Science.gov

Sample records for energy storage overview

  1. GVPM Energy Storage Overview

    DTIC Science & Technology

    2011-08-10

    12V 6T Battery 50-60Wh/kg 400-450W/kg >$2000/kWhr Energy Content Trends Advanced Battery Technologies Price Targets... Battery Technology Near-Term Mid-Term Production Long-Term High Volume Lead Acid ( 12V ) $400/kWh $350/kWh $250/kWh Ni-Zn ( 12V ) $500/kWh $350/kWh $200/kWh Li-ion ( 12V or 28V) $5,000/kWh $1,000/kWh $500/kWh ...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC ,6501 E.11 Mile

  2. Underground energy-storage program overview

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1982-07-01

    Characterization of the performance of thermal energy systems at injection temperatures of less than 850 C is nearly complete. Studies of injection and storage at temperatures up to 1500 C were initiated and continue through FY-1983. Studies of nonaquifer seasonal thermal energy systems including cavern and ice storage systems also continue. Stability criteria and guidelines documents were published for salt and hard rock compressed air energy storage (CAES) reservoirs. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems was completed. Two materials, denstone and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  3. Underground energy-storage program overview

    SciTech Connect

    Kannberg, L.D.

    1982-07-01

    The objective of this program is to reduce technical and economic risks obstructing commercial development of underground energy storage concepts promising more effective and efficient utilization of energy resources. Primary concepts are Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). STES objectives include characterization and mitigation of STES concept technical deficiencies and uncertainties and evaluation of economic features. CAES objectives include development of stability criteria for CAES reservoirs and analysis and development of promising second-generation CAES systems. Characterization of the performance of TES systems at injection temperatures of less than 85/sup 0/C is nearly complete. Studies of injection and storage at temperatures up to 150/sup 0/C have been initiated and will be continued through FY 1983. Studies of nonaquifer STES systems including cavern and ice storage systems have been conducted and will continue in FY 1983. Stability criteria and guidelines documents have been published for salt and hard rock CAES reservoirs. All design and construction on the Pittsfield Aquifer Field Test will be completed by the end of FY 1982 and bubble development and air cycling will be conducted in the first six months of FY 1983. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems has been completed. Two materials, Denstone (a registered product of the Norton Company) and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  4. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  5. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  6. An overview of the SERI Solar Energy Storage Program

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.

    1981-03-01

    Thermal energy storage concepts and thermal energy transport by sensible and latent heat media are studied. Systems analyses are performed of thermal energy storage for solar thermal applications, and surveys and assessments are used to coordinate thermal energy storage activities for solar applications, particularly in building heating and cooling.

  7. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  8. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  9. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  10. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  11. Overview of the Thermal Energy Storage (TES) Program

    NASA Astrophysics Data System (ADS)

    Gurevich, M.

    1981-03-01

    The program promotes energy savings and fuel substitution by developing and helping to commercialize technologies for storing heat or cold, with shot investment payback periods as a cost goal. The sources of energy include industrial and utility waste heat as well as primary sources such as solar, geothermal, nuclear and fossil fuels. The primary source of "cold" for seasonal storage is winter chilled air. The program emphasizes near-term (1980's) approaches to energy conservation and displacement of natural gas and oil. It also provides for development of technologies which will allow use of renewable resources such as solar-thermal energy during the mid-term (1990's) and advanced energy storage and transport techniques for the far-term (beyond 2000).

  12. Composites in energy generation and storage systems - An overview

    NASA Astrophysics Data System (ADS)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  13. Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage.

    PubMed

    Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.

  14. Compressed-air energy-storage technology: Program overview

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1981-07-01

    A new technology designed to reduce the consumption of oil in the generation of electric power was developed. The program has two major elements: reservoir stability studies and second generation concepts studies. The reservoir stability studies are aimed at developing stability criteria for long term operation of large underground reservoirs used for compressed air storage. The second generation concepts studies are aimed at developing new concepts that will require little or no petroleum fuels for operation. The program efforts are outlined and major accomplishments towards the objectives of the program are identified.

  15. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  16. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  17. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  18. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  19. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  20. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  1. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings

    NASA Astrophysics Data System (ADS)

    Strasik, M.; Hull, J. R.; Mittleider, J. A.; Gonder, J. F.; Johnson, P. E.; McCrary, K. E.; McIver, C. R.

    2010-03-01

    An overview summary of recent Boeing work on high-temperature superconducting (HTS) bearings is presented. A design is presented for a small flywheel energy storage system that is deployable in a field installation. The flywheel is suspended by a HTS bearing whose stator is conduction cooled by connection to a cryocooler. At full speed, the flywheel has 5 kW h of kinetic energy, and it can deliver 3 kW of three-phase 208 V power to an electrical load. The entire system, which includes a containment structure, is compatible with transportation by forklift or crane. Laboratory measurements of the bearing loss are combined with the parasitic loads to estimate the efficiency of the system. Improvements in structural composites are expected to enable the operation of flywheels with very high rim velocities. Small versions of such flywheels will be capable of very high rotational rates and will likely require the low loss inherent in HTS bearings to achieve these speeds. We present results of experiments with small-diameter rotors that use HTS bearings for levitation and rotate in vacuum at kHz rates. Bearing losses are presented as a function of rotor speed.

  2. Thermal energy storageoverview and specific insight into nitrate salts for sensible and latent heat storage

    PubMed Central

    Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853

  3. Energy Storage

    DTIC Science & Technology

    2007-05-01

    Release, Distribution Unlimited) Activities • Modeling & Simulation: – Solar availability – Effective airship solar surface area – System energy ...2007, The MITRE Corporation(Approved for Public Release, Distribution Unlimited) Energy Storage Perry Hamlyn 781-271-2137 • phamlyn@mitre.org DARPA...REPORT DATE MAY 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE Energy Storage 5a. CONTRACT NUMBER 5b. GRANT

  4. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  5. Energy overview

    NASA Technical Reports Server (NTRS)

    Slone, H. O.

    1980-01-01

    The experience, capabilities, and facilities being utilized at NASA Lewis in support of energy programs conducted by the Department of Energy and other agencies are discussed. Background information is given regarding NASA's involvement in solving energy problems.

  6. An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  7. 30-MJ superconducting magnetic-energy-storage stabilizing system: an overview

    SciTech Connect

    Roger, J.D.; Boenig, H.J.; Dean, J.W.; Schermer, R.I.; Annestrand, S.A.; Hauer, J.F.; Miller, B.L.

    1983-01-01

    The 30-MJ superconducting magnetic-energy-storage (SMES) system was devised as an alternate means to modulate the Bonneville Power Administration (BPA) Pacific AC Intertie, a part of the Western US Power System, to prevent undamped power oscillations at 0.35 Hz that were observed to be associated with high power transmission. The SMES system was installed at the BPA Tacoma Substation and successfully operated as an experimental device to initiate tests to determine power system dynamics, to investigate their variability, to assess system response to SMES modulation with a major variable load, and to use SMES to develop stability-control techniques. The system has been operated at frequencies of 0.1 to 1.0 Hz at power levels of +- 8.3 MW with a parallel modulation of the converter bridges and up to 9.5 MW reactive power together with +- 4.5 MW real power in constant VAR mode with buck-boost modulation of the bridges. The coil has been charged at a maximum rate of 11.8 MW. Operation of the SMES system is now under BPA jurisdiction, and all hardware has been transferred to BPA.

  8. Seasonal thermal energy storage

    SciTech Connect

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  9. Advanced research in solar energy storage

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1983-01-01

    This paper gives an overview of the Solar Energy Storage Program at the Solar Energy Research Institute. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800 C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  10. Energy storage criteria handbook

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Cole, R. L.; Hull, A. B.

    1982-10-01

    The purpose of this handbook is to provide information and criteria necessary for the selection and sizing of energy storage technologies for use at U.S. Naval facilities. The handbook gives Naval base personnel procedures and information to select the most viable energy storage options to provide the space conditioning (heating and cooling) and domestic hot water needs of their facility. The handbook may also be used by contractors, installers, designers, engineers, architects, and manufacturers who intend to enter the energy storage business. The handbook is organized into three major sections: a general section, a technical section, and an example section. While a technical background is assumed for the latter two sections, the general section is simply written and can serve as an introduction to the field of energy storage. The technical section examines the following energy storage technologies: sensible heat storage, latent heat storage, cold storage, thermochemical storage, mechanical storage, pumped hydro storage, and electrochemical storage. The example section is limited to thermal storage and includes examples for: water tank storage, rockbed storage, latent heat storage, and cold water storage.

  11. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  12. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  13. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  14. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    SciTech Connect

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  15. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  16. Influence of Aquifer Thermal Energy Storage (ATES) on groundwater chemistry: an overview of several cases in Belgium

    NASA Astrophysics Data System (ADS)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2013-04-01

    Environmental concerns and an increasing pressure on fossil fuels cause a rapidly growing interest in renewable energy. An interesting provider of such renewable energy is Aquifer Thermal Energy Storage (ATES), where groundwater in the aquifer is used as storage medium for summer heat and winter cold. The number of ATES systems has been continually increasing over the last years and will continue to increase in the future. Because ATES is often applied in aquifers also used for the production of drinking water, drinking water companies and environmental agencies are concerned about the impact of all these ATES systems on the groundwater quality in the long term. Because most ATES systems operate at relatively small temperature differences, ranging to several °C above and below the natural groundwater temperature, several studies show that the temperature influence on the groundwater quality is negligible. Mixing of the water column, on the other hand, possibly affects groundwater quality. The water is often extracted over a large portion of the aquifer in order to come to the desired flow rates. The composition of the groundwater on this interval may, however, differ from the top to the bottom by interaction with the surrounding aquifer material. The aim of this study is to evaluate the influence that Aquifer Thermal Energy Storage may have on the groundwater quality. Therefore the groundwater chemistry around seven ATES installations in the north of Belgium (Flanders) is evaluated. The selected ATES systems are located in several aquifers, which have major groundwater resources. The warm and cold wells of the different ATES installations were sampled and analyzed for the main chemical constituents during 4 to 7 years. The time series of the different chemical compounds are investigated per ATES well and compared with time series of several monitoring wells in the exploited aquifer. Results confirm that the temperatures occurring in the ATES systems do not affect

  17. Energy storage apparatus

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E. (Inventor)

    1978-01-01

    A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.

  18. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  19. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  20. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  1. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  2. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  3. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  4. Energy Storage: George Crabtree

    SciTech Connect

    Crabtree, George

    2016-10-06

    George Crabtree, Argonne scientist and Director of Joint Center for Energy Storage Research, discusses the importance of developing the next generation of batteries and how that could help transform the electricity grid.

  5. Energy Storage: George Crabtree

    ScienceCinema

    Crabtree, George

    2016-12-14

    George Crabtree, Argonne scientist and Director of Joint Center for Energy Storage Research, discusses the importance of developing the next generation of batteries and how that could help transform the electricity grid.

  6. Thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    1992-03-01

    The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

  7. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-02-01

    Research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage program are presented. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

  8. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Copeland, R. J.; Kotch, A.; Kriz, T.; Luft, W.; Nix, R. G.; Wright, J. O.

    1982-05-01

    Thermal energy storage technologies are identified for specific solar thermal applications. The capabilities and limitations of direct-contact thermal storage and thermochemical energy storage and transport are examined. Storage of energy from active solar thermal systems for industrial process heat and the heating of buildings is analyzed and seasonal energy storage is covered. The coordination of numerous thermal energy storage research and development activities is described.

  9. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  10. Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle

    2013-03-01

    Electrochemical energy storage is a primary concern of both the consumer and public energy sectors. Energy, once generated, must be stored, transported and retrieved efficiently. This is commonly done through the use of various kinds of batteries and recently through the use of capacitors. Optimal energy storage involves the complete electrochemical system, but many of the performance properties can be understood in terms of the constituent materials that make up the anode, cathode and electrolyte. In this talk will give a brief overview of electrochemical energy storage systems and the role of materials in improving them. Using computational methods as a framework, I will discuss how discuss how macroscopic properties, such as capacity, conductivity, voltage, and stability are determined by fundamental materials properties at the quantum mechanical level. Using the knowledge gained from understanding the underlying processes, I will discuss some common battery materials, such as LiFePO4, layered transition metal oxides, and oxide electrolyte materials. I will show how predictions for better materials can be made using computational tools to save time and money by circumventing expensive screening in the laboratory. I will also discuss how tailoring the morphology of materials, for example by synthesizing at the nanoscale, can have extreme benefits for battery materials performance.

  11. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  12. DOE Global Energy Storage Database

    DOE Data Explorer

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  13. Thermal energy storage material

    DOEpatents

    Leifer, Leslie

    1976-01-01

    A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

  14. Pneumatic energy storage

    SciTech Connect

    Flowers, D.

    1995-09-19

    An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

  15. An Energy Overview of Ecuador

    SciTech Connect

    anon.

    2003-10-17

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Ecuador. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  16. An Energy Overview of Venezuela

    SciTech Connect

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Venezuela. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  17. An Energy Overview of Colombia

    SciTech Connect

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site--each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Colombia. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  18. An Energy Overview of Peru

    SciTech Connect

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Peru. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  19. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  20. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  1. Magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.

    1981-01-01

    Magnetic energy storage has become the foundation for near time and longer range electric utility applications and for current induction in the plasma of fusion devices. The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure suported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines.

  2. Thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    1991-03-01

    The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress in development of TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1989 to March 1990 is reported.

  3. REDOX electrochemical energy storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1980-01-01

    Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.

  4. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  5. The Utility Battery Storage Systems Program Overview

    SciTech Connect

    Not Available

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  6. An Energy Overview of Bolivia

    SciTech Connect

    anon.

    2003-08-13

    The DOE Office of Fossil Energy maintained a web site that was meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consisted of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There were also more than 30 Country Energy Overviews at the web site -- each of these was a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Bolivia.

  7. Superconducting magnetic energy storage

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  8. Maui energy storage study.

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  9. Energy Storage Systems Are Coming: Are You Ready

    SciTech Connect

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  10. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  11. Pseudocapacitors for Energy Storage

    NASA Astrophysics Data System (ADS)

    Venkataraman, Anuradha

    Fluctuation in the demand for electrical power and the intermittent nature of the supply of energy from renewable sources like solar and wind have made the need for energy storage a dire necessity. Current storage technologies like batteries and supercapacitors fall short either in terms of power output or in their ability to store sufficient energy. Pseudocapacitors combine features of both and offer an alternative to stabilize the power supply. They possess high rates of charge and discharge and are capable of storing much more energy in comparison to a supercapacitor. In the quest for solutions that are economical and feasible, we have investigated Prussian Blue in aqueous electrolytes for its use as a pseudocapacitor. Two different active materials based on Prussian Blue were prepared; one that has just Prussian Blue and the other that contains a mixture of Prussian Blue and carbon nanotubes (CNTs). Four electrolytes differing in the valence of the cation were employed for the study. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrodes. Our experiments have shown specific capacitances of Prussian Blue electrodes in the range of 140-720 F/g and that of Prussian Blue-CNT electrodes in the range of ˜52 F/g. The remarkable capacity of charge storage in Prussian Blue electrodes is attributed to its electrochemical activity ensuring surface redox and its tunnel-like structure allowing ease of entry and exit for ions like Potassium. Simple methods of synthesis have yielded specific capacitances of the order of hundreds of Farads per gram showing that Prussian Blue has promise as an electrode material for applications needing high rates of charge-discharge.

  12. Energy: An Overview.

    ERIC Educational Resources Information Center

    Qayoumi, Mohammad H.

    2003-01-01

    Reviews transformations in the field of energy over the last 30 years, including the 1970s energy crisis and the legislative response, the abandonment of nuclear energy, growing dependence on natural gas, growing dependence on electricity rather than oil, and superconducting technologies. (EV)

  13. Energy: An Overview.

    ERIC Educational Resources Information Center

    Qayoumi, Mohammad H.

    2003-01-01

    Reviews transformations in the field of energy over the last 30 years, including the 1970s energy crisis and the legislative response, the abandonment of nuclear energy, growing dependence on natural gas, growing dependence on electricity rather than oil, and superconducting technologies. (EV)

  14. Flywheel energy storage workshop

    SciTech Connect

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  15. Thermal energy storage material

    SciTech Connect

    Kent, P.J.; Page, J.K.

    1980-06-24

    A thermal energy storage material is disclosed that is comprised of at least one hydrated inorganic salt having a transition temperature to the anhydrous or a less hydrated form in the range 10/sup 0/ to 100/sup 0/ C (for example, sodium sulphate decahydrate), the salt being dispersed and suspended in a water-insoluble hydrogel formed from a water-soluble synthetic polymer having pendant carboxylic or sulphonic acid groups cross-linked with cations of a polyvalent metal (For example, aluminium or magnesium).

  16. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  17. State Energy Overview. [Contains glossary

    SciTech Connect

    Not Available

    1983-10-01

    An overview of selected energy-related data for the United States, for each state, and for the District of Columbia is presented. Included are the quantities of energy produced and consumed, estimates of fuel reserves, the value of nonrenewable fuels produced by type, energy expenditures, and consumer prices. Also provided for each state are selected demographic and energy-related information that have been ranked and expressed as a percent of the national total. This overview provides a ready reference and a quick access to selected state energy information and state rankings for various socioeconomic and energy items. The State Energy Overview is arranged in five sections. The first section presents United States totals and an overview of state rankings. The second depicts data for the 50 states and the District of Columbia. The glossary presents definitions germane to this publication and the fourth section describes methodology and includes remarks concerning the information and methods used to estimate 1982 consumption numbers. The fifth section presents sources of data and information for this publication. A summary of each section is included.

  18. Benefits from energy storage technologies

    SciTech Connect

    Copeland, R J; Kannberg, L D; O'Connell, L G; Eisenhaure, D; Hoppie, L O; Barlow, T M; Steele, R S; Strauch, S; Lawson, L J; Sapowith, A P

    1983-11-01

    The United States is continuing to rely upon nondomestic and nonsecure sources of energy. Large quantities of energy are lost as a result of time mismatches between the supply and the demand for power. Substantial improvements in energy efficiency are possible through the use of improved energy storage; advanced energy storage can also improve the utilization of domestic energy resources (coal, geothermal, solar, wind, and nuclear) by providing energy in accordance with a user's time-varying needs. Advanced storage technologies offer potentially substantial cost and performance advantages but also have significant technical risk. If even a fraction of the proposed technologies reach fruition, they will make an important contribution to better use of our domestic energy resources. The Energy Storage and Transport Technologies Committee of the American Society of Mechanical Engineers encourages research, development, and application of energy storage technologies to reduce imports and energy costs.

  19. Magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.

    1980-09-01

    The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement was paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype Tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems of store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off shoot of this last work is a program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work.

  20. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  1. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  2. Energy storage systems comparison for the space station

    NASA Technical Reports Server (NTRS)

    Vanommering, G.

    1986-01-01

    An overview of the requirements, options, selection criteria and other considerations, and current status with regard to the energy storage subsystem (ESS) for the photovoltaic power system alternative for the space station is provided.

  3. Aquifer thermal energy storage program

    NASA Technical Reports Server (NTRS)

    Fox, K.

    1980-01-01

    The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems.

  4. Article for thermal energy storage

    DOEpatents

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  5. Flywheels for energy storage

    SciTech Connect

    Grudkowski, T.W.; Dennis, A.J.; Meyer, T.G.; Wawrzonek, P.H.

    1996-01-01

    Advanced flywheel technology offers a competitive technique for storing energy for electric utility and hybrid or electric vehicle applications. The relatively recent availability of suitable and affordable high strength, lightweight composite materials for construction of the rotating wheel is a major reason for recent technical developments. This paper will briefly describe the major applications of flywheel technology, design considerations for the composite wheel and other portions of the systems, and the status of current device developments. United Technologies Corporation (UTC) has concentrated on an automotive Flywheel Surge Power Unit (FSPU) and utility power quality unit having a rated power of 25 to 50 kW and an energy storage capability of 800 Wh at 35,000 RPM. Other developments of larger units for buses and utility load leveling applications have also begun. Several failure mode tests of composite wheels have been demonstrated. Efforts to intentionally fail these filament wound graphite/thermo-plastic wheels at operational speeds have so far been unsuccessful, indicating a robust design. The technology is ready for producing initial prototype flywheel systems. 6 refs., 6 figs.

  6. Overview of Sandia's storage battery program

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Grothaus, K. R.

    The primary mission of Sandia National Laboratories is the design and development of the non-nuclear components and systems for nuclear weapons. To a lesser degree, Sandia is also involved in a variety of other programs; such as, energy projects with the Department of Energy, conventional military projects with the Department of Defense, and nuclear waste management and reactor safety with the Nuclear Regulatory Commission. Over the years, Sandia has evolved a considerable expertise in the areas of specialty primary, reserve, and more recently, secondary battery systems. This paper focuses on the status of the storage or secondary battery programs. These programs are divided into those battery systems being developed for energy applications and those being developed for military applications.

  7. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  8. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  9. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The Energy Conversion and Storage Program applies chemical and chemical engineering principles to solve problems in (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy storage; (4) characterization of complex chemical processes; and (5) the application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, and advanced methods of analysis. The following five areas are discussed: electrochemical energy storage and conversion; microstructured materials; biotechnology; fossil fuels; and high temperature superconducting processing. Papers have been processed separately for inclusion on the data base.

  10. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  11. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  12. OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, BOILER BUILDING ON RIGHT, SOUTH AND EAST ELEVATIONS, CAMERA FACING NORTH. - New Haven Rail Yard, Central Steam Plant and Oil Storage, Vicinity of Union Avenue, New Haven, New Haven County, CT

  13. OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT IN FOREGROUND, CORNER OF CARPENTER SHOP TO THE RIGHT, CORNER OF BAGASSE STORAGE BUILDING TO THE LEFT. MACHINE SHOP AND BOILER HOUSE IN MIDDLE GROUND, 1948 STACK AND BOILING HOUSE TO REAR. VIEW FROM THE WEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  14. Lih thermal energy storage device

    DOEpatents

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  15. Southern company energy storage study :

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  16. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  17. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  18. The SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-03-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  19. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  20. Energy storage-boiler tank

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  1. Thermal Energy Storage: Fourth Annual Review Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  2. Energy Storage Technologies

    ScienceCinema

    Daniel, Claus; Li, Jianlin

    2016-10-19

    At the DOE Battery Manufacturing R&D Facility, researchers are partnering with industry to increase energy density, reduce costs and hazardous materials, and improve the manufacturing process for batteries used in electric vehicles and other applications.

  3. Energy Storage Technologies

    SciTech Connect

    Daniel, Claus; Li, Jianlin

    2016-04-22

    At the DOE Battery Manufacturing R&D Facility, researchers are partnering with industry to increase energy density, reduce costs and hazardous materials, and improve the manufacturing process for batteries used in electric vehicles and other applications.

  4. Templated nanocarbons for energy storage.

    PubMed

    Nishihara, Hirotomo; Kyotani, Takashi

    2012-08-28

    The template carbonization method is a powerful tool for producing carbon materials with precisely controlled structures at the nanometer level. The resulting templated nanocarbons exhibit extraordinarily unique (often ordered) structures that could never be produced by any of the conventional methods for carbon production. This review summarizes recent publications about templated nanocarbons and their composites used for energy storage applications, including hydrogen storage, electrochemical capacitors, and lithium-ion batteries. The main objective of this review is to clarify the true significance of the templated nanocarbons for each application. For this purpose, the performance characteristics of almost all templated nanocarbons reported thus far are listed and compared with those of conventional materials, so that the advantages/disadvantages of the templated nanocarbons are elucidated. From the practical point of view, the high production cost and poor mass-producibility of the templated nanocarbons make them rather difficult to utilize; however, the study of their unique, specific, and ordered structures enables a deeper insight into energy storage mechanisms and the guidelines for developing energy storage materials. Thus, another important purpose of this work is to establish such general guidelines and to propose future strategies for the production of carbon materials with improved performance for energy storage applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal energy storage flight experiments

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  6. NV energy electricity storage valuation :

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  7. Rotary spring energy storage

    SciTech Connect

    Cooley, S.

    1981-07-01

    The goal was to design a lightweight system, for bicycles, that can level the input energy requirement (human exertion) in accordance with variations in road load (friction, wind, and grade) and/or to provide a system for regenerative braking, that is, to store energy normally lost in brake pad friction for brief periods until it required for re-acceleration or hill-climbing. The rotary spring, also called the coil, motor, spiral, or power spring is governed by the equations reviewed. Materials used in spring manufacture are briefly discussed, and justification for steel as the design choice of material is given. Torque and power requirements for a bicycle and rider are provided as well as estimated human power output levels. These criteria are examined to define spring size and possible orientations on a bicycle. Patents and designs for coupling the spring to the drive train are discussed.

  8. SERI Solar-Energy-Storage Program

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.

    1981-08-01

    The program provides research, system analysis, and assessments of thermal energy storage and transport in support of the Thermal Energy Storage Program of the DOE Division of Energy Storage Technology; emphasis is on thermal energy storage for solar thermal power and process heat applications and on thermal energy transport. Currently, research is in progress on direct-contact thermal energy storage and thermochemical energy storage and transport. In addition, SERI is directing the definition of new concepts for thermal energy storage and supporting research on thermal energy transport by sensible and latent heat media. SERI is performing systems analyses of thermal energy storage for solar thermal application and coordinating thermal energy storage activities for solar applications.

  9. Nanoconfined hydrides for energy storage.

    PubMed

    Nielsen, Thomas K; Besenbacher, Flemming; Jensen, Torben R

    2011-05-01

    The world in the 21(st) century is facing increasing challenges within the development of more environmentally friendly energy systems, sustainable and 'green chemistry' solutions for a variety of chemical and catalytic processes. Nanomaterials science is expected to contribute strongly by the development of new nanotools, e.g. for improving the performance of chemical reactions. Nanoconfinement is of increasing interest and may lead to significantly enhanced kinetics, higher degree of stability and/or more favourable thermodynamic properties. Nanoconfined chemical reactions may have a wide range of important applications in the near future, e.g. within the merging area of chemical storage of renewable energy. This review provides selected examples within nanoconfinement of hydrogen storage materials, which may serve as an inspiration for other research fields as well. Selected nanoporous materials, methods for preparation of nanoconfined systems and their hydrogen storage properties are reviewed. © The Royal Society of Chemistry 2011

  10. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  11. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  12. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  13. Flywheel energy storage device

    SciTech Connect

    Scheller, W.G.

    1987-05-26

    An energy-storing flywheel device is described for a motor vehicle comprising: a rotary flywheel on a vertical shaft, the flywheel being releasably couplable to a drive means and being adapted to drive a driven mechanism; the shaft having a shaft axis; a bearing means for journally supporting the shaft, the flywheel including a rotatable magnetic ring structure supporting permanent magnets; and a spacing piece disposed between the rotatable magnetic ring structure and the shaft; and a magnetic supporting means for the rotatable magnetic ring structure. The magnetic supporting means comprises a stationary magnetic ring structure concentric about the shaft axis and below the rotary ring structure. The stationary magnetic ring structure supports permanent magnets.

  14. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  15. Nanoconfined hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Nielsen, Thomas K.; Besenbacher, Flemming; Jensen, Torben R.

    2011-05-01

    The world in the 21st century is facing increasing challenges within the development of more environmentally friendly energy systems, sustainable and `green chemistry' solutions for a variety of chemical and catalytic processes. Nanomaterials science is expected to contribute strongly by the development of new nanotools, e.g. for improving the performance of chemical reactions. Nanoconfinement is of increasing interest and may lead to significantly enhanced kinetics, higher degree of stability and/or more favourable thermodynamic properties. Nanoconfined chemical reactions may have a wide range of important applications in the near future, e.g. within the merging area of chemical storage of renewable energy. This review provides selected examples within nanoconfinement of hydrogen storage materials, which may serve as an inspiration for other research fields as well. Selected nanoporous materials, methods for preparation of nanoconfined systems and their hydrogen storage properties are reviewed.The world in the 21st century is facing increasing challenges within the development of more environmentally friendly energy systems, sustainable and `green chemistry' solutions for a variety of chemical and catalytic processes. Nanomaterials science is expected to contribute strongly by the development of new nanotools, e.g. for improving the performance of chemical reactions. Nanoconfinement is of increasing interest and may lead to significantly enhanced kinetics, higher degree of stability and/or more favourable thermodynamic properties. Nanoconfined chemical reactions may have a wide range of important applications in the near future, e.g. within the merging area of chemical storage of renewable energy. This review provides selected examples within nanoconfinement of hydrogen storage materials, which may serve as an inspiration for other research fields as well. Selected nanoporous materials, methods for preparation of nanoconfined systems and their hydrogen storage

  16. Application of Energy Storage in Power Systems

    NASA Astrophysics Data System (ADS)

    Alqunun, Khalid M.

    The purpose of this research is to determine the advantages of using energy storage systems. This study presents a model for energy storage in electric power systems. The model involves methods of reducing the operation cost of a power network and the calculation of capital cost of energy storage systems. Two test systems have been considered, the IEEE six-bus system and the IEEE 118-bus system, to analyze the impact of energy storage on power system economic operation. Properties of energy storage have been considered such as rated power investment cost and rated energy investment cost. Mixed integer programming has been used to formulate the model. A comparison between centralized energy storage system and distributed energy storage system have been proposed. The results show that distributed energy storage system has more impact on reducing total operation cost. Also, an analysis on optimal sizing of energy storage system with fixed investment cost is provided.

  17. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads, motor loads...Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical Point of

  18. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    waveform, detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads...Electrical Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical

  19. Thermochemical energy storage and transport

    NASA Astrophysics Data System (ADS)

    Nix, R. G.

    1982-08-01

    Thermochemical energy storage and transport (TEST) were studied. Cases studied include a large central receiver heat utility and a small industrial process heat application with distributed parabolic dish solar collectors. The TEST does not appear to be generally cost effective; however, there are special cases of cost effectiveness. It is recommended that research on thermochemical processes emphasize the manufacture of renewable fuels using solar energy and the search for more cost effective TEST systems.

  20. Post regulation circuit with energy storage

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  1. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  2. Energy Storage Flywheels on Spacecraft

    NASA Technical Reports Server (NTRS)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  3. Oracle Database DBFS Hierarchical Storage Overview

    SciTech Connect

    Rivenes, A

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory creates large numbers of images during each shot cycle for the analysis of optics, target inspection and target diagnostics. These images must be readily accessible once they are created and available for the 30 year lifetime of the facility. The Livermore Computing Center (LC) runs a High Performance Storage System (HPSS) that is capable of storing NIF's estimated 1 petabyte of diagnostic images at a fraction of what it would cost NIF to operate its own automated tape library. With Oracle 11g Release 2 database, it is now possible to create an application transparent, hierarchical storage system using the LC's HPSS. Using the Oracle DBMS-LOB and DBMS-DBFS-HS packages a SecureFile LOB can now be archived to storage outside of the database and accessed seamlessly through a DBFS 'link'. NIF has chosen to use this technology to implement a hierarchical store for its image based SecureFile LOBs. Using a modified external store and DBFS links, files are written to and read from a disk 'staging area' using Oracle's backup utility. Database external procedure calls invoke OS based scripts to manage a staging area and the transfer of the backup files between the staging area and the Lab's HPSS.

  4. Energy in buildings: Efficiency, renewables and storage

    NASA Astrophysics Data System (ADS)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  5. Prestressed elastomer for energy storage

    DOEpatents

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  6. Advanced research in solar-energy storage

    SciTech Connect

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  7. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  8. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  9. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  10. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  11. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  12. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  13. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  14. Thermal energy storage program description

    SciTech Connect

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  15. Flywheel Energy Storage technology workshop

    SciTech Connect

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  16. Flywheel Energy Storage Technology Workshop

    NASA Astrophysics Data System (ADS)

    Okain, D.; Howell, D.

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  17. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  18. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  19. Towards greener and more sustainable batteries for electrical energy storage.

    PubMed

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  20. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  1. Liquid nitrogen energy storage unit

    NASA Astrophysics Data System (ADS)

    Afonso, J.; Catarino, I.; Patrício, R.; Rocaboy, A.; Linder, M.; Bonfait, G.

    2011-11-01

    An energy storage unit is a device able to store thermal energy with a limited temperature drift. After precooling such unit with a cryocooler it can be used as a temporary cold source if the cryocooler is stopped or as a thermal buffer to attenuate temperature fluctuations due to heat bursts. In this article, after a brief study of the possible solutions for such devices, we show that a low temperature cell filled with liquid nitrogen and coupled to a room temperature expansion volume offers the most compact and light solution in the temperature range 60-80 K. For instance, a low temperature cell as small as 23 cm 3 allows the storage of 3.7 kJ between 76 K and 81 K. Experimental results were obtained varying the expansion volume size, the filling pressure and the temperature range. These results agree with our simple model based on thermodynamical properties of nitrogen. A cell filled with porous material was tested to confine the liquid in the cell independently of the gravity. This material enhances the thermal exchange for high liquid filling ratio whereas below ≈16% a solution must be found to improve the heat exchange coefficient between the fluid and the cell walls. Our calculations are extended to the 80-120 K temperature range for nitrogen and argon in order to clarify the various parameters to take into account for an energy storage unit dimensioning.

  2. Graphenal polymers for energy storage.

    PubMed

    Li, Xianglong; Song, Qi; Hao, Long; Zhi, Linjie

    2014-06-12

    A key to improve the electrochemical performance of energy storage systems (e.g., lithium ion batteries and supercapacitors) is to develop advanced electrode materials. In the last few years, although originating from the unique structure and property of graphene, interest has expanded beyond the originally literally defined graphene into versatile integration of numerous intermediate structures lying between graphene and organic polymer, particularly for the development of new electrode materials for energy storage devices. Notably, diverse designations have shaded common characteristics of the molecular configurations of these newly-emerging materials, severely impeding the design, synthesis, tailoring, functionalization, and control of functional electrode materials in a rational and systematical manner. This concept paper highlights all these intermediate materials, specifically comprising graphene subunits intrinsically interconnected by organic linkers or fractions, following a general concept of graphenal polymers. Combined with recent advances made by our group and others, two representative synthesis approaches (bottom-up and top-down) for graphenal polymers are outlined, as well as the structure-property relationships of these graphenal polymers as energy storage electrode materials are discussed.

  3. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  4. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  5. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  6. Energy-storage of a prescribed impedance

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    General mathematical expression found for energy storage shows that for linear, passive networks there is a minimum possible energy storage corresponding to a prescribed impedance. The electromagnetic energy storage is determined at different excitation frequencies through analysis of the networks terminal and reactance characteristics.

  7. Energy storage device with large charge separation

    SciTech Connect

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  8. Solar thermal power storage applications lead laboratory overview

    NASA Technical Reports Server (NTRS)

    Radosevich, L. G.

    1980-01-01

    The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.

  9. Charging Graphene for Energy Storage

    SciTech Connect

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  10. Energy. Overview: ERIC Fact Sheet No. 6.

    ERIC Educational Resources Information Center

    Arrington, Larry

    This fact sheet provides a basic overview of energy problems and programs in the United States and discusses the role that vocational education can play in solving those problems. The National Energy Plan is described including its objectives, strategies, and seven legislative acts: (1) The National Energy Conservation Act; (2) The Power Plant and…

  11. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  12. Intermediate superconductive magnetic energy storage

    SciTech Connect

    Masuda, M.; Fujino, H.; Iwamoto, M.; Murakomi, M.; Shintomi, T.; Veda, K.

    1983-05-01

    In the past decade, the superconducting magnetic energy storage (SMES) for application to peak shaving in utility has been investigated in a manner to construct the huge superconducting coil in bed rock. To confine the strong electromagnetic forces accompanied with the high magnetic field, megaton structures, no matter how they will be constructed in a liquid helium temperature, are needed. To meet such a requirement, the revolutionary idea was proposed that the superconducting coil would be constructed on the underground bed rock. Here presented is a 10 MWh unit as an intermediate SMES that is a milestone along the distant way of RandD of SMES against 1,000 - 10,000 MWh unit which advocate the replacement of the hydro-pumped station. Therefore, even if the 10 MWh unit would not function as a storage in the utility network, its design should also consider the same situation.

  13. Emerging electrochemical energy conversion and storage technologies

    PubMed Central

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  14. Emerging electrochemical energy conversion and storage technologies

    NASA Astrophysics Data System (ADS)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  15. Emerging electrochemical energy conversion and storage technologies.

    PubMed

    Badwal, Sukhvinder P S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  16. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2016-07-12

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  17. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  18. Poland: An energy and environmental overview

    SciTech Connect

    Szpunar, C.B.; Bhatti, N.; Buehring, W.A.; Streets, D.G. ); Balandynowicz, H.W. . Inst. Podstawowych Problemow Techniki)

    1990-10-01

    Poland's reliance on coal as its primary source of energy imposes heavy environmental costs on its economy and population. Specifically, many of Poland's air and water pollution problems can be traced to the high energy intensity of Polish industrial production. This overview presents environment and energy information for Poland. Topics discussed include: energy resources, production and use; energy production, trade and use; environmental quality and impacts; and control strategies. 109 refs., 25 figs., 40 tabs.

  19. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  20. Thermal energy storage and transport

    NASA Technical Reports Server (NTRS)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  1. FEMP Renewable Energy Program Overview

    SciTech Connect

    2010-07-14

    Fact sheet describing how the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) provides Federal agencies with information, guidance, and assistance in using renewable energy.

  2. Battery technologies for large-scale stationary energy storage.

    PubMed

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  3. Applications and challenges for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Tomlinson, J. T.

    1991-04-01

    New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.

  4. Solar energy storage program: FY79

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.; Copeland, R. J.; Wright, J. D.; Baylin, F.

    1980-05-01

    A ranking methodology was developed for selection of thermal energy storage technologies for solar thermal applications. The ranking is based on cost and performance data. Thermal storage value data based on costs of alternative energy systems were generated for electric power plants and will be used for cost goals as a preliminary thermal storage screening tool. A survey was completed of thermal energy storage technologies, projects, and economics. An analysis was made of latent heat storage for solar heating based on previous system simulations. The only major advantage shown for latent heat storage is a reduced storage volume and not the improved solar system performance frequently postulated. Therefore, latent heat storage must be competitively priced with sensible heat options. Direct contact latent heat storage offers satisfactory low cost potential and could be used for a wide range of temperatures.

  5. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  6. Inertial energy storage for spacecraft

    SciTech Connect

    Rodriguez, G.E.

    1984-09-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  7. The chemistry of energy conversion and storage.

    PubMed

    Su, Dang Sheng

    2014-05-01

    What's in store: The sustainable development of our society requires the conversion and storage of renewable energy, and these should be scaled up to serve the global primary energy consumption. This special issue on "The Chemistry of Energy Conversion and Storage", assembled by guest editor Dangsheng Su, contains papers dealing with these aspects, and highlights important developments in the chemistry of energy conversion and storage during the last two years.

  8. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  9. U.S. Army’s Ground Vehicle Energy Storage

    DTIC Science & Technology

    2013-04-16

    c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Overview  TARDEC Energy Storage Team Goals, Mission...Safety •SAE Standards •Operation f rom to -20° C to +55° C Operating Temperatures: -46° C to 71° C Storage Temperatures: -54° C to 88° C ...environments C om m er ci al NATO Standardized Form Factors (i.e. 6T) Maximized Power AND Energy density Sustainability and Logistics issues

  10. Thermal energy storage technologies for heating and cooling applications

    NASA Astrophysics Data System (ADS)

    Tomlinson, John J.

    1990-12-01

    Recent results from selected thermal energy storage (TES) research activities in Germany and Sweden are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 International Energy Agency (IEA) Executive Committee deliberations on TES is presented.

  11. Battery storage for supplementing renewable energy systems

    SciTech Connect

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. Flywheel energy storage for spacecraft

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems have been studied to determine their potential for use in spacecraft. This system was found to be superior to alkaline secondary batteries and regenerative fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the capability of generating extremely high power for short durations.

  13. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  14. Battery energy storage market feasibility study

    SciTech Connect

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  15. Energy Storage for the Power Grid

    ScienceCinema

    Imhoff, Carl; Vaishnav, Dave

    2016-07-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  16. Matt Rogers on AES Energy Storage

    SciTech Connect

    Rogers, Matt

    2010-01-01

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  17. Energy Storage for the Power Grid

    SciTech Connect

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  18. Matt Rogers on AES Energy Storage

    ScienceCinema

    Rogers, Matt

    2016-07-12

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  19. Energy Storage for Hybrid Miiltary Vehicles

    DTIC Science & Technology

    2005-03-11

    Energy Storage for Hybrid Military Vehicles Ghassan Y. Khalil Abstract The benefits of hybrid electric vehicles have been recognized by the US Army...and safe energy storage in future All Electric Combat Vehicles (AECV). Keywords: battery, HEV, energy storage, battery management Introduction The...potential benefits of hybrid electric vehicles for military applications have been recognized by the US Army as well as other military services. Hybrid

  20. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  1. Synthesis of research and development in mechanical energy storage technologies

    NASA Astrophysics Data System (ADS)

    Karadi, G. M.

    1980-05-01

    Techniques for underground energy storage are described. These techniques include underground pumped hydro storage, second generation compressed air energy storage, and seasonal aquifer thermal energy storage. An economic assessment for each of the techniques is presented.

  2. Thermal energy storage for cogeneration applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Z. I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be decoupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  3. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  4. Energy Efficient Drivepower: An Overview.

    SciTech Connect

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  5. Energy efficient drivepower: An overview

    NASA Astrophysics Data System (ADS)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    Energy efficiency is a major concern to industry for a variety of reasons. Operating expenses and public relations are just two of these. While a lot of effort has been expended in the area of electrical energy efficiency, the area of concern in the report, most papers use a limited approach when examining the opportunities for efficiency improvement. However, use of a systems approach--examining the entire power train system from when electrical power first enters a facility to the final output is presented. This type of approach to electrical energy efficiency can improve the overall efficiency by a significant amount. There are many methods of driving mechanical loads such as waste steam (steam turbine), centralized hydraulic systems, and compressed air. Only electric-drive systems were analyzed. Depending on the application and facilities, these other methods may be a viable alternative to electric drivepower systems. The document assumes that the reader has an understanding of the basic concepts, practices, and terminology used in electrical and mechanical engineering. The reader should be familiar with terms such as voltage, current, dc power, ac power, power factor, horse power, torque, angular velocity, kilowatt-hours, efficiency, harmonics, and gear ratio.

  6. Physical and chemical energy storage program. Project summary data

    SciTech Connect

    Not Available

    1981-03-01

    The Department of Energy's Office of Advanced Conservation Technologies (ACT) is developing cost-effective, efficient, reliable, and environmentally acceptable energy storage systems. The mission of the Energy Storage Program is to develop devices, processes, and subsystems which permit domestic energy resources to be supplied at the time and locations where they can be used. In this program, energy is stored in thermal, chemical, mechanical, and magnetic forms. Generally, the best storage device for a specific supply system is one which minimizes the need for converting from one energy form to another in the overall system which consists of production, storage, transportation, and end-user equipment. This publication consists principally of summary sheets for each active project in the Chemical/Hydrogen, Thermal, Magnetic, Mechanical, Flywheel and Underground Energy Storage Program for FY 1980. Each Summary includes: Project Title, Principal Investigator, Organization, Project Goals, Project Status, Contract Number, Contract Period, Funding Level and Funding Source. An overview section is given before each set of project summaries. (LCL)

  7. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  8. GLIDES – Efficient Energy Storage from ORNL

    SciTech Connect

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  9. Ocean thermal energy conversion: An overview

    NASA Astrophysics Data System (ADS)

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the U.S. Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential; either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. An overview of the OTEC technology is provided.

  10. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  11. Ocean Thermal Energy Conversion: An overview

    SciTech Connect

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  12. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  13. ENERGY STAR Certified Data Center Storage

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage

  14. Effective energy storage from a triboelectric nanogenerator.

    PubMed

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-03-11

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

  15. Effective energy storage from a triboelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-03-01

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

  16. Mechanical energy storage device for hip disarticulation

    NASA Technical Reports Server (NTRS)

    Vallotton, W. C. (Inventor)

    1977-01-01

    An artificial leg including a trunk socket, a thigh section hingedly coupled to the trunk socket, a leg section hingedly coupled to the thigh section and a foot section hingedly coupled to the leg section is outlined. A mechanical energy storage device is operatively associated with the artificial leg for storage and release of energy during the normal walking stride of the user. Energy is stored in the mechanical energy storage device during a weight-bearing phase of the walking stride when the user's weight is on the artificial leg. Energy is released during a phase of the normal walking stride, when the user's weight is removed from the artificial leg. The stored energy is released from the energy storage device to pivot the thigh section forwardly about the hinged coupling to the trunk socket.

  17. Effective energy storage from a triboelectric nanogenerator

    PubMed Central

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-01-01

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics. PMID:26964693

  18. Overview: capturing the sun for energy production.

    PubMed

    Hammarström, Leif

    2012-01-01

    Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.

  19. Flexible energy-storage devices: design consideration and recent progress.

    PubMed

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

  20. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  1. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  2. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  3. Energy, Power and Thermal Research Overview

    DTIC Science & Technology

    2010-09-01

    Research Overview Rick Fingers, Ph.D. Chief Energy/Power/Thermal Division Propulsion Directorate Air Force Research ... Air Vehicles Sensors AFOSR 5 AFRL People & Facilities • 10 Major R&D Sites across US • 40 Sites World-Wide • $40B Real Property & Capital throughout... AFRL • 5,764 Government Employees – 4570 Air Force Civilian – 1194 Military • 3,844 Onsite Contractors 6 Propulsion Directorate’s Strategic

  4. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  5. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  6. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. Energy and architecture — An overview

    NASA Astrophysics Data System (ADS)

    Sonetti, G.

    2013-06-01

    This paper aims to provide a short overview on the complex aspects and growing concern about energy in architecture by gradually zooming into it, starting from a macro-scale analysis of building contribution in the total EU energy consumption, related policies, user behaviour's impacts and vernacular architecture techniques; then looking at the meso scale of building energy performance during its use, dynamic simulations of heat transfer and insights from a whole life cycle analysis of the energy involved during construction and disposal phases; finally, at the building element micro-scale, describing local heat transfer and human thermal comfort measurements. Conclusions gather recommendations and further scenarios where different stakeholders and techniques can play their part for a wiser and more sustainable energy use, and a better built environment for us and those to come.

  8. Thermal and mechanical energy-storage program: project summary data, FY 1980

    SciTech Connect

    Not Available

    1980-03-01

    The Department of Energy's Division of Energy Storage Systems (STOR) is supporting a broad range of projects to conserve energy and to make possible shifting away from oil and natural gas by developing new and/or improved energy-storage systems applicable to central power generation, dispersed power generation, solar and waste heat utilization, and vehicle propulsion. These programs include: Thermal Energy Storage; Chemical/Hydrogen Energy Storage; Mechanical and Magnetic Energy Storage; and Underground Energy Storage. Technical and Economic Analysis is supported concurrently to evaluate competitive energy storage options. This summary report addresses the above categories except for Technical and Economic Analysis. Thermal and Chemical/Hydrdogen Energy Storage technologies offer the greatest potential for near-term impact of all the storage technologies under development. During FY 80, STOR will commit nearly $32 million to the Thermal and Mechanical Energy Storage Program. The breakdown of budget authorized funding for FY 1979 and Fy 1980 is shown. This publication consists principally of summary sheets for each active project in the Thermal, Chemical/Hydrogen, and Mechanical Energy Storage Program for FY 1979. Each summary includes: project title, principal investigator, organization, project goals, project status, contract number, contract period, funding level and funding source. An overview section is given before each set of project summaries.

  9. Cost effective seasonal storage of wind energy

    SciTech Connect

    Cavallo, A.J.; Keck, M.B.

    1995-09-01

    Seasonal variation of the wind electric potential on the Great Plains could be a significant obstacle to the large scale utilization of wind generated electricity. Wind power densities usually are greatest during the spring, and decrease by at least 30 percent relative to the annual average in many areas during the summer months, when demand is highest. This problem can be overcome by using an oversized wind farm and a compressed air energy storage system (a baseload wind energy system). A minimum volume storage reservoir is needed to transform intermittent wind energy to baseload power, while a larger reservoir can be used to store excess power produced during the spring for either peak power or baseload output during the summer. The yearly average cost of energy increases by about 3 percent for the largest storage reservoir, indicating the seasonal storage of wind energy is economically as well as technically feasible.

  10. University of Arizona Compressed Air Energy Storage

    SciTech Connect

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  11. Grid Scale Energy Storage (Symposium EE8)

    DTIC Science & Technology

    2016-06-01

    around storage safety within the electric vehicle community. Sandia National Laboratories is a multi-program laboratory managed and operated by...nickel flow-assisted batteries are attractive in applications like, frequency regulations, UPS inverters and hybrid electrical vehicles , etc. due to...27709-2211 Grid-Scale Energy Storage, electrolytes, systems ntegration, Lithium -ion chemistry, Redox flow batteries REPORT DOCUMENTATION PAGE 11

  12. Hydrogen Storage Technologies for Future Energy Systems.

    PubMed

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  13. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  14. Demand Response and Energy Storage Integration Study

    SciTech Connect

    Ma, Ookie; Cheung, Kerry

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  15. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  16. New energy storage concept uses tapes

    NASA Technical Reports Server (NTRS)

    Gruber, A.; Kafesjian, R. R.

    1966-01-01

    Energy storage system uses movable permeable tapes with cathode and electrolyte material that is drawn across an anode to produce electric power. The system features long shelf life, high efficiency, and flexible operation.

  17. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  18. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  19. Value of Energy Storage for Grid Applications

    SciTech Connect

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  20. Compressed air energy storage technology program

    NASA Astrophysics Data System (ADS)

    Loscutoff, W. V.

    1980-06-01

    Progress in the development of compressed air energy storage (CAES) technologies for central station electric utility applications is reported. It is reported that the concept improves the effectiveness of a gas turbine using petroleum fuels, could reduce petroleum fuel consumption of electric utility peaking plants, and is technically feasible and economically viable. Specific topics discussed include stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications and second-generation technologies that have minimal or no dependence on petroleum fuels. The latter includes integration of thermal energy storage, fluidized bed combustion, or coal gasification with CAES.

  1. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  3. Energy storage options for space power

    SciTech Connect

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  4. Bioinspired fractal electrodes for solar energy storages.

    PubMed

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10(-3) Whcm(-3). In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10(-1) Whcm(-3)- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  5. Bioinspired fractal electrodes for solar energy storages

    NASA Astrophysics Data System (ADS)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  6. Bioinspired fractal electrodes for solar energy storages

    PubMed Central

    Thekkekara, Litty V.; Gu, Min

    2017-01-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924

  7. Appendix A: Energy storage technologies

    SciTech Connect

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  8. Storage and cooling by solar energy

    NASA Astrophysics Data System (ADS)

    Exell, R. H. B.

    1982-01-01

    Techniques for converting solar energy into mechanical energy for use in small-to-large scale refrigeration systems are examined. The systems considered included a Rankine cycle, 106 kW system coupled to 58 sq m of flat plate collectors, photovoltaic panels with storage in the form of ice, a positive ventilation and ice bank cooling system, ammonia-water absorption refrigeration, intermittent refrigeration, and solid adsorption refrigeration. All the equipment will be required to produce storage temperatures in the range 0-10 C and, consequently, the use of solar energy for deep freeze applications is considered unlikely. Small units which feature storage spaces of around one cubic meter can be satisfied by solar cells or intermittent absorption units. Larger-sized storage will employ the ammonia absorption process. Flat-plate collectors are foreseen to supply the power in rural areas.

  9. Flywheel energy storage using superconducting magnetic bearings

    SciTech Connect

    Abboud, R.G.; Uherka, K.; Hull, J.; Mulcahy, T.

    1994-04-01

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  10. Flywheel energy storage using superconducting magnetic bearings

    NASA Astrophysics Data System (ADS)

    Abboud, R. G.; Uherka, K.; Hull, J.; Mulcahy, T.

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  11. Solar energy storage and utilization

    NASA Technical Reports Server (NTRS)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  12. The National Energy Modeling System: An overview

    SciTech Connect

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  13. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  14. The rise of organic electrode materials for energy storage.

    PubMed

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  15. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into

  16. Energy conversion and storage process

    SciTech Connect

    Salmon, O.N.

    1982-01-26

    An energy conversion process is described for converting thermal energy into stored electrochemical energy and then into electrical energy comprising heating a first FeCl2-containing electrolyte melt to produce gaseous FeCl3 and a reductant product in a first chemical reaction, these reaction products being separated, cooled, optionally stored, and combined in a second FeCl2-containing electrolyte melt to cause a reaction to take place which is the reverse of said first reaction, thereby regenerating said first melt and producing heat and electrical energy.

  17. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  18. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  19. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  20. Energy storage options for space power

    NASA Astrophysics Data System (ADS)

    Hoffman, H. W.; Martin, J. F.; Olszewski, M.

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  1. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  2. Chemistry of Energy Conversion and Storage.

    PubMed

    Su, Dang-Sheng; Schlögl, R

    2016-02-19

    Special Issue: Energy Conversion and Storage. Critical issues in current energy-based societies are its generation through methods utilizing alternatives to fossil fuels as well as its storage. Considering the scope, it is not surprising that the research becomes more and more multidisciplinary. Therefore, it is important to keep focused. The ChemEner symposia, the last one being highlighted in this Special Issue, achieve this by focusing on the state of the art and the newest development of the Chemistry of hydrogen generation, carbon dioxide reduction, and other related topics, exploring new concepts for clean future energy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flywheel energy storage advances using HTS bearings.

    SciTech Connect

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  4. Reaction wheels for kinetic energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1984-01-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  5. Reaction wheels for kinetic energy storage

    SciTech Connect

    Studer, P.A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  6. Energy storage: Redox flow batteries go organic

    SciTech Connect

    Wang, Wei; Sprenkle, Vince

    2016-02-19

    Access to sustainable and affordable energy is the foundation for the economic growth of our current society and its future prosperity. Energy harvested from renewable resources, such as solar and wind, although currently at a small fraction, is on a steady trajectory of increasing installation accompanied with falling cost. Driven also by the need to reduce the carbon footprint from electricity generation, they could provide a clean and sustainable energy future. The caveat, however, is the intermittent and fluctuating nature of the renewables, which threatens the stability of the grid when its share surpasses 20% of the overall energy capacity. 1 Besides the on-demand power generation, electrical energy storage is another potentially cost-effective way to provide massive energy storage for not only renewable energy integration, but to balance the mismatch between supply and demand, and the improvement of grid reliability and efficiency also.

  7. Energy storage: Redox flow batteries go organic

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sprenkle, Vince

    2016-03-01

    The use of renewable resources as providers to the electrical grid is hampered by the intermittent and irregular nature in which they generate energy. Electrical energy storage technology could provide a solution and now, by using an iterative design process, a promising anolyte for use in redox flow batteries has been developed.

  8. Overview of latent storage for passive solar applications

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    The state of the art passive solar systems satisfies a portion of the space heating needs in many locations in the US; however, analyses of typical building heating requirements and available solar radiation indicate that the solar flux on a horizontal or south facing vertical surface is sufficient to meet the entire building heating load during the winter. Since buildings consume approximately one third of the primary energy budget, and space heating for these buildings is a major component, significant reductions in purchased energy requirements for buildings are possible through development and implementation of new, advanced, cost effective passive solar technologies. Passive solar storage techniques, available products and selected current research activities are reviewed.

  9. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  10. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  11. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  12. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  13. Engineered nanomembranes for smart energy storage devices.

    PubMed

    Wang, Xianfu; Chen, Yu; Schmidt, Oliver G; Yan, Chenglin

    2016-03-07

    Engineered nanomembranes are of great interest not only for large-scale energy storage devices, but also for on-chip energy storage integrated microdevices (such as microbatteries, microsupercapacitors, on-chip capacitors, etc.) because of their large active surfaces for electrochemical reactions, shortened paths for fast ion diffusion, and easy engineering for microdevice applications. In addition, engineered nanomembranes provide a lab-on-chip electrochemical device platform for probing the correlations of electrode structure, electrical/ionic conductivity, and electrochemical kinetics with device performance. This review focuses on the recent progress in engineered nanomembranes including tubular nanomembranes and planar nanomembranes, with the aim to provide a systematic summary of their fabrication, modification, and energy storage applications in lithium-ion batteries, lithium-oxygen batteries, on-chip electrostatic capacitors and micro-supercapacitors. A comprehensive understanding of the relationship between engineered nanomembranes and electrochemical properties of lithium ion storage with engineered single-tube microbatteries is given, and the flexibility and transparency of micro-supercapacitors is also discussed. Remarks on challenges and perspectives related to engineered nanomembranes for the further development of energy storage applications conclude this review.

  14. Electroactive graphene nanofluids for fast energy storage

    NASA Astrophysics Data System (ADS)

    Dubal, Deepak P.; Gomez-Romero, Pedro

    2016-09-01

    Graphenes have been extensively studied as electrode materials for energy storage in supercapacitors and batteries, but always as solid electrodes. The conception and development of graphene electroactive nanofluids (ENFs) reported here for the first time provides a novel way to ‘form’ graphene electrodes and demonstrates proof of concept for the use of these liquid electrodes for energy storage in novel flow cells. A stabilized dispersion of reduced graphene oxide (rGO) in aqueous sulfuric acid solution was shown to have capacitive energy storage capabilities parallel to those of solid electrode supercapacitors (169 F g-1(rGO)) but working up to much faster rates (from 1 mV s-1 to the highest scan rate of 10 V s-1) in nanofluids with 0.025, 0.1 and 0.4 wt% rGO, featuring viscosities very close to that of water, thus being perfectly suitable for scalable flow cells. Our results provide proof of concept for this technology and include preliminary flow cell performance of rGO nanofluids under static and continuous flow conditions. Graphene nanofluids effectively behave as true liquid electrodes with very fast capacitive storage mechanism and herald the application not only of graphenes but also other 2D materials like MoS2 in nanofluids for energy storage and beyond.

  15. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect

    Melaina, M.; Eichman, J.

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  16. Functionalized carbon nanotubes and graphene-based materials for energy storage.

    PubMed

    Wang, Bin; Hu, Chuangang; Dai, Liming

    2016-12-13

    Carbon nanotubes (CNTs) or graphene-based nanomaterials functionalized by different strategies have attracted great attention for energy storage due to their large specific surface area, high conductivity, and good mechanical properties. This feature article presents an overview of the recent progress in the functionalization of CNTs and graphene-based materials for energy storage applications in supercapacitors and batteries, along with challenges and perspectives in this exciting field.

  17. Aquifer thermal energy (heat and chill) storage

    NASA Astrophysics Data System (ADS)

    Jenne, E. A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference (IECEC), held in San Diego, California, 3 - 7 Aug. 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  18. LiH thermal energy storage device

    DOEpatents

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  19. Aquifer thermal energy (heat and chill) storage

    SciTech Connect

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  20. Thermal energy storage for cooling of commercial buildings

    SciTech Connect

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  1. Energy, evolution, and human diseases: an overview.

    PubMed

    Roth, Jesse; Szulc, Alessandra L; Danoff, Ann

    2011-04-01

    In the symposium entitled "Transcriptional controls of energy sensing," the authors presented recent advances on 1) AMP kinase, an intracellular energy sensor; 2) PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α), a transcriptional co-activator that has powerful effects on mitochondria; 3) methylation and demethylation in response to metabolic fluctuations; and 4) FGF21 (fibroblast growth factor 21) as an emerging hormone-like intercellular metabolic coordinator. This introduction places these advances within a broad overview of energy sensing and energy balance, with a focus on human evolution and disease. Four key elements of human biology are analyzed: 1) elevated body temperature; 2) complex prolonged reproductive pathways; 3) emergence of 4 large, well-defined fat depots, each with its own functional role; and 4) an immune system that is often up-regulated by nutrition-related signals, independent of the actual presence of a pathogen. We propose that an overactive immune system, including the "metabolic syndrome," was adopted evolutionarily in the distant past to help hold out against unconquerable infections such as tuberculosis, malaria, and trypanosomiasis. This immune activation is advantageous in the absence of other disease management methods, especially under conditions in which life expectancy is short. The inflammation has become a major agent of pathology in wealthy populations in whom the pathogens are a minor threat and life expectancy is long. The "Conclusions" section sketches cautiously how understanding the molecules involved in energy sensing and energy balance may lead to specific therapies for obesity and diabetes and for their complications.

  2. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  3. Energy storage deployment and innovation for the clean energy transition

    NASA Astrophysics Data System (ADS)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W‑1 solar with US$100 kWh‑1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  4. SERI Solar Energy Storage Program: FY 1984

    NASA Astrophysics Data System (ADS)

    Luft, W.; Bohn, M.; Copeland, R. J.; Kreith, F.; Nix, R. G.

    1985-02-01

    The activities of the Solar Energy Research Institute's Solar Energy Research Institute's Solar Energy Storage Program during its sixth year are summarized. During FY 1984 a study was conducted to identify the most promising high-temperature containment concepts considering corrosion resistance, material strength at high temperature, reliability of performance, and cost. Of the two generic types of high-temperature thermal storage concepts, the single-tank system was selected using a two-medium approach to the thermocline maintenance. This concept promises low costs, but further research is required. A conceptual design for a sand-to-air direct-contact heat exchanger was developed using dual-lock hoppers to introduce the sand into the fluidized-bed exchanger, and using cyclones to remove sand particles from the output air stream. Preliminary cost estimates indicate heat exchanger subsystem annual levelized costs of about $4/GJ with compressor costs of an additional $0.75/GJ. An economic analysis comparing sensible and latent heat storage for nitrate and carbonate salts with solely sensible heat storage showed 3%-21% cost savings with combined sensible and latent heat storage.

  5. Energy Proportionality for Disk Storage Using Replication

    SciTech Connect

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  6. High temperature electrical energy storage: advances, challenges, and frontiers.

    PubMed

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO4, and LiMn2O4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  7. Magnetic bearings for inertial energy storage

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. Ernest; Eakin, Vickie

    1987-01-01

    Advanced flywheels utilizing high strength fibers must operate at high rotational speeds and as such must operate in vacuum to reduce windage losses. The utilization of magnetic bearings in the flywheels overcome lubrication and seal problems, resulting in an energy storage system offering potential improvements over conventional electrochemical energy storage. Magnetic bearings evolved in the 1950s from the simple application of permanent magnets positioned to exert repulsive forces to the present where permanent magnets and electromagnets have been combined to provide axial and radial suspension. Further development of magnetic suspension has led to the design of a shaftless flywheel system for aerospace application. Despite the lack of proof of concept, integrated magnetic suspension in inertial storage systems can provide significant performance improvements to warrant development and tests.

  8. Flywheel energy storage. II - Magnetically suspended superflywheel

    NASA Technical Reports Server (NTRS)

    Kirk, J. A.; Studer, P. A.

    1977-01-01

    This article, the second of a two part paper, describes the general design requirements for a flywheel energy storage system. A new superflywheel energy storage system, using a spokeless, magnetically suspended, composite material pierced disk rotor is proposed. The new system is configured around a permanent magnet ('flux biased') magnetic suspension system with active control in the radial direction and passive control in the axial direction. The storage ring is used as a moving rotor and electronic commutation of stationary armature coils is proposed. There is no mechanical contact with the rotating ring and long life and low run down losses are projected. A discussion of major components for a 10 kwh system is presented.

  9. Magnetic bearings for inertial energy storage

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. Ernest; Eakin, Vickie

    1987-01-01

    Advanced flywheels utilizing high strength fibers must operate at high rotational speeds and as such must operate in vacuum to reduce windage losses. The utilization of magnetic bearings in the flywheels overcome lubrication and seal problems, resulting in an energy storage system offering potential improvements over conventional electrochemical energy storage. Magnetic bearings evolved in the 1950s from the simple application of permanent magnets positioned to exert repulsive forces to the present where permanent magnets and electromagnets have been combined to provide axial and radial suspension. Further development of magnetic suspension has led to the design of a shaftless flywheel system for aerospace application. Despite the lack of proof of concept, integrated magnetic suspension in inertial storage systems can provide significant performance improvements to warrant development and tests.

  10. Graphene-Based Systems for Energy Storage

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  11. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  12. Superconductive magnetic energy storage for electric utility load leveling

    SciTech Connect

    Eyssa, Y.M.; Boom, R.W.; Hartwig, K.T.; McIntosh, G.E.; Van Sciver, S.W.; Bischke, R.F.

    1981-08-01

    An assessment of the value of superconductive magnetic energy storage (SMES) for electric utilities is given, with the Wisconsin utility electric power system as an example. It is shown that SMES is superior to all othe forms of energy storage in regard to efficiency of storage, speed for response and amount of energy which can be economically cycled through storage. 7 refs.

  13. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  14. Start It up: Flywheel Energy Storage Efficiency

    ERIC Educational Resources Information Center

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  15. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  16. Energy Efficient Storage and Transfer of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2013-01-01

    Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

  17. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  18. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  19. Aquifer thermal energy storage: a survey

    SciTech Connect

    Tsang, C.F.; Hopkins, D.; Hellstroem, G.

    1980-01-01

    The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

  20. Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility

    SciTech Connect

    2016-02-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we explore energy storage and the role it is playing and could potentially play in increasing grid flexibility and renewable energy integration. We explore energy storage as one building block for a more flexible power system, policy and R and D as drivers of energy storage deployment, methods for valuing energy storage in grid applications, ways that energy storage supports renewable integration, and emerging opportunities for energy storage in the electric grid.

  1. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  2. Test profiles for stationary energy storage applications

    SciTech Connect

    Butler, P.C.; Cole, J.F.; Taylor, P.A.

    1998-09-01

    Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

  3. Energy Storage. Teachers Guide. Science Activities in Energy.

    ERIC Educational Resources Information Center

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  4. Two-dimensional heterostructures for energy storage

    NASA Astrophysics Data System (ADS)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  5. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  6. Flywheel Energy Storage Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Wolff, Frederick J.

    2001-01-01

    A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).

  7. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  8. Multiscale Simulations of Energy Storage in Polymers

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; van Duin, A.; Buongiorno Nardelli, M.; Bernholc, J.

    2012-02-01

    Polypropelene is the most used capacitor dielectric for high energy density storage. However, exotic materials such as copolymerized PVDF and, more recently, polythiourea, could potentially lead to an order of magnitude increase in the stored energy density [1,2]. In our previous investigations we demonstrated that PVDF-CTFE possesses non-linear dielectric properties under applied electric field. These are characterized by transitions from non-polar to polar phases that lead enhanced energy density. Recent experiments [3] have also suggested that polythiourea may be another potential system with high energy-density storage and low loss. However, the characteristics of this emerging material are not yet understood and even its preferred crystalline phases are not known. We have developed a multiscale approach to predicting polymer self-organization using the REAX force field and molecular dynamics simulations. We find that polythiourea chains tend to coalesce in nanoribbon-type structures and prefer an anti-polar interchain ordering similar to PVDF. These results suggest a possible role of topological phase transitions in shaping energy storage in this system.[4pt] [1] B. Chu et al, Science 313, 334 (2006).[0pt] [2] V. Ranjan et al., PRL 99, 047801 (2007).[0pt] [3] Q. Zhang, private communication

  9. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  10. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  11. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  12. High temperature underground thermal energy storage system for solar energy

    NASA Astrophysics Data System (ADS)

    Collins, R. E.

    1980-08-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  13. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  14. Solar energy storage researchers information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  15. Energy conversion & storage program. 1994 annual report

    SciTech Connect

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  16. An overview of flywheel energy systems.

    SciTech Connect

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  17. CALORSTOCK 1994: Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the second volume of the Proceedings of CALORSTOCK'94, the Sixth International Conference on Thermal Energy Storage held in Espoo, Finland on 22-25 Aug. 1994. This volume contains 51 presentations from the following six sessions: Chemical storage; Heat storage and environment; Central solar heating plants with seasonal storage; Water storage pits and tanks; Cooling; and National activities.

  18. Magnetically confined kinetic-energy storage ring: A new fundamental energy-storage concept

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.

    1985-07-01

    A new, fundamental type of energy storage device which has the potential for low cost diurnal storage of electrical energy is introduced. The magnetically confined kinetic energy storage ring (MCKESR) stores kinetic energy as mass circulated at high velocity around a circular loop. The constraining force necessary to keep the circulating mass (essentially a ring) from flying apart is provided by radial, inwardly directed forces exerted along the parameter of the loop by magnetic fields. The magnets and ring are contained in a tunnel, which may be buried in the ground. Levitational support against gravity is also provided by magnetic fields. Electrical energy insertion or extraction is similar to that for a synchronous motor/generator. Major advantages of the MCKESR concept are that large devices seem feasible and that costs are inversely related to size. The use of superconducting magnets should result in a very high energy recovery efficiency.

  19. An Energy Overview of the Republic of Lithuania

    SciTech Connect

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Lithuania. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  20. An Energy Overview of the Republic of Estonia

    SciTech Connect

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Estonia. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  1. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  2. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  3. Commercialization of aquifer thermal energy storage technology

    SciTech Connect

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  4. Capacity value of energy storage considering control strategies.

    PubMed

    Shi, Nian; Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.

  5. Capacity value of energy storage considering control strategies

    PubMed Central

    Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027

  6. Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices

    NASA Astrophysics Data System (ADS)

    Bishop, S. R.; Marrocchelli, D.; Chatzichristodoulou, C.; Perry, N. H.; Mogensen, M. B.; Tuller, H. L.; Wachsman, E. D.

    2014-07-01

    Many energy-related materials rely on the uptake and release of large quantities of ions, for example, Li+ in batteries, H+ in hydrogen storage materials, and O2- in solid-oxide fuel cell and related materials. These compositional changes often result in large volumetric dilation of the material, commonly referred to as chemical expansion. This article reviews the current knowledge of chemical expansion and aspires to facilitate and promote future research in this field by providing a taxonomy for its sources, along with recent atomistic insights of its origin, aided by recent computational modeling and an overview of factors impacting chemical expansion. We discuss the implications of chemical expansion for mechanical stability and functionality in the energy applications above, as well as in other oxide-based systems. The use of chemical expansion as a new means to probe other materials properties, as well as its contribution to recently investigated electromechanical coupling, is also highlighted.

  7. Energy storage improvement through material science approaches

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon Joseph

    A need for improved energy storage is apparent for the improvement of our society. Lithium ion batteries are one of the leading energy storage technologies being researched today. These batteries typically utilize coupled reduction/oxidation reactions with intercalation reactions in crystalline metal oxides with lithium ions as charge carriers to produce efficient and high power energy storage options. The cathode material (positive electrode) has been an emphasis in the recent research as it is currently the weakest link of the battery. Several systems of cathode materials have been studied with different structures and chemical makeup, all having advantages and disadvantages. One focus of the research presented below was creating a low cost and high performance cathode material by creating a composite of the low cost spinel structured LiMn2O4 and the higher capacity layered structure materials. Two compositional diagrams were used to map out the composition space between end members which include two dimensional layer structured LiCoO 2, LiNiO2, LiNi0.8Co0.2O2 and three dimensional spinel structured LiMn2O4. Several compositions in each composition map were electrochemically tested and structurally characterized in an attempt to discover a high performance cathode material with a lower cost precursor. The best performing composition in each system shows the desired mixed phase of the layered and spinel crystal structures, yielding improved performance versus the individual end member components. The surrounding compositions were then tested in order to find the optimum composition and performance. The best performing composition was 0.2LiCoO 2•0.7LiNi0.8Co0.2O2•0.1LiMn 2O4 and yielded a specific capacity of 182mAh/g. Another promising area of chemical energy storage is in the storage of hydrogen gas in chemical hydrides. Hydrogen gas can be used as a fuel in a variety of applications as a viable method for storing and transporting energy. Currently, the

  8. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  9. Development of nanocomposites for energy storage devices

    NASA Astrophysics Data System (ADS)

    Khan, Md. Ashiqur Rahaman

    With the ever-increasing need in improving the performance and operation life of future mobile devices, developing higher power density energy storage devices has been receiving more attention. Lithium ion battery (LIB) and capacitor are two of the most widely used energy storage devices and have attracted increasing interest from both industrial and academic fields. Batteries have higher power density than capacitor but significantly longer charge/discharge rates. In order to further improve the performance of these energy storage devices, one of the approaches is to use high specific surface area nano-materials. Among all the nano-materials developed so far, one-dimensional nanowires are of special interests because of their high surface-to-volume ratio and aligned pathway for electron diffusion and conduction. Therefore, in this thesis work, zinc oxide nanowires are implemented as an anode along with carbon fiber/graphene to increase the performance of LIB while lead titanate nanowires are used to improve the energy density of capacitors. For batteries, zinc oxide nanowires are grown on carbon cloth by low temperature hydrothermal method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to analyze morphology and crystal structures of samples. The performances of LIB using zinc oxide nanowire coated carbon cloth and bare carbon cloth are compared to show the improvement induced by zinc oxide nanowires. For capacitors, lead titanate (PTO) nanowires are used with Polyvinylidene fluoride (PVDF) to make nanocomposites of high dielectric constants. Lead titanate nanowires are synthesized by low temperature hydrothermal method. XRD and SEM are used to analyze as synthesized nanowires. Different volume fraction of PTO nanowires is used with PVDF to make dielectric for capacitor. Dielectric constant and breakdown voltage at variable frequency are determined to calculate energy density and specific energy density. The influence of temperature on

  10. Carbon-based Materials for Energy Storage

    NASA Astrophysics Data System (ADS)

    Rice, Lynn Margaret

    Fossil fuels can be burned to provide on-demand energy at any time, but cleaner renewable energy sources such as the sun and wind are intermittent. Energy storage systems, then, that are efficient and also economical and environmentally benign are key to a future fueled by renewable energy. Carbon-based materials are prototypical systems in all these aspects. Herein, three promising, novel carbon-based materials are presented. These include microporous carbon for supercapacitors produced by the condensation and carbonization of siloxane elastomers, porous graphitic carbon for supercapacitors produced by an aerosol route, and interpenetrating, binder-free carbon nanotube/vanadium nanowire composites for lithium ion battery electrodes produced by chemical crosslinking and aerogel fabrication. These materials syntheses are facile and can be easily scaled up, and their electrochemical performance, especially their energy densities and cycleability, are notable.

  11. Multifunctional Energy Storage and Conversion Devices.

    PubMed

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application.

  12. Reluctance apparatus for flywheel energy storage

    DOEpatents

    Hull, John R.

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  13. Merits of flywheels for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  14. Renewable Energy and Storage Implementation in Naval Station Pearl Harbor

    DTIC Science & Technology

    2015-06-01

    at Pearl Harbor. 14. SUBJECT TERMS microgrid, microturbine, renewable energy, photovoltaic generation, electrical storage, energy...PHOTOVOLTAIC GENERATION .............................................10 C. ELECTRICAL STORAGE SYSTEMS...OPERATIONS MODEL .......................................................26 D. ELECTRICITY PRICING

  15. Simulation of Flywheel Energy Storage System Controls

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  16. FLSR - The Frankfurt low energy storage ring

    NASA Astrophysics Data System (ADS)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  17. Energy storage for wind-generator application

    NASA Astrophysics Data System (ADS)

    Russel, F. M.

    1982-09-01

    A low-cost method was developed for storing energy and stiffening power supplied by wind generators. It involved inflatable, fabric-reinforced elastic liners buried underground and containing a fluid, probably water, at an intermediate pressure. The ground would be subject to elastic deformation and the method could be applicable to unstable ground such as deep sand, heterogeneous sedimentary or other unconsolidated deposits in remote locations or hostile environments. While the density of energy storage was considered low, compared with pumped-hydro systems, the technology could be attractive for developing countries.

  18. Thermal energy storage composition comprising peat moss

    SciTech Connect

    Rueffel, P.G.

    1980-11-04

    Peat moss is used in a thermal energy storage composition to provide a network in which to trap an incongruently melting salt hydrate capable of storing thermal energy as latent heat of phase change. The peat moss network is effective in preventing the segregation of a dehydrated form of the salt between heating and cooling cycles. In a preferred embodiment that salt hydrate is the decahydrate of sodium sulphate. A nucleating agent such as sodium tetraborate decahydrate is included to prevent supercooling in the composition, and promote crystallization of the decahydrate of sodium sulphate.

  19. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  20. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  1. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  2. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  3. Research for superconducting energy storage patterns and its practical countermeasures

    NASA Astrophysics Data System (ADS)

    Lin, D. H.; Cui, D. J.; Li, B.; Teng, Y.; Zheng, G. L.; Wang, X. Q.

    2013-10-01

    In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  4. Functional Carbon Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  5. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  6. Centrifugal Spinning and Its Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  7. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  8. Magnetic Energy Storage in Coronal Active Regions

    NASA Astrophysics Data System (ADS)

    Wolfson, Richard; Drake, C.; Kennedy, M.

    2011-05-01

    We consider magnetic energy storage in a force-free coronal model that simulates an active region by superposing a strong, localized magnetic bipole on a global background dipole. As we found earlier for dipolar and quadrupolar boundary conditions, our solutions develop detached flux ropes, whose energy can exceed that of the corresponding open field; this excess energy is available to power eruptive events such as coronal mass ejections. Our earlier work, and that of others on related magnetic configurations, has generally yielded excess energies of at most approximately 25 percent of the corresponding potential-field energy. Our new active-region models greatly exceed that value, with stressed force-free fields whose energy excess above the open-field state can be well over 100 percent of the energy stored in the associated potential field. Moving the model active region poleward increases the maximum value of this excess stored energy. This work is funded by NSF grant AGS0940503 to Middlebury College.

  9. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  10. An Energy Overview of the Republic of Azerbaijan

    SciTech Connect

    anon.

    2004-06-21

    The DOE Office of Fossil Energy had maintained a web site that was meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consisted of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There were also more than 30 Country Energy Overviews at the web site -- each of these was a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Azerbaijan.

  11. Energy Storage Systems as a Compliment to Wind Power

    NASA Astrophysics Data System (ADS)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  12. An Overview of Landfill Gas Energy in the United States

    EPA Pesticide Factsheets

    This page provides an overview of the current landfill gas (LFG) energy industry including background information on LFG and why EPA formed LMOP, charts and data, helpful links to more information, and project case studies.

  13. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    NASA Astrophysics Data System (ADS)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  14. Power and Energy Storage Requirements for Ship Integration of Solid-State Lasers on Naval Platforms

    DTIC Science & Technology

    2016-06-01

    electrical energy [9]. Flywheels can charge and discharge rapidly, which is ideal for multi-shot engagements (i.e., swarm attacks). A drawback to flywheels...D. ENERGY STORAGE OVERVIEW Figure 10 is a picture of the major components that would encompass a ship’s electrical bus (in this case, a DDG-51...DC converter that converts 450 VAC from the ship’s main bus to 1000 VDC that is used to charge the energy storage device, the DC-to-DC converter

  15. Energy conversion & storage program. 1995 annual report

    SciTech Connect

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  16. Aquifer thermal-energy-storage modeling

    NASA Astrophysics Data System (ADS)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  17. Development of molecular electrocatalysts for energy storage.

    PubMed

    DuBois, Daniel L

    2014-04-21

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high- and low-energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition-metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition-metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intra- and intermolecular proton-transfer steps, and coupling of proton- and electron-transfer steps. Studies also indicate an important role for the outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton-transfer reactions and their associated energy barriers is key to the design of faster and

  18. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  19. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their

  20. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  1. Gain and energy storage in holmium YLF

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  2. Nanostructured conductive polymers for advanced energy storage.

    PubMed

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-07

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.

  3. Two-dimensional heterostructures for energy storage

    DOE PAGES

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associatedmore » shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.« less

  4. Storage in the LLNL Octopus network: an overview and reflections

    SciTech Connect

    Coleman, S.; Watson, R.

    1984-02-28

    The paper reviews the environment and characteristics of the central storage system at the Lawrence Livermore National Laboratory Computation Center. It then discusses some lessons learned from the successes and problems during 15 years of experience with this system and finally indicates some future directions.

  5. Energy storage systems program report for FY1996

    SciTech Connect

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  6. Electrochemical energy storage subsystems study, volume 1

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  7. Thermochemical energy storage for a lunar base

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Mckissock, Barbara I.; Difilippo, Frank

    1992-01-01

    A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.

  8. Electrochemical Energy Storage Subsystems Study, Volume 2

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  9. An Educator's Introduction to Energy Concepts: Overview Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This publication provides a broad overview of energy and related issues for teachers and others who want to improve their understanding of these issues. Included in this publication are discussions of: (1) elementary physics related to energy; (2) energy sources, including topics such as renewable and non-renewable resources and fossil fuels; (3)…

  10. An Educator's Introduction to Energy Concepts: Overview Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This publication provides a broad overview of energy and related issues for teachers and others who want to improve their understanding of these issues. Included in this publication are discussions of: (1) elementary physics related to energy; (2) energy sources, including topics such as renewable and non-renewable resources and fossil fuels; (3)…

  11. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Corey, Garth P.; Iannucci, Joseph J., Jr.

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  12. The SERI solar-energy-storage program in FY 1982

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1982-07-01

    The SERI solar energy storage program in FY 1982 is summarized against the background of earlier years and the broader program of energy storage technology. The program provides research, system analyses, and assessments of thermal and thermochemical storage and transport, for thermal energy storage for solar thermal applications (TESSTA). Current activities include recommendations for the development of promising storage concepts for specified solar thermal power and process heat systems in house and subcontracted explorations of advanced concepts, and assessments of long distance solar thermal energy transport concepts.

  13. Energy storage transformers-MAPPS test results

    NASA Astrophysics Data System (ADS)

    Johnson, D. E.; Barber, J. P.; Laquer, H. L.

    1989-01-01

    The MAPPS (MegAmpere Pulsed Power Supply) demonstration tests are described, and the results are reviewed. The observed limits to the switch performance and methods to improve performance are discussed. Testing of the 100-kA demonstrator was completed in July 1986. The measured transformer coupling during operation was 0.99. The switch successfully interrupted 460 A and developed 7.5 kV at five commutations per second. Leakage current through the gate-turn-off thyristor prevented the switch from reaching the 1000-A design goal. The switch performed well up to 460 A, commutating current 290 times during testing. Results indicate that energy storage transformers provide a method to store energy at low currents so that high-purity aluminum or superconducting conductors can be used.

  14. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  15. An overview of energy strategies for Jamaica

    SciTech Connect

    Palmedo, P.F.; Ashby, W.R.; Doernberg, A.; Tunnah, B.

    1981-05-25

    Jamaica, with a virtual total dependence on imported oil, must develop alternative energy sources if expected GNP growth rates are to be achieved. This study selectively assesses alternative energy techniques and places Jamaica's various energy options in perspective according to anticipated levels of energy demand. The major energy options considered include use of coal and peat in industry and electric generation; promotion of energy conservation in industry, transportation, and utilities; hydropower; solar power; and biomass generation.

  16. Clusters, Quantum Confinement and Energy Storage

    NASA Astrophysics Data System (ADS)

    Connerade, Jean-Patrick

    One of the challenges posed by the demand for clean urban transportation is the compact and cyclically recoverable storage of energy in quantities sufficient for propulsion. Promising routes, such as the reversible insertion of Li+ ions inside solids for `rocking chair' batteries, require a deformable host material with no irreversibility. Such `soft' deformations are in general highly complex, but the compressibility of atoms or larger systems can be studied directly in situations with simpler symmetry. Thus, the search for `soft' materials leads one to consider certain types of cluster, as well as linear or nearly-spherical structures (chains of metallofullerenes, for example) whose deformations can be computed from the Schrodinger equation. Extended or `giant' atomic models allow one to construct compression-dilation cycles analogous in a rough sense to the Carnot cycle of classical thermodynamics. This simplified approach suggests that, even for idealised systems, there are constraints on the reversible storage and recovery of energy, and that (when applied to realistic structures) modelling based on such principles might help in the selection of appropriate materials.

  17. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  18. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    EPA Pesticide Factsheets

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  19. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  20. Energy Storage Systems Program Report for FY99

    SciTech Connect

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  1. Energy Storage Systems Program Report for FY98

    SciTech Connect

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  2. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold

    2016-07-12

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  3. Center For Advanced Energy Studies Overview

    SciTech Connect

    Blackman, Harold

    2011-01-01

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  4. Northeastern Center for Chemical Energy Storage (NECCES)

    SciTech Connect

    Whittingham, M. Stanley

    2015-07-31

    The chemical reactions that occur in batteries are complex, spanning a wide range of time and length scales from atomic jumps to the entire battery structure. The NECCES team of experimentalists and theorists made use of, and developed new methodologies to determine how model compound electrodes function in real time, as batteries are cycled. The team determined that kinetic control of intercalation reactions (reactions in which the crystalline structure is maintained) can be achieved by control of the materials morphology and explains and allows for the high rates of many intercalation reactions where the fundamental properties might indicate poor behavior in a battery application. The small overvoltage required for kinetic control is technically effective and economically feasible. A wide range of state-of-the-art operando techniques was developed to study materials under realistic battery conditions, which are now available to the scientific community. The team also investigated the key reaction steps in conversion electrodes, where the crystal structure is destroyed on reaction with lithium and rebuilt on lithium removal. These so-called conversion reactions have in principle much higher capacities, but were found to form very reactive discharge products that reduce the overall energy efficiency on cycling. It was found that by mixing either the anion, as in FeOF, or the cation, as in Cu1-yFeyF2, the capacity on cycling could be improved. The fundamental understanding of the reactions occurring in electrode materials gained in this study will allow for the development of much improved battery systems for energy storage. This will benefit the public in longer lived electronics, higher electric vehicle ranges at lower costs, and improved grid storage that also enables renewable energy supplies such as wind and solar.

  5. The Dark Energy Survey: More than dark energy - An overview

    DOE PAGES

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae andmore » other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  6. The Dark Energy Survey: more than dark energy - an overview

    SciTech Connect

    Vikram, Vinu; Abbott, T; Abdalla, F. B.; Allam, S.; Aleksic, J.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Levy, A.

    2016-08-01

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  7. The Dark Energy Survey: more than dark energy - an overview

    NASA Astrophysics Data System (ADS)

    Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bonnett, C.; Bridle, S.; Brooks, D.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Caminha, G. B.; Capozzi, D.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Etherington, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H. V.; Peoples, J.; Percival, W. J.; Plazas, A. A.; Reed, S. L.; Refregier, A.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.

    2016-08-01

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  8. The Dark Energy Survey: More than dark energy - An overview

    SciTech Connect

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  9. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  10. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  11. Percentage Energy from Fat Screener: Overview

    Cancer.gov

    A short assessment instrument to estimate an individual's usual intake of percentage energy from fat. The foods asked about on the instrument were selected because they were the most important predictors of variability in percentage energy.

  12. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  13. Czechoslovak energy industry overview and business contacts. Export trade information

    SciTech Connect

    Not Available

    1991-01-01

    Overview of the energy sector in Czechoslovakia with special emphasis on oil, natural gas, coal, nuclear and hydroelectric energy. Also included is information on business opportunities in these sectors and information on Czech Government and private contacts in these sectors as well as information on appropriate Government contacts in the United States.

  14. Overview of village scale, renewable energy powered desalination

    SciTech Connect

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  15. Wood for energy in the Pacific Northwest: an overview.

    Treesearch

    James O. Howard

    1979-01-01

    This report presents an overview of the technology of converting wood to energy and the availability of wood. The first section describes fuel values and significant processes used to generate various energy products from wood. Physical, technical, and economic availability of the wood resource is discussed in the second section. The paper...

  16. An Overview of the Energy Crisis

    ERIC Educational Resources Information Center

    Walters, Edward A.; Wewerka, Eugene M.

    1975-01-01

    Concludes that coal will be the major U.S. energy source in the near future despite the significant problems associated with an increase in coal consumption. Provides advantages and disadvantages for the four major long-term energy sources: nuclear fission, nuclear fusion, geothermal sources, and solar energy. (MLH)

  17. World Energy Projection System Plus: An Overview

    EIA Publications

    2016-01-01

    This report contains a summary description of the methodology and scope of WEPS and each of its component models. WEPS is a computer-based, energy modeling system of long-term international energy markets for the period through 2035. The system was used to produce the International Energy Outlook 2011.

  18. World Energy Projection System Plus: An Overview

    EIA Publications

    2016-01-01

    This report contains a summary description of the methodology and scope of WEPS and each of its component models. WEPS is a computer-based, energy modeling system of long-term international energy markets for the period through 2035. The system was used to produce the International Energy Outlook 2011.

  19. An Overview of the Energy Crisis

    ERIC Educational Resources Information Center

    Walters, Edward A.; Wewerka, Eugene M.

    1975-01-01

    Concludes that coal will be the major U.S. energy source in the near future despite the significant problems associated with an increase in coal consumption. Provides advantages and disadvantages for the four major long-term energy sources: nuclear fission, nuclear fusion, geothermal sources, and solar energy. (MLH)

  20. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  1. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  2. NASICON-Structured Materials for Energy Storage.

    PubMed

    Jian, Zelang; Hu, Yong-Sheng; Ji, Xiulei; Chen, Wen

    2017-02-21

    The demand for electrical energy storage (EES) is ever increasing, which calls for better batteries. NASICON-structured materials represent a family of important electrodes due to its superior ionic conductivity and stable structures. A wide range of materials have been considered, where both vanadium-based and titanium-based materials are recommended as being of great interest. NASICON-structured materials are suitable for both the cathode and the anode, where the operation potential can be easily tuned by the choice of transition metal and/or polyanion group in the structure. NASICON-structured materials also represent a class of solid electrolytes, which are widely employed in all-solid-state ion batteries, all-solid-state air batteries, and hybrid batteries. NASICON-structured materials are reviewed with a focus on both electrode materials and solid-state electrolytes.

  3. Safety flywheel. [using flexible materials energy storage

    NASA Technical Reports Server (NTRS)

    Schneider, R. T. (Inventor)

    1979-01-01

    An inertial energy storage device is disclosed which uses flywheel made of flexible material such as a twisted rope ring. A small number of the strands of the rope ring have a tensile strength that is lower than that of most of the other strands so that should any of these strands fail, they will begin to whiplash allowing such a failure to be detected and braked before a castastrophic failure occurs. This accomplished by the inclusion of glass tubes located around the periphery of the flywheel. The tubes are in communication with a braking fluid reservoir. The flywheel and glass tubes are enclosed within a vacuum-tight housing. The whiplashing of a broken strand breaks one or more glass tubes. This causes the housing to be flooded with the braking fluid thereby braking the rotation of the flywheel.

  4. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  5. Complex and liquid hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-04-01

    The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

  6. Stretchable energy storage and conversion devices.

    PubMed

    Yan, Chaoyi; Lee, Pooi See

    2014-09-10

    Stretchable electronics are a type of mechanically robust electronics which can be bended, folded, crumpled and stretched and represent the emerging direction towards next-generation wearable and implantable devices. Unlike existing electronics based on rigid Si technologies, stretchable devices can conform to the complex non-coplanar surfaces and provide unique functionalities which are unreachable with simple extension of conventional technologies. Stretchable energy storage and conversion devices are the key components for the fabrication of complete and independent stretchable systems. In this review, we present the recent progresses in the developments of stretchable power sources including supercapacitors, batteries and solar cells. Representative structural and material designs to impart stretchability to the originally rigid devices are discussed. Advantages and drawbacks associated with the fabrication methods are also analysed. Summaries of the research progresses along with future development directions for this exciting field are also presented.

  7. Analysis of lunar regolith thermal energy storage

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1991-01-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  8. Elastic magnetic composites for energy storage flywheels

    DOE PAGES

    Martin, James E.; Rohwer, Lauren E. S.; Stupak, Jr., Joseph

    2016-05-05

    The bearings used in energy storage flywheels dissipate a significant amount of energy and can fail catastrophically. Magnetic bearings would both reduce energy dissipation and increase flywheel reliability. The component of magnetic bearing that creates lift is a magnetically soft material embedded into a rebate cut into top of the inner annulus of the flywheel. Because the flywheels stretch about 1% as they spin up, this magnetic material must also stretch and be more compliant than the flywheel itself, so it does not part from the flywheel during spin up. At the same time, the material needs to be sufficientlymore » stiff that it does not significantly deform in the rebate and must have a sufficiently large magnetic permeability and saturation magnetization to provide the required lift. It must also have high electrical resistivity to prevent heating due to eddy currents. In this paper we investigate whether adequately magnetic, mechanically stiff composites that have the tensile elasticity, high electrical resistivity, permeability and saturation magnetism required for flywheel lift magnet applications can be fabricated. Lastly, we find the best composites are those comprised of bidisperse Fe particles in the resin G/Flex 650. The primary limiting factor of such materials is the fatigue resistance to tensile strain.« less

  9. Elastic magnetic composites for energy storage flywheels

    SciTech Connect

    Martin, James E.; Rohwer, Lauren E. S.; Stupak, Jr., Joseph

    2016-05-05

    The bearings used in energy storage flywheels dissipate a significant amount of energy and can fail catastrophically. Magnetic bearings would both reduce energy dissipation and increase flywheel reliability. The component of magnetic bearing that creates lift is a magnetically soft material embedded into a rebate cut into top of the inner annulus of the flywheel. Because the flywheels stretch about 1% as they spin up, this magnetic material must also stretch and be more compliant than the flywheel itself, so it does not part from the flywheel during spin up. At the same time, the material needs to be sufficiently stiff that it does not significantly deform in the rebate and must have a sufficiently large magnetic permeability and saturation magnetization to provide the required lift. It must also have high electrical resistivity to prevent heating due to eddy currents. In this paper we investigate whether adequately magnetic, mechanically stiff composites that have the tensile elasticity, high electrical resistivity, permeability and saturation magnetism required for flywheel lift magnet applications can be fabricated. Lastly, we find the best composites are those comprised of bidisperse Fe particles in the resin G/Flex 650. The primary limiting factor of such materials is the fatigue resistance to tensile strain.

  10. Elastic magnetic composites for energy storage flywheels

    SciTech Connect

    Martin, James E.; Rohwer, Lauren E. S.; Stupak, Jr., Joseph

    2016-05-05

    The bearings used in energy storage flywheels dissipate a significant amount of energy and can fail catastrophically. Magnetic bearings would both reduce energy dissipation and increase flywheel reliability. The component of magnetic bearing that creates lift is a magnetically soft material embedded into a rebate cut into top of the inner annulus of the flywheel. Because the flywheels stretch about 1% as they spin up, this magnetic material must also stretch and be more compliant than the flywheel itself, so it does not part from the flywheel during spin up. At the same time, the material needs to be sufficiently stiff that it does not significantly deform in the rebate and must have a sufficiently large magnetic permeability and saturation magnetization to provide the required lift. It must also have high electrical resistivity to prevent heating due to eddy currents. In this paper we investigate whether adequately magnetic, mechanically stiff composites that have the tensile elasticity, high electrical resistivity, permeability and saturation magnetism required for flywheel lift magnet applications can be fabricated. Lastly, we find the best composites are those comprised of bidisperse Fe particles in the resin G/Flex 650. The primary limiting factor of such materials is the fatigue resistance to tensile strain.

  11. 40 K Liquid Neon Energy Storage Unit

    NASA Astrophysics Data System (ADS)

    Martins, D.; Sousa, P. Borges de; Catarino, I.; Bonfait, G.

    A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to suddenly incoming heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger ("Power Booster mode"). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at room temperature in order to work as a closed system. Experimental results in the power booster mode are described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (≈12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (≈24 cm3) was linked to the cryocooler cold finger through a gas-gap heat switch for thermal coupling/decoupling of the cold finger. We show that, by controlling the enthalpy reservoir's pressure, 900 Jcan be stored at a constant temperature of 40 K as in a triple-point ESU.

  12. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  13. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  14. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  15. Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-01

    EW-201013) Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency November 2016 This document has been cleared for public...December 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 10-C-0027-A Cost and Performance Report. Subsurface Thermal Energy Storage for Improved...distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project involved a field demonstration of subsurface thermal energy storage for

  16. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  17. Analysis of Remote Site Energy Storage and Generation Systems

    DTIC Science & Technology

    1979-07-01

    alternate energy sources for remote site applications. The first phase of the effort centered on the broad based study of hydrogen storage, thermal storage...divided into two phases, the first phase was a generalized study and analysis of potential remote site alternate energy and energy storage systems. The...systems consisted of the following seven steps. First , the power system output requirements were established based on the work statement requirements

  18. Magma Energy Overview and Status Report

    SciTech Connect

    Dunn, James C.

    1989-03-21

    Up to 500,000 Quads of thermal energy are believed to be contained in crustal magma bodies within the U.S. at temperatures in excess of 600 C and at depths less than 10 km. Scientific feasibility of utilizing this energy resource was concluded after a seven-year study that culminated in successful energy extraction experiments in molten rock at Kilauea Iki lava lake. The current DOE program is developing technology to experimentally extract energy from a silicic magma body so that engineering feasibility of the magma energy concept can be evaluated. At this point, significant progress has been achieved in three areas: Geophysics and site selection. Energy Extraction Processes, and Geochemistry/Materials. Future activities will be focused by drilling and evaluating a deep exploratory well in Long Valley caldera where active magma is expected.

  19. An overview of the energy situation

    NASA Technical Reports Server (NTRS)

    Pitts, D. R.

    1978-01-01

    Beginning with a historical review of the domestic pattern of energy usage, the current dependence of the United States upon dwindling petroleum resources is examined. The possible limit of petroleum usage is discussed, and recent oil production trends are presented. Coupling these with projected analyses of OPEC oil productive capability in the early 1980's indicates a serious worldwide as well as American energy problem in the next decade. The need for conservation and rapid development of application of alternative energy resources is discussed including quantitative projections of significant conservation efforts as well as estimates of domestic alternative energy resource capabilities.

  20. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  1. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  2. Seasonal storage of energy in solar heating

    NASA Astrophysics Data System (ADS)

    Braun, J. E.; Klein, S. A.; Mitchell, J. W.

    1981-01-01

    This paper focuses on several aspects of seasonal storage for space heating using water as the storage medium. The interrelationships between collector area, storage volume, and system performance are investigated using the transient simulation program TRNSYS. The situations for which seasonal storage is most promising are presented. Particular emphasis is placed upon design of seasonal storage systems. A design method is presented which is applicable for storage capacities ranging from a few days to seasonal storage. This design method, coupled with cost information, should be useful in assessing the economic viability of seasonal storage systems. Also investigated are the importance of the load heat exchanger size, tank insulation, collector slope, and year-to-year weather variations in system design.

  3. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect

    1998-02-01

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  4. Doing Better with Less Energy: An Overview.

    ERIC Educational Resources Information Center

    Brubaker, C. William

    1982-01-01

    New energy-responsible buildings will not only use less energy, but will be more comfortable, more closely attuned to nature, and will create a better learning and living environment. The most cost-effective planning decisions have to do with good passive solar design and sensible operations. (MLW)

  5. Optimizing Ice Thermal Storage to Reduce Energy Cost

    NASA Astrophysics Data System (ADS)

    Hall, Christopher L.

    Energy cost for buildings is an issue of concern for owners across the U.S. The bigger the building, the greater the concern. A part of this is due to the energy required to cool the building and the way in which charges are set when paying for energy consumed during different times of the day. This study will prove that designing ice thermal storage properly will minimize energy cost in buildings. The effectiveness of ice thermal storage as a means to reduce energy costs lies within transferring the time of most energy consumption from on-peak to off-peak periods. Multiple variables go into the equation of finding the optimal use of ice thermal storage and they are all judged with the final objective of minimizing monthly energy costs. This research discusses the optimal design of ice thermal storage and its impact on energy consumption, energy demand, and the total energy cost. A tool for optimal design of ice thermal storage is developed, considering variables such as chiller and ice storage sizes and charging and discharge times. The simulations take place in a four-story building and investigate the potential of Ice Thermal Storage as a resource in reducing and minimizing energy cost for cooling. The simulations test the effectiveness of Ice Thermal Storage implemented into the four-story building in ten locations across the United States.

  6. Scenario simulation based assessment of subsurface energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  7. Demonstration of EnergyNest thermal energy storage (TES) technology

    NASA Astrophysics Data System (ADS)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  8. Ferroelectric polymers for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Claude, Jason W.

    The energy storage properties of vinylidene fluoride based fluoropolymers were explored. Energy density is a function of a materials permittivity and electrical breakdown strength. High values of each of these parameters are desirable for a high energy density and were explored in various fluoropolymer systems. Copolymers containing vinylidene fluoride (VDF), chlorofluoroethylene (CTFE), and trifluoroethylene (TrFE) were synthesized by a two-step approach beginning with the copolymerization of VDF and CTFE and the subsequent hydrogenation of the CTFE units to TrFE to create the terpolymer P(VDF-CTFE-TrFE). By changing the chemical composition of the fluoropolymers, the permittivity was varied from 12 to 50 due to changes in the crystal phase that converted the polymers from paraelectric to ferroelectric materials. The electrical breakdown mechanisms of a single copolymer composition of P(VDF-CTFE) was studied as a function of molecular weight and temperature. Energy density and breakdown strength increased as molecular weight increased and temperature decreased. An electromechanical breakdown mechanism was responsible for failure at 25°C while a thermal breakdown mechanism operated at -35°C which was below the glass transition of the material. In between at -15°C, a combination of the two mechanisms was found to operate. Electromechanical breakdown was also found to operate in a copolymer system with a fixed amount of VDF and varying amounts of TrFE and CTFE. The molecular weights were identical for all the polymers. Maxwell stress is the primary contributor to the electromechanical stress in polymers with a high amount the CTFE. Electrostrictive stress due to a crystal phase change at high electric fields is a major contributor to the electromechanical stress in polymers containing a high amount of TrFE. Energy density and electrical breakdown strength increased with increasing amounts of TrFE. Nanometer sized silica particles were incorporated into a P

  9. Battery energy storage market feasibility study -- Expanded report

    SciTech Connect

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  10. Distributed energy storage: Time-dependent tree flow design

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  11. Operation of NRL Homopolar Generator into Parallel Energy Storage Inductor

    DTIC Science & Technology

    2013-06-01

    and inertial energy storage. In this system a self-excited homopolar generator (HPG) serves to transfer rotational energy from flywheels to...magnetic energy in the storage inductor. A single 1.4-rnH solenoid inductor enclosing the flywheels can be energized to 60 kA and serves both as energy...the energy storage circuit time constant were 1 s, an energy of 2 MJ could be obtained with an initial flywheel speed of 260 rps. As a consequence

  12. Macroeconomic impacts of energy shocks: an overview

    SciTech Connect

    Not Available

    1984-03-23

    Through a comparison of existing models of the US economy, this study evaluates the likely short- to medium-term effects of energy price changes on inflation, unemployment, and economic growth. It focuses on the impacts during the four years immediately following the energy price change. During this period, the economy's adjustment may still be unfolding and not yet complete. The working group studied 10 scenarios simulated by 14 participating modelers. We identified several prominent conclusions relating to the impacts of a shock, the efficacy of different economic policies, energy policy considerations, and key characteristics of the participating models.

  13. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? [Metal-Air Batteries: Future Electrochemical Energy Storage of Choice?

    DOE PAGES

    Li, Yanguang; Lu, Jun

    2017-05-05

    Metal-air batteries have much higher theoretical energy density than lithium-ion batteries, and are frequently advocated as the solution toward next-generation electrochemical energy storage for applications including electric vehicles or grid energy storage. Yet they have not fulfilled their full potentials as limited by challenges associated with the metal anode, air cathode and electrolyte. These challenges would have to be properly resolved before metal-air batteries can become a practical reality and be deployed on a large scale. Here we survey the current status and latest advances in metal-air battery research for both aqueous (e.g. Zn-air) and non-aqueous (e.g. Li-air) systems. Themore » general technical issues confronting their developments are overviewed, and our perspective on possible solutions is offered.« less

  14. Glass ceramic approaches for energy storage materials

    NASA Astrophysics Data System (ADS)

    Davis, Calvin Goodwin, III

    Glass ceramics are an advanced material class that exhibit excellent potential for energy storage applications. Unique properties can be obtained through the controlled crystallization that is used to form these glassy and crystalline composite materials from an amorphous bulk. By exploiting this synthesis route, materials can be optimized to offer the best balance between the crystalline ceramic phase, and the amorphous glass phase. The topic of this dissertation focuses on the structure-property relationships for glass ceramic systems for energy storage applications. Specifically, a lithium aluminum titanium phosphate system, and a barium sodium niobate system were explored for battery and capacitor applications, respectively. Li1+xAlxTi2-x(PO4)3 (LATP) is a lithium ion conductor which has shown potential for use in current and future battery technology. In its glass ceramic form the material has a conductivity of approximately 10-4 S/cm, which makes it an excellent conductor compared to other solid state lithium ion conductors. This conductivity is still lower than ionic liquids and polymers with currently used as electrolytes with conductivity higher than 10-3 S/cm. In exploring synthesis routes, it was found that microwave hybrid heating offered improve conductivity, as opposed to conventional crystallization methods. The role of microstructure and the crystallization kinetics on the overall have been investigated. It was shown that commonly used Johnson-Mehl-Avrami equation could not accurately describe the kinetics of LATP's nucleation and growth. An empirical Sestak-Berggren model was used in combination with differential scanning calorimetry data to model the kinetics of LATP. Glass ceramic systems based on a NaBa2Nb5O 15 (BNN) crystalline have shown potential as dielectrics in high energy density capacitors. Here microwave hybrid heating and conventional heating were used to crystallize BNN glass ceramics in the range of 750°C - 1000°C, and the results

  15. Nanostructured metal sulfides for energy storage

    NASA Astrophysics Data System (ADS)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  16. Nanostructured metal sulfides for energy storage.

    PubMed

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  17. Energy Storage System Scheduling in Wind-Diesel Microgrids

    NASA Astrophysics Data System (ADS)

    Ross, Michael

    This thesis proposes a knowledge based expert system tool that can be used as an online controller for the charging/discharging of an energy storage system in a wind-diesel microgrid. The wind-diesel microgrid is modelled, and a typical energy storage system is implemented to test the functionality of the controller using hourly-discrete power values. The results are compared against an offline optimization that was provided 24-hour lookahead wind values, as well as a controller that was implemented using artificial neural networks. The knowledge based expert system is then used to analyze the cost of energy, by means of a parametric analysis, consisting of varying the wind penetration, energy storage system power rating and energy rating to determine for which wind penetration values a storage system implementation would be technically and economically viable. Different storage technologies are tested in a one-year time frame to determine which would be best suited for this particular application. The energy storage systems are implemented as single-layer and dual-layer, in which the knowledge based expert system is modified for the latter analysis, in order to determine whether or not there are advantages to having a dual-layer storage system. Throughout these analyses, the flexibility of the knowledge based expert system controller to various energy storage systems and microgrid models is verified. It also demonstrates that, in a context of high base generation costs, energy storage can be a viable solution to managing wind power variations.

  18. Overview of Existing Wind Energy Ordinances

    SciTech Connect

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  19. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  20. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  1. Overview of energy-conservation research opportunities

    SciTech Connect

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  2. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  3. Photovoltaic energy: Program overview, fiscal year 1990

    SciTech Connect

    Not Available

    1991-07-01

    This summary is prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. The 1990 PV Program Achievements are listed. Launched the PV Manufacturing Technology initiative, designed to systematically lower PV module costs. Inaugurated the PV Concentrator Technologies Initiative by signing eight multiyear, cost-shared technology development subcontracts with concentrator companies. Established the PV Polycrystalline Thin-Film Initiative by signing six multiyear, cost-shared technology development subcontracts with six polycrystalline thin-film companies. Continued the Amorphous Silicon Project by awarding three new research and development contracts. Focused the resources of three program laboratories on finding solutions to industry's manufacturing problems: the Photovoltaic Device Fabrication Laboratory at Sandia National Laboratories and the Module Failure Analysis Laboratory and the Encapsulant Research Laboratory at SERI. Established an ongoing program to assist utilities in using PV for cost-effective, high-value applications. Completed nearly all of the construction planned for the first phase of PVUSA at Davis, California. Worked with the crystalline silicon PV industry on novel, low-cost cell fabrication processes and on resolving encapsulant problems. Took part in the development of qualification procedures tests for thin- and thick-film flat-plate modules and concentrator modules.

  4. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives.

    PubMed

    Kalinin, Sergei V; Balke, Nina

    2010-09-15

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  5. Gas storage in porous metal-organic frameworks for clean energy applications.

    PubMed

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  6. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives

    SciTech Connect

    Kalinin, S. V.; Balke, N.

    2010-01-01

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer–micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  7. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  8. Metal sulfide electrodes and energy storage devices thereof

    DOEpatents

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  9. First assessment of continental energy storage in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Cuesta-Valero, Francisco José; García-García, Almudena; Beltrami, Hugo; Smerdon, Jason E.

    2016-05-01

    Although much of the energy gained by the climate system over the last century has been stored in the oceans, continental energy storage remains important to estimate the Earth's energy imbalance and also because crucial positive climate feedback processes such as soil carbon and permafrost stability depend on continental energy storage. Here for the first time, 32 general circulation model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are examined to assess their ability to characterize the continental energy storage. Results display a consistently lower magnitude of continental energy storage in CMIP5 simulations than the estimates from geothermal data. A large range in heat storage is present across the model ensemble, which is largely explained by the substantial differences in the bottom boundary depths used in each land surface component.

  10. GLIDES – Efficient Energy Storage from ORNL

    ScienceCinema

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2016-07-12

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  11. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  12. Energy optimization for a wind DFIG with flywheel energy storage

    SciTech Connect

    Hamzaoui, Ihssen; Bouchafaa, Farid

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  13. Energy optimization for a wind DFIG with flywheel energy storage

    NASA Astrophysics Data System (ADS)

    Hamzaoui, Ihssen; Bouchafaa, Farid

    2016-07-01

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  14. The Role of Energy Storage in Commercial Building

    SciTech Connect

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R

  15. Overview of Federal wind energy program

    NASA Technical Reports Server (NTRS)

    Ancona, D. F.

    1979-01-01

    The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals.

  16. Assessment of human energy exchange: historical overview.

    PubMed

    Heymsfield, S B; Bourgeois, B; Thomas, D M

    2017-03-01

    Energy exchange is fundamental to life and is a cornerstone in the study of human physiology, metabolism and nutrition. A global effort is underway to further our understanding of human energy exchange and its components as a means of establishing the mechanistic underpinnings of the evolving obesity and chronic disease epidemics. The current report establishes a conceptual historical framework for examining the evolution of energy exchange concepts and measurement methods. We review developments taking place over more than 2000 years during which humans endeavored to establish the source of body heat, the 'fire of life'. Major conceptual and methodological advances over the past three centuries have incrementally advanced the field and created the energy exchange paradigm within which we now work. As in the past, innovative experimental ideas and measurement methods are now needed to answer important questions brought to light by the obesity and chronic disease epidemics. Nevertheless, older classical measurement methods based on calorimetry techniques still hold a strong position in the field as many diet and weight-related questions remain unanswered.

  17. Energy Storage As Heat-of-Fusion in Containerized Salts.

    DTIC Science & Technology

    1980-06-27

    56 v APPENDIX A - Chemical vs. Thermal Storage for Solar Thermochem ical Power Systems...in Section V of this report. Major use of industrial scale solar power will impose requirements for massive energy storage. This report addresses the...efficiency. Once the availability of major solar thermal power becomes a reality, the energy storage problem becomes much more severe. We can expect that the

  18. Energy storage systems program report for FY97

    SciTech Connect

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  19. Energy storage technology - Environmental implications of large scale utilization

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.; Moore, J. E.; Keller, W. E.; Baca, G. A.; Brasier, R. I.; Bennett, W. S.

    Environmental effects are identified for several energy storage technologies including advanced lead-acid battery, compressed air, underground pumped hydroelectric, flywheel, superconducting magnet, and various thermal systems. A preliminary study on fuel cell technology is also reported. New applications for energy storage technologies and the additional costs of controls to be used for mitigation of specific impacts are briefly discussed.

  20. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  1. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  2. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  3. Engineering evaluation of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Perdue, D. G.; Gordon, L. H.

    1980-01-01

    An engineering evaluation of thermal energy storage prototypes was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

  4. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  5. Summary of selected compressed air energy storage studies

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1985-01-01

    A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)

  6. Nanostructured graphene nanoplatelets for energy storage applications

    NASA Astrophysics Data System (ADS)

    Monga, Anchita

    There is an increasing demand for high performance compact batteries for diverse applications ranging from portable electronics to electric automotive vehicles. This need has driven the direction of research towards newer materials, improved synthesis and architectured assembly. This research addresses the gravimetric and volumetric density challenges as well as the cost issues faced by energy storage devices by developing structured graphitic materials, aiming at better electrochemical performance, improved energy density and reduced cost. The few layer graphene nanoplatelets (GnP) used in this study can be produced from natural graphite in thicknesses from 1-10 nm and in widths from 0.3 to 50 microns via an acid intercalation/thermal exfoliation process. The GnP serves as an inexpensive alternative to carbon nanotubes and single graphene sheets. The ability to nanostructure GnP and tailor its inherent properties for lithium storage and electrical conductivity, allows it to be used for customized applications in three different lithium ion battery components viz., active anode material, current collector and conducting additive. Metal nanoparticle doped GnP in which nanosized metal particles are coated onto the GnP basal surface, have been assembled to make a 'pillared' nanostructure in which the particles maintain a fixed distance between adjacent GnPs facilitating improved transport and enhanced lithium storage capacity, especially at faster charge rates. Graphene nanoplatelets synthesized with different sizes of metal nanoparticles effectively create a nano-architectured GnP multilayer assembly with flexible interlayer spacing. The creation of a lithium ion battery anode with controllable GnP interlayer spacing facilitates lithium ion diffusion through the electrode, and this in turn leads to improved transport and enhanced capacity. Graphene nanoplatelets are also intrinsically excellent electrical conductors, which can be assembled into continuous conductive

  7. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

    PubMed

    Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang

    2017-05-01

    Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon Nanotube Films for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kozinda, Alina

    With the rising demands for small, lightweight, and long-lasting portable electronics, the need for energy storage devices with both large power and large energy densities becomes vitally important. From their usage in hybrid electric vehicles to wearable electronics, supercapacitors and rechargeable batteries have been the focus of many previous works. Electrode materials with large specific surface areas can enhance the charging speed and total amount of stored energy. To this end, vertically self-aligned carbon nanotube (CNT) forests are well suited, as they possess outstanding electrical conductivities as well as high mechanical strength and large specific surface areas. In addition, forests of vertically aligned CNTs allow the ions within an electrolyte to pass freely between the individual CNTs from electrode to electrode. In order to minimize the system resistance of the battery or supercapacitor, a thin molybdenum current collector layer is deposited beneath catalyst of the CNT forest, thus ensuring that when the CNT forest grows from its substrate, each CNT has an innate connection to the current collector. This versatile CNT-Mo film architecture is used in this work as both supercapacitor as well as lithium-ion battery electrodes. It is desirable to have energy storage devices of adjustable shapes, such that they may conform to the shrinking form factors of modern portable electronics and mechanically flexible electrodes are an attractive prospect. The CNT-Mo film is shown here to easily release from its growth substrate, after which it may be placed onto a number of surfaces and topographies and densified. Two polymer films, KaptonRTM and Thermanox(TM) , have been used as substrates for the demonstrations of flexible supercapacitor electrodes. Test results show that the attached active CNT-Mo film can withstand bending to at least as large an angle as 180°. The specific capacitance of a 5 mm by 5 mm area electrode in the K2SO 4 aqueous electrolyte with

  9. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  10. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  11. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Astrophysics Data System (ADS)

    Smith, J. L.

    1980-10-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  12. Metal oxide-carbon composites for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  13. Wind Energy Program overview, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  14. Wind Energy Program overview, fiscal year 1993

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems. Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  15. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  16. Energy storage mechanism for hybrid battery

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Chernova, Natasha; Omenya, Fredrick; Rastogi, Alok; Whittingham, Stanley

    Many devices require both high energy and high power density, and lithium ion batteries and super-capacitors cannot separately always meet the requirements. In this work, we study the operating mechanism of a hybrid battery, which combines the best properties of batteries and supercapacitors. We analyze the lithium ion storage mechanism using XRD, Raman, TEM and electrochemical measurements. The model system studied combines a non-intercalating carbon black anode with a LiFePO4 cathode. At 50% state of charge, XRD data for LiFePO4 cathode material shows a mixture of LiFePO4 and FePO4, indicating battery reaction. On the other hand, the activated carbon remains structurally unchanged. We also discuss the impact of a range of activated carbon/ LiFePO4 (AC/LFP) ratios. From cyclic voltammetry and charge/discharge results, the system exhibits battery-domain characteristics when the AC/ LFP ratio is below one, but showing more supercapacitor-domain traits when the ratio is higher. Besides, the systems have higher rate capacity at AC/LFP ratio around four as compared to one. This research is supported by NSF under Award Number 1318202.

  17. Advanced Energy Storage Management in Distribution Network

    SciTech Connect

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu; Starke, Michael R; Ollis, T Ben; King, Daniel J; Irminger, Philip; Tomsovic, Kevin

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  18. Feasibility studies of aquifer thermal energy storage

    SciTech Connect

    Hall, S. H.

    1993-01-01

    Determining the feasibility of using aquifer thermal energy storage (ATES) for a particular heating or cooling application is an interdisciplinary effort, requiring (at a minimum) expertise in engineering and hydrology. The feasibility study should proceed in two distinct stages. The first stage, which is limited in scope and detail, is intended to show if an ATES system is technically and economically suited to the application. Focus of this preliminary investigation is on revealing the existence of factors that might weigh heavily against the use of ATES methods, and, in the absence of such factors, on choosing a suitable scale for the ATES plant and well field. The results of the preliminary investigation are used to determine if more detailed investigation--including field studies--are justified, and to facilitate comparing the advantages of ATES to those of other means of providing heating or cooling. The second stage of the feasibility study focuses on detailed aquifer characterization, refinement of engineering design and cost estimates, and economic and environmental risk analysis. The results of this investigation, if favorable, will be used to justify the expense of constructing the ATES system.

  19. Flight experiment of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. These salts store energy as a heat of fusion, thereby transferring heat to the fluid at constant temperature during shade. The principal feature of fluorides that must be taken into account is the change in volume that occurs with melting and freezing. Salts shrink as they solidify, a change reaching 30 percent for some salts. The location of voids that form as result of the shrinkage is critical when the solar dynamic system reemerges into the sun. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The code is capable of analysis under microgravity as well as 1 g. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity. Each test package will be installed in a Getaway Special container to be carried by the shuttle. The package will be self-contained and independent of shuttle operations other than the initial opening of the container lid and the final closing of the lid. Upon the return of the test package from flight, the TES container will be radiographed and finally partitioned to examine the exact location and shape of the void. Visual inspection of the void and the temperature data during flight will constitute the bases for code verification.

  20. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  1. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  2. Thermal Energy Storage in Phase Change Material.

    DTIC Science & Technology

    1982-03-01

    Graphs of the exnerimental results follow: tney are groupea in the tree categories: tube cross flow, ricked bed, and tube parallel flow. A. Tube Cross... Riordan , Michael, "Thermal Storage: A Rtsic Guile to the Ptate of the Art", Solar Age, Aril, 1978, P. 10. 5. Telkes, Maria, "Thermal Lner y Storage in

  3. Overview of nuclear energy: Present and projected use

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2012-06-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  4. Overview of nuclear energy: Present and projected use

    SciTech Connect

    Stanculescu, Alexander

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  5. Overview of Nuclear Energy: Present and Projected Use

    SciTech Connect

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  6. Integrating energy storage with wind power in weak electricity grids

    NASA Astrophysics Data System (ADS)

    McDowall, Jim

    Energy storage is required to match wind generation to consumption. This time shifting can be accomplished with several hours of storage, but studies have shown that the economic value of such storage systems is unlikely to support their widespread use. This does not mean that the outlook is uniformly bleak for storage with wind power. This paper discusses storage systems ranging from a few seconds of run time to several hours, and provides a rationale for the use of systems with several minutes of run time to support a high penetration of wind power into weak electricity grids.

  7. Graphene and graphene-based materials for energy storage applications.

    PubMed

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

  8. Design Considerations of a Solid State Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).

  9. Toxic substances from coal energy: an overview.

    PubMed Central

    Shy, C M

    1979-01-01

    Environmental concerns over increased coal consumption are fully justified by the past history of coal use. Although improved technology has provided some safeguards, increased utilization will require mining practices, emission control technologies, and waste disposal procedures that are not yet fully integrated into the routine use of the coal energy system. The Committee on Health and Evnironmental Effects of Increased Coal Utilization identified six critical environmental issues which are of concern: coal mine worker health and safety, reclamation of arid lands from surface mining, the health effects of coal combustion products, toxic trace elements in coal combustion wastes, acid fallout, and global effects of carbon dioxide in the atmosphere. This presentation addresses the first four of these issues. PMID:540602

  10. Toxic substances from coal energy: an overview.

    PubMed

    Shy, C M

    1979-10-01

    Environmental concerns over increased coal consumption are fully justified by the past history of coal use. Although improved technology has provided some safeguards, increased utilization will require mining practices, emission control technologies, and waste disposal procedures that are not yet fully integrated into the routine use of the coal energy system. The Committee on Health and Evnironmental Effects of Increased Coal Utilization identified six critical environmental issues which are of concern: coal mine worker health and safety, reclamation of arid lands from surface mining, the health effects of coal combustion products, toxic trace elements in coal combustion wastes, acid fallout, and global effects of carbon dioxide in the atmosphere. This presentation addresses the first four of these issues.

  11. Technologies for energy storage flywheels and super conducting magnetic energy storage

    SciTech Connect

    BOYES,JOHN D.

    2000-04-26

    A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

  12. Self-powered energy fiber: energy conversion in the sheath and storage in the core.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Hao; Ren, Jing; Pan, Shaowu; Peng, Huisheng

    2014-11-05

    A high-performance, self-powered, elastic energy fiber is developed that consists of an energy conversion sheath and an energy storage core. The coaxial structure and the aligned nanostructures at the electrode interface enable a high total energy-conversion and energy-storage performance that is maintained under bending and after stretching.

  13. Development of regenerable energy storage for space multimegawatt applications

    SciTech Connect

    Olszewski, M.

    1986-01-01

    A program has recently been initiated as a part of the national Strategic Defense Initiative (SDI) to develop energy storage technology for space power applications. This program is jointly conducted by the Department of Energy and the Department of Defense. It is focused on the development of advanced technologies in regenerable energy storage that will be required for generation of multimegawatt levels of sprint power for SDI space missions. Energy storage technology considered in the program relate to devices that have a high specific capacity for energy storage, which can provide high levels of electric power on demand, and which may be recharged with electric power. The devices of principal interest are electrochemical batteries, chemical fuel cells, and electromechanical flywheels (the latter includes the motors and generators used to provide the electrical to mechanical coupling). The intent of the program is to resolve technical feasibility issues associated with an electrically regenerable energy storage system satisfying SDI needs. Specifically, energy storage technology will be developed through the proof-of-concept stage within the next six years that provides a specific power greater than 2.5 kW/kg with an energy storage density of at least 450 kJ/kg.

  14. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    SciTech Connect

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  15. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect

    Not Available

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  16. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  17. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  18. Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage

    SciTech Connect

    Blahnik, D.E.

    1980-11-01

    Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

  19. Energy storage specification requirements for hybrid-electric vehicle

    SciTech Connect

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  20. Energy storage specification requirements for hybrid-electric vehicle

    NASA Astrophysics Data System (ADS)

    Burke, A. F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide 'primary energy' ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W(center dot)h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  1. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    SciTech Connect

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  2. The National Energy Modeling System: An overview 1998

    SciTech Connect

    1998-02-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  3. Perspectives on energy storage wheels for space station application

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  4. Energy: Systems for Control, Maintenance, and Storage. A Bibliography.

    ERIC Educational Resources Information Center

    Thomas, Gerald, Comp.; McKane, Irving, Comp.

    This publication is a bibliography of available periodical literature on specific aspects of energy and today's technology. The Applied Science and Technology Indexes were searched for articles that related to these specific areas: (1) Energy control systems; (2) Maintenance of Energy Systems; and (3) Energy storage. The articles and papers…

  5. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  6. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  7. Operational Benefits of Meeting California's Energy Storage Targets

    SciTech Connect

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2015-12-18

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014 version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation

  8. Magnetic Energy Storage and Conversion in the Solar Atmosphere.

    DTIC Science & Technology

    1981-07-01

    in the quasi-equilibrium loop is by localizing heating, which causes both hydromagnetic expansion perpendicular to the magnetic field and hydrodynamic ...on s*.o ide it necessary and Idenity by bl. k .-. be,) Solar Flares Magnetohydrodyn,-imic Stability Pre-Flare Energy Storage Double Layers Flare...storage process and the macroscopic stability of those plasma-magnetic field configurations in which this storage might occur. We first review how currents

  9. Electrical energy storage for the grid: a battery of choices.

    PubMed

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-18

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

  10. Paper‐Based Electrodes for Flexible Energy Storage Devices

    PubMed Central

    Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu

    2017-01-01

    Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532

  11. Electrical Energy Storage for the Grid: A Battery of Choices

    NASA Astrophysics Data System (ADS)

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-01

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

  12. Ultracapacitors as sole energy storage device in hybrid electric cars?

    SciTech Connect

    Farkas, A.; Bonert, R.

    1994-12-31

    New types of electric capacitors may provide, within several years, power capacitors which could be used as energy storage devices in serial hybrid electric car drives instead of a battery. This paper discusses how to determine the required size of such a capacitor used as the sole energy storage device. The performance requirements and parameters influencing the size of the capacitor are defined and a model of a hybrid car system is proposed to determine the size of the capacitor. Simulation results are presented to demonstrate the choices in selecting the capacitor size and to provide an estimate of the performance of a hybrid vehicle with capacitive energy storage. 4 refs.

  13. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  14. Energy storage capacity of rotating composite disks and shells /Review/

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Tarnopolskii, Iu. M.

    1982-04-01

    Research in the field of composite flywheels is briefly reviewed. Particular attention is given to the energy storage capacity of filament-wound structures and optimum shapes and reinforcement patterns for rotating shells. The maximum mass energy storage capacity of flywheels made from state-of-the-art composite materials is estimated at 400-800 J/g as compared with 100-200 J/g for steel flywheels. Energy storage capacities are calculated for filament-wound epoxy-matrix composite disks reinforced with glass, carbon, boron, and organic fibers.

  15. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  16. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  17. Long vs. short-term energy storage:sensitivity analysis.

    SciTech Connect

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  18. Symmetric Electrodes for Electrochemical Energy-Storage Devices.

    PubMed

    Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo

    2016-12-01

    Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.

  19. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  20. Bulk energy storage increases United States electricity system emissions.

    PubMed

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.