Science.gov

Sample records for energy systems programs

  1. Wind energy systems: program summary

    SciTech Connect

    1980-05-01

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  2. Biomass energy systems program summary

    SciTech Connect

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  3. Polymer Energy Rechargeable System (PERS) Development Program

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

  4. Energy storage systems program report for FY1996

    SciTech Connect

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  5. Energy Storage Systems Program Report for FY99

    SciTech Connect

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  6. Energy Storage Systems Program Report for FY98

    SciTech Connect

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  7. Residual energy applications program systems analysis report

    SciTech Connect

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  8. Energy storage systems program report for FY97

    SciTech Connect

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  9. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    SciTech Connect

    Dodge, Martha; Coulter, John

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education for graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.

  10. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  11. Pilot States Program report: Home energy ratings systems and energy-efficient mortgages

    SciTech Connect

    Farhar, B.

    2000-04-04

    This report covers the accomplishments of the home energy ratings systems/energy-efficient mortgages (HERS/EEMs) pilot states from 1993 through 1998, including such indicators as funding, ratings and EEMs achieved, active raters, and training and marketing activities. A brief description of each HERS program's evolution is included, as well as their directors' views of the programs' future prospects. Finally, an analysis is provided of successful HERS program characteristics and factors that appear to contribute to HERS program success.

  12. Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual

    NASA Technical Reports Server (NTRS)

    Hamil, R. G.; Ferden, S. L.

    1977-01-01

    The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.

  13. Howard University Energy Expert Systems Institute Summer Program (EESI)

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Chuku, Arunsi; Abban, Joseph

    1996-01-01

    Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.

  14. ORNL Superconducting Technology Program for Electric Energy Systems

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  15. Overview of Energy Systems' safety analysis report programs

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  16. Stirling Energy Systems` (SES) dish-Stirling program

    SciTech Connect

    Stone, K.W.; Braun, H.W.; Moore, M.I.; Clark, T.B.

    1997-12-31

    This paper describes a system to produce electrical power from the sun, and the plans for preparing it for commercial operation. The point-focus, Stirling-engine-based system was designed and tested in the 1980s by McDonnell Douglas Corporation and United Stirling AB of Sweden (now part of Kockums AB). Stirling Energy Systems (SES) has acquired the existing hardware and technology, and plans to upgrade the system in order to utilize its demonstrated performance to produce grid-compatible electrical power. The performance includes a higher solar-to-electric conversion efficiency than any other renewable energy technology (approximately 30%), with the potential of a two to four point increase. The paper presents a summary description of the hardware, its past test program, proposed improvements, and the plan for commercialization.

  17. The Energy Systems Optimization Computer Program /ESOP/ developed for Modular Integrated Utility Systems /MIUS/ analysis

    NASA Technical Reports Server (NTRS)

    Ferden, S. L.; Rochelle, W. C.; Stallings, R. D.; Brandli, A. E.; Lively, C. F., Jr.

    1974-01-01

    A significant energy and cost savings can be obtained by integrating various utility services (space heating and cooling, electrical power generation, solid waste disposal, potable water, and waste water treatment) into a single unit which provides buildings or groups of buildings with these services. This paper presents a description of a computer program, called the Energy Systems Optimization Program (ESOP). This program predicts the loads, energy requirements, equipment sizes, and life-cycle costs of alternative methods of meeting these utility requirements. The program has been used extensively for performing energy analyses of Modular Integrated Utility Systems (MIUS).

  18. Evaluating the environmental impacts of the energy system: The ENPEP (ENergy and Power Evaluation Program) approach

    SciTech Connect

    Hamilton, B.P.; Sapinski, P.F.; Cirillo, R.R.; Buehring, W.A.

    1990-01-01

    Argonne National Laboratory (ANL) has developed the ENergy and Power Evaluation Program (ENPEP), a PC-based energy planning package intended for energy/environmental analysis in developing countries. The IMPACTS module of ENPEP examines environmental implications of overall energy and electricity supply strategies that can be developed with other ENPEP modules, including ELECTRIC, the International Atomic Energy Agency's Wien Automatic System Planning Package (WASP-III). The paper presents the status and characteristics of a new IMPACTS module that is now under development at ANL. 3 figs.

  19. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  20. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  1. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  2. The U.S. Department of Energy`s advanced turbine systems program

    SciTech Connect

    Layne, A.W.; Layne, P.W.

    1998-06-01

    Advanced Turbine Systems (ATS) are poised to capture the majority of new electric power generation capacity well into the next century. US Department of Energy (DOE) programs supporting the development of ATS technology will enable gas turbine manufacturers to provide ATS systems to the commercial marketplace at the turn of the next century. A progress report on the ATS Program will he presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program will be discussed. Progress has been made in the are as of materials, heat transfer, aerodynamics, and combustion. Applied research conducted by universities, industry, and Government has resulted in advanced designs and power cycle configurations to develop an ATS which operates on natural gas, coal, and biomass fuels. Details on the ATS Program research, development, and technology validation and readiness activities will be presented. The future direction of the program and relationship to other Government programs will be discussed in this paper.

  3. Programming for energy monitoring/display system in multicolor lidar system research

    NASA Technical Reports Server (NTRS)

    Alvarado, R. C., Jr.; Allen, R. J.

    1982-01-01

    The Z80 microprocessor based computer program that directs and controls the operation of the six channel energy monitoring/display system that is a part of the NASA Multipurpose Airborne Differential Absorption Lidar (DIAL) system is described. The program is written in the Z80 assembly language and is located on EPROM memories. All source and assembled listings of the main program, five subroutines, and two service routines along with flow charts and memory maps are included. A combinational block diagram shows the interfacing (including port addresses) between the six power sensors, displays, front panel controls, the main general purpose minicomputer, and this dedicated microcomputer system.

  4. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    SciTech Connect

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-05-31

    Electric motor systems are widely used in China to power fans, pumps, blowers, air compressors, refrigeration compressors, conveyers, machinery, and many other types of equipment. Overall, electric motor systems consume more than 600 billion kWh annually, accounting for more than 50 percent of China's electricity use. There are large opportunities to improve the efficiency of motor systems. Electric motors in China are approximately 2-4 percent less efficient on average than motors in the U.S. and Canada. Fans and pumps in China are approximately 3-5 percent less efficient than in developed countries. Even more importantly, motors, fans, pumps, air compressors and other motor-driven equipment are frequently applied with little attention to system efficiency. More optimized design, including appropriate sizing and use of speed control strategies, can reduce energy use by 20 percent or more in many applications. Unfortunately, few Chinese enterprises use or even know about these energy-saving practices. Opportunities for motor system improvements are probably greater in China than in the U.S. In order to begin capturing these savings, China is establishing a China Motor Systems Energy Conservation Program. Elements of this program include work to develop minimum efficiency standards for motors, a voluntary ''green motor'' labeling program for high-efficiency motors, efforts to develop and promote motor system management guidelines, and a training, technical assistance and financing program to promote optimization of key motor systems.

  5. Ocean energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  6. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  7. Analysis to develop a program for energy-integrated farm systems

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.; Johnson, K.I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The purpose of the research presented is to establish the objective of the program and identify guidelines for program development. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of: (1) market need, (2) conversion potential, (3) technological opportunities, and (4) acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy. Each of these factors is analyzed in Chapters 2 to 4. Chapter 5 draws on the analysis of these factors to establish the objective of the program and identify guidelines for the distribution of program funds. Chapter 6 then discusses the acceptability of integrated farm systems, which can not be quantified like the other factors.

  8. Energy management: total program considers all building's systems.

    PubMed

    Blan, G J; Browne, K H

    1978-09-16

    Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.

  9. Statistical Energy Analysis Program

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.; Trudell, R. W.; Yano, L. I.; Nygaard, S. I.

    1985-01-01

    Statistical Energy Analysis (SEA) is powerful tool for estimating highfrequency vibration spectra of complex structural systems and incorporated into computer program. Basic SEA analysis procedure divided into three steps: Idealization, parameter generation, and problem solution. SEA computer program written in FORTRAN V for batch execution.

  10. Ocean energy program summary

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the U.S. Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now.

  11. Photovoltaic energy systems: Program summary fiscal year 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An overview of government funded activities in photovoltaic energy conversion research is given. Introductory information, a list of directing organizations, a list of acronyms and abbreviations, and an index of current contractors are given.

  12. Power and Energy Systems Technology Program. Research Series No. 43.

    ERIC Educational Resources Information Center

    Haakenson, Harvey

    The overall objective of this project was to develop a training program and materials for power plant training in North Dakota. The project utilized four separate instructional units and four separate enrollment times with eight students enrolling in each phase to a maximum of thirty-two students. The course that resulted from the project is…

  13. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  14. 76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... 1904-AC50 Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of... efficiency test procedures for luminaires (also referred to herein as lighting systems) and collecting... labels for lighting systems based on industry-standard procedures and practices for luminaires....

  15. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  16. A national program for energy-efficient mortgages and home energy rating systems: A blueprint for action. Review draft

    SciTech Connect

    Not Available

    1992-03-01

    This Review Draft reports findings and recommendations of the National Collaborative on Home Energy Rating Systems and Mortgage Incentives for Energy Efficiency. The US Department of Energy, in cooperation with the US Department of Housing and Urban Development, formed this National Collaborative as a National Energy Strategy initiative. Participating in the Collaborative were representatives of the primary and secondary mortgage markets, builder and remodeler organizations, real estate and appraiser associations, the home energy rating system industry, utility associations, consumer and public interest groups, state and local government interest groups, and environmental organizations. The Collaborative`s purpose was to develop a voluntary national program encouraging energy efficiency in homes through mortgage incentives linked to home energy ratings.

  17. A national program for energy-efficient mortgages and home energy rating systems: A blueprint for action

    SciTech Connect

    Not Available

    1992-03-01

    This Review Draft reports findings and recommendations of the National Collaborative on Home Energy Rating Systems and Mortgage Incentives for Energy Efficiency. The US Department of Energy, in cooperation with the US Department of Housing and Urban Development, formed this National Collaborative as a National Energy Strategy initiative. Participating in the Collaborative were representatives of the primary and secondary mortgage markets, builder and remodeler organizations, real estate and appraiser associations, the home energy rating system industry, utility associations, consumer and public interest groups, state and local government interest groups, and environmental organizations. The Collaborative's purpose was to develop a voluntary national program encouraging energy efficiency in homes through mortgage incentives linked to home energy ratings.

  18. SESOP: Program for solar-energy heating-systems analysis

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space heating and cooling loads are calculated for each building based on outside environment, desired inside conditions, building construction and geometry, domestic power usage, occupancy rate, and occupant metabolic rate. Loads are summed to determine requirements of central and alternative utility systems.

  19. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  20. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, Marcelo J.; Antunez, Emilio u.

    1996-01-24

    In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

  1. 75 FR 27182 - Energy Conservation Program: Web-Based Compliance and Certification Management System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Part 430 RIN 1904-AC10 Energy Conservation Program: Web-Based Compliance and Certification Management... electronic Web-based tool, the Compliance and Certification Management System (CCMS), which will be the... Certification Management System (CCMS)--via the Web portal: http://regulations.doe.gov/ccms . Follow...

  2. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue

  3. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    SciTech Connect

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  4. Solar energy: Program summary document

    NASA Astrophysics Data System (ADS)

    1980-08-01

    Solar programs and the eight solar technologies are discussed, including biomass energy systems, photovoltaic energy systems, wind energy conversion systems, solar thermal power, ocean systems, agricultural and industrial process heat, active solar heating and cooling, passive and hybrid solar heating and cooling.

  5. Lockheed Martin Energy Systems, Inc., Groundwater Program Office. Annual report for fiscal year 1994

    SciTech Connect

    1994-09-30

    This edition of the Lockheed Martin Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems Groundwater Program Office (GWPO) for fiscal year (FY) 1994. The GWPO is responsible for coordination and oversight for all components of the groundwater programs at the three Oak Ridge facilities [Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants (PGDP and PORTS, respectively.) This report describes the administrative framework of the GWPO including staffing, organization, and funding sources. In addition, summaries are provided of activities involving the Technical Support staff at the five facilities. Finally, the results of basic investigations designed to improve our understanding of the major processes governing groundwater flow and contaminant migration on the Oak Ridge Reservation (ORR) are reported. These investigations are conducted as part of the Oak Ridge Reservation Hydrology and Geology Studies (ORRHAGS) program. The relevance of these studies to the overall remediation responsibilities of Energy Systems is discussed.

  6. Biomass energy systems program summary. Information current as of September 30, 1979

    SciTech Connect

    Not Available

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  7. Batteries for solar energy systems -- A program at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    DOE has selected Sandia National Laboratories as its lead laboratory to direct a program to develop and test batteries for electrical storage in a variety of solar applications. Initial emphasis is on storage in photovoltaic systems, but wind-energy and solar-thermal systems will be considered later. The BSSAP program is divided functionally into five tasks: Task 1--battery requirements analysis; Task 2--laboratory evaluation; Task 3--PV advanced systems tests; Task 4--applied experiments; Task 5--battery research and development. This report briefly discusses these tasks.

  8. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    SciTech Connect

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC . Office of Nuclear Safety)

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these.

  9. Energy Savings From System Efficiency Improvements in Iowa's HVAC SAVE Program

    SciTech Connect

    Yee, S.; Baker, J.; Brand, L.; Wells, J.

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  10. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  11. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  12. Clean Energy Financing Programs

    EPA Pesticide Factsheets

    This page introduces resources that state and local governments can use to develop Clean Energy Finance Programs and reduce the financial barriers to implementing energy efficiency and renewable energy in their communities.

  13. Duluth Energy Efficiency Program

    EPA Pesticide Factsheets

    The City of Duluth developed the Duluth Energy Efficiency Program (DEEP) to create jobs, lessen the energy affordability gap faced by Duluth families, retain energy dollars currently exported from the city, and reduce Duluth's carbon footprint.

  14. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  15. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    SciTech Connect

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  16. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Corey, Garth P.; Iannucci, Joseph J., Jr.

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  17. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  18. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    SciTech Connect

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-03-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors—the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers— is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean

  19. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-02-01

    Research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage program are presented. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

  20. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  1. Effect of Cracow program elimination of low emission sources upon the energy management system in Cracow

    SciTech Connect

    Friedberg, J.; Goerlich, K.; Glowacki, K.

    1995-12-31

    At the end of the 1980s, the energy management at the local level-like the whole set of such utility services-was based upon respective enterprises subject to a certain supervision of the establishing body and to a control of the District Inspectorate of Energy Management. Those enterprises that deal with generation and supply of heat energy to the local market, with distribution of heat, natural gas and electricity, operated as state companies; the last two branches made a part of either regional or national companies. Irrespective of the aforesaid, the co-generation power plants existed usually outside the heat generation and supply system. The business economics of these enterprises was not subject to any market rules whatsoever, the prices were controlled and the customers had no right of choice of the energy supplier. From the very beginning the low emission elimination program assumed to have commercial rules introduced in the energy management. Thus, it turned out necessary to prepare the market - to draw up inventory of the conditions and needs related with heat supply and to take up market solutions as well. The management system, and in particular the items specified below, is discussed. The co-operation of energy distribution enterprises has been based upon a voluntary agreement (The Team for Energy Suppliers) so as to agree upon the basic actions of the respective partners; joint actions have been taken up more and more willingly.

  2. Clean Energy Programs

    EPA Pesticide Factsheets

    This webpage links to U.S. Environmental Protection Agency's voluntary programs that focus on helping individuals, and the public and private sector expand their use of energy efficiency and renewable energy.

  3. Hawaii Energy Strategy: Program guide

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii`s energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii`s energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  4. Implementing Systems Engineering in the U.S. Department of Energy Office of the Biomass Program: Preprint

    SciTech Connect

    Riley, C.; Wooley, R.; Sandor, D.

    2007-03-01

    This paper describes how the Systems Integration Office is assisting the Department of Energy's Biomass Program by using systems engineering processes, practices and tools to guide decisions and achieve goals.

  5. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  6. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    SciTech Connect

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  7. NASA's space energy technology program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Byers, D. C.; Ambrus, J. H.; Loria, J. C.

    1984-01-01

    NASA's Space Energy Systems program is concerned with the development of technology for space missions requiring high performance, such as geostationary orbit communication satellites and planetary spacecraft, and high capacity, such as the planned Space Station and lunar bases; these two requirements often lead to great differences in system design. The program accordingly addresses a wide range of candidate technologies, which encompasses photovoltaics, chemical energy conversion and storage, thermoelectric conversion, power management and distribution, and thermal management.

  8. Empirical impact evaluation of the energy savings resulting from BPA's Stage II irrigation system retrofit program: Final report

    SciTech Connect

    Harrer, B.J.; Tawil, J.W.; Lyke, A.J.; Nieves, L.A.; Edin, E.S.; Bailey, B.M.

    1987-07-01

    This report documents the results of an evaluation of the impacts on irrigation system energy consumption of conservation measures installed under the Bonneville Power Administration's Stage II retrofit program. Historical billing data and other farm records provided the basis for this evaluation. A number of different statistical techniques were used to estimate the actual energy savings resulting from the Stage II conservation measures. Results of the study reveal that the methodology used in predicting energy savings resulting from the Stage II program is accurate. The basis for energy savings predictions in the Stage II program are changes in brake horsepower, and, in this study, a 1% change in brake horsepower was found to result in slightly more than a 1% change in energy consumption. Overall, Stage II program conservation measures were found to reduce irrigation system energy use by an average of 34%. The average costs of obtaining these savings were 6 mills (.6 cents) per kWh saved.

  9. Energy Engineering Analysis Program, limited energy study of steam distribution systems, Hawthorne Army Ammunition Depot, Hawthorne, Nevada. Programming documents

    SciTech Connect

    1995-09-01

    The project is a significant part of Hawthorne Army Ammunition Depot`s effort to achieve a 20-percent reduction in energy consumption by FY2000 versus FY1985 baseline levels. The project will also assure that heating services are provided to Industrial Area facilities on a continuing basis, supporting mission requirements.

  10. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  11. PHOTO: A computer simulation program for photovoltaic and hybrid energy systems. Document and user's guide

    NASA Astrophysics Data System (ADS)

    Manninen, L. M.; Lund, P. D.; Virkkula, A.

    1990-11-01

    The version 3.0 is described of the program package PHOTO for the simulation and sizing of hybrid power systems (photovoltaic and wind power plants) on IBM PC, XT, AT, PS/2 and compatibles. The minimum memory requirement is 260 kB. Graphical output is created with HALO'88 graphics subroutine library. In the simulation model, special attention is given to the battery storage unit. A backup generator can also be included in the system configuration. The dynamic method developed uses accurate system component models accounting for component interactions and losses in e.g. wiring and diodes. The photovoltaic array can operate in a maximum power mode or in a clamped voltage mode together with the other subsystems. Various control strategies can also be considered. Individual subsystem models were verified against real measurements. Illustrative simulation example is also discussed. The presented model can be used to simulate various system configurations accurately and evaluate system performance, such as energy flows and power losses in photovoltaic array, wind generator, backup generator, wiring, diodes, maximum power point tracking device, inverter and battery. Energy cost is also an important consideration.

  12. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  13. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2016-07-12

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  14. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  15. Benefit/cost framework for evaluating modular energy storage : a study for the DOE energy storage systems program.

    SciTech Connect

    Eyer, James M.; Schoenung, Susan M.

    2008-02-01

    The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utility transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.

  16. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  17. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K.

    2005-03-01

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  18. Aquifer thermal energy storage program

    NASA Technical Reports Server (NTRS)

    Fox, K.

    1980-01-01

    The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems.

  19. Building system integration research: recommendations for a US Department of Energy multiyear program plan

    SciTech Connect

    Not Available

    1986-01-01

    This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

  20. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    SciTech Connect

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  1. Validation Data for Mechanical System Algorithms Used in Building Energy Analysis Programs.

    DTIC Science & Technology

    1982-02-01

    Research Laboratory (CERL). The following per- sons contributed substantially to this work: Larry Brand , Jim Weiner, Bruce Drolin, Chang Shon, Don...costs, the uncertain availability of some energy sources, and the political overtones of the world energy market have created a need for building owners...validating building energy analysis programs and presents the strategy of the validation effort described in this report. Chapter 2 describes the design and

  2. Federal Wind Energy Research Program

    SciTech Connect

    Not Available

    1991-10-01

    The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

  3. ENergy and Power Evaluation Program

    SciTech Connect

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  4. Energy Innovation Acceleration Program

    SciTech Connect

    Wolfson, Johanna

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  5. State Energy Program Operations Manual

    SciTech Connect

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  6. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  7. Fission energy program of the US Department of Energy, FY 1981

    SciTech Connect

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  8. Renewable Energy Certificate Program

    SciTech Connect

    Gwendolyn S. Andersen

    2012-07-17

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  9. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  10. Navy Energy Program

    DTIC Science & Technology

    2011-05-01

    Diego Solar PV 14 Recent Energy Successes For More Information: Check out our Energy, Environment and Climate Change website at...oResources stewardship oEnvironmental impact • Watch maturing technology and invest when/where viable ( Solar , Wind) • Partner to develop needed...Efficient Ship Systems Example: Solid State Lighting DDG-51 Hybrid Electric Drive Test Platform: USS TRUXTUN Enhance capability by enabling fuel

  11. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  12. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  13. Army Programs: Army Energy Program

    DTIC Science & Technology

    2007-11-02

    successful implementation of energy efficiency, water conservation, and solar and other renew- able energy projects in performance evaluations. (5...17. Energy Policy for Leased DOD Facilities In accordance with the Federal Property Regulations (41 CFR, CHP 101, 1 July 1991) and Section 544(b)(2) of...t i o n , o r h o u s e k e e p i n g w i l l n o t b e included. Renewable energy Solar thermal (SOL), wind (WND), geother- m a l ( G E O ) , g e o

  14. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  15. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  16. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    SciTech Connect

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  17. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  18. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect

    1998-02-01

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  19. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  20. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  1. Energy Program annual report

    SciTech Connect

    Borg, I.Y.

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  2. Energy systems programs funded by the Assistant Secretary for Environment, Safety and Health: FY 1993--FY 1994

    SciTech Connect

    Buttram, A.W.

    1994-12-31

    This document presents an overview of work at Martin Marietta Energy Systems, Inc., (Energy Systems) during FY 1993--FY 1994 that was funded by the Department of Energy`s (DOE`s) Assistant Secretary for Environment, Safety and Health (ASEH). To illustrate the programmatic breadth of Energy Systems and to establish the context within which this work was accomplished, this document also includes representative descriptions of ASEH-related work at Energy Systems done for other sponsors. Activities for ASEH cover a wide variety of subjects that are geared towards the environmental, safety, and health aspects of DOE operations. Subjects include the following: environmental compliance, environmental guidance, environmental audits, NEPA oversight, epidemiology and health surveillance, transportation and packaging safety, safety and quality assurance; technical standards, performance indicators, occurrence reporting, health physics instrumentation, risk management, security evaluations, and medical programs. The technical support section describes work in progress for ASEH, including specific program accomplishments. The work for others section describes work for non-ASEH sponsors that reinforces and supplements the ASEH work. Appendix A includes a list of FY 1993--FY 1994 publications related to the ASEH work.

  3. A simulation model for wind energy storage systems. Volume 3: Program descriptions

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.

    1977-01-01

    Program descriptions, flow charts, and program listings for the SIMWEST model generation program, the simulation program, the file maintenance program, and the printer plotter program are given. For Vol 2, see .

  4. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  5. The SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-03-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  6. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  7. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  8. SERI Solar-Energy-Storage Program

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.

    1981-08-01

    The program provides research, system analysis, and assessments of thermal energy storage and transport in support of the Thermal Energy Storage Program of the DOE Division of Energy Storage Technology; emphasis is on thermal energy storage for solar thermal power and process heat applications and on thermal energy transport. Currently, research is in progress on direct-contact thermal energy storage and thermochemical energy storage and transport. In addition, SERI is directing the definition of new concepts for thermal energy storage and supporting research on thermal energy transport by sensible and latent heat media. SERI is performing systems analyses of thermal energy storage for solar thermal application and coordinating thermal energy storage activities for solar applications.

  9. Implementation of network flow programming to the hydrothermal coordination in an energy management system

    SciTech Connect

    Chaoan Li; Jap, P.J.; Streiffert, D.L. )

    1993-08-01

    Hydrothermal Coordination (HTC), consisting of hydro optimization and thermal unit commitment, is a major function in a power system for allocating its generating resources to achieve the system's maximum economy. This paper is divided into two major parts. In the first part the optimality conditions of an Incremental Network Flow Programming (INFP) is described. In the second part the implementation of INFP in an EMS system and its interface with the existing Unit Commitment (UC) software is presented. Some new features are described in detail. The combined HTC and UC package has been delivered to a power utility, Tenaga National Berhad (TNB) in West malaysia. ESCA's internal tests and Factory Acceptance Tests have shown that NFP with a modified Superkilter algorithm is a powerful tool for hydro network flow optimization.

  10. Energy-Systems Economic Analysis

    NASA Technical Reports Server (NTRS)

    Doane, J.; Slonski, M. L.; Borden, C. S.

    1982-01-01

    Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.

  11. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  12. State Energy Efficiency Program Evaluation Inventory

    EIA Publications

    2013-01-01

    The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).

  13. 76 FR 21109 - Rural Energy for America Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... for renewable energy systems and energy efficiency improvements. In addition, it adds a grant program for feasibility studies for renewable energy systems and a grant program for energy audits and... collections. The information collection requirements associated with renewable energy system and...

  14. Fossil energy program. Summary document

    SciTech Connect

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  15. Deep space network energy program

    NASA Technical Reports Server (NTRS)

    Friesema, S. E.

    1980-01-01

    If the Deep Space Network is to exist in a cost effective and reliable manner in the next decade, the problems presented by international energy cost increases and energy availability must be addressed. The Deep Space Network Energy Program was established to implement solutions compatible with the ongoing development of the total network.

  16. Sustainable Energy Services Program

    EPA Pesticide Factsheets

    Cary, North Carolina, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  17. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  18. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  19. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  20. Conservation and renewable energy program

    NASA Astrophysics Data System (ADS)

    Vaughan, K. H.

    1990-04-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1990. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  1. Some Guidelines for Energy Programs

    ERIC Educational Resources Information Center

    Kryger, King C.

    1977-01-01

    This article offers guidelines for educational programs developed for the purpose of educating students and adults on the seriousness of the energy crises and the steps that must be taken to cope with it. (JD)

  2. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  3. Biomass-energy-technology program summary

    NASA Astrophysics Data System (ADS)

    1982-06-01

    An account is given of the ongoing research, development, and demonstration efforts of the Biomass Energy Technology program. Descriptions are given for each of the program projects funded and/or in existence during Fiscal Year 1981, reflecting their status as of September 30, 1981. The summaries are grouped as follows: feedstock production, conversion systems, market development, and general support and analysis.

  4. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    1984-04-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing ocean thermal energy conversion (OTEC) systems that are to provide synthetic fuels or an energy intensive product such as ammonia or aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC plants. The laboratory also has a technical advisory role with respect to DOE/DOET's management of the preliminary design activity of an industry team headed by Ocean Thermal Corporation that is designing an OTEC pilot plant that could be built in shallow water off the shore of Oahu, Hawaii. In addition, the Laboratory is now taking part in a program to evaluate and test the pneumatic wave energy conversion system, an ocean energy device consisting of a turbine that is air driven as a result of wave action in a chamber.

  5. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. The work on the various tasks as of 31 March 1983 is reported.

  6. Refrigeration systems program summary

    NASA Astrophysics Data System (ADS)

    1991-12-01

    In addition to saving energy, deploying advanced refrigeration technologies can substantially benefit the environment. Chlorofluorocarbons (CFCs) have been identified as a major cause of potential global climate change and about 20 pct. of the CFCs consumed by the U.S. are due to refrigeration systems. As the international Montreal Protocol will phase out CFC compounds no later than 2000, there is tremendous need to develop safe non-CFC refrigerants and working fluids, alternative refrigeration cycles, and non-CFC insulations for appliances. The U.S. Department of Energy (DOE) established the Refrigeration System Program in 1977 to lead a national effort to accelerate the deployment of cost effective and energy efficient air conditioning and refrigeration technologies. The program primarily conducts research and development on advanced refrigeration technologies. The program, managed by the Office of Building Technologies, which reports to DOE's Assistant Secretary for Conversation and Renewable Energy, encompasses several key activities such as investigating alternative refrigerants and refrigeration cycles, developing advanced technologies for future air conditioning and refrigeration equipment designs, and developing advanced appliance insulations.

  7. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  8. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Copeland, R. J.; Kotch, A.; Kriz, T.; Luft, W.; Nix, R. G.; Wright, J. O.

    1982-05-01

    Thermal energy storage technologies are identified for specific solar thermal applications. The capabilities and limitations of direct-contact thermal storage and thermochemical energy storage and transport are examined. Storage of energy from active solar thermal systems for industrial process heat and the heating of buildings is analyzed and seasonal energy storage is covered. The coordination of numerous thermal energy storage research and development activities is described.

  9. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  10. Immersive Visual Programming System

    DTIC Science & Technology

    1995-03-16

    improved virtual programming system. 20 It is another object to provide a virtual programming system that optimally increases a user’s comprehensibility...of program structures. NAVY CASE NO. 75554 It is still another object to provide a virtual programming system that is useful for defining the high...level flow control and data pathways within a program. It is yet another object to provide a virtual programming system that allows for dynamic

  11. Thermal energy storage program description

    SciTech Connect

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  12. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  13. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  14. Department of Energy Nuclear Energy Standards Program

    SciTech Connect

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed.

  15. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The Energy Conversion and Storage Program applies chemical and chemical engineering principles to solve problems in (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy storage; (4) characterization of complex chemical processes; and (5) the application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, and advanced methods of analysis. The following five areas are discussed: electrochemical energy storage and conversion; microstructured materials; biotechnology; fossil fuels; and high temperature superconducting processing. Papers have been processed separately for inclusion on the data base.

  16. Fossil energy program. Progress report, July 1980

    SciTech Connect

    McNeese, L. E.

    1980-10-01

    This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

  17. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  18. Energy analysis program, FY 1979

    NASA Astrophysics Data System (ADS)

    1980-04-01

    Energy analysis attempts to understand the volitional choices of energy use and supply available to human society, and the multi-faceted consequences of choosing any one of them. Topics deal with economic impacts; assessments of regional issues and impacts; air quality evaluation; institutional and political issues in California power plant siting; assessment of environmental standards; water issues; characterization of aquatic systems dissolved oxygen profiles; modeling; computer-generated interactive graphics; energy assessment in Hawaii; solar energy in communities; utilities solar financial data; population impacts of geothermal development; energy conservation in colleges and residential sectors; energy policy; decision making; building energy performance standards; standards for residential appliances; and impact of energy performance standards on demand for peak electrical energy.

  19. Wind Energy Career Development Program

    SciTech Connect

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  20. SOLFEAS: An Interactive Program for Estimating the Economic Feasibility of an Active Solar Thermal Energy System.

    DTIC Science & Technology

    1983-01-01

    7 Background Purpose Approach Scope Mode of Technology Transfer 2 SOLAR SYSTEM THERMAL ANALYSIS...collectors and employs sensible heat storage; however, it does not consider passive solar techniques at this time. Mode of Technology Transfer The information...1>23050 L, P, G, OR R? ARRAY Nt!MBER? EG. 6 I>5 bV HOT WATER LOAD, MBTU(MONTH), MONTH1,2,...12 E1TER 12 MONIlS DATA: QI,Q2 ...... ,Q12 I

  1. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  2. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  3. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  4. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (DEC VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  5. Information and guidelines for a proposed laboratory accreditation and product certification program for photovoltaic energy conversion systems

    NASA Astrophysics Data System (ADS)

    Thomas, D. B.

    1980-08-01

    An overview of the advantages and disadvantages of laboratory accreditation and product certification including economic factors that should be considered for such programs is presented. Detailed information is also provided on the two national programs for accrediting laboratories, the Department of Commerce National Voluntary Laboratory Accreditation Program and the American Association for Laboratory Accreditation. Information on the California and Florida state programs for laboratory accreditation and product certification of solar collector systems is given as examples of programs that were in operation for several years.

  6. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-04-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  7. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-02-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  8. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  9. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts

  10. Fossil Energy Materials Program conference proceedings

    SciTech Connect

    Judkins, R.R.

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  11. Priorities and allocations support for energy: keeping energy programs on schedule

    SciTech Connect

    Not Available

    1985-08-01

    This publication has covered DOE and DOC procedures related to an application for rating authority for an energy program, the DPAS (Defense Priorities and Allocations System) and the Special Priorities Assistance Program's relation to priorities and allocations for energy programs. A person engaged in an eligible energy program or project must be familiar with DPAS rules, regulations and procedures. There are important benefits to be gained by the Government and the energy industry through the proper use of the priorities and allocations system.

  12. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-09-30

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven of PEARL program during the period of April 2006 to September 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC continued receiving the CFL samples purchased by sponsors and finished performing the sphere testing for all CFL models at 100 hours of life. After that LRC aged the CFL samples to 1000 hours of life, and then performed sphere testing for all CFL models at 1000 hours of life. Then the CFLs were placed on the test rack to be aged to 40% of their rated life. Rapid Cycle Stress Test was also performed for all models using different sets of CFL samples.

  13. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-03-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven and Cycle Eight of PEARL program during the period of October 2006 to March 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC finished performing the sphere testing for all CFL models in Cycle Seven at 40% of their rated life. LRC also performed re-test of Rapid Cycle Stress Test, under the request of DOE, for five CFL models that failed the Rapid Cycle Stress Test in Cycle Seven. From January 2007 to March 2007, LRC coordinated the procuring efforts for the CFL models that were selected for Cycle Eight.

  14. Who Should Administer Energy-Efficiency Programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen L.

    2003-05-01

    The restructuring of the electric utility industry in the US created a crisis in the administration of ratepayer-funded energy-efficiency programs. Before restructuring, nearly all energy-efficiency programs in the US were administered by utilities and funded from utility rates. Restructuring called these arrangements into question in two ways. First, the separation of generation from transmission and distribution undermined a key rationale for utility administration. This was the Integrated Resource Planning approach in which the vertically integrated utility was given incentives to provide energy services at least cost. Second, questions were raised as to whether funding through utility rates could be sustained in a competitive environment and most states that restructured their electricity industry adopted a system benefits charge. The crisis in administration of energy-efficiency programs produced a variety of responses in the eight years since restructuring in the US began in earn est. These responses have included new rationales for energy-efficiency programs, new mechanisms for funding programs, and new mechanisms for program administration and governance. This paper focuses on issues related to program administration. It describes the administrative functions and some of the options for accomplishing them. Then it discusses criteria for choosing among the options. Examples are given that highlight some of the states that have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. The conclusion attempts to summarize lessons learned.

  15. Energy Star program benefits Con Edison

    SciTech Connect

    1995-05-01

    Impressed with savings in energy costs achieved after upgrading the lighting and air conditioning systems at its Manhattan headquarters, Home Box Office (HBO) wanted to do more, James Flock, vice president for computer and office systems, contacted Con Edison Co. of New York in March 1991 to determine what the company could do to save money by reducing energy consumed by personal computers. Arthur Kressner, Con Edison Research and Development manager contacted industry organizations and manufacturers for advice, but was told only to shut off computers at night and on weekends. Kressner arranged a series of meetings with IBM and the Electric Power Research Institute (EPRI) to discuss the issue, then approached the U.S. Environmental Protection Agency (EPA), which was designing a program to promote the introduction and use of energy-efficient office equipment. In 1992, the EPA announced the Energy Star program for PCs, enabling manufacturers to display the Energy Star logo on machines meeting program criteria, including the ability to enter a sleep mode in which neither the computer nor monitor consume more than 30 W or electricity. Industry experts estimate national energy consumption by office equipment could double by the year 2000, but Energy Star equipment is expected to improve efficiency and help maintain electric loads.

  16. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  17. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  18. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  19. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  20. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  1. Review of NASA programs in applying aerospace technology to energy

    NASA Astrophysics Data System (ADS)

    Schwenk, F. C.

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  2. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  3. SWEEP - Save Water & Energy Education Program

    SciTech Connect

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  4. Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C.; Corey, Garth P.

    2005-08-01

    This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

  5. Results of NASA's Energy Efficient Engine Program

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.; Davis, Donald Y.; Gray, David E.

    1987-01-01

    The major activity undertaken in the NASA Energy Efficient Engine Program has been completed. This paper reports on the progress made toward achieving the program goal of developing advanced technology to significantly reduce fuel consumption and operating costs of future subsonic transport-type propulsion systems. An additional goal was that the advanced concepts be compatible with future environmental regulations. Along with the results obtained, a brief overview of the design details of both the General Electric and Pratt and Whitney energy efficient engines and the overall program scope are presented. Overall, this program has been highly successful; the technology developed during its course is, and will continue to be, effectively employed in both current and future advance transport aircraft engine designs.

  6. Weatherization and Intergovernmental Program - State Energy Program Helps States Plan and Implement Energy Efficiency

    SciTech Connect

    2010-06-01

    State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing programs to improve energy sustainability.

  7. Buildings Energy Program annual report, FY 1991

    SciTech Connect

    Secrest, T.J.

    1992-05-01

    The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

  8. Thermophotovoltaic Energy Conversion Development Program

    NASA Technical Reports Server (NTRS)

    Shukla, Kailash; Doyle, Edward; Becker, Frederick

    1998-01-01

    Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.

  9. Renewable energy water supply - Mexico program summary

    SciTech Connect

    Foster, R.

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  10. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  11. Compressed air energy storage: Preliminary design and site development program in an aquifer. Volume 2: Utility system planning

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The performance of an aquifer compressed air energy storage system was studied. The benefits derived from the integration of a compressed air energy storage facility with a hypothetical electrical network are analyzed. Scenarios of 100 percent coal, 50 percent coal and 50 percent nuclear, and 100 percent nuclear base load capacity additions were examined. Favorable economics are indicated when compressed air energy storage is installed as an alternative to combustion turbine peaking capacity on a system with a significant amount of oil fired generation.

  12. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  13. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  14. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  15. Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  16. US participation in the International Energy Program

    NASA Astrophysics Data System (ADS)

    Issues relating to the international energy program, including issues concerning U.S. participation are considered. Extending participation of U.S. oil companies in the international energy program is also considered.

  17. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  18. Energy Programs at Oak Ridge National Laboratory

    SciTech Connect

    Sheffield, J.

    1999-05-11

    energy system that is environmentally and economically sustainable'' as the first component of its mission. The strategic goal established for energy resources, identified as one of DOE's four businesses, is for ''the Department of Energy and its partners [to] promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.'' DOE has also identified four strategic goals for its programs in energy resources: (1) strengthening the economy and raising living standards through improvements in the energy field; (2) protecting the environment by reducing the adverse environmental impacts associated with energy production, distribution, and use; (3) keeping America secure by reducing vulnerabilities to global energy market shocks; and (4) enhancing American competitiveness in a growing world energy market.

  19. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  20. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel... mechanisms by grantees of the State Energy Program (SEP) and Energy Efficiency and Conservation Block...

  1. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  2. Second program on energy research and technologies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.

  3. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  4. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  5. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... peak demands for energy and improve the efficiency of energy supply systems, including electricity... following: (1) Program activities of public education to promote energy efficiency, renewable energy, and... adequate and reliable energy supplies, including greater energy efficiency, that meet applicable...

  6. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... peak demands for energy and improve the efficiency of energy supply systems, including electricity... following: (1) Program activities of public education to promote energy efficiency, renewable energy, and... adequate and reliable energy supplies, including greater energy efficiency, that meet applicable...

  7. Conservation and solar energy program: congressional budget request, FY 1982

    SciTech Connect

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  8. Energy Recovery System

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  9. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  10. Multisource energy system project

    NASA Astrophysics Data System (ADS)

    Dawson, R. W.; Cowan, R. A.

    1987-03-01

    The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.

  11. Equity implications of utility energy conservation programs

    SciTech Connect

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  12. Application of Energy Storage in Power Systems

    NASA Astrophysics Data System (ADS)

    Alqunun, Khalid M.

    The purpose of this research is to determine the advantages of using energy storage systems. This study presents a model for energy storage in electric power systems. The model involves methods of reducing the operation cost of a power network and the calculation of capital cost of energy storage systems. Two test systems have been considered, the IEEE six-bus system and the IEEE 118-bus system, to analyze the impact of energy storage on power system economic operation. Properties of energy storage have been considered such as rated power investment cost and rated energy investment cost. Mixed integer programming has been used to formulate the model. A comparison between centralized energy storage system and distributed energy storage system have been proposed. The results show that distributed energy storage system has more impact on reducing total operation cost. Also, an analysis on optimal sizing of energy storage system with fixed investment cost is provided.

  13. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    SciTech Connect

    Eyer, James M.

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  14. Energy Analysis Program 1990 annual report

    SciTech Connect

    Not Available

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  15. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Arizona. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in Arizona. The Arizona state constitution establishes the Arizona Corporation Commission to regulate public service corporations. Within the area of its jurisdiction, the Commission has exclusive power and may not be interfered with by the legislature except in one narrow instance as described in the case Corporation Commission v. Pacific Greyhound Lines.

  16. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  17. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  18. Underground energy-storage program overview

    SciTech Connect

    Kannberg, L.D.

    1982-07-01

    The objective of this program is to reduce technical and economic risks obstructing commercial development of underground energy storage concepts promising more effective and efficient utilization of energy resources. Primary concepts are Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). STES objectives include characterization and mitigation of STES concept technical deficiencies and uncertainties and evaluation of economic features. CAES objectives include development of stability criteria for CAES reservoirs and analysis and development of promising second-generation CAES systems. Characterization of the performance of TES systems at injection temperatures of less than 85/sup 0/C is nearly complete. Studies of injection and storage at temperatures up to 150/sup 0/C have been initiated and will be continued through FY 1983. Studies of nonaquifer STES systems including cavern and ice storage systems have been conducted and will continue in FY 1983. Stability criteria and guidelines documents have been published for salt and hard rock CAES reservoirs. All design and construction on the Pittsfield Aquifer Field Test will be completed by the end of FY 1982 and bubble development and air cycling will be conducted in the first six months of FY 1983. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems has been completed. Two materials, Denstone (a registered product of the Norton Company) and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  19. Renewable Energy Tracking Systems

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  20. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Corey, Garth P.

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  1. Thermochemical energy systems research

    NASA Astrophysics Data System (ADS)

    Nix, R. G.

    1983-08-01

    Research on Heat-pump thermochemical energy systems and thermochemical reduction of CO2 to CO for open-loop solar energy transport is described. Analysis of the NaOH-H2O heat-pumped system indicted cost effectiveness relative to hot oil solar system with parabolic trough receivers for production of 0.101 MPa saturated steam high-temperature heat-pumped systems are being defined.

  2. Energy Analysis Program 1990 annual report

    SciTech Connect

    Not Available

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  3. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    This brief explores how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  4. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    PubMed

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-03-25

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage.

  5. The SERI solar-energy-storage program in FY 1982

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1982-07-01

    The SERI solar energy storage program in FY 1982 is summarized against the background of earlier years and the broader program of energy storage technology. The program provides research, system analyses, and assessments of thermal and thermochemical storage and transport, for thermal energy storage for solar thermal applications (TESSTA). Current activities include recommendations for the development of promising storage concepts for specified solar thermal power and process heat systems in house and subcontracted explorations of advanced concepts, and assessments of long distance solar thermal energy transport concepts.

  6. Energy efficiency in nonprofit agencies: Creating effective program models

    SciTech Connect

    Brown, M.A.; Prindle, B.; Scherr, M.I.; White, D.L.

    1990-08-01

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programs for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.

  7. Ocean energy program summary. Volume 2: Research summaries

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the Federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the U.S. Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW(sub e). Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the U.S. Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  8. Fossil Energy Program semiannual progress report, October 1990--March 1991

    SciTech Connect

    Judkins, R.R.

    1992-07-01

    This report covers progress made during the period October 1, 1990, through March 31, 1991, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil, Energy Program organization chart is shown in the appendix. Topics include: alloys, ceramics and composite research and development; corrosion and erosion research; environmental analysis and information systems; coal conversion development; mild gasification product characterization; coal combustion research; strategic petroleum reserve planning and modeling; and coal structure and chemistry.

  9. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  10. Solar energy systems cost

    SciTech Connect

    Lavender, J.A.

    1980-01-01

    Five major areas of work currently being pursued in the United States in solar energy which will have a significant impact on the world's energy situation in the future are addressed. The five significant areas discussed include a technical description of several solar technologies, current and projected cost of the selected solar systems, and cost methodologies which are under development. In addition, sensitivity considerations which are unique to solar energy systems and end user applications are included. A total of six solar technologies - biomass, photovoltaics, wind, ocean thermal energy conversion (OTEC), solar thermal, and industrial process heat (IPH) have been included in a brief technical description to present the variety of systems and their techncial status. System schematics have been included of systems which have been constructed, are currently in the detail design and test stage of development, or are of a conceptual nature.

  11. Ocean Energy Program overview, fiscal years 1990-1991

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  12. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  13. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  14. Quality assurance program for isotopic power systems

    NASA Astrophysics Data System (ADS)

    Hannigan, R. L.; Harnar, R. R.

    1982-12-01

    The Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators is summarized. The program was implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described and examples of program documentation are presented.

  15. Quality assurance program for isotopic power systems

    SciTech Connect

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

  16. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  17. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  18. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  19. Overview of Federal wind energy program

    NASA Technical Reports Server (NTRS)

    Ancona, D. F.

    1979-01-01

    The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals.

  20. Living Systems Energy Module

    SciTech Connect

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  1. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  2. Encircled energy correction method for raytrace programs

    NASA Technical Reports Server (NTRS)

    Dantzler, Andrew A.

    1988-01-01

    Program adjustments to increase the accuracy of the diffraction-based encircled energy analysis algorithms of the optical design computer programs ACCOS-V and SYNOPSYS are proposed. It is noted that the erroneous algorithms are based on the incorrect assumption that all the energy in a diffraction point spread function is contained within a circle of finite radius. Using these adjustments, more accurate encircled energy results are obtained for circles of radii less than or equal to the 100 percent boundary.

  3. 77 FR 54839 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... assistance in support of energy efficiency programs (EE Programs) sponsored and implemented by...

  4. U.S. Department of Energy Space and Defense Power Systems Program Ten-Year Strategic Plan, Volume 1 and Volume 2

    SciTech Connect

    Dwight, Carla

    2013-06-01

    The Department of Energy's Space and Defense Power Systems program provides a unique capability for supplying power systems that function in remote or hostile environments. This capability has been functioning since the early 1960s and counts the National Aeronautics and Space Administration as one of its most prominent customers. This enabling technology has assisted the exploration of our solar system including the planets Jupiter, Saturn, Mars, Neptune, and soon Pluto. This capability is one-of-kind in the world in terms of its experience (over five decades), breadth of power systems flown (over two dozen to date) and range of power levels (watts to hundreds of watts). This document describes the various components of that infrastructure, work scope, funding needs, and its strategic plans going forward.

  5. Base Program on Energy Related Research

    SciTech Connect

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  6. Home Energy Affordability Loan Program

    EPA Pesticide Factsheets

    Little Rock, Arkansas, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  7. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  8. Product Line Systems Program

    DTIC Science & Technology

    2008-03-01

    Mellon University Product Line Systems Program Our mission: • create, mature, apply, and transition technology and practices • to effect... Technology Initiative) Predictable Software Construction (Predictable Assembly from Certifiable Code Initiative) Software Product Lines (Product...Presentation Software Architecture (Software Architecture Technology Initiative) Predictable Software Construction (Predictable Assembly from Certifiable

  9. Mission and status of the US Department of Energy's battery energy storage program

    NASA Astrophysics Data System (ADS)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  10. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  11. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  12. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Rep. Clyburn, James E. [D-SC-6

    2010-03-09

    09/20/2010 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  13. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Sen. Merkley, Jeff [D-OR

    2010-03-10

    06/17/2010 Committee on Agriculture, Nutrition, and Forestry Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Wind Energy Education and Training Programs (Postcard)

    SciTech Connect

    Not Available

    2012-07-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

  15. Simulation of Energy Management Systems in EnergyPlus

    SciTech Connect

    Ellis, P. G.; Torcellini, P. A.; Crawley, D.

    2008-01-01

    An energy management system (EMS) is a dedicated computer that can be programmed to control all of a building's energy-related systems, including heating, cooling, ventilation, hot water, interior lighting, exterior lighting, on-site power generation, and mechanized systems for shading devices, window actuators, and double facade elements. Recently a new module for simulating an EMS was added to the EnergyPlus whole-building energy simulation program. An essential part of the EMS module is the EnergyPlus Runtime Language (ERL), which is a simple programming language that is used to specify the EMS control algorithms. The new EMS controls and the flexibility of ERL allow EnergyPlus to simulate many novel control strategies that are not possible with the previous generation of building energy simulation programs. This paper surveys the standard controls in EnergyPlus, presents the new EMS features, describes the implementation of the module, and explores some of the possible applications for the new EMS capabilities in EnergyPlus.

  16. Distributed Power Systems for Sustainable Energy

    DTIC Science & Technology

    2012-10-01

    all programming and optimization software that may be required in DOD installations to provide optimal microgrid energy management. Computers and...growth and innovation. Defining and implementing adequate safety provisions, including venting issues, for new batteries and microgrid ...solutions. 8.2 REQUIRED ACCESS TO INTERNET OR EXTERNAL COMMUNICATION NETWORKS AT DOD SITES Advanced energy systems, including energy microgrids

  17. Basic Energy Sciences Program Update

    SciTech Connect

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  18. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  19. What is Energy Systems Integration?

    ScienceCinema

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan; Symko-Davies, Martha

    2016-10-19

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  20. What is Energy Systems Integration?

    SciTech Connect

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan; Symko-Davies, Martha

    2016-10-14

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  1. The USGS World Energy Program

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    1997-01-01

    The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.

  2. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  3. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  4. The Utility Battery Storage Systems Program Overview

    SciTech Connect

    Not Available

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  5. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  6. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  7. Hawaii Energy Strategy program. Annual report 1993

    SciTech Connect

    Not Available

    1993-12-31

    This is the second annual report on the Hawaii Energy Strategy (HES) program which began on March 2, 1992, under a Cooperative Agreement (FCO3-92F19l68) with the United States Department of Energy (USDOE). The HES program is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives. The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the (US)DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  8. Energy systems transformation.

    PubMed

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  9. Energy generation system

    SciTech Connect

    Wardman, J.C.; Adams, J.Y.

    1983-07-26

    An energy generation system includes a motive fluid which is alternately heated and cooled to drive a heat engine. An inexpensively built and operated system heats the motive fluid with solar radiation and cools it with atmospheric or wind cooling. Low cost solar heat collectors are fabricated with aluminum foil or aluminized Mylar reflective surface overlying parabolically shaped paperboard bases. Low cost fluid cooling devices are fabricated from various fluid carrying porous canvas bags, some being provided with wind catching devices.

  10. Mobile Energy Laboratory energy-efficiency testing programs

    NASA Astrophysics Data System (ADS)

    Parker, G. B.; Currie, J. W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at Federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the U.S. Department of Energy, U.S. Army, U.S. Air Force, U.S. Navy, and other Federal agencies.

  11. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  12. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  13. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  14. Process evaluation of the Regional Biomass Energy Program

    SciTech Connect

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  15. Exploratory Technology Research Program for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability, and economic requirements for electric vehicles (EV's). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL's Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  16. SERI Solar Energy Storage Program: FY 1984

    NASA Astrophysics Data System (ADS)

    Luft, W.; Bohn, M.; Copeland, R. J.; Kreith, F.; Nix, R. G.

    1985-02-01

    The activities of the Solar Energy Research Institute's Solar Energy Research Institute's Solar Energy Storage Program during its sixth year are summarized. During FY 1984 a study was conducted to identify the most promising high-temperature containment concepts considering corrosion resistance, material strength at high temperature, reliability of performance, and cost. Of the two generic types of high-temperature thermal storage concepts, the single-tank system was selected using a two-medium approach to the thermocline maintenance. This concept promises low costs, but further research is required. A conceptual design for a sand-to-air direct-contact heat exchanger was developed using dual-lock hoppers to introduce the sand into the fluidized-bed exchanger, and using cyclones to remove sand particles from the output air stream. Preliminary cost estimates indicate heat exchanger subsystem annual levelized costs of about $4/GJ with compressor costs of an additional $0.75/GJ. An economic analysis comparing sensible and latent heat storage for nitrate and carbonate salts with solely sensible heat storage showed 3%-21% cost savings with combined sensible and latent heat storage.

  17. Department of Energy power generation programs for natural gas

    SciTech Connect

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  18. Biomedical systems analysis program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Biomedical monitoring programs which were developed to provide a system analysis context for a unified hypothesis for adaptation to space flight are presented and discussed. A real-time system of data analysis and decision making to assure the greatest possible crew safety and mission success is described. Information about man's abilities, limitations, and characteristic reactions to weightless space flight was analyzed and simulation models were developed. The predictive capabilities of simulation models for fluid-electrolyte regulation, erythropoiesis regulation, and calcium regulation are discussed.

  19. The Beamed Energy Technology Working Group, Programs and Goals

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A brief description of the Beamed Energy Technology Program will be given. Its relationship to the overall Advanced Technology Program at Marshall Space Flight Center will be discussed. A summary description of the known potential benefits and technical issues remaining in the development of a viable system will be presented along with program plans for a NASA Research Announcement in FY03 to begin development of relevant technologies and systems concepts. The results of workshop activity by the Beamed Energy Technology Working Group will be provided.

  20. Blazing the energy trail: The Municipal Energy Management Program

    SciTech Connect

    Not Available

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  1. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  2. Integrated renewable energy systems

    SciTech Connect

    Ramakumar, R.

    1995-02-01

    Utilization of several manifestations of solar energy in tandem by means of integrated renewable energy systems (IRES) to supply a variety of energy and other needs has the potential to energize (in contrast to electrification) remote rural areas in a cost-effective manner. Such actions can dramatically improve the quality of life for hundreds of millions of people living in remote villages in the continents of Asia, Africa, and Latin America. The environmentally benign nature of renewable resource utilization and the potability of exploiting locally available resources with the consequent growth of job opportunities are some of the many benefits that can accrue by the deployment of IRES. Even small amounts of energy can be very beneficial in remote rural areas of developing countries with no grid connection as compared to the massive urban sprawls in both developed and developing countries. A concerted global effort in this direction can build the much-needed market potential for renewables now, resulting in future cost reductions. Summaries of the three panel session presentations are assembled here for the readers of the IEEE Power Engineering Review: Designing an Integrated Renewable Energy System, by K. Ashenayi, The University of Tulsa, Tulsa, Oklahoma; Africa-1000: Water in Thousands of Villages, by C. Kashkari Founder, Africa-1000, The University of Akron, Akron, Ohio; Renewables in Mexico, by J. Gutierrez-Vera, Energia Del Siglo 21, Mexico D.F.

  3. 78 FR 73355 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... overall system demand; (3) effecting a more efficient use of existing electric distribution, transmission... in overall system demand; (3) effect a more efficient use of existing electric distribution... programs, and on-grid and off-grid renewable energy systems. The scope of this regulation falls within...

  4. Northwest Energy Efficient Manufactured Housing Program Specification Development

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  5. Energy systems transformation

    PubMed Central

    Dangerman, A. T. C. Jérôme; Schellnhuber, Hans Joachim

    2013-01-01

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO2 emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the “Success to the Successful” mode. The present way of generating, distributing, and consuming energy—the largest business on Earth—expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders. PMID:23297208

  6. Strategy Plan Strengthens Energy Conservation Program.

    ERIC Educational Resources Information Center

    Minning, William R.

    1987-01-01

    The United States Department of Energy's Schools and Hospitals Program has been popular among schools. The necessity of locating nonfederal resources to achieve energy management warrants (1) developing a strategy of evaluation among schools and (2) market research and analysis. (CJH)

  7. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  8. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  9. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also show homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.

  10. Exploratory technology research program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1993-10-01

    This summary denotes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability, and economic requirements for electric vehicles (EV's). The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL's Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR program, LANL and BNL have participated in the ETR program by providing key research support in several of the program elements. Program consists of three major elements: exploratory eesearch; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described.

  11. Metrics Evolution in an Energy Research & Development Program

    SciTech Connect

    Brent Dixon

    2011-08-01

    All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R&D Program, which is working to improve the sustainability of nuclear energy.

  12. Strategic plan for the geothermal energy program

    SciTech Connect

    1998-06-01

    Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

  13. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  14. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  15. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    SciTech Connect

    Schweitzer, M.

    2005-07-13

    The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and cost savings and emissions reductions associated with

  16. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    SciTech Connect

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of

  17. Thermoelectric energy system

    SciTech Connect

    Peck, R.

    1980-07-08

    A thermoelectric energy system is described comprising: (A) at least first and second separated electrodes, said electrodes including copper; (B) a liquid electrolyte comprising a source of copper ions and a material for complexing the ions, the complexing material being selected from the group consisting of one or a combination of a source of tartrate, a source of ethylenediaminetetraacetic acid,a source of gluconate, lactic acid, malic acid, citric acid, oxalic acid, and a source of silicon dioxide, the electrolyte being disposed between and in contact with the electrodes to provide a metal ion conduction path which extends substantially the entire distance between the electrodes; (C) an electric circuit connected to the electrodes for removal of electrical energy from the system; and (D) means for establishing a temperature gradient within said electrolyte whereby the average temperature of one of said electrodes will be greater than that of the other of said electrodes to thereby produce a voltage across the electrodes.

  18. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  19. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  20. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    SciTech Connect

    Schoenung, Susan M.; Hassenzahl, William V.

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  1. Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.

    2005-03-01

    This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A number of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.

  2. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  3. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  4. Hawaii Energy Strategy program. [First Annual Report

    SciTech Connect

    Not Available

    1992-01-01

    The Hawaii Energy Strategy (HES) program began on March 2, 1992, under United States Department of Energy Cooperative Agreement DE-FC03-92F19168, and is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives: The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State's fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the DOE mission, will reduce the State's vulnerability to energy supply disruptions and contributes to the public good.

  5. Hawaii Energy Strategy program. Annual report, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The Hawaii Energy Strategy (HES) program began on March 2, 1992, under United States Department of Energy Cooperative Agreement DE-FC03-92F19168, and is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives: The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  6. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2016-07-12

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  7. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  8. Energy Analysis Program. 1992 Annual report

    SciTech Connect

    Not Available

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  9. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  10. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  11. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  12. United States army tactical high-energy laser program

    NASA Astrophysics Data System (ADS)

    Wachs, John J.; Wilson, Gerald T.

    2013-02-01

    The tactical high energy laser (THEL) program, conducted from 1996 to 2005, successfully demonstrated the capability of a high-energy laser to counter rockets, artillery, and mortars. The program was a US/Israeli cooperative research and development effort that was designated by the Secretary of Defense as an advanced concept technology demonstration with Presidential interest. The THEL system was designed and built under an SMDC/ARSTART prime contract awarded to TRW (now, Northrop Grumman Corporation), jointly managed by the Israel Ministry of Defence Directorate of Defence Research & Development. We summarize the effort and highlight some of the "firsts" of the THEL program.

  13. Estimating environmental benefits of energy programs

    SciTech Connect

    Baechler, M.C.; Schrock, D.W.

    1995-07-01

    Three national reporting programs that either collect or report information on energy savings and the associated emissions reductions from DSM programs are the Conservation Verification Protocols (CVP), the Greenhouse Gas Voluntary Reporting Program (VRP), and the Green Lights Program. The CVP were enacted to report the atmospheric emissions reductions of S0{sub 2} and N0{sub 2}. The VRP was mandated in the Energy Policy Act of 1992 (EPAct) Section 1605(b) to report CO{sub 2}, emissions reductions. Green Lights is a program designed to reduce emissions by encouraging energy-efficient lighting. In this paper we concentrate on how the verification methods, default emission factors and reporting mechanisms affect the accuracy of the reported energy and emissions savings. Additionally, we focus on the dynamic nature of predicted emissions reductions to gauge the accuracy of predictions over time. If conservation programs are designed to affect existing powerplants, if no load growth is anticipated, and if existing plants will not require replacement, a simple static analysis based on an existing resource mix may be acceptable. This approach is enhanced by defining base case, intermediate, and peak resources. However, if today`s decisions will affect tomorrow`s resource decisions, or if the estimates will be used to establish important milestones (such as emission credits), it is prudent to conduct an analysis that captures most incumbent uncertainties. These uncertainties include future resource decisions and the regional character of energy resources, which may not be captured by national estimates and simple extrapolation techniques. While some estimation methods, such as use of default emission factors, produce reasonable national average numbers, the estimates may not be applicable to specific regions. The environmental and economic value of programs may be misstated.

  14. Who should administer energy efficiency programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2003-08-01

    The restructuring of the U.S. electricity industry created a crisis for ratepayer-funded energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities-utilities, state agencies, and non-profit corporations-that might be administrators. Four criteria are developed for choosing among program administration options: Compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved.We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition.

  15. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  16. MIL-PRIME Program System

    NASA Astrophysics Data System (ADS)

    Rall, F. T., Jr.

    1982-11-01

    The MIL-PRIME Program was developed to provide the Aeronautical Systems Division with a specifications and standards program for the development of new weapon systems. This program was started in 1976 and is still in the process of being implemented. This presentation provides the background and insight into the MIL PRIME System, the use of these new documents in the acquisition process, and the current status of the program.

  17. Fossil-energy program. Progress report for June 1981

    SciTech Connect

    Not Available

    1981-08-01

    This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

  18. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  19. Downstream Benefits of Energy Management Systems

    DTIC Science & Technology

    2015-12-01

    on the installation. Although this comparison has not provided any conclusions on its own, it serves to identify buildings where heating systems may...building’s heating system . Additionally, Abbott described how he used the EMS to address the issue immediately, by programming a different temperature... efficiency at MCBP. a. Optimizing Energy Systems The interviewees noted the episode with the 30 kVa transformer. The VSG model will allow MCBP energy

  20. Programs in energy conservation: Inventions and Innovation Programs

    SciTech Connect

    Not Available

    1988-12-01

    DOE's Inventions and Innovation Programs--the Energy-Related Inventions Program (ERIP) and the Innovative Concepts Program (ICP)--are a unique federal response to the needs of individual and small businesses with creative ideas that could make a difference in our national use of energy. ERIP was established by Congress in 1974 to focus and nourish the creative powers of American inventors, no matter what the level of sophistication of the technology or its creator. This strategy, developed to recognize the potential contributions inherent in independent inventors and small businesses, has successfully supported innovators whose ideas are not yet attracting private investors but have technical and commercial potential. ERIP is, above all, a process. An unusual feature of the program is its joint operation by DOE and the US Department of Commerce through its National Institute of Standards and Technology, or NIST (formerly NBS, the National Bureau of Standards). This process involves increasing the awareness of ERIP in the community of inventors; NIST performing technical evaluations and feasibility studies; and DOE awarding grants, holding commercialization workshops, and performing periodic program evaluations. These activities are directed toward developing energy-related inventions closer to the stage where the private sector is willing to finance development and commercialization.

  1. Abstracts: Eighth Annual Conference on Fossil Energy Materials. Fossil Energy Program

    SciTech Connect

    Not Available

    1994-07-01

    Abstracts are presented for about 40 papers. The Fossil Energy Advanced Research and Technology Development Materials program is an integrated materials research activity of the fossil energy coal program, whose objective is to conduct R and D for all advanced coal conversion and utilization technologies. The program is aimed at understanding materials behavior in coal system environments and the development of new materials for improving plant operations and reliability. A generic approach is used for addressing multiple coal technologies; for example, the hot-gas particulate filter development is applicable to pressurized fluidized bed combustion, integrated coal gasification combined-cycle, coal combustion, and indirectly fired combined-cycle systems.

  2. Underground energy-storage program overview

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1982-07-01

    Characterization of the performance of thermal energy systems at injection temperatures of less than 850 C is nearly complete. Studies of injection and storage at temperatures up to 1500 C were initiated and continue through FY-1983. Studies of nonaquifer seasonal thermal energy systems including cavern and ice storage systems also continue. Stability criteria and guidelines documents were published for salt and hard rock compressed air energy storage (CAES) reservoirs. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems was completed. Two materials, denstone and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  3. Review of existing residential energy efficiency certification and rating programs

    SciTech Connect

    Hendrickson, P.L.

    1986-11-01

    This report was prepared for the Office of Buildings and Community Systems, US Department of Energy (DOE). The principal objective of the report is to present information on existing Home Energy Rating Systems (HERS) and their features. Much of the information in this report updates a 1982 report (PNL-4359), also prepared by the Pacific Northwest Laboratory (PNL) for DOE. Secondary objectives of the report are to qualitatively examine the benefits and costs of HERS programs, review survey results on the attitudes of various user groups toward the programs, and discuss selected design and implementation issues.

  4. 76 FR 71835 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... viewing pane) or a sealed system, they do not provide the same heating function as gas fireplaces, gas... Conservation Standards for Direct Heating Equipment; Final Rule #0;#0;Federal Register / Vol. 76 , No. 223...-AC56 Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment...

  5. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  6. Limited energy study, Energy Engineering Analysis Program (EEAP), Fort Knox, Kentucky. Executive summary

    SciTech Connect

    1993-11-05

    Systems Corp surveyed and completed energy analyses for 37 buildings, and eight ballfields. The energy conservation opportunities (ECOs) evaluated were ceiling reflectance, high efficiency indoor lighting, indoor lighting controls, and ballfield lighting and control systems. Cost estimates were prepared using M-CACES. Life cycle cost analyses were performed using the Life cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for a Energy Conservation Investment Program (ECIP) project. The project that was developed represents $93,956 in annual savings with favorable simple paybacks and saving to investment ratios (SIRs).

  7. Energy conversion & storage program. 1994 annual report

    SciTech Connect

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  8. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  9. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  10. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  11. Facility Energy Decision Screening (FEDS) software system

    SciTech Connect

    Dirks, J.A.; Wrench, L.E.

    1993-08-01

    The Facility Energy Decision Screening (FEDS) Model is under development at Pacific Northwest Laboratory for the Department of Energy Federal Energy Management Program and the US Army Construction Engineering Research Laboratory. FEDS is a multi-level energy analysis software system designed to provide a comprehensive approach to fuel-neutral, technology-independent, integrated (energy) resource planning and acquisition. The FEDS system includes Level-1, a top-down, first-pass energy systems analysis and energy resource acquisition decision software model for buildings and facilities; and the Level-2 software model, which allows specific engineering inputs and provides detailed output. FEDS Level-1 is a user-friendly, DOS-based, menu-driven software program for assessing the energy efficiency resource at a large federal installation. It uses high-level installation information (number, age, size, and types of buildings and energy systems), an internal data base of typical energy-system configurations and performance data, and sophisticated energy simulation and optimization models to estimate the net present value of potential energy retrofits in federal installations. The FEDS Level-1 analysis will typically be followed by a FEDS Level-2 analysis, which allows FEDS Level-1 information to be augmented with detailed energy-system information, and returns detailed project-by-project technology selection and economic information. FEDS Level-1 was released in October 1992. FEDS Level-2 is planned for release in October 1993. The first release which includes both levels will cover only building systems. The next release in early 1994 will cover other energy systems, including central heating and cooling plants and thermal distribution loops.

  12. Alternatives for Financing School Energy Savings Programs.

    ERIC Educational Resources Information Center

    Esteves, Rich

    1983-01-01

    This report compares shared-savings programs with financing through the use of internal funds, loans, leases, and lease purchase plans for financing energy conservation in nonprofit buildings. The shared savings option was found to offer the greatest benefits to the customer. (MLF)

  13. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect

    1997-05-01

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  14. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Wyoming. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested in the Wyoming Public Service Commission. The Commission is comprised of three members appointed by the Governor with the advice and consent of the state senate. Each member of the Commission serves a six-year term and no more than two members may be from the same political party. The Commission has exclusive regulatory authority over public utilities. The statutory definition of public utility, however, does not include municipally-owned and operated utility systems to the extent they provide services within the municipality. Such utilities are regulated locally. The Commission reviews no documentation of rates or services of municipallyy-owned systems. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  15. Richland Community College BioEnergy Program

    SciTech Connect

    Brauer, Douglas C.

    2012-09-25

    The purpose of this project was to focus on education and community outreach. As such, it reflected anticipated growth in the renewable/alternative energy industry creating a vast need for trained industry professionals, engineers, operations managers, and technicians to operate state-of-the art production facilities. This project's scope leveraged Richland's initial entry in the renewable energy education, which included Associate of Applied Science degrees and certificates in biofuels and bioprocessing. This facilitated establishing a more comprehensive sustainability and renewable energy programs including experiential learning laboratory components needed to support new renewable energy education degree and certificate specialties, as well as community outreach. Renewable energy technologies addressed included: a) biodiesel, c) biomass, d) wind, e) geothermal, and f) solar. The objective is to provide increasingly innovative hands on experiential learning and knowledge transfer opportunities.

  16. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  17. Army Energy and Water Reporting System Assessment

    SciTech Connect

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  18. Physical and chemical energy storage program. Project summary data

    SciTech Connect

    Not Available

    1981-03-01

    The Department of Energy's Office of Advanced Conservation Technologies (ACT) is developing cost-effective, efficient, reliable, and environmentally acceptable energy storage systems. The mission of the Energy Storage Program is to develop devices, processes, and subsystems which permit domestic energy resources to be supplied at the time and locations where they can be used. In this program, energy is stored in thermal, chemical, mechanical, and magnetic forms. Generally, the best storage device for a specific supply system is one which minimizes the need for converting from one energy form to another in the overall system which consists of production, storage, transportation, and end-user equipment. This publication consists principally of summary sheets for each active project in the Chemical/Hydrogen, Thermal, Magnetic, Mechanical, Flywheel and Underground Energy Storage Program for FY 1980. Each Summary includes: Project Title, Principal Investigator, Organization, Project Goals, Project Status, Contract Number, Contract Period, Funding Level and Funding Source. An overview section is given before each set of project summaries. (LCL)

  19. Energy-optimal programming and scheduling of the manufacturing operations

    NASA Astrophysics Data System (ADS)

    Badea, N.; Frumuşanu, G.; Epureanu, A.

    2016-08-01

    The shop floor energy system covers the energy consumed for both the air conditioning and manufacturing processes. At the same time, most of energy consumed in manufacturing processes is converted in heat released in the shop floor interior and has a significant influence on the microclimate. Both these components of the energy consumption have a time variation that can be realistic assessed. Moreover, the consumed energy decisively determines the environmental sustainability of the manufacturing operation, while the expenditure for running the shop floor energy system is a significant component of the manufacturing operations cost. Finally yet importantly, the energy consumption can be fundamentally influenced by properly programming and scheduling of the manufacturing operations. In this paper, we present a method for modeling and energy-optimal programming & scheduling the manufacturing operations. In this purpose, we have firstly identified two optimization targets, namely the environmental sustainability and the economic efficiency. Then, we have defined three optimization criteria, which can assess the degree of achieving these targets. Finally, we have modeled the relationship between the optimization criteria and the parameters of programming and scheduling. In this way, it has been revealed that by adjusting these parameters one can significantly improve the sustainability and efficiency of manufacturing operations. A numerical simulation has proved the feasibility and the efficiency of the proposed method.

  20. State survey of innovative energy programs and projects

    SciTech Connect

    Vine, E.L.

    1985-03-01

    This paper presents the results of a survey of innovative energy programs and ideas in nineteen states outside California. Energy conservation and renewable energy programs were examined in the residential sector, small business, public buildings, local government, schools, transportation, and agriculture. Energy data management systms, and energy information, education, and financing programs were also reviewed.

  1. Kinetic energy transducing system

    SciTech Connect

    Danihel, M.

    1986-07-08

    A device is described for converting wave energy to mechanical motion comprising: a frame, at least one wave energy transducer each of which has a float to ride upon the undulating surface of a body of water, a rocker shaft rotatably mounted in the frame and connected to the float by a rocker arm to turn in response to movement of the float upon the undulating water surface, a pair of unidirectional clutch mechanisms coupled to the rocker shaft, a drive shaft rotatably mounted on the frame and connected to the clutch mechanisms to turn in a single direction of rotation responsive to alternative engagement of the clutch mechanisms therewith and turning movement of the rocker shaft in both directions of rotation, and a hydrofoil system for each float including a vertical shaft extending downwardly from the bottom of each float, a transverse rod which is rotatably coupled to the vertical shaft, a pair of hydrofoil wings secured to the transverse rod on opposite sides of the vertical shaft, and means for centering the hydrofoil wings acting between the vertical shaft and the transverse rod to urge the hydrofoil wings toward horizontal orientation.

  2. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  3. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  4. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  5. Photovoltaic energy program overview, fiscal year 1991

    NASA Astrophysics Data System (ADS)

    1992-02-01

    The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  6. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    SciTech Connect

    Li, Dong; Supinski, Bronis de; Schulz, Martin; Nikolopoulos, Dimitrios S; Cameron, Kirk W.

    2013-01-01

    Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.

  7. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to a social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.

  8. The Role of Solar Technology Programs In Meeting Our Energy Needs

    ERIC Educational Resources Information Center

    Valentine, Ivan E.; Larson, Milton E.

    1978-01-01

    Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)

  9. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  10. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  11. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.

  12. Federal Energy Information Systems.

    ERIC Educational Resources Information Center

    Coyne, Joseph G.; Moneyhun, Dora H.

    1979-01-01

    Describes the Energy Information Administration (EIA) and the Technical Information Center (TIC), and lists databases accessible online to the Department of Energy and its contractors through DOE/RECON. (RAA)

  13. Utility battery storage systems program report for FY 94

    SciTech Connect

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  14. High Energy Astronomy Observatory star tracker search program

    NASA Technical Reports Server (NTRS)

    Weiler, W. J.

    1972-01-01

    The development of a control system to accommodate the scientific payload of the High Energy Astronomy Observatory (HEAO) is discussed. One of the critical elements of the system is the star tracker subsystem, which defines an accurate three-axis attitude reference. A digital computer program has been developed to evaluate the ability of a particular star tracker configuration to meet the requirements for attitude reference at various vehicle orientations. Used in conjuction with an adequate star catalog, the computer program provides information on availability of stars for each tracker and on the ability of the system to maintain three-axis attitude reference throughout a representative sequence of vehicle orientations.

  15. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  16. A feasibility demonstration program for superconducting magnetic energy storage

    SciTech Connect

    Filios, P.G. )

    1988-01-01

    The Defense Nuclear Agency, as the agent of the Strategic Defense Initiative (SDI) Office, has begun a program to build an engineering test model (ETM) of a superconducting magnetic energy storage (SMES) system. The ETM will serve to demonstrate the feasibility of using SMES technology to meet both SDI and public utility requirements for electric energy storage. SMES technology characteristics are reviewed and related to SDI and electric utility requirements. Program structure and schedule are related to specific objectives, and critical issues are defined.

  17. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads, motor loads...Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical Point of

  18. Advanced Shipboard Energy Storage System

    DTIC Science & Technology

    2012-05-01

    waveform, detect loss of bus waveform, and supply bus load. GTG integration testing will characterize ESM behavior to resistive and inductive loads...Electrical Engineering program at Temple University’s College of Engineering. He is the NSWCCD- SSES Energy Storage Module Program Manager and Technical

  19. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  20. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  1. Energy System Modeling with REopt

    SciTech Connect

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  2. A distributed program composition system

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.

    1989-01-01

    A graphical technique for creating distributed computer programs is investigated and a prototype implementation is described which serves as a testbed for the concepts. The type of programs under examination is restricted to those comprising relatively heavyweight parts that intercommunicate by passing messages of typed objects. Such programs are often presented visually as a directed graph with computer program parts as the nodes and communication channels as the edges. This class of programs, called parts-based programs, is not well supported by existing computer systems; much manual work is required to describe the program to the system, establish the communication paths, accommodate the heterogeneity of data types, and to locate the parts of the program on the various systems involved. The work described solves most of these problems by providing an interface for describing parts-based programs in this class in a way that closely models the way programmers think about them: using sketches of diagraphs. Program parts, the computational modes of the larger program system are categorized in libraries and are accessed with browsers. The process of programming has the programmer draw the program graph interactively. Heterogeneity is automatically accommodated by the insertion of type translators where necessary between the parts. Many decisions are necessary in the creation of a comprehensive tool for interactive creation of programs in this class. Possibilities are explored and the issues behind such decisions are presented. An approach to program composition is described, not a carefully implemented programming environment. However, a prototype implementation is described that can demonstrate the ideas presented.

  3. DOE (Department of Energy) Epidemiologic Research Program

    SciTech Connect

    Not Available

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  4. Energy Engineering Analysis Program. Energy savings opportunity survey, Fort Huachuca, Arizona. Volume III, programming documents

    SciTech Connect

    1994-12-31

    Insulation is considered for selected buildings. Energy savings are evaluated using energy simulations employing the Carrier HAP program. Weather data is only available for large cities. El Paso Texas was selected as the closest city with a somewhat similar climate; results are adjusted based on Fort Huachuca and El Paso meteorological data.

  5. US Department of Energy education programs catalog

    SciTech Connect

    Not Available

    1992-01-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples of some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.

  6. US Department of Energy education programs catalog

    SciTech Connect

    Not Available

    1992-07-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples of some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.

  7. Utility Battery Storage Systems Program report for FY93

    SciTech Connect

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  8. Energy - A systems problem

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1982-01-01

    Energy management in its most comprehensive sense encompasses economic, technical, environmental, and political problems. The present evaluation of prospects notes that opportunities for energy conservation are widespread, in such fields as building air conditioning, transportation, electrical appliances, and industrial processes. Further conservation is expected to be achieved through a combination of technology development and economics; the latter factor must not be unduly influenced by political measures that shield consumers from the true cost of energy.

  9. Energy conversion & storage program. 1995 annual report

    SciTech Connect

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  10. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  11. Geothermal energy conversion system

    SciTech Connect

    Goldstein, D.

    1991-04-02

    This patent describes a combination with a source of heat energy, means for converting the heat energy into electrical energy. It comprises a pair of gears and frame means mounting the gears for rotation in operatively orientated relation to the source, one of the gears comprising a tubular element rotatably mounted by the frame means for exposure to the source of heat energy within a thermal heating region, the tubular element including deformable means in meshing engagement with the other of the gears within a thermally colder region for inducing rotation of the gears.

  12. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.

  13. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  14. Advanced Turbine System Program: Phase 2 cycle selection

    SciTech Connect

    Latcovich, J.A. Jr.

    1995-10-01

    The objectives of the Advanced Turbine System (ATS) Phase 2 Program were to define a commercially attractive ATS cycle and to develop the necessary technologies required to meet the ATS Program goals with this cycle. This program is part of an eight-year Department of Energy, Fossil Energy sponsored ATS Program to make a significant improvement in natural gas-fired power generation plant efficiency while providing an environmentally superior and cost-effective system.

  15. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  16. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  17. An innovative educational program for residential energy efficiency. Final report

    SciTech Connect

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  18. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  19. Coal Power Systems strategic multi-year program plans

    SciTech Connect

    2001-02-01

    The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

  20. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    SciTech Connect

    Kay, J.

    1982-04-01

    This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

  1. Solar energy storage program: FY79

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.; Copeland, R. J.; Wright, J. D.; Baylin, F.

    1980-05-01

    A ranking methodology was developed for selection of thermal energy storage technologies for solar thermal applications. The ranking is based on cost and performance data. Thermal storage value data based on costs of alternative energy systems were generated for electric power plants and will be used for cost goals as a preliminary thermal storage screening tool. A survey was completed of thermal energy storage technologies, projects, and economics. An analysis was made of latent heat storage for solar heating based on previous system simulations. The only major advantage shown for latent heat storage is a reduced storage volume and not the improved solar system performance frequently postulated. Therefore, latent heat storage must be competitively priced with sensible heat options. Direct contact latent heat storage offers satisfactory low cost potential and could be used for a wide range of temperatures.

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in South Dakota. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The South Dakota Public Utilities Commission is authorized by statute to regulate gas and electric utilities. The Commission consists of three elected commissioners each of whom serves for a six year term. The Commissioners are elected by district and each must, at the time of election, be a resident of the district from which he has been elected. Each Commissioner must reside in the state capital and devote his entire time to the duties of his office. The Commission is part of the Department of Commerce and Consumer Protection. Municipal power to regulate privately owned electric and gas public utilities was terminated in 1975. A municipally-owned electric utility has the authority to regulate the sale, use, and rates of electric power and energy which it provides. The Commission has no authority to regulate steam, heat, and refrigeration systems; that power resides in cities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. Commercial Building Energy Asset Rating Program -- Market Research

    SciTech Connect

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  4. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  5. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  6. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  7. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  8. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  9. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  10. 76 FR 25622 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J...: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, 950 L'Enfant Plaza, SW... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program,...

  11. Update on DOE's Nuclear Energy University Program

    SciTech Connect

    Lambregts, Marsha J.

    2009-08-19

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  12. Update on DOE's Nuclear Energy University Program

    NASA Astrophysics Data System (ADS)

    Lambregts, Marsha J.

    2009-08-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R&D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  13. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  14. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  15. Stochastic Energy Deployment System

    SciTech Connect

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  16. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  17. Shipboard energy savings with the RACER system

    SciTech Connect

    Mattson, W.S.

    1982-02-01

    A current program to design and develop a waste heat recovery gas turbine cruise propulsion plant called RACER is discussed. RACER is an acronym for RAnkine Cycle Energy Recovery which describes the steam bottoming cycle designed to recover waste exhaust heat from LM2500 gas turbines and augment the main propulsion system through a steam turbine. 10 refs.

  18. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  19. Establishing a Comprehensive Wind Energy Program

    SciTech Connect

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  20. The mission and status of the U.S. Department of Energy's battery energy storage program

    NASA Astrophysics Data System (ADS)

    Quinn, J. E.; Landgrebe, A. R.; Hurwitch, J. W.; Hauser, S. G.

    1985-12-01

    Attention is given to the U.S. Department of Energy's battery energy storage program history, assessing the importance it has had in the national interest to date in industrial, vehicular, and electric utility load leveling applications. The development status of battery technology is also evaluated for the cases of sodium-sulfur, zinc-bromine, zinc-ferricyanide, nickel-hydrogen, aluminum-air, lithium-metal disulfide, and fuel cell systems. Development trends are projected into the foreseeable future.

  1. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect

    Not Available

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  2. 48 CFR 952.211-71 - Priorities and allocations for energy programs (contracts).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for energy programs (contracts). 952.211-71 Section 952.211-71 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-71 Priorities and allocations for energy programs (contracts). As prescribed in...

  3. 48 CFR 952.211-70 - Priorities and allocations for energy programs (solicitations):

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for energy programs (solicitations): 952.211-70 Section 952.211-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-70 Priorities and allocations for energy programs (solicitations):...

  4. 48 CFR 952.211-70 - Priorities and allocations for energy programs (solicitations):

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for energy programs (solicitations): 952.211-70 Section 952.211-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-70 Priorities and allocations for energy programs (solicitations):...

  5. 48 CFR 952.211-71 - Priorities and allocations for energy programs (contracts).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for energy programs (contracts). 952.211-71 Section 952.211-71 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-71 Priorities and allocations for energy programs (contracts). As prescribed in...

  6. 48 CFR 952.211-70 - Priorities and allocations for energy programs (solicitations):

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for energy programs (solicitations): 952.211-70 Section 952.211-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-70 Priorities and allocations for energy programs (solicitations):...

  7. 48 CFR 952.211-71 - Priorities and allocations for energy programs (contracts).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for energy programs (contracts). 952.211-71 Section 952.211-71 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-71 Priorities and allocations for energy programs (contracts). As prescribed in...

  8. 48 CFR 952.211-71 - Priorities and allocations for energy programs (contracts).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for energy programs (contracts). 952.211-71 Section 952.211-71 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-71 Priorities and allocations for energy programs (contracts). As prescribed in...

  9. 48 CFR 952.211-70 - Priorities and allocations for energy programs (solicitations):

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for energy programs (solicitations): 952.211-70 Section 952.211-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-70 Priorities and allocations for energy programs (solicitations):...

  10. 48 CFR 952.211-70 - Priorities and allocations for energy programs (solicitations):

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for energy programs (solicitations): 952.211-70 Section 952.211-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-70 Priorities and allocations for energy programs (solicitations):...

  11. 48 CFR 952.211-71 - Priorities and allocations for energy programs (contracts).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for energy programs (contracts). 952.211-71 Section 952.211-71 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.211-71 Priorities and allocations for energy programs (contracts). As prescribed in...

  12. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  13. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  14. Integrated energy management study. Energy efficient transport program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Integrated Energy Management (IEM) Study investigated the practicality and feasibility of a closed-loop energy management system for transport aircraft. The study involved: (1) instrumentation and collection of in-flight data for a United Airlines 727-200 flying 80 revenue flights throughout the United Airlines network,(2) analysis of the in-flight data to select representative city pairs and establish operational procedures employed in flying a reference flight profile, (3) simulation of the reference profile in a fast-time model to verify the model and establish performance values against which to measure IEM benefits, (4) development of IEM algorithms, and (5) assessment of the IEM concept.

  15. ENERGY-TRANSFER SYSTEMS

    DOEpatents

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  16. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in California. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Constitution of the State of California grants to the Legislature control over persons and private corporations that own or operate a line, plant, or system for the production, generation, or transmission of heat, light, water, or power to be furnished either directly or indirectly to or for the public. The Constitution establishes the Public Utilities Commission and grants certain specific powers to the PUC, including the power to fix rates, establish rules and prescribe a uniform system of accounts. The Constitution also recognizes that the Legislature has plenary power to confer additional authority and jurisdiction upon the PUC. The Constitution prohibits regulation by a city, county, or other municipal body of matters over which the Legislature has granted regulatory power to the PUC. This provision does not, however, impair the right of any city to grant franchises for public utilities. The California legislature has enacted the California Public Utilities Code and has designated the PUC as the agency to implement the regulatory provisions of the Code. The Public Utilities Commission consists of five members appointed by the governor and approved by the senate, a majority of the membership concurring, for staggered 6-year terms. Certain limited powers over the conduct of public utilities may still be exercised by municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in North Carolina. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Under the Public Utilities Act of 1965, utilities in North Carolina are regulated by the State's Utility Commission. The Commission consists of seven members who are appointed by the governor, subject to confirmation by the General Assembly sitting in joint session. The Commissioners serve eight year terms and the governor designates one of the commissioners as chairman. The Commission has an office of the executive director, who is appointed to a six year term by the governor subject to confirmaion by the General Assembly. The executive director heads the Commission's public staff. The public staff's duties include reviewing, investigating, and making recommendations on utility rates and services and intervention on behalf of the public in proceedings affecting consumer rates and generating plant certification. The Commission has the same power to regulate the operation of privately-owned public utilities within municipalities as it has to control those ouside. The only power over privately-owned utilities reserved to the municipalities is the power to grant franchises. A municipality may maintain its own utility systems, and such systems are not subject to the control and jurisdiction of the Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. Energy Management Programs at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Huang, Jeffrey H.

    2011-01-01

    The Energy Management internship over the summer of 2011 involved a series of projects related to energy management on the John. F. Kennedy Space Center (KSC). This internship saved KSC $14.3 million through budgetary projections, saved KSC $400,000 through implementation of the recycling program, updated KSC Environmental Management System's (EMS) water and energy-related List of Requirements (LoR) which changed 25.7% of the list, provided a incorporated a 45% design review of the Ordnance Operations Facility (OOF) which noted six errors within the design plans, created a certification system and timeline for implementation regarding compliance to the federal Guiding Principles, and gave off-shore wind as the preferred alternative to on-site renewable energy generation.

  19. BASIC Instructional Program: System Documentation.

    ERIC Educational Resources Information Center

    Dageforde, Mary L.

    This report documents the BASIC Instructional Program (BIP), a "hands-on laboratory" that teaches elementary programming in the BASIC language, as implemented in the MAINSAIL language, a machine-independent revision of SAIL which should facilitate implementation of BIP on other computing systems. Eight instructional modules which make up…

  20. Sandia National Laboratories, California Environmental Management System program manual

    SciTech Connect

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  1. Sandia National Laboratories, California Environmental Management System program manual.

    SciTech Connect

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  2. SNL/CA Environmental Management System Program Manual.

    SciTech Connect

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  3. Energy analysis program. 1994 annual report

    SciTech Connect

    Levine, M.D.

    1995-04-01

    This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

  4. Fossil energy program. Progress report for May 1980

    SciTech Connect

    McNeese, L.E.

    1980-08-01

    This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

  5. Fossil energy program. Progress report for June 1980

    SciTech Connect

    McNeese, L.E.

    1980-08-01

    This report - the seventy-first of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluation, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, TVA fluidized combustion demonstration plant program technical support, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  6. Fossil Energy Program. Progress report for April 1980

    SciTech Connect

    McNeese, L.E.

    1980-06-01

    This report - the sixty-ninth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  7. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  8. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  9. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AB57 Energy Efficiency Program for Consumer Products: Energy Conservation...

  10. 75 FR 32459 - National Energy Rating Program for Homes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Efficiency and Renewable Energy National Energy Rating Program for Homes AGENCY: Energy Efficiency and... discussion of these issues, please view www.buildings.energy.gov/home_rating_rfi.html . DATES: Comments must... Energy Efficiency and Renewable Energy (EE-1), 1000 Independence Avenue, SW., Washington, DC 20585...

  11. Plans for wind energy system simulation

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.

    1978-01-01

    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.

  12. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Hawaii. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Hawaii is vested in the Public Utilities Commission. The Commission is composed of three members appointed by the Governor. Commissioners serve for six year terms, must be independent of the companies they regulate and must not possess or acquire an interest in any public utility. The regulatory authority of the Commission preempts that of any other state agency. Local governments have no authority over public utilities. Chapter 196 of the Hawaii statutes establishes the position of the Energy Resources Coordinator; the role of the coordinator, however, is merely to develop, review, and recommend programs for the optimum development of Hawaii's energy resources. The Commission has jurisdiction over all public utilities located in the state. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  13. Contingency Base Energy Management System

    SciTech Connect

    2016-06-09

    CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.

  14. Wind Energy Program overview, fiscal year 1993

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems. Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  15. Wind Energy Program overview, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  16. Energy and the food system

    PubMed Central

    Woods, Jeremy; Williams, Adrian; Hughes, John K.; Black, Mairi; Murphy, Richard

    2010-01-01

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources. PMID:20713398

  17. 75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... ESPC policies. Using the Best Commercially Available Energy-Efficient Technology. Using New and... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management Program AGENCY: Department...

  18. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  19. Superconductivity for electric power systems: Program overview

    SciTech Connect

    Not Available

    1995-02-01

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  20. Decarbonizing the global energy system

    SciTech Connect

    Gruebler, A.; Nakicenovic, N.

    1996-09-01

    The study analyzes the long-term decarbonization of the global energy system, i.e., the decrease of the carbon emissions per unit of primary energy. Decarbonization appears as a continuous and persistent trend throughout the world, albeit occurring at very slow rates of approximately 0.3% per year. The study also discusses driving forces of the associated structural changes in energy systems such as technological change. Decarbonization also occurs at the level of energy end use and trends for final energy are shown. The quest for higher flexibility, convenience, and cleanliness of energy services demanded by consumers leads to decarbonization trends in final energy that are more pronounced than that of the upstream energy sector. The study concludes with a discussion of the implications for long-term scenarios of energy-environment interactions suggesting that decarbonization and its driving forces may still be insufficiently captured by most models and scenarios of the long-term evolution of the energy system. 32 refs., 5 figs., 4 tabs.

  1. Energy Integrated Dairy Farm digester and cogeneration system installation

    SciTech Connect

    Ross, C.C.; Walsh, J.L.

    1984-01-01

    Georgia Tech finished in December, 1983 Phase II (system installation and startup) of its four year Energy Integrated Dairy Farm System (EIDFS) program. This paper outlines the selection and installation of the anaerobic digestion and cogeneration components of the EIDFS.

  2. SMES for wind energy systems

    NASA Astrophysics Data System (ADS)

    Paul Antony, Anish

    copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through

  3. Regional Wind Energy Assessment Program, appendix

    NASA Astrophysics Data System (ADS)

    Wade, J. E.; Baker, R. W.; Redmond, K.; Wittrup, R. J.; Buckley, J.

    1986-07-01

    This report summarizes the wind statistics gathered at 65 sites in the BPA wind network over the period June 1984 through May 1985. The analysis of these data completes the BPA Regional Wind Energy Assessment Program (WIND REAP) that has been ongoing since 1981. A climatological analysis of 12 selected sites distributed throughout the entire BPA service area indicated that fall winds were stronger than normal, spring winds were about normal and winter winds were significantly weaker than normal. There was considerable variation throughout the region in the wind's difference from normal during the summer months. Temperature, pressure and precipitation data were also analyzed for several National Weather Service sites. The trends in precipitation and to a lesser extent temperature followed those of wind speeds. In the fall, stronger than normal winds were related to greater than normal precipitation. During the winter, colder and drier conditions were associated with below normal winds.

  4. Steam System Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  5. USDA Section 9006 Program: Status and Energy Benefits of Grant Awards in FY 2003-2005

    SciTech Connect

    Walters, T.; Savage, S.; Brown, J.

    2006-08-01

    At the request of the U. S. Department of Agriculture (USDA) Rural Development, the National Renewable Energy Laboratory reviewed projects awarded in the Section 9006 Program: Renewable Energy Systems and Energy Efficiency Improvements Program. This report quantifies federal and private investment, outlines project status based on recent field updates, and calculates the effects on energy and emissions of energy efficiency and renewable energy projects awarded grants in FY 2003, FY 2004, and FY 2005. An overview of the program challenges and modifications in the first three years of operation is also included.

  6. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    SciTech Connect

    Not Available

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program FY 2006 Annual Report

    SciTech Connect

    Not Available

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. DOE Solar Energy Technologies Program 2007 Annual Report

    SciTech Connect

    Not Available

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. NECAP: NASA's Energy-Cost Analysis Program. Part 1: User's manual

    NASA Technical Reports Server (NTRS)

    Henninger, R. H. (Editor)

    1975-01-01

    The NECAP is a sophisticated building design and energy analysis tool which has embodied within it all of the latest ASHRAE state-of-the-art techniques for performing thermal load calculation and energy usage predictions. It is a set of six individual computer programs which include: response factor program, data verification program, thermal load analysis program, variable temperature program, system and equipment simulation program, and owning and operating cost program. Each segment of NECAP is described, and instructions are set forth for preparing the required input data and for interpreting the resulting reports.

  10. Compressed-air energy storage preliminary design and site-development program in an aquifer. Volume 2: Utility-system planning

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The benefits derived from the integration of a compressed air energy storage facility with a hypothetical electrical network were analyzed. The analysis was based on three study scenarios each having a target generation mix of 65% base, 25% intermediate, and 10% peaking capacity. Scenarios of 100% coal, 50% coal and 50% nuclear, and 100% nuclear base load capacity additions were examined. Final results of the analyses indicate favorable economics when compressed air energy storage is installed as an alternative to combustion turbine peaking capacity on a system with a significant amount of oil-fired generation.

  11. World Energy Data Systems (WENDS).

    ERIC Educational Resources Information Center

    Lareau, William E.

    The World Energy Data System (WENDS) allows qualified users on-line access to non-classified management level data on worldwide energy technology and research and development activities. Information is arranged on textual pages and available by means of a simple accessing procedure. Described in this report are the WENDS concept and approach, the…

  12. Energy conservation system

    SciTech Connect

    Long, W.E.

    1984-02-21

    Conservation system is disclosed for use with a power source which supplies power over premises wiring to utilization equipment such as lighting equipment. Contactors and a control system are provided to temporarily interrupt the supplying of power from the power source to at least a portion of the utilization equipment. At least one switching circuit is connected in series between the power and that portion of the utilization equipment. The switching circuit is responsive to the temporary interruption of power to open the circuit between the power source and that portion of the utilization equipment and to maintain that circuit open after the temporary interruption of power ceases, thereby automatically deenergizing that portion of the utilization equipment upon interruption of the power.

  13. Apollo cryogenic integrated systems program

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Cunningham, J. E.

    1971-01-01

    The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer.

  14. The PCAST Energy Technology Innovation System Study

    NASA Astrophysics Data System (ADS)

    Savitz, M.; Fri, R.

    2010-12-01

    The President's Council of Advisors on Science and Technology (PCAST) recently made recommendations for strengthening the nation's energy innovation system. The PCAST report builds in part on earlier work at the National Research Council (NRC) and elsewhere. For example, PCAST largely adopted the description of the energy innovation system that appeared in the NRC report on 'Limiting the Magnitude of Future Climate Change'. Similarly, the 'Limiting' report provided examples of the importance of social science research in crafting energy policy, a recommendation of the PCAST report. And both the 'Limiting' report and an earlier report on 'America's Energy Future' recommended an aggressive commercial demonstration program for carbon capture and storage and new nuclear power plants. The PCAST report discusses the need for new approaches for federal demonstration projects. This session traces these relationships and suggests how similar synergies might be encouraged in the future.

  15. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  16. Cooperative field test program for wind systems

    SciTech Connect

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  17. Program for energy analysis of residences (PEAR) (for microcomputers). Software

    SciTech Connect

    Corin, N.

    1989-01-01

    PEAR is an interactive program for residential building energy analysis utilizing a comprehensive DOE-2.1 data base for residential buildings. The extensive data base is used by PEAR to estimate the annual energy use of houses with typical conservation measures such as ceiling, wall, and floor insulation, different window types and glazing layers, infiltration levels, and equipment efficiency. It also allows the user to include the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night setback. Software Description: The software is written in the Turbo Pascal programming language for implementation on an IBM PC microcomputer using MS-DOS operating system. Software requires 128K of memory and a hard disk or two floppy disk drives with either a monochrome or color monitor. A graphics adapter is needed to implement the Bar Chart option.

  18. The Minority Honors Program in Energy-Related Curricula.

    ERIC Educational Resources Information Center

    Kish, Evelyn Rubio; Santa Rita, Emilio

    In 1984, Bronx Community College (BCC) established the Minority Honors Program in Energy Related Curricula, a partnership between their academic honors program and the U.S. Department of Energy. The program's goal is to increase the participation of minorities in the fields of Computer Science, Electrical Technology, Engineering Science, Data…

  19. Community Solar Program Final Report for Austin Energy

    SciTech Connect

    None, None

    2013-02-10

    Austin Energy seeks to expand its portfolio of renewable programs with an innovative community solar program. The program provides an opportunity for Austin Energy's customers, who are unable or uninterested in installing solar on their own premises, to purchase solar power.

  20. SNL/CA Environmental Management System Program Manual.

    SciTech Connect

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  1. Strategic plan for the restructured US fusion energy sciences program

    SciTech Connect

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970`s, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department`s planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date.

  2. Energy optimization system

    DOEpatents

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  3. [Experimental and theoretical high energy physics program

    SciTech Connect

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  4. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  5. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  6. University programs of the U.S. Department of Energy advanced accelerator applications program

    SciTech Connect

    Beller, D. E.; Ward, T. E.; Bresee, J. C.

    2001-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21st Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R&D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R&D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs.

  7. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  8. Hydrogen Energy Coordinating Committee: Annual report-Summary of DOE hydrogen programs for FY 1987

    SciTech Connect

    Not Available

    1988-01-01

    The HECC (Hydrogen Energy Coordinating Committee) was organized to improve communications between various groups performing research related to hydrogen. The FY 1987 summary is the tenth consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. These offices include Basic Energy Sciences, Energy Storage and Distribution, Fossil Energy, Fusion Energy, Inertial Fusion, Military Application, Solar Energy, and Transportation Systems. (DLC)

  9. Urban energy management: a course on the administration of public energy programs. An instructor's guide

    SciTech Connect

    Mandelbaum, Dr., Len; Olsen, Dr., Marvin; Hyman, Dr., Barry; Sheridan, Mimi; Dahlberg, Judy; O'Brien, Jeremy

    1980-12-01

    The course provides local government administrators, staff, and students with the background knowledge to deal with a broad range of energy management concerns and is not to train technical energy conservation specialists. Section II contains the Instructor's Guide and Section III provides the Student Outlines and Handouts on the following subjects: The Energy Problem; National Energy Politics and Programs; State and Local Energy Programs; Techniques of Energy Planning; Techniques of Energy Conservation; Techniques of Renewable Energy Production; Strategies for Voluntary Energy Management; Strategies for Finan. Energy Management; and Strategies for Mandatory Energy Management. (MCW)

  10. Jointly Sponsored Research Program on Energy Related Research

    SciTech Connect

    No, author

    2013-12-31

    criteria. Using the deployment of the federal funding with industrial participation as a performance criterion, over the course of the program, the copsonsors contributed more dollars than the federal funds. As stated earlier, a little more than half of the funding for the Program was derived from industrial partners. The industrial partners also enthusiastically supported the research and development activities with cash contribution of $4,710,372.67, nearly 65% of the required cost share. Work on all of the tasks proposed under the Cooperative Agreement has been completed. This report summarizes and highlights the results from the Program. Under the Cooperative Agreement Program, energy-related tasks emphasized petroleum processing, upgrading and characterization, coal and biomass beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils using microbial fuel cells, development of processes and sorbents for emissions reduction and recovery of water from power plant flue gas, and biological carbon capture and reuse. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. Technologies being brought to commercialization as a result of the funds provided by the Cooperative Agreement contribute to the overall goals of the USDOE and the nation. Each has broad applicability both within the United States and abroad, thereby helping to enhance the

  11. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    SciTech Connect

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An

  12. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy

  13. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    SciTech Connect

    Kinoshita, K.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  14. Optimization methods for alternative energy system design

    NASA Astrophysics Data System (ADS)

    Reinhardt, Michael Henry

    An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study

  15. Managing state energy conservation programs - The Minnesota experience

    NASA Astrophysics Data System (ADS)

    Hirst, E.; Armstrong, J. R.

    1980-11-01

    The development and operation of energy conservation programs in the Minnesota Energy Agency (MEA) are discussed. The MEA has responsibility for voluntary conservation efforts, regulating energy efficient devices, and grant programs to audit and retrofit public buildings. The MEA has developed the plan under which the Minnesota utilities will provide conservation services to residential customers, including an on-site home energy audit. The relation between the Department of Energy (DOE) and state energy offices in implementing programs is considered. The DOE has provided technical assistance to the states through the development of a model audit. Steps are discussed to reduce the burdens imposed on the states by program planning, funding, and management responsibilities, including the consolidation of several existing state conservation programs. Improved policy analysis is suggested to correct inefficiencies in government programs.

  16. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  17. Robotics and Intelligent Systems Program

    SciTech Connect

    Not Available

    1987-06-01

    This report gives brief descriptions of the projects associated with the Robotics and Intelligent Systems Program (RISP). Projects included in the report are (1) Remote Operations Demonstration Facility; (2) M-2 Servomanipulator; (3) The Advanced Servomanipulator; (4) Hostile Environment Robotic Machine Intelligence Experiment Series robots); and (5) Telerobotic Concepts. These devices have application in nuclear industry and space environments. (JDH)

  18. Automated System Programs Preventive Maintenance.

    ERIC Educational Resources Information Center

    Locke, Richard C.

    1987-01-01

    A preventive maintenance system provides for the monitoring and inspection of school building elements in a programmed way through an automatic checklist. Utility cost savings are expected along with reduction of travel and wait time, and measurable standards of performance for all maintenance and repair work. (MLF)

  19. 78 FR 77019 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Part 430 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer... the Energy Policy and Conservation Act of 1975 (EPCA or ``the Act'') (42 U.S.C. 6291-6309, as codified), which provides for an energy conservation program for consumer products other than automobiles, and...

  20. Something Special for Teachers. A Schoolhouse Energy Teaching Program. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.; Bottinelli, Charles A.

    The Schoolhouse Energy Efficiency Demonstration (SEED) program was developed to assist schools in reducing the impact of rising energy costs. Developed as part of the SEED program, this publication was designed to provide background information on the energy issue and to briefly describe what future energy sources may be. It includes: (1)…

  1. Projects from Federal Region IX: Department of Energy Appropriate Energy Technology Program. Part II

    SciTech Connect

    Case, C.W.; Clark, H.R.; Kay, J.; Lucarelli, F.B.; Rizer, S.

    1980-01-01

    Details and progress of appropriate energy technology programs in Region IX are presented. In Arizona, the projects are Solar Hot Water for the Prescott Adult Center and Solar Prototype House for a Residential Community. In California, the projects are Solar AquaDome Demonstration Project; Solar Powered Liquid Circulating Pump; Appropriate Energy Technology Resource Center; Digester for Wastewater Grown Aquatic Plants; Performance Characteristics of an Anaerobic Wastewater Lagoon Primary Treatment System; Appropriate Energy/Energy Conservation Demonstration Project; Solar Energy for Composting Toilets; Dry Creek Rancheria Solar Demonstration Projects; Demonstration for Energy Retrofit Analysis and Implementation; and Active Solar Space Heating System for the Integral Urban House. In Hawaii, the projects are: Java Plum Electric; Low-Cost Pond Digesters for Hawaiian Pig Farm Energy Needs; Solar Beeswax Melter; Methane Gas Plant for Operating Boilers and Generating Steam; and Solar Water Heating in Sugarcane Seed-Treatment Plants. A Wind-Powered Lighted Navigation Buoys Project for Guam is also described. A revised description of the Biogas Energy for Hawaiian Small Farms and Homesteads is given in an appendix.

  2. Energy efficient transport technology: Program summary and bibliography

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1985-01-01

    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.

  3. 77 FR 32381 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    .... 77, No. 105 / Thursday May 31, 2012 / Proposed Rules#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 RIN 1904-AB90 Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  4. 78 FR 72533 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... / Tuesday, December 3, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final rule;...

  5. 77 FR 59712 - Energy Conservation Program: Energy Conservation Standards for Dishwashers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 RIN 1904-AC64 Energy Conservation Program: Energy Conservation Standards for Dishwashers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice...

  6. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC56 Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice...

  7. 77 FR 10997 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC04 Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  8. 76 FR 57897 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... mode energy efficiency standards established in paragraph (w)(1)(i) of this section shall not apply to... RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final...

  9. Niagrara Mohawk Power Corporation`s energy awareness program

    SciTech Connect

    Gentile, P.R.; Oughterson, M.

    1995-12-01

    The Energy Awareness pilot program introduced the notion of energy-efficient office equipment to Niagara Mohawk and some selected customer sites. The program was designed to acquaint customers with the Energy Star Program and with energy-efficient office technologies and with promotional activities at the national, state, and regional levels. A major element is customer education to stimulate use of the information available. Another was to work with customer and vendor personnel to develop standards, procedures, etc., that would be useful for other participants in the program. The program was named the {open_quotes}Energy Watchdog Program.{close_quotes} Niagara Mohawk is working to establish itself as the preferred energy provider in the region, and in keeping with that objective the program goals are to: (1) Raise the level of customer satisfaction by providing service of value over and above that of electricity alone. (2) Measure energy savings or efficiency improvements achieved through the program to help meet DSM goals. (3) Contribute to the current education and information program. (4) Apply principles of energy-efficiency to in-house equipment and practices to develop expertise and experience. (5) Build awareness among utility and customer employees of energy-efficient office technologies and practices so that they can use the information at home as well as on the job. (6) Nurture trade ally relationships that will last after rebates are phased out.

  10. High energy physics program at Texas A M University

    SciTech Connect

    Not Available

    1990-10-01

    The Texas A M high energy physics program has achieved significant mile-stones in each of its research initiatives. We are participating in two major operating experiments, CDF and MACRO; the development of two new detector technologies, liquid scintillating fiber calorimetry and knife-edge chambers; and two SSC detector proposals, SDC and TEXAS/EMPACT. We have developed prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry in TEXAS/EMPACT. A new element in this program is the inclusion of a theoretical high energy physics research program being carried out by D. Nanopoulos and C. Pope. D. Nanopoulos has succeeded in building a string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. The impact of this work on string phenomenology certainly has far reaching consequences. C. Pope is currently working on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two- dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity, and W-string theory. The following report presents details of the accomplishments of the Texas A M program over the past year and the proposed plan of research for the coming year.

  11. The US Department of Energy`s Student Video Program

    SciTech Connect

    Beeson, K.M.; Pepper, C.E.

    1994-06-01

    The Student Video Program was an educational outreach program intended to educate and involve high school students in environmental restoration and waste management issues. Through participation in this program the students were shown how science and math are related to these subjects. In addition, they were exposed to many different and interesting career opportunities.

  12. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    SciTech Connect

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  13. Circuit Rider Program - Energy Efficiency in Local Government Operations

    EPA Pesticide Factsheets

    This project works with four of the nine counties within the DVRPC region and focuses on the 228 small municipalities that are too small to qualify for Department of Energy's Energy Efficiency and Conservation Block Grant program

  14. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable...

  15. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable...

  16. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable...

  17. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  18. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  19. Final Technical Report_Clean Energy Program_SLC-SELF

    SciTech Connect

    Henderson, Glenn; Coward, Doug

    2014-01-22

    retrofits. As a result, LMI property owners cannot achieve energy savings nor can they capture the assorted rebates and tax credits available for home energy improvements. Florida has one of the highest energy consumption rates in the country, in part due to high air conditioning use year-round, which has worsened with summer heat waves and record highs. Because the State has the 14th highest electricity rates nationwide, its residents greatly benefit from reducing their monthly energy costs. Reduced energy consumption by making energy-efficient improvements to buildings decreases the “carbon footprint” and provides environmental benefits and social good. Moreover, if Floridians save money on utilities, they can spend these savings on other things, boosting their local economy. Through its Clean Energy Loan Program, SELF is breaking down these barriers by helping LMI homeowners identify systemic solutions to their rising energy costs (through an energy audit performed by a state-certified energy rater) and then providing favorable financing to enable them to make these recommended home energy improvements. SELF’s clients are reducing their energy consumption by an average of 15-25%, depending on the types of improvements, and using the energy savings, rebates, and tax credits to help pay off the loans over time. Its clients are also enhancing their quality of life, making much-needed home improvements, and increasing the market value of their properties. The work performed for the program’s clients is also stimulating much-needed employment and economic development activity in the hardest hit job sector in Florida (i.e., the construction industry) and in geographic areas decimated by the recession and housing market collapse. SELF is a rare institution in that it joins social and financial missions, offering a helping hand to those without the means to find affordable financing. This supports the grant’s original project goal to become a leader and innovator in

  20. Radiator design system computer programs

    NASA Technical Reports Server (NTRS)

    Wiggins, C. L.; Oren, J. A.; Dietz, J. B.

    1971-01-01

    Minimum weight space radiator subsystems which can operate over heat load ranges wider than the capabilities of current subsystems are investigated according to projected trends of future long duration space vehicles. Special consideration is given to maximum heat rejection requirements of the low temperature radiators needed for environmental control systems. The set of radiator design programs that have resulted from this investigation are presented in order to provide the analyst with a capability to generate optimum weight radiator panels or sets of panels from practical design considerations, including transient performance. Modifications are also provided for existing programs to improve capability and user convenience.

  1. Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.

  2. Spacecraft Power Systems Engineering: Solutions for NASA's Manned Space Program

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    An overview of spacecraft power systems is presented, with a focus on applications in the manned space program. The topics include: 1) History; 2) State-of-the-art; 3) Development directions; 4) Focus on applications in the manned space program led from JSC; 5) Power Systems Engineering Trade Space; 6) Power Generation and Energy Storage; 7) Power Distribution and Control; and 8) Actuation

  3. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  4. Meeting the Energy Needs--Solar Technician Training Programs.

    ERIC Educational Resources Information Center

    Panitz, Theodore

    1980-01-01

    Differentiates between solar technicians and energy technicians; points out that, with the energy crisis, there has been much activity in the solar energy field, with the result that it could become saturated. Describes a program to train energy technicians that was developed at Cape Cod Community College. (JOW)

  5. Health risks of energy systems.

    PubMed

    Krewitt, W; Hurley, F; Trukenmüller, A; Friedrich, R

    1998-08-01

    Health risks from fossil, renewable and nuclear reference energy systems are estimated following a detailed impact pathway approach. Using a set of appropriate air quality models and exposure-effect functions derived from the recent epidemiological literature, a methodological framework for risk assessment has been established and consistently applied across the different energy systems, including the analysis of consequences from a major nuclear accident. A wide range of health impacts resulting from increased air pollution and ionizing radiation is quantified, and the transferability of results derived from specific power plants to a more general context is discussed.

  6. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  7. Renewable energy systems in Mexico: Installation of a hybrid system

    NASA Astrophysics Data System (ADS)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  8. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  9. Status and future directions of the ENERGY STAR program

    SciTech Connect

    Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

    2000-06-19

    In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.

  10. Energy Efficient Engine: Control system preliminary definition report

    NASA Technical Reports Server (NTRS)

    Howe, David C.

    1986-01-01

    The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.

  11. Improving Reliability and Durability of Efficient and Clean Energy Systems

    SciTech Connect

    Singh, Prabhakar

    2010-08-01

    Overall objective of the research program was to develop an in-depth understanding of the degradation processes in advanced electrochemical energy conversion systems. It was also the objective of the research program to transfer the technology to participating industries for implementation in manufacturing of cost effective and reliable integrated systems.

  12. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  13. The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Strakey, Joseph P.; Surdoval, Wayne A.

    The U.S. Department of Energy (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading a program for the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell/turbine hybrid power generation systems for near-term distributed generation markets, with emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions for research under the Solid State Energy Conversion Alliance (SECA) initiative to develop and commercialize modular, low cost, and fuel flexible SOFC systems. Through advanced materials, processing and system integration research and development (R&D), the SECA initiative will reduce the fuel cell cost to $400 kW -1 for stationary and auxiliary power unit markets. The SECA industry teams and core program have made significant progress in scale-up and performance. Presidential initiatives are focusing research toward a new hydrogen economy. The movement to a hydrogen economy would accomplish several strategic goals, namely that SOFCs have no emissions, and hence figure significantly in DOE strategies. The SOFC hybrid is a key part of the FutureGen plant, a major new DOE FE initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power while other parts of the plant could produce hydrogen and sequester CO 2. The produced hydrogen can be used in fuel cell cars and for SOFC distributed generation applications.

  14. California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California

    SciTech Connect

    2011-12-01

    A spate of recently enacted energy legislation and associated program changes is providing numerous opportunities to help California federal energy managers cut costs and meet their renewables, energy efficiency and GHG emissions goals. In April 2011, Governor Jerry Brown approved the nation’s most ambitious renewable portfolio standard (RPS), which requires 33% of the state’s electricity to come from renewable energy sources by 2020. Policy changes that will support the RPS include expanded eligibility rules that fill previous gaps in incentives for certain sizes of on-site renewable energy systems. Program updates described in this document include: $200 million more in funding for California Solar Initiative rebates to commercial and industrial customers; an increase in the eligible system size for the Feed-In-Tariff (FIT) from 1.5MW to 3MW; and pending changes that may allow customer-side systems to sell tradable renewable energy credits (TRECs) to entities with RPS compliance obligations in California.

  15. Advanced Control and Power System (ACAPS) technology program

    SciTech Connect

    Keckler, C.R.; Groom, N.J.

    1983-12-01

    The Advanced Control and Power System (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  16. Advanced Control and Power System (ACAPS) Technology Program

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1983-01-01

    The advanced control and power system (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  17. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    SciTech Connect

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  18. Enhanced distributed energy resource system

    DOEpatents

    Atcitty, Stanley; Clark, Nancy H.; Boyes, John D.; Ranade, Satishkumar J.

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  19. The Holyoke Industrial Energy Conservation And Development Program

    NASA Astrophysics Data System (ADS)

    Schaufler, Edward R.; Bateman, Robert H.; Connor, Frederick J.

    1982-03-01

    An innovative approach to the development of a model system for comprehensive industrial sector thermographic investigations and inspections will be taken during the winter of 1981-82 in Holyoke, MA. Infrared thermography techniques will be utilized for cost effective identification of building and process heat losses. The Holyoke program provides for a wide range of energy conservation services and will result in the implementation of no-cost, low-cost, and cost-effective capital intensive measures financed through a cooperative effort of government and private funding.

  20. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.