sugarcane, an important source of revenue for Nicaragua, is produced. As sugarcane needs to be irrigated, this increases the pressure on water resources. The Dry Corridor is an arid stretch in Central America cyclically affected by droughts that have a severe impact on the households whose economy and subsistence depends on agriculture of grains and coffee beans. It is expected that climate change will exacerbate further the food security problem. When water is lacking, also population experiences limited access to water for drinking and cooking. In addition, two major hydropower plants are located in this zone. Water resources are available both from surface and groundwater sources, however, due to their intensive use and vulnerability to climate, their availability can affect severely different sectors, presenting risks to food, water and energy security. Hydropower potential is foreseen to be exploited in the Matagalpa and Escondido River Basins draining to the Atlantic Ocean. Although competition for water resources in not as acute as in other regions due to abundant surface water and lower population density, climate change and the use of land for grazing could present risks to the exploitation of the renewable energy potential. This could have an impact on medium and long-term energy planning and the ambition of decreasing fuel imports for electricity generation and increase electricity access. To assess the potential implications of the previous challenges and provide insights on solutions where conflicts are more stringent, in line with sustainable development priorities, the CLEWs framework was used to perform the integration of resource systems models. WEAP was used for the representation of the water and land use systems, and then soft-linked with the energy systems model for Nicaragua, developed using the long-term energy planning tool OSeMOSYS. Hydropower expansion, the development of the electricity system, water availability for crop production, water allocation across sectors, sugarcane cultivation and bi-products use in electricity generation, and potential impacts of climate change, are amongst the issues investigated with the region-specific scenarios defined for the study.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, H.; Nunami, M.; Department of Fusion Science, SOKENDAI

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novelmore » gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.« less

  4. Electric dipole moments of light nuclei from {chi}EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Renato

    I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

  5. Electric dipole moments of light nuclei from χEFT

    NASA Astrophysics Data System (ADS)

    Higa, Renato

    2013-03-01

    I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

  6. Potential for a Near Term Very Low Energy Antiproton Source at Brookhaven National Laboratory.

    DTIC Science & Technology

    1989-04-01

    9 Table III-1: Cost Summary . . . . * . . .. . * 10 IV. Lattice and Stretcher Properties . . . . . . .............. 11 Fig. IV-1 Cell... lattice functions . . . . . . . . . . 12 Fig. IV-2 Insertion region lattice . . . . . . . . . 12 Fig. IV-3 Superperiod lattice functions . . . . . . 12...8217 * . . . 13 Table IV-Ib Parameters after lattice matching . . . . 13 Table IV-lc Components specification. . . 13 Table IV-2 Random multipoles. .. . . .. 15

  7. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  8. Long-term implications of feed energy source in different genetic types of reproductive rabbit females: I. Resource acquisition and allocation.

    PubMed

    Arnau-Bonachera, A; Cervera, C; Blas, E; Larsen, T; Martínez-Paredes, E; Ródenas, L; Pascual, J J

    2017-12-11

    To achieve functional but also productive females, we hypothesised that it is possible to modulate acquisition and allocation of animals from different genetic types by varying the main energy source of the diet. To test this hypothesis, we used 203 rabbit females belonging to three genetic types: H (n=66), a maternal line characterised by hyper-prolificacy; LP (n=67), a maternal line characterised by functional hyper-longevity; R (n=79), a paternal line characterised by growth rate. Females were fed with two isoenergetic and isoprotein diets differing in energy source: animal fat (AF) enhancing milk yield; cereal starch (CS) promoting body reserves recovery. Feed intake, weight, perirenal fat thickness (PFT), milk yield and blood traits were controlled during five consecutive reproductive cycles (RCs). Females fed with CS presented higher PFT (+0.2 mm, P0.05), particularly for those fed with AF. Moreover, LP females fed with AF progressively increased PFT across the RC, whereas those fed with CS increased PFT during early lactation (+7.3%; P<0.05), but partially mobilised it during late lactation (-2.8%; P<0.05). Independently of the diet offered, LP females reached weaning with similar PFT. H females fed with either of the two diets followed a similar trajectory throughout the RC. For milk yield, the effect of energy source was almost constant during the whole experiment, except for the first RC of females from the maternal lines (H and LP). These females yielded +34.1% (P<0.05) when fed with CS during this period. Results from this work indicate that the resource acquisition capacity and allocation pattern of rabbit females is different for each genetic type. Moreover, it seems that by varying the main energy source of the diet it is possible to modulate acquisition and allocation of resources of the different genetic types. However, the response of each one depends on its priorities over time.

  9. Animal source foods have a positive impact on the primary school test scores of Kenyan schoolchildren in a cluster-randomised, controlled feeding intervention trial.

    PubMed

    Hulett, Judie L; Weiss, Robert E; Bwibo, Nimrod O; Galal, Osman M; Drorbaugh, Natalie; Neumann, Charlotte G

    2014-03-14

    Micronutrient deficiencies and suboptimal energy intake are widespread in rural Kenya, with detrimental effects on child growth and development. Sporadic school feeding programmes rarely include animal source foods (ASF). In the present study, a cluster-randomised feeding trial was undertaken to determine the impact of snacks containing ASF on district-wide, end-term standardised school test scores and nutrient intake. A total of twelve primary schools were randomly assigned to one of three isoenergetic feeding groups (a local plant-based stew (githeri) with meat, githeri plus whole milk or githeri with added oil) or a control group receiving no intervention feeding. After the initial term that served as baseline, children were fed at school for five consecutive terms over two school years from 1999 to 2001. Longitudinal analysis was used controlling for average energy intake, school attendance, and baseline socio-economic status, age, sex and maternal literacy. Children in the Meat group showed significantly greater improvements in test scores than those in all the other groups, and the Milk group showed significantly greater improvements in test scores than the Plain Githeri (githeri+oil) and Control groups. Compared with the Control group, the Meat group showed significant improvements in test scores in Arithmetic, English, Kiembu, Kiswahili and Geography. The Milk group showed significant improvements compared with the Control group in test scores in English, Kiswahili, Geography and Science. Folate, Fe, available Fe, energy per body weight, vitamin B₁₂, Zn and riboflavin intake were significant contributors to the change in test scores. The greater improvements in test scores of children receiving ASF indicate improved academic performance, which can result in greater academic achievement.

  10. Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2014-10-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.

  11. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms123

    PubMed Central

    Mattes, Richard D; Popkin, Barry M

    2009-01-01

    Nonnutritive sweeteners (NNS) are ecologically novel chemosensory signaling compounds that influence ingestive processes and behavior. Only about 15% of the US population aged >2 y ingest NNS, but the incidence is increasing. These sweeteners have the potential to moderate sugar and energy intakes while maintaining diet palatability, but their use has increased in concert with BMI in the population. This association may be coincidental or causal, and either mode of directionality is plausible. A critical review of the literature suggests that the addition of NNS to non-energy-yielding products may heighten appetite, but this is not observed under the more common condition in which NNS is ingested in conjunction with other energy sources. Substitution of NNS for a nutritive sweetener generally elicits incomplete energy compensation, but evidence of long-term efficacy for weight management is not available. The addition of NNS to diets poses no benefit for weight loss or reduced weight gain without energy restriction. There are long-standing and recent concerns that inclusion of NNS in the diet promotes energy intake and contributes to obesity. Most of the purported mechanisms by which this occurs are not supported by the available evidence, although some warrant further consideration. Resolution of this important issue will require long-term randomized controlled trials. PMID:19056571

  12. Energy options and strategies for Western europe.

    PubMed

    Häfele, W; Sassin, W

    1978-04-14

    Western Europe, now largely dependent on oil imports, has to prepare for strong competition for oil and energy imports in general before the year 2000. The more unlikely it is for Western Europe to secure from outside rich supplies of coal or uranium at readily acceptable economic and political conditions, the more serious this competition becomes. Even exceptionally low projections of economic growth and optimistic assumptions about energy conservation urgently call for vigorous and simultaneous development of indigenous coal and nuclear sources, including the breeder. Long-term contracts for the possession and deployment of foreign oil, gas, and coal deposits are mandatory and should be negotiated in view of the possible aggravation of north-south confrontation.

  13. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.

  14. Analysis and Application of Microgrids

    NASA Astrophysics Data System (ADS)

    Yue, Lu

    New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.

  15. The impact of hydro-biofuel-wind energy consumption on environmental cost of doing business in a panel of BRICS countries: evidence from three-stage least squares estimator.

    PubMed

    Zaman, Khalid

    2018-02-01

    The renewable energy sources are considered the vital factor to promote global green business. The environmental cost of doing business is the pre-requisite to analyze sustainable policies that facilitate the eco-minded entrepreneurs to produce healthier goods. This study examines the impact of renewable energy sources (i.e., hydro energy, biofuel energy, and wind energy) on the environmental cost of doing business in a panel of BRICS (Brazil, Russian Federation, India, China, and South Africa) countries, for the period of 1995-2015. The study employed principal component analysis to construct an "integrated environmental index" by using three alternative and plausible factors including carbon dioxide emissions, fossil fuel energy consumption, and chemicals used in the manufacturing process. The environmental index is used as an interactive term with the three cost of doing business indicators including business disclosure index, the cost of business start-up procedures, and logistics performance index to form environmental cost of doing business (ECDB) indicators. The results of three-stage least squares (3SLS) estimator show that foreign direct investment (FDI) inflows supported the green business while trade openness deteriorates the environment, which partially validates the "pollution haven hypotheses (PHH)" in a panel of countries. There is no evidence for environmental Kuznets curve (EKC) hypothesis; however, there is a monotonic decreasing relationship between per capita income and ECDB indicators. The hydro energy supports the sustainable business environment, while biofuel consumption deteriorates the environmental impact on the cost of business start-up procedures. Finally, wind energy subsequently affected the ECDB indicators in a panel of BRICS countries. The overall results conclude that growth factors and energy sources both have a considerable impact on the cost of doing business; therefore, there is a momentous need to formulate sustainable policy vista to magnetize green business across countries.

  16. Composites in energy generation and storage systems - An overview

    NASA Astrophysics Data System (ADS)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  17. Transportation Energy Data Book: Edition 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary

    2015-08-01

    The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  18. Transportation Energy Data Book: Edition 35

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2016-10-01

    The Transportation Energy Data Book: Edition 35 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  19. Transportation Energy Data Book: Edition 30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  20. Transportation Energy Data Book. Edition 33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2014-07-01

    The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  1. Transportation Energy Data Book: Edition 32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-08-01

    The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  2. Transportation Energy Data Book: Edition 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-08-01

    The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  3. Transportation Energy Data Book: Edition 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less

  4. Transportation Energy Data Book: Edition 36

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Susan E.; Davis, Stacy Cagle; Boundy, Robert Gary

    The Transportation Energy Data Book: Edition 36 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available viamore » the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 – energy; Chapter 3 – highway vehicles; Chapter 4 – light vehicles; Chapter 5 – heavy vehicles; Chapter 6 – alternative fuel vehicles; Chapter 7 – fleet vehicles; Chapter 8 – household vehicles; Chapter 9 – nonhighway modes; Chapter 10 – transportation and the economy; Chapter 11 – greenhouse gas emissions; and Chapter 12 – criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms is also included for the reader’s convenience.« less

  5. The North American Energy System: Chapter 3 of SOCCR-2

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Marcotullio, P. J.; McGlynn, E.; Bruhwiler, L.; Davis, K. J.; Davis, S. J.; Engel-Cox, J.; Field, J.; Gately, C.; Kammen, D. M.; McMahon, J.; Morrow, W.; Torrie, R.

    2017-12-01

    North America (Canada, Mexico and the United States), has a large and complex energy system, which in this case includes the extraction and conversion of primary energy sources and their storage, transmission, distribution and ultimate end use in the building, transportation and industrial sectors. The presentation assesses the contribution of this energy system to the carbon cycle. The assessment includes the identification of CO2 emissions from fossil fuel use in the different end use, changes over the past 10 years (since the last SOCCR) and the drivers of change. The assessment focuses on our understanding of the energy trends and system feedback dynamics, key drivers of change as a basis for carbon management. The energy systems' carbon emissions from the North American system are placed in global context and a review of scenarios into the future emissions levels, which demonstrate the requirements for de-carbonization in the medium and longer term.

  6. Synoptic, Global Mhd Model For The Solar Corona

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  7. Non-additive dissipation in open quantum networks out of equilibrium

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  8. Modeling TAE Response To Nonlinear Drives

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  9. Related Studies in Long Term Lithium Battery Stability

    NASA Technical Reports Server (NTRS)

    Horning, R. J.; Chua, D. L.

    1984-01-01

    The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.

  10. Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? A systematic review.

    PubMed

    Donnelly, Joseph E; Herrmann, Stephen D; Lambourne, Kate; Szabo, Amanda N; Honas, Jeffery J; Washburn, Richard A

    2014-01-01

    The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. TO ADDRESS THE QUESTION: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? PubMed and Embase were searched (January 1990-January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18-64 years). Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake.

  11. Photovoltaics as a terrestrial energy source. Volume 1: An introduction

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were examined their potential for terrestrial application and future development. Photovoltaic technology, existing and potential photovoltaic applications, and the National Photovoltaics Program are reviewed. The competitive environment for this electrical source, affected by the presence or absence of utility supplied power is evaluated in term of systems prices. The roles of technological breakthroughs, directed research and technology development, learning curves, and commercial demonstrations in the National Program are discussed. The potential for photovoltaics to displace oil consumption is examined, as are the potential benefits of employing PV in either central-station or non-utility owned, small, distributed systems.

  12. Quality evaluation of carbonaceous industrial by-products and its effect on properties of autoclave aerated concrete

    NASA Astrophysics Data System (ADS)

    Fomina, E. V.; Lesovik, V. S.; Fomin, A. E.; Kozhukhova, N. I.; Lebedev, M. S.

    2018-03-01

    Argillite is a carbonaceous industrial by-product that is a potential source in environmentally friendly and source-saving construction industry. In this research, chemical and mineral composition as well as particle size distribution of argillite were studied and used to develop autoclave aerated concrete as partial substitute of quartz sand. Effect of the argillite as a mineral admixture in autoclave aerated concrete was investigated in terms of compressive and tensile strength, density, heat conductivity etc. The obtained results demonstrated an efficiency of argillite as an energy-saving material in autoclave construction composites.

  13. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less

  14. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    NASA Astrophysics Data System (ADS)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  15. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    NASA Astrophysics Data System (ADS)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.

  16. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.

    PubMed

    Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol

    2009-01-14

    The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.

  17. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  18. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  19. Amplitude loss of sonic waveform due to source coupling to the medium

    NASA Astrophysics Data System (ADS)

    Lee, Myung W.; Waite, William F.

    2007-03-01

    In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.

  20. Amplitude loss of sonic waveform due to source coupling to the medium

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2007-01-01

    In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.

  1. Novel multi-source phase-controlled radiofrequency technology for non-ablative and micro-ablative treatment of wrinkles, lax skin and acne scars.

    PubMed

    Elman, Monica; Harth, Yoram

    2011-01-01

    The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources "repel" or "attract" each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1-3 treatment sessions.

  2. Novel multi-source phase-controlled radiofrequency technology for non-ablative and micro-ablative treatment of wrinkles, lax skin and acne scars

    PubMed Central

    Elman, Monica; Harth, Yoram

    2011-01-01

    The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources “repel” or “attract” each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1–3 treatment sessions. PMID:24155523

  3. Population Pressure, Global Living Standards, and the Promise of Space Solar Power

    NASA Astrophysics Data System (ADS)

    Strickland, John K., Jr.

    2002-01-01

    What many sincere environmentalists advocate: (severe restrictions on energy use, to reduce global warming), may actually end up being very harmful to the environment. Since 85 percent of the global energy use is derived from carbon based fossil fuels, this may seem to be a reasonable position. However, the proponents of energy use restrictions are ignoring some very important relationships. The greatest damage to the environment, in terms of species loss, is loss and/or human modification of habitat. The two greatest threats to habitat seem to be (1) population pressure and (2) logging. Logging does not necessarily permanently occupy the land, while either default squatter occupation or "colonization by policy" is often permanent. Increased population degrades the land by causing over- farming, and also creates an ever greater demand for raw materials and food resources. Poor people have no time nor money to think about or help save the environment. Therefore the greatest threat to species survival is human population growth and its frequent companion: poverty. There is an existing way to reduce population growth, and thus to reduce pressure on habitats, called "raising the standard of living". Wherever it succeeds, population growth slows rapidly. In many European countries, there would be a negative population growth if not for immigration. Personal energy use is closely correlated with living standards, and it is impossible to have a higher living standard without a higher degree of personal energy use. It would seem, however, that extending high living standards to the developing world would create an even greater demand for the use of fossil fuels. The solution to this dilemma can only be found in the use of very high capacity sources of non- fossil energy that do not significantly damage the environment. Are there sources of clean, economical energy with a large enough combined capacity to provide high living standards for the whole world, including those uses of electricity and fuels currently covered by fossil fuels. This is a global replacement load of about 9000 gigawatts. Green theorists are divided on this issue. Some claim that ground based solar, wind, and other renewable sources will supply all the energy we need, ignoring economic costs that severely limit their use. Others would (unrealistically) require the developed countries to reduce their energy consumption per capita to a level closer to that of the developing world, thereby admitting the limitations of the "appropriate" systems they espouse. Both sides in the past have rejected as "non-appropriate" and/or "dangerous" all the chemically clean energy sources of high capacity that have been previously proposed, such as safer nuclear fission, fusion power, and space solar power. If ground based "appropriate" energy sources are not sufficient, the economic and social effects of sudden forced curtailments of fossil energy use could be drastic. This paper supports the thesis that Space Solar Power does have the potential to provide such a clean, abundant, and economical energy source. It will cover both the limitations and promise of ground based energy sources, including the difficulties of using intermittent energy sources. It will discuss whether specified levels of energy cost increases would be damaging to the world economy and whether economical ground based sources alone would have sufficient capacity. It will show how the one major problem of launch costs, (currently preventing economical implementation of Space Solar Power), has a number of quite reasonable solutions. Finally, it will consider whether Space Solar Power, along with the other major space goals of Science &Exploration, Mars Colonization, Non- terrestrial Materials Recovery and Space Tourism, could be another space "killer app" which, by creating a high demand for launch services, could force large reductions in launch costs.

  4. The power of runoff

    NASA Astrophysics Data System (ADS)

    Wörman, A.; Lindström, G.; Riml, J.

    2017-05-01

    Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.

  5. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.

    PubMed

    Dagdeviren, Canan; Li, Zhou; Wang, Zhong Lin

    2017-06-21

    Living subjects (i.e., humans and animals) have abundant sources of energy in chemical, thermal, and mechanical forms. The use of these energies presents a viable way to overcome the battery capacity limitation that constrains the long-term operation of wearable/implantable devices. The intersection of novel materials and fabrication techniques offers boundless possibilities for the benefit of human health and well-being via various types of energy harvesters. This review summarizes the existing approaches that have been demonstrated to harvest energy from the bodies of living subjects for self-powered electronics. We present material choices, device layouts, and operation principles of these energy harvesters with a focus on in vivo applications. We discuss a broad range of energy harvesters placed in or on various body parts of human and animal models. We conclude with an outlook of future research in which the integration of various energy harvesters with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics, treatment, and prevention.

  6. Tidal energy extraction: renewable, sustainable and predictable.

    PubMed

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  7. Fusion energy for space missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  8. Review of fusion synfuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  9. Castable Cement Can Prevent Molten-Salt Corrosion in CSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-09-01

    NREL's study demonstrated that castable cements on metals are a protective barrier that can prevent permeation of molten salts toward metallic surfaces. The silica-based castable cement Aremco 645-N, when sprayed with boron nitride, can protect containment metallic alloys from attack by molten chlorides at high temperatures (650 degrees C) in short-term tests. Improved thermal energy storage technology could increase the performance of CSP and reduce costs, helping to reach the goal of the U.S. Department of Energy's SunShot Initiative to make solar cost-competitive with other non-renewable sources of electricity by 2020.

  10. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  11. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, T.C.J.

    1992-06-01

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

  12. A Speculative Approach to Design A Hybrid System for Green Energy

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh; Sharma, Purnima K.; Naidu, Praveen V.

    2017-08-01

    Now a day’s demand of energy is increasing all over the world. Because of this demand the fossils fuels are reducing day by day to meet the requirements of energy in daily life of human beings. It is necessary to balance the situation for the increasing energy demand by taking an optimistic overview about the natural renewable energy sources like sun, gust, hydro etc.,. These energy sources only can balance the situation of unbalancing between fossil fuels and increasing energy demand. Renewable energy systems are suitable for off grid services in power generation, to provide services to remote areas to build complex grid infrastructures. India has the abundant source of solar and wind energy. Individually these energy sources have some own advantages and disadvantages; to overcome the disadvantages of individual energy sources we can combine all these sources to make an efficient renewable source nothing but hybrid renewable energy source. In this paper we proposed a hybrid model which is a combination of four renewable energy sources solar, wind, RF signal and living plants to increase the energy efficiency.

  13. Fermi Large Area Telescope First Source Catalog

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-05-25

    Here, we present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions,more » defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. In conclusion, care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.« less

  14. The NuSTAR Serendipitous Survey: The 40-month Catalog and the Properties of the Distant High-Energy X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Balokovic, M.; hide

    2017-01-01

    We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide approx. 20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2, and 497 sources detected in total over the 324 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of [z] = 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log(f_3-24 keV/erg/s/sq cm) approx. -14 to -11, and in rest-frame 10-40 keV luminosity, from log(L10-40 keV/erg/s) approx. 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from approx. 15% at the highest luminosities (LX> 10(exp 44) erg/s) to 80 at the lowest luminosities (LX > 10(exp 43) erg/s).

  15. Standardization of terminology in field of ionizing radiations and their measurements

    NASA Astrophysics Data System (ADS)

    Yudin, M. F.; Karaveyev, F. M.

    1984-03-01

    A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.

  16. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix D: terrestrial ecosystems and forestry. Environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollom, M.

    1979-01-01

    The existing terrestrial ecosystems at the plant site and impacts on them are described. The following are discussed for the fuelwood harvest region: forest soils, forest types and ecological succession, nutrient cycles in the forest ecosystem, fauna of the ecosystem, forest practices in the harvest region, and long-term productivity of the forest resource. (MHR)

  17. Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions

    DTIC Science & Technology

    2014-09-01

    generation, exotic storage technologies, smart power grid management, and better power sources for directed-energy weapons (DEW). Accessible partner nation...near term will help to mitigate risks and improve outcomes. 2 Forecasting typically extrapolates predictions based...eventually, diminished national power . Within this context, this paper examines policy, legal, ethical, and strategy implications for DoD from the impact

  18. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  19. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes

    PubMed Central

    Ersahin, M. Evren; Yangin Gomec, Cigdem; Dereli, R. Kaan; Arikan, Osman; Ozturk, Izzet

    2011-01-01

    Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS = 61 g TS/PE·day; XSS-OFMSW = 50 g TS/PE·day). PMID:21274432

  20. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  1. Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.

    2012-01-01

    Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.

  2. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

    NASA Astrophysics Data System (ADS)

    Smith, Robert David

    As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

  3. The Ringo2 Optical Polarisation Catalogue of 13 High-Energy Blazars

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses; Jermak, Helen; Mundell, Carole; Lindfors, Elina; Nilsson, Kari; Steele, Iain

    2015-08-01

    We present the findings of the Ringo2 3-year survey of 13 blazars (3 FSRQs and 10 BL Lacs) with regular coverage and reasonably fast cadence of one to three observations a week. Ringo2 was installed on the Liverpool Robotic Telescope (LT) on the Canary Island of La Palma between 2009 and 2012 and monitored thirteen high-energy-emitting blazars in the northern sky. The objects selected as well as the observational strategy were tuned to maximise the synergies with high-energy X- to gamma-ray observations. Therefore this sample stands out as a well-sampled, long-term view of high-energy AGN jets in polarised optical light. Over half of the sources exhibited an increase in optical flux during this period and almost a quarter were observed in outburst. We compare the optical data to gamma (Fermi/LAT) and X-ray data during these periods of outburst. In this talk we present the data obtained for all sources over the lifetime of Ringo2 with additional optical data from the KVA telescope and the SkyCamZ wide-field camera (on the LT), we explore the relationship between the change in polarisation angle as a function of time (dEVPA/dMJD), flux and polarisation degree along with cross correlation comparisons of optical and high-energy flux.

  4. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  5. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.; ...

    2016-01-18

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  6. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  7. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    PubMed

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  8. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer

    PubMed Central

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-01-01

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life. PMID:29543734

  9. Development of departmental standard for traceability of measured activity for I-131 therapy capsules used in nuclear medicine.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Jp

    2011-01-01

    International Basic Safety Standards (International Atomic Energy Agency, IAEA) provide guidance levels for diagnostic procedures in nuclear medicine indicating the maximum usual activity for various diagnostic tests in terms of activities of injected radioactive formulations. An accuracy of ± 10% in the activities of administered radio-pharmaceuticals is being recommended, for expected outcome in diagnostic and therapeutic nuclear medicine procedures. It is recommended that the long-term stability of isotope calibrators used in nuclear medicine is to be checked periodically for their performance using a long-lived check source, such as Cs-137, of suitable activity. In view of the un-availability of such a radioactive source, we tried to develop methods to maintain traceability of these instruments, for certifying measured activities for human use. Two re-entrant chambers [(HDR 1000 and Selectron Source Dosimetry System (SSDS)] with I-125 and Ir-192 calibration factors in the Department of Radiotherapy were used to measure Iodine-131 (I-131) therapy capsules to establish traceability to Mark V isotope calibrator of the Department of Nuclear Medicine. Special nylon jigs were fabricated to keep I-131 capsule holder in position. Measured activities in all the chambers showed good agreement. The accuracy of SSDS chamber in measuring Ir-192 activities in the last 5 years was within 0.5%, validating its role as departmental standard for measuring activity. The above method is adopted because mean energies of I-131 and Ir-192 are comparable.

  10. Short-term effects of rainfall on CO2 fluxes above rangelands dominated by Artemisia, Bromus tectorum, and Agropyron

    NASA Astrophysics Data System (ADS)

    Ivans, S.; Saliendra, N. Z.; Johnson, D. A.

    2003-04-01

    The short-term effects of rainfall on carbon dioxide (CO_2) fluxes have not been well documented in rangelands of the Intermountain Region of the western USA. We used the Bowen ratio-energy balance technique to continuously measure CO_2 fluxes above three rangeland sites in Idaho and Utah dominated by: 1) Artemisia (sagebrush) near Malta, Idaho; 2) Bromus tectorum (cheatgrass) near Malta, Idaho; and 3) Agropyron (crested wheatgrass) in Rush Valley, Utah. We examined CO_2 fluxes immediately before and after rainfall during periods of 10--19 July 2001 (Summer), 8--17 October 2001 (Autumn), and 16--30 May 2002 (Spring). On sunny days before rainfall during Spring, all three sites were sinks for CO_2. After rainfall in Spring, all three sites became sources of CO_2 for about two days and after that became CO_2 sinks again. During Summer and Autumn when water was limiting, sites were small sources of CO_2 and became larger sources for one day after rainfall. In all three seasons, daytime CO_2 fluxes decreased and nighttime CO_2 fluxes increased after rainfall, suggesting that rainfall stimulated belowground respiration at all three sites. Results from this study indicated that CO_2 fluxes above rangeland sites in the Intermountain West changed markedly after rainfall, especially during Spring when fluxes were highest. KEY WORDS: Bowen ratio-energy balance, Intermountain West, rangelands, sagebrush, cheatgrass, crested wheatgrass

  11. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  12. Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska

    USGS Publications Warehouse

    Fee, David; Haney, Matt; Matoza, Robin S.; Szuberla, Curt A.L.; Lyons, John; Waythomas, Christopher F.

    2016-01-01

    Volcanic explosions and other infrasonic sources frequently produce acoustic waves that are recorded by seismometers. Here we explore multiple techniques to detect, locate, and characterize ground‐coupled airwaves (GCA) on volcano seismic networks in Alaska. GCA waveforms are typically incoherent between stations, thus we use envelope‐based techniques in our analyses. For distant sources and planar waves, we use f‐k beamforming to estimate back azimuth and trace velocity parameters. For spherical waves originating within the network, we use two related time difference of arrival (TDOA) methods to detect and localize the source. We investigate a modified envelope function to enhance the signal‐to‐noise ratio and emphasize both high energies and energy contrasts within a spectrogram. We apply these methods to recent eruptions from Cleveland, Veniaminof, and Pavlof Volcanoes, Alaska. Array processing of GCA from Cleveland Volcano on 4 May 2013 produces robust detection and wave characterization. Our modified envelopes substantially improve the short‐term average/long‐term average ratios, enhancing explosion detection. We detect GCA within both the Veniaminof and Pavlof networks from the 2007 and 2013–2014 activity, indicating repeated volcanic explosions. Event clustering and forward modeling suggests that high‐resolution localization is possible for GCA on typical volcano seismic networks. These results indicate that GCA can be used to help detect, locate, characterize, and monitor volcanic eruptions, particularly in difficult‐to‐monitor regions. We have implemented these GCA detection algorithms into our operational volcano‐monitoring algorithms at the Alaska Volcano Observatory.

  13. Assessment of infrasound signals recorded on seismic stations and infrasound arrays in the western United States using ground truth sources

    NASA Astrophysics Data System (ADS)

    Park, Junghyun; Hayward, Chris; Stump, Brian W.

    2018-06-01

    Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.

  14. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  15. Analysis of photovoltaic with water pump cooling by using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Shobry, M. Z.; Majid, M. S. A.

    2017-10-01

    Almost all regions in the world are facing with problem of increasing electricity cost from time to time. Besides, with the mankind’s anxiety about global warming, it has infused an ideology to rapidly move towards renewable energy sources since it is believed to be more reliable and safer. One example of the best alternatives to replace the fossil fuels sourced is solar energy. Photovoltaic (PV) panel is used to convert the sunlight into electricity. Unfortunately, the performance of PV panel can be affected by its operating temperature. With the increment of ambient temperature, the PV panel operating temperature also increase and will affect the performance of PV panel (in terms of power generated). With this concern, a water cooling system was installed on top of PV panel to help reduce the PV panel’s temperature. Five different water mass flow rate is tested due to investigate their impact towards the thermal performance and heat transfer rate.

  16. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  17. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.

    PubMed

    Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis

    2017-10-10

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  18. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency

    PubMed Central

    Akrivopoulos, Orestis

    2017-01-01

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity. PMID:28994719

  19. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2) the use of a narrow frequency band for acquisition, (3) the inability to identify P and S waves given the small sample size, and (4) acquisition using a narrow amplitude range given a low signal to noise ratio. Moving forward to the final stage of this thesis, with the ability to characterize the sources of AE, we applied our method to study an engineering problem. We chose hydraulic fracturing because of its obvious importance in the future of Canadian energy production. During a hydraulic fracture treatment, whether in a lab or in the field, energy is added to the system via hydraulic pressure. The injection energy, which is on the order of 10 J in the lab and and 100 GJ in the field, is used in the creation of new fracture surface area, the radiation of elastic waves, and aseismic deformation. In the field, it has been consistently shown that the amount of induced seismic energy radiated is between 1e-7 % and 1e-3 % of the injection energy. We tested these findings by calculating the AE energy as a percentage of the injection energy and found that for eight laboratory hydraulic fracture experiments, the seismic energy ranged from 7.02e-08 % to 1.24e-04 % of the injection energy. These results support those made in the field, which concludes that seismic energy projection is a very small component of the hydraulic fracture energy budget and that the dominant energy budget term is aseismic deformation.

  20. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  1. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  2. Kinetic energy budgets in areas of convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1979-01-01

    Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.

  3. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  4. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  5. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  6. Ethanol or bioelectricity? Life cycle assessment of lignocellulosic bioenergy use in light-duty vehicles.

    PubMed

    Luk, Jason M; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L

    2013-09-17

    Our study evaluates life cycle energy use and GHG emissions of lignocellulosic ethanol and bioelectricity use in U.S. light-duty vehicles. The well-to-pump, pump-to-wheel, and vehicle cycle stages are modeled. All ethanol (E85) and bioelectricity pathways have similar life cycle fossil energy use (~ 100 MJ/100 vehicle kilometers traveled (VKT)) and net GHG emissions (~5 kg CO2eq./100 VKT), considerably lower (65-85%) than those of reference gasoline and U.S. grid-electricity pathways. E85 use in a hybrid vehicle and bioelectricity use in a fully electric vehicle also have similar life cycle biomass and total energy use (~ 350 and ~450 MJ/100 VKT, respectively); differences in well-to-pump and pump-to-wheel efficiencies can largely offset each other. Our energy use and net GHG emissions results contrast with findings in literature, which report better performance on these metrics for bioelectricity compared to ethanol. The primary source of differences in the studies is related to our development of pathways with comparable vehicle characteristics. Ethanol or vehicle electrification can reduce petroleum use, while bioelectricity may displace nonpetroleum energy sources. Regional characteristics may create conditions under which either ethanol or bioelectricity may be the superior option; however, neither has a clear advantage in terms of GHG emissions or energy use.

  7. Functionalization of mesoporous materials for lanthanide and actinide extraction.

    PubMed

    Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy

    2016-10-14

    Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.

  8. Access to primary energy sources - the basis of national energy security

    NASA Astrophysics Data System (ADS)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  9. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  10. Heliosynthesis: A solar biotechnology based on direct bioconversion of solar energy by photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Gudin, C.

    1982-12-01

    Certain limiting aspects of current technology should be studied, such as the lifetimes of tubing material and the utilization of renewable sources of energy for pumping. Only exocellular or cellular biomass with high specific value, involving small markets and small plant areas (less than 1 ha), will be economically possible for the short term and will allow improvement of this technology. A valorization of the totality of photosynthetic biomass with respect to economics and energy is an absolute necessity. There is an immediate need for genetic studies of microalgae that will allow enhancement or even creation of chemical production satisfying economic and energy needs. Such efforts should permit the rapid establishment of an aggressive and sophisticated solar biotechnology that integrates scientific and technical' developments to meet the new needs of humanity for food, chemicals, and energy, thereby complementing agriculture with a sort of cellular horticulture.

  11. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses of the current management of renewable energy sources will be made for the enhancement of the renewable energy and hence sustain energy access and security in general and in remote areas in particular where the fight against poverty is more difficult. We will use several documents, soft and hard from institutions in the region and abroad, and maps when available. |End Text|

  12. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    PubMed

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

  13. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  14. Assessment of wave energy potential along the south coast of Java Island

    NASA Astrophysics Data System (ADS)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  15. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  16. Energy use in the New Zealand food system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, M.G.; Earle, M.D.

    1985-03-01

    The study covered the total energy requirements of the production, processing, wholesale distribution, retailing, shopping and household sectors of the food system in New Zealand. This included the direct energy requirements, and the indirect energy requirements in supplying materials, buildings and equipment. Data were collected from a wide range of literature sources, and converted into forms required for this research project. Also, data were collected in supplementary sample surveys at the wholesale distribution, retailing and shopping sectors. The details of these supplementary surveys are outlined in detailed survey reports fully referenced in the text. From these base data, the totalmore » energy requirements per unit product (MJ/kg) were estimated for a wide range of food chain steps. Some clear alternatives in terms of energy efficiency emerged from a comparison of these estimates. For example, it was found that it was most energy efficient to use dehydrated vegetables, followed by fresh vegetables, freeze dried vegetables, canned vegetables and then finally frozen vegetables.« less

  17. Photoionization of tungsten ions: experiment and theory for $${{\\rm{W}}}^{2+}$$ and $${{\\rm{W}}}^{3+}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, B. M.; Ballance, C. P.; Schippers, S.

    2016-02-22

    Experimental and theoretical results are reported for single-photon single ionization of W 2+ and W 3+ tungsten ions. Experiments were performed at the photon-ion merged-beam setup of the Advanced Light Source in Berkeley. Absolute cross sections and detailed energy scans were measured over an energy range 20-90 eV at a bandwidth of 100 meV. Broad peak features with widths typically around 5 eV have been observed with almost no narrow resonances present in the investigated energy range. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. The calculations were carried out for the lowest-energy terms of the investigated tungsten ionsmore » with levels 5s 25p 65d 4 5D J J = 0, 1, 2, 3, 4 for W 2+ and 5s 25p 65d 3 4F J' J ' = 3/2, 5/2, 7/2, 9/2 for W 3+. Assuming a statistically weighted distribution of ions in the initial ground-term levels there is good agreement of theory and experiment for W 3+ ions. However, for W 2+ ions at higher energies there is a factor of approximately two difference between experimental and theoretical cross sections.« less

  18. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    PubMed

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-09-15

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Overview of the wind energy market and renewable energy policy in Romania

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Gillich, N.; Hatiegan, C.; Spunei, E.

    2017-01-01

    The modern, developed society becomes aware of the necessity to conserve and protect the environment, increasing the gained benefits from a rational use of the natural resources. The pollution and the limitation of the fossil fuels, associated with the political situation worldwide that affects direct the energy strategies, have opened opportunities in the area of operation renewable energy sources. The development of the exploitation of renewable energy sources is directly linked to the energy politic, which, in terms of Romania, has the focus to integrate into the European Union energy strategy. The year 2014 brought in Romania many legislative changes to the renewable support scheme, that proves, once again, the legislative unpredictability and limitations introduced by the legislator ”during the game” that overthrew all economic profitability calculation of the existent and planned investments in this sector. The actual stage of the wind energy across Europe and the particular situation in Romania are highlighted; also a 2020 forecast for Romania tries to evaluate the perspective for the wind, and general, renewable energy market. The actual Romanian renewable energy support scheme, mainly regulated by “Law 220/2008” ends December 2016. The so-called “ready to build” projects especially wind- or hydropower, can’t be finalized until this deadline, being unable to qualify to the existing, mainly to inoperable, support scheme. Another legislation that has to clarify how investments in renewable energy will be supported is still not in place, blocking any project development, implementation and economical benefit of the producer. The paper presents in this respect an updated overview of the Romanian renewable energy sector and its perspective.

  20. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110more » MMBtu/year or approximately 40% below the Northeast regional average.« less

  1. Palatini wormholes and energy conditions from the prism of general relativity.

    PubMed

    Bejarano, Cecilia; Lobo, Francisco S N; Olmo, Gonzalo J; Rubiera-Garcia, Diego

    2017-01-01

    Wormholes are hypothetical shortcuts in spacetime that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.

  2. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  3. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  4. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  5. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  6. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  7. Shining light on modifications of gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine

    2012-10-01

    Many modifications of gravity introduce new scalar degrees of freedom, and in such theories matter fields typically couple to an effective metric that depends on both the true metric of spacetime and on the scalar field and its derivatives. Scalar field contributions to the effective metric can be classified as conformal and disformal. Disformal terms introduce gradient couplings between scalar fields and the energy momentum tensor of other matter fields, and cannot be constrained by fifth force experiments because the effects of these terms are trivial around static non-relativistic sources. The use of high-precision, low-energy photon experiments to search for conformally coupled scalar fields, called axion-like particles, is well known. In this article we show that these experiments are also constraining for disformal scalar field theories, and are particularly important because of the difficulty of constraining these couplings with other laboratory experiments.

  8. Duoplasmatron source modifications for 3He+ operation

    NASA Astrophysics Data System (ADS)

    Schmidt, C. W.; Popovic, M.

    1998-02-01

    A duoplasmatron ion source is used to produce 25 mA of 3He+ with a pulse width of ˜80 ms at 360 Hz for acceleration to 10.5 MeV. At this energy, 3He striking water or carbon targets can produce short lived isotopes of 11C, 13N, 15O, and 18F for medical positron emission tomography (PET). A duoplasmatron ion source was chosen originally since it is capable of a sufficient singly charged helium beam with an acceptable gas consumption. Stable long-term operation of the source required a change in the filament material to molybdenum, and a careful understanding of the oxide filament conditioning, operation and geometry. Other improvements, particularly in the electronics, were helpful to increasing the reliability. The source has operated for many months at ˜2.5% duty factor without significant problems and with good stability. We report here the effort that was done to make this source understandable and reliable.

  9. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    NASA Astrophysics Data System (ADS)

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  10. Beam energy considerations for gold nano-particle enhanced radiation treatment.

    PubMed

    Van den Heuvel, F; Locquet, Jean-Pierre; Nuyts, S

    2010-08-21

    A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Krönig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Krönig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.

  11. Beam energy considerations for gold nano-particle enhanced radiation treatment

    NASA Astrophysics Data System (ADS)

    Van den Heuvel, F.; Locquet, Jean-Pierre; Nuyts, S.

    2010-08-01

    A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Krönig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Krönig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.

  12. GeV γ-ray Emission Detected by Fermi-LAT Probably Associated with the Thermal Composite Supernova Remnant Kesteven 41 in a Molecular Environment

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Chen, Yang; Zhang, Xiao; Zhang, Gao-Yuan; Xing, Yi; Pannuti, Thomas G.

    2015-08-01

    Hadronic emission from supernova remnant (SNR)-molecular cloud (MC) association systems has been widely regarded as a probe of shock-accelerated cosmic-ray protons. Here, we report on the detection of a γ-ray emission source with a significance of 24σ in 0.2-300 GeV, projected to lie to the northwest of the thermal composite SNR Kesteven 41, using 5.6 years of Fermi-Large Area Telescope (LAT) observation data. No significant long-term variability in the energy range 0.2-300 GeV is detected around this source. The 3σ error circle, 0.09° in radius, covers the 1720 MHz OH maser and is essentially consistent with the location of the VLSR˜ -50 km s-1 MC with which the SNR interacts. The source emission has an exponential cutoff power-law spectrum with a photon index of 1.9 ± 0.1 and a cutoff energy of 4.0+/- 0.9 GeV, and the corresponding 0.2-300 GeV luminosity is ˜ 1.3× 1036 erg s-1 at a distance of 12 kpc. There is no radio pulsar in the 3σ circle responsible for the high γ-ray luminosity. While the inverse Compton scattering scenario would lead to difficulty in the electron energy budget, the source emission can naturally be explained by the hadronic interaction between the relativistic protons accelerated by the shock of SNR Kesteven 41 and the adjacent northwestern MC. In this paper, we present a list of Galactic thermal composite SNRs detected at GeV γ-ray energies by Fermi-LAT.

  13. DOE's Tribal Energy Program Offers Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas C. MacCourt, Chair, Indian Law Practice, Ater Wynne LLP

    2010-06-01

    This handbook is an accessible reference for those who are new to tribal energy project development or who seek a refresher on key development issues as they navigate the project development process. Building upon the wealth of feedback and experiences shared by tribal and other participants in tribal energy workshops conducted by the National Renewable Energy Laboratory, it is designed to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process. It includes information on how to structure a renewable energy project transaction to protect tribal interests,more » with an emphasis on joint project development efforts undertaken with nontribal parties; a general overview of key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and a detailed discussion of ways tribes can finance renewable energy projects, the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects. The guide also includes a glossary of some of the most commonly used technical terms.« less

  14. Optimal control, investment and utilization schemes for energy storage under uncertainty

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.

  15. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoo-Vallett, Paul

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same manner as it is for fossil fuel sources. The methodology chosen for these technologies is important as it affects the perception of the relative size of renewable source energy to fossil energy, affects estimates of source-based building energy use, and overall source energy based metrics such as energy productivity. This memo reviews the methodological choices, outlines implications of each choice, summarizes responses to a request for information on this topic,more » and presents guiding principles for the U.S. Department of Energy, (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to use to determine where modifying the current renewable source energy accounting method used in EERE products and analyses would be appropriate to address the issues raised above.« less

  16. Comparing energy sources for surgical ablation of atrial fibrillation: a Bayesian network meta-analysis of randomized, controlled trials.

    PubMed

    Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D

    2015-08-01

    Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Low pass filter for plasma discharge

    DOEpatents

    Miller, Paul A.

    1994-01-01

    An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

  18. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-04-01

    Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.

  20. Transportation Energy Data Book: Edition 28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latestmore » edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.« less

Top