Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions
2012-02-01
Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a
Alaska's renewable energy potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-02-01
This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.
10 CFR 603.900 - Receipt of final performance report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Receipt of final performance report. 603.900 Section 603.900 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Award Terms Related to Other Administrative Matters Financial and Programmatic Reporting § 603.900...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Carrillo, Ismael M.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR)more » power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... consumption. Sub-alternative Al would use PV technology instead of solar thermal technology to reduce water...; AZA34187] Notice of Availability of the Final Environmental Impact Statement for the Proposed Sonoran Solar... (BLM) has prepared a Final Environmental Impact Statement (EIS) for the Sonoran Solar Energy Project...
Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)
2016-05-25
environment. A second objective under this subtask was to install, test and evaluate small wind turbine technologies to determine the relative... wind turbines adjacent to, and connected with the test platforms located at the Crissy Field Center in the Presidio of San Francisco, a proven wind ...resource for collection of comparative wind energy data. Vertical axis technology, turbines manufactured by Venco Power, Windspire Energy and
Hawaii Energy and Environmental Technologies (HEET) Initiative Phase 4
2006-08-01
UNIVERSITY OF HAWAII1 AT MANOA School of Ocean and Earth Science and Technology Hawal’i Natural Energy Institute January 10, 2007 Dr. Michele L...Report: HEET Initiative: Grant N00014-04-1-0682 Enclosed you will find a copy of the Final Technical Report for the subject grant, titled Hawaii Energy and...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hawaii Energy and Environmental Technologies (HEET) Initiative Phase 4 5b. GRANT NUMBER N00014-04-1-0682 5c
Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas P. Cook
The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technologymore » curriculum.« less
2017-10-31
Report: Energy and Environmental Drivers of Stress and Conflict in Multi-scale Models of Human Social Behavior The views, opinions and/or findings...RPPR Final Report as of 08-Feb-2018 Agreement Number: W911NF-12-1-0097 Organization: Santa Fe Institute of Science Title: Energy and...Article Title: Determinants of the Pace of Global Innovation in Energy Technologies Keywords: climage change, innovations in energy technologies
ERIC Educational Resources Information Center
LaHart, David E.; Allen, Rodney F.
This is the final report of a workshop in which selected teachers from Florida public schools learned about energy technology and conservation, and teaching methodology needed to incorporate energy education into existing school curriculum. Participants were teachers of science, social studies, environmental studies, and home economics. During the…
Technical Assistance for Southwest Solar Technologies Inc. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie
2012-07-01
Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lining; Patel, Pralit L.; Yu, Sha
The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less
Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F.; Gough, C.
LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.
WORK PLAN FOR COMPLETING A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT
This is a work plan for completing the final phase of a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North and South Dakota...
NASA Astrophysics Data System (ADS)
Tyurina, E. A.; Mednikov, A. S.
2017-11-01
The paper presents the results of studies on the perspective technologies of natural gas conversion to synthetic liquid fuel (SLF) at energy-technology installations for combined production of SLF and electricity based on their detailed mathematical models. The technologies of the long-distance transport of energy of natural gas from large fields to final consumers are compared in terms of their efficiency. This work was carried out at Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences and supported by Russian Science Foundation via grant No 16-19-10174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.
Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.
Fishermen's Energy Atlantic City Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissemann, Chris
Fishermen's Energy Atlantic City Wind Farm final report under US DOE Advanced Technology Demonstration project documents achievements developing a demonstration scale offshore wind project off the coast of New Jersey.
Energy Efficient Legged Robotics at Sandia Labs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs
Buerger, Steve
2018-05-07
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Impact of the proposed energy tax on nuclear electric generating technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T.A.; Lamont, A.D.; Pasternak, A.D.
1993-05-01
The President`s new economic initiatives include an energy tax that will affect the costs of power from most electric generating technologies. The tax on nuclear power could be applied in a number of different ways at several different points in the fuel cycle. These different approaches could have different effects on the generation costs and benefits of advanced reactors. The Office of Nuclear Energy has developed models for assessing the costs and benefits of advanced reactor cycles which must be updated to take into account the impacts of the proposed tax. This report has been prepared to assess the spectrummore » of impacts of the energy tax on nuclear power and can be used in updating the Office`s economic models. This study was conducted in the following steps. First, the most authoritative statement of the proposed tax available at this time was obtained. Then the impacts of the proposed tax on the costs of nuclear and fossil fueled generation were compared. Finally several other possible approaches to taxing nuclear energy were evaluated. The cost impact on several advanced nuclear technologies and a current light water technology were computed. Finally, the rationale for the energy tax as applied to various electric generating methods was examined.« less
Saving Energy in U.S. Transportation
DOT National Transportation Integrated Search
1994-07-01
This report was prepared as the final part of an Office of Technology Assessment (OTA) assessment on "U.S. Energy Efficiency: Past Trends and Future Opportunities." This report focuses on energy use in U.S. transportation, which accounts for over 60 ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including refrigerators, refrigerator-freezers, and freezers. EPCA also requires the U.S. Department of Energy (DOE) to determine if more stringent, amended standards for these products are technologically feasible and economically justified, and would save a significant amount of energy. In this final rule, DOE is adopting more stringent energy conservation standards for refrigerators, refrigerator-freezers, and freezers. It has determined that the amended energy conservation standards for these products would result in the significant conservation of energy and are technologically feasible and economically justified.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
2018-01-16
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
Building Stronger State Energy Partnerships with the U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Kate
2011-09-30
This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.
Solar applications of thermal energy storage. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.; Taylor, L.; DeVries, J.
A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)
Hawaii Energy and Environmental Technologies (HEET) Initiative
2007-11-01
FINAL TECHNICAL REPORT Hawaii Energy and Environmental Technologies (HEET) Initiative Office of Naval Research Grant Number N00014-06-1-0086 For the...Initiative 0) CM Office of Naval Research Grant Number N00014-06-1-0086 For the period October 17, 2005 to September 30, 2007 Hawaii Natural Energy Institute...Office of Naval Research ONR Regional Office Seattle 1107 NE 45th Street, Suite 350 11. SPONSOR/MONITOR’S REPORT Seattle, WA 98105-4631 NUMBER(S) 12
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this direct final rule, DOE adopts amended energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps. A notice of proposed rulemaking that proposes identical energy efficiency standards is published elsewhere in this issue of the Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, this final rule will be withdrawn, and DOE will proceed with the proposed rule.
Into the second century (at Tuskegee Institute) with a focus on energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
A seminar series was developed for the Tuskegee Institute campus and the geographically adjacent population. The goal was to enlighten the target group on energy and energy-related issues; therefore, the project was designed to focus attention on energy technologies and energy-related issues, and to compile and disseminate the information on those issues. The seminars included such topics as ramifications of the carbon dioxide fossil fuel issue, use of solar collectors in energy conservation applications, teaching energy awareness to the school aged child, energy and our technological futures, and the global carbon geosystem. Speakers were representatives of local, state, and nationalmore » agencies.« less
Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.
1996-08-01
This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition,more » mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy c onversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this notice, DOE proposes energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps identical to those set forth in a direct final rule published elsewhere in today's Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, DOE will publish a notice withdrawing the direct final rule and will proceed with this proposed rule.
Leading trends in environmental regulation that affect energy development. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, R V; Attaway, L D; Christerson, J A
1980-01-01
Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less
ERIC Educational Resources Information Center
Hirshberg, A. S.; And Others
This report examines the role of implementation centers as a vehicle for speeding the use of solar energy and energy conservation. It covers a study of previous building industry innovations; a brief review of the diffusion of innovation literature, including several case studies; identification of the solar thermal application process and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less
Final Report on the Proposal to Provide Asian Science and Technology Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahaner, David K.
2003-07-23
The Asian Technology Information Program (ATIP) conducted a seven-month Asian science and technology information program for the Office:of Energy Research (ER), U.S: Department of Energy (DOE.) The seven-month program consists of 1) monitoring, analyzing, and dissemiuating science and technology trends and developments associated with Asian high performance computing and communications (HPC), networking, and associated topics, 2) access to ATIP's annual series of Asian S&T reports for ER and HPC related personnel and, 3) supporting DOE and ER designated visits to Asia to study and assess Asian HPC.
Status and prospect of NDT technology for nuclear energy industry in Korea
NASA Astrophysics Data System (ADS)
Lee, Joon Hyun
2016-02-01
Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Lum, Ben T. F.; Pond, Charles; Dermott, William
1993-01-01
This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.
Energy use pattern in rice milling industries-a critical appraisal.
Goyal, S K; Jogdand, S V; Agrawal, A K
2014-11-01
Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel.
Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt
Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.« less
Spring 2004 Industry Study Final Report: Strategic Materials
2004-01-01
decreasing processing costs. Processing costs can be reduced by using powder metallurgy technology to reduce waste and by seeking new markets to... market share is likely to remain fierce until the arrival of the next miniaturization technology , nanoelectromechanical system (NEMS). Smart...the transportation, medical, energy, information technology , and environmental industries will create the strongest economic pull for the
Improved specific energy Ni-H2 cell
NASA Astrophysics Data System (ADS)
Miller, L.
1985-07-01
Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.
Improved Specific Energy Ni-h2 Cell
NASA Technical Reports Server (NTRS)
Miller, L.
1985-01-01
Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.
NASA Astrophysics Data System (ADS)
Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.
2018-03-01
The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.
NASA Astrophysics Data System (ADS)
Manne, A. S.
1981-02-01
The ETA-MACRO model is designed to estimate the extent of two way linkage between the energy sector and the balance of the economy. It represents a merger between ETA (a process analysis for energy technology assessment) together with a macroeconomic growth model providing for substitution between capital, labor, and energy inputs. The ETA-MACRO allows explicitly for: (1) energy economy interactions; (2) cost effective conservation; (3) interfuel substitution, and (4) new supply technologies, each with its own difficulties and uncertainties on dates and rates of introduction. This user's guide includes an overview of the model, an illustrative application to long term US energy projections, and technical descriptions of the macro and ETA submodels. It also includes an analysis of how market penetration rates may be related to the profitability of new technologies. Finally, the appendices provide a detailed guide to the computer implementation.
City of Raleigh, Wilders Grove Service Center, Solid Waste Services Facility. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Cox; Bill Black; Battle, Fred
Final Report for DOE Grant EE0002808. Grant award was for technology demonstration of geothermal energy systems. One of the major objectives identified for the demonstration portion of the grant was to prove the viability of Ground Source Heat Pump (GSHP) systems in significantly reducing energy usage of HVAC and domestic water heating systems compared to traditional systems. Data were monitored and conclusions drawn, including estimating payback timeframes and documenting lessons learned.
Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)
Meza, Juan [LBNL Computational Research Division
2017-12-09
The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.
ECMT31 New Mexico Manufacturing Environmental Survey. Final Report.
ERIC Educational Resources Information Center
Sandia National Labs., Albuquerque, NM.
The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). To identify and analyze…
Smart and Green Energy (SAGE) for Base Camps Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.
2014-02-11
The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.
Adaption of Machine Fluid Analysis for Manufacturing - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardini, Allan F.
2005-08-16
Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. Filtration and lubricant suppliers to the pulp and paper industry had noted the recent accomplishments by PNNL and its industrial partners in the DOE OIT Mining Industry of the Future Program, and asked for assistance in adapting this DOE-funded technology to the pulp and paper industry.
Final Report for NIREC Renewable Energy Research & Development Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, Walt
This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption ofmore » renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.« less
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping
2011-02-15
A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
NASA Technical Reports Server (NTRS)
1982-01-01
The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CORBETT JE; TEDESCH AR; WILSON RA
2011-02-14
A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... Verification Services Inc. as a Nationally Recognized Certification Program for Small Electric Motors AGENCY... FURTHER INFORMATION CONTACT: Mr. Lucas Adin, U.S. Department of Energy, Building Technologies Office, Mail... conservation requirements for, among other things, electric motors and small electric motors, including test...
Scoping Report: Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Graham B.; Boyd, Brian K.; Petersen, Joseph M.
The purpose of this demonstration project is to quantify the energy savings and water efficiency potential of commercial laundry wastewater recycling systems and low-temperature detergent supply systems to help promote the adoption of these technologies in the commercial sector. This project will create a set of technical specifications for efficient multi-load laundry systems (both new and retrofit) tailored for specific applications and/or sectors (e.g., hospitality, health care). The specifications will be vetted with the appropriate Better Buildings Alliance (BBA) members (e.g., Commercial Real Estate Energy Alliance, Hospital Energy Alliance), finalized, published, and disseminated to enable widespread technology transfer in themore » industry and specifically among BBA partners.« less
In Brief: Climate Change Technology Program Plan
NASA Astrophysics Data System (ADS)
Bierly, Eugene
2006-09-01
The U.S. Department of Energy released its Plan for Climate Change Technology Programs (CCTP) at a 20 September hearing of the U.S. House of Representatives Science Subcommittee on energy. The goal of the hearing, which was chaired by Rep. Judy Biggert (R-Ill.), was to examine the Bush Administration's CCTP plan, review it in light of the Administration's stated goals, and determine what action might be undertaken to implement the plan. For details of the plan, see http://www.climatetechnology.gov/stratplan/final/index.htm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-10-01
Volume IV of the ISTUM documentation gives information on the individual technology specifications, but relates closely with Chapter II of Volume I. The emphasis in that chapter is on providing an overview of where each technology fits into the general-model logic. Volume IV presents the actual cost structure and specification of every technology modeled in ISTUM. The first chapter presents a general overview of the ISTUM technology data base. It includes an explanation of the data base printouts and how the separate-cost building blocks are combined to derive an aggregate-technology cost. The remaining chapters are devoted to documenting the specific-technologymore » cost specifications. Technologies included are: conventional technologies (boiler and non-boiler conventional technologies); fossil-energy technologies (atmospheric fluidized bed combustion, low Btu coal and medium Btu coal gasification); cogeneration (steam, machine drive, and electrolytic service sectors); and solar and geothermal technologies (solar steam, solar space heat, and geothermal steam technologies), and conservation technologies.« less
NASA Astrophysics Data System (ADS)
Xu, Bing; Cheng, Min
2018-06-01
This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.
Flexible Friction Stir Joining Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Lim, Yong Chae; Mahoney, Murray
2015-07-23
Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding andmore » 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.« less
Solid xenon radiation detectors
NASA Astrophysics Data System (ADS)
Dolinski, Michelle J.
2014-03-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.
ERIC Educational Resources Information Center
Mandex, Inc., Vienna, VA.
This compendium of current and recent innovative methods of health care delivery focuses on telemedicine, and educational and energy management and control applications. Each application is doumented in a project abstract describing the system and the technology employed, and citing relevant information sources and a personal or organizational…
NASA Astrophysics Data System (ADS)
Hill, R. F.
The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described. No individual items are abstracted in this volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Nathan
2014-06-27
Forest County Potawatomi Community (the “Community”) sought and obtained Community Renewable Energy Deployment funding from the Department of Energy to evaluate and implement a diverse number of renewable energy technologies throughout its lands held in trust or owned in fee simple in Forest County and Milwaukee County (the “Project”). The technologies and sites evolved during the Project, ultimately leading to the investigation of biomass and solar projects on the Community’s reservation in Forest County, as well as the investigation and eventual deployment of a solar project and an anaerobic digestion and biogas project on Community lands in Milwaukee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P.
The final performance report for the Wind Power Live! museum exhibit summarizes the goals and outcomes for the project. Project goals included: (1) help museum visitors understand why wind is being considered as a significant energy source; (2) enable visualization of the dynamics and power output of turbines; (3) exhibit a working wind turbine; (4) showcase wind as a technological success story; (5) consider the environmental costs and benefits of wind energy; (6) examine the economics of wind power, and (7) explain some of the limits to wind power as a commercial energy source. The methods of meeting the projectmore » goals through the museum exhibit are briefly outlined in the report. Goal number three, to introduce a working wind turbine, was dropped from the final project.« less
Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective
NASA Astrophysics Data System (ADS)
Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha
2017-07-01
Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.
Southwest Energy Efficiency Project (SWEEP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Howard; Meyers, Jim
SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozeman, Jeffrey; Chen, Kuo-Huey
2014-12-09
On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.
ERIC Educational Resources Information Center
Blair, Brittain A.
In 1983-84, a feasibility study was conducted to determine the viability of establishing a comprehensive alternative energy technology program at Southeastern Illinois College (SIC). The study involved an examination of a number of exemplary associate degree programs in alternative energy, through on-site visits and telephone surveys; a survey of…
Annual review of energy. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollander, J.M.; Simmons, M.K.; Wood, D.O.
1980-01-01
The many continuing efforts around the world to deal with the issues of energy supply, demand, and environmental impact are reviewed. This volume carries reviews of recent developments in solar-photovoltaic technology and inertial-confinement fusion as long-term options. Progress in some important nearer-term energy-supply areas is reviewed by contributions in the fields of battery energy storage and coal clean-up technology. In the area of energy sociology, the interesting and poorly understood topic of public opinion about energy is reviewed. The subject of energy economics is represented by a review of the role of governmental incentives in energy production. Topics related tomore » the environmental aspects of energy technologies include coastal flooding from atmospheric carbon dioxide warming, risks of liquefied natural gas and petroleum gas, and the environmental impacts of renewable energy sources. Continuing the practice of earlier volumes to review the energy perspective of a particular region or country, Volume 5 carries a review of emerging energy technologies in island environments, typified by the case of Hawaii. Finally, the energy problem from the perspective of developing countries is reviewed by two papers, the first on renewable energy resources for developing countries, and the second on the problem of energy for the people of Asia and the Pacific. A separate abstract was prepared for each of the 12 reviews for the Energy Data Base (EDB); all will appear in Energy Abstracts for Policy Analysis (EAPA) and three in Energy Research Abstracts (ERA).« less
RF power harvesting: a review on designing methodologies and applications
NASA Astrophysics Data System (ADS)
Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae
2017-12-01
Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.
2018-07-01
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.
Crabtree, George
2018-01-12
The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.  The continued use of fossil fuels raises concerns about supply, security, environment and climate. New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.
2012 ARPA-E Energy Innovation Summit Keynote Presentation (Arun Majumdar)
Majumdar, Arun
2018-02-05
The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Director of ARPA-E, Arun Majumdar, gave the final keynote address for Tuesday, February 28th. He discussed APRA-E's role in meeting 21st century energy needs with American innovation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Lenora; Sampsel, Zachary N
This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivovar, Bryan
2017-03-31
Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stagemore » demonstration activities that can enable hydrogen as an energy carrier at a national scale.« less
Microalgae for economic applications: advantages and perspectives for bioethanol
Simas-Rodrigues, Cíntia; Villela, Helena D. M.; Martins, Aline P.; ...
2015-04-04
Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Finally and therefore, this paper examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brouse, P.
1997-05-01
The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.
An Overview of Stationary Fuel Cell Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
DR Brown; R Jones
1999-03-23
Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle ormore » rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.« less
Research and Development of High-Power and High-Energy Electrochemical Storage Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
No, author
2014-04-30
The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers tomore » leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applications. The report was developed using information such as program plans, gap analysis charts, quarterly reports and final project reports submitted by the developers. The public benefit served by this USABC program is that it continues the development of critical advanced battery technology that is needed to make electric, hybrid electric, and fuel cell vehicles attractive to a wide segment of the vehicle market. This will allow for a substantial savings in petroleum fuel use as these vehicles are introduced into the nation’s transportation system. It will also allow a sharp reduction in automotive air pollution emissions in critical areas that are currently classified as non-attainment by the Environmental Protection Agency. This program will also help ensure the long term health and viability of the U.S. Battery and Ultracapacitor Manufacturing Industry. The goals of eight categories of projects follow and summarization of each of the project’s accomplishments are in sequence of the list above.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winiarski, D.W.
1995-12-01
The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate inmore » the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel Todd
2015-04-01
This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was devemore » loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.« less
NASA Astrophysics Data System (ADS)
Sauer, H. J., Jr.; Hegler, B. E.
1982-11-01
Papers on various topics of energy conservation, new passive solar heating and storage devices, governmental particiaption in developing energy technologies, and the development of diverse energy sources and safety features are presented. Attention is given to recent shifts in the federal and state goverenment roles in energy research, development and economic incentives. The applications of passive solar walls, flat plate collectors and trombe walls as retorfits for houses, institutions, and industries were examined. Attention was given to the implementation of wind power by a zoo and the use of spoilers as speed control devices in a Darrieus wind turbine. Aspects of gasohol, coal, synfuel, and laser-pyrolyzed coal products use are investigated. Finally, the economic, social, and political factors influencing energy system selection are explored, togeter with conservation practices in housing, government, and industry, and new simulators for enhancing nuclear power plant safety.
Mixed-waste treatment -- What about the residuals?. A compartive analysis of MSO and incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, T.; Carpenter, C.; Cummins, L.
1993-11-01
Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ``derived-from`` residuals. Major findings include that final disposal options are more significantly impacted by the type of wastemore » treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals.« less
Energy, Society, and Education, with Emphasis on Educational Technology Policy for K-12
NASA Astrophysics Data System (ADS)
Chedid, Loutfallah Georges
2005-03-01
This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energy's projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the policy report neglects education as a contributor to solving future energy problems. The inextricable interaction between energy solutions and education is described, with emphasis on education policy as a potential vehicle for developing economically and commercially sustainable energy systems that have a minimal impact on the environment. With that said, an earnest argument is made as to the need to educate science, technology, engineering, and mathematics (STEM) proficient individuals for the energy technology development workforce, starting with the K-12 level. A framework for the aforementioned STEM education policies is presented that includes a sustained national awareness campaign, address the teacher's salary issues, and addresses teacher quality issues. Moreover, the framework suggests a John Dewey-style "learning-by-doing" shift in pedagogy. Finally, the framework presents specific changes to the current national standards that would be valuable to the 21st century student.
INL Control System Situational Awareness Technology Final Report 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon Rueff; Bryce Wheeler; Todd Vollmer
The Situational Awareness project is a comprehensive undertaking of Idaho National Laboratory (INL) in an effort to produce technologies capable of defending the country’s energy sector infrastructure from cyber attack. INL has addressed this challenge through research and development of an interoperable suite of tools that safeguard critical energy sector infrastructure. The technologies in this project include the Sophia Tool, Mesh Mapper (MM) Tool, Intelligent Cyber Sensor (ICS) Tool, and Data Fusion Tool (DFT). Each is designed to function effectively on its own, or they can be integrated in a variety of customized configurations based on the end user’s riskmore » profile and security needs.« less
Principles of Technology. Final Report, Leander Independent School District.
ERIC Educational Resources Information Center
Leander Independent School District, TX.
Principles of Technology was designed as a high school course in applied science for vocational students in the 11th and 12th grades in Leander, Texas. It consists of a 2-year curriculum covering 14 units in applied physics: (1) force; (2) work; (3) rate; (4) resistance; (5) energy; (6) power; (7) force transformers; (8) momentum; (9) waves and…
Environmentally-benign conversion of biomass residues to electricity
NASA Astrophysics Data System (ADS)
Davies, Andrew
As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multi-step process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into "clean" thermal energy and, eventually to electricity.
Testing technology. A Sandia Technology Bulletin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetsch, B.; Floyd, H.L.; Doran, L.
1994-02-01
This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontactmore » measurement system which can be used to determine axes on objects of different shapes, with high precision.« less
NASA Technical Reports Server (NTRS)
1981-01-01
The Wing Planform Study and Final Configuration Selection Task of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program is documented. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology, takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 44% reduction in horizontal tail size), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3589 km 1938 nmi), this amounts to 10% block-fuel reduction. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation, and begin the required control system development and test.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, Francois; Tsoupas, N.; Brooks, S.
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
Meot, Francois; Tsoupas, N.; Brooks, S.; ...
2018-04-16
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
Final Technical Report. Training in Building Audit Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosemer, Kathleen
In 2011, the Tribe proposed and was awarded the Training in Building Audit Technologies grant from the DOE in the amount of $55,748 to contract for training programs for infrared cameras, blower door technology applications and building systems. The coursework consisted of; Infrared Camera Training: Level I - Thermal Imaging for Energy Audits; Blower Door Analysis and Building-As-A-System Training, Building Performance Institute (BPI) Building Analyst; Building Envelope Training, Building Performance Institute (BPI) Envelope Professional; and Audit/JobFLEX Tablet Software. Competitive procurement of the training contractor resulted in lower costs, allowing the Tribe to request and receive DOE approval to additionally purchasemore » energy audit equipment and contract for residential energy audits of 25 low-income Tribal Housing units. Sault Tribe personnel received field training to supplement the classroom instruction on proper use of the energy audit equipment. Field experience was provided through the second DOE energy audits grant, allowing Sault Tribe personnel to join the contractor, Building Science Academy, in conducting 25 residential energy audits of low-income Tribal Housing units.« less
Final Technical Report- Virginia Solar Pathways Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Katharine; Cosby, Sarah
This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments.
Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.
2008-06-17
The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potentialmore » of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.« less
Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University
NASA Astrophysics Data System (ADS)
Kang, Ke-Jun
2010-03-01
Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.
Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report
NASA Technical Reports Server (NTRS)
Bisset, J. W.; Howe, D. C.
1983-01-01
The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.
Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)
NASA Astrophysics Data System (ADS)
The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.
Direct solar heating for Space Station application
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.
Analysis on energy consumption index system of thermal power plant
NASA Astrophysics Data System (ADS)
Qian, J. B.; Zhang, N.; Li, H. F.
2017-05-01
Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.
Quinault Indian Nation Renewable Energy Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Hopps, Institute for Washington's Future; Jesse Nelson, Institute for Washington's Future
2006-11-28
The Quinault Indian Nation (Nation) initiated this study on conservation and production of renewable energy because this approach created the opportunity: • To become self-sufficient and gain greater control over the energy the Nation uses; • To generate jobs and businesses for its members; • To better manage, sustain, and protect its resources; • To express the cultural values of the Nation in an important new arena. The Nation has relatively small energy needs. These needs are concentrated at two separate points: the Quinault Beach Resort and Casino (QBRC) and Taholah on the Quinault Indian Reservation (QIR). Except for themore » town of Queets, energy needs are small and scattered. The needs vary greatly over the season. The small scale, widely dispersed, and variable nature of these needs presents a unique challenge to the Nation. Meeting these needs requires a resource and technology that is flexible, effective, and portable. Conservation is the most cost-effective way to meet any need. It is especially effective in a situation like this where production would leave a high per unit cost. This plan is based on first gaining energy savings through conservation. Major savings are possible through: 1. Upgrading home appliances on the QIR. 2. Weatherizing homes and facilities. 3. Changes in lighting/ventilation in the QBRC pool room. These elements of the plan are already being implemented and promise to save the Nation around a quarter of its present costs. Wood biomass is the best resource available to the QIN for energy production either on-site or for commercial development. It is abundant, flexible and portable. Its harvesting has high job potential and these jobs are a good fit for the present “skill set” of the QIN. This plan focuses on using wood biomass to produce energy and other value-added products. Our study considered various technologies and approaches to using wood for energy. We considered production for both on-site and commercial production. This plan calls for commercial-scale production only, with the QIN being the first “customer” for the product. This plan favors employing the pyrolysis technology to produce bio-oil, heat, and char. We favor this approach and technology because it is the most cost effective way to use the available resource. Its main product, bio-oil, has proven utility for the production of heat and electricity. It has promise for use as an alternative fuel, which is a much higher value than present uses of wood and it meets the QIN need for flexibility, scalability, and portability. Char, the secondary product from the pyrolysis process, has proven value-added uses. In addition to these direct benefits, the use of biomass in pyrolysis technology has significant indirect benefits. These benefits include the fact that the technology is a good fit with the Nation’s cultural values, i.e., environmental protection and the holistic use of a resource. It fits well with current QIN enterprises. For example, char could be processed into a charcoal co-product for QIN fish. Finally, the QIN can become a leader in developing and demonstrating this innovative approach to the use of wood. This plan proposes key organization steps to insure both excellent implementation of the plan and taking the best advantage of the processes and facilities put in place. This plan calls for two new QIN organizations: an energy production/distribution corporation and a community development corporation. The production/distribution corporation can be either a utility or a business enterprise that develops and markets renewable energy. The community development corporation can be a not-for-profit to support the QIN in taking best advantage of its energy opportunities. The production and distribution corporation is the subject of a further business planning effort now underway. This plan envisions a community development corporation that works directly with the Business Committee on research, education, and project development. Specifically, this corporation can seek grant funding to research energy matters such as the BPA direct sale of energy proposal, identify key business opportunities like charcoal production and train QIN members in business building, and establish a renewable energy education program and center to enhance the education of QIN youth and market to schools and community colleges in Western Washington. Overall, this final report includes the final Renewable Energy Plan for the QIN, the final Financial Analysis, and appendices. The two final plans are the culmination of research and planning represented by the appendices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership ofmore » Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.« less
Student Support for EIPBN 2015 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
2016-01-19
The 59th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2015, held at the Manchester Grand Hyatt in San Diego, CA from May 26 to May 29, 2015 was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many will publish peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0013773).
Advanced lighting guidelines: 1993. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, C.; Tolen, T.M.; Benya, J.R.
1993-12-31
The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less
A conceptual framework for evaluating variable speed generator options for wind energy applications
NASA Technical Reports Server (NTRS)
Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.
1995-01-01
Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.
Twistact techno-economic analysis for wind turbine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William
This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less
Final Scientifc Report - Hydrogen Education State Partnership Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Warren
2012-02-03
Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centolella, P.A.
1998-07-01
Most of the economic efficiency benefits of electric restructuring--consumer choice based on price and risk preferences, efficient capacity utilization, capacity expansion that reflects marketability, and innovative products--depend upon consumer access to information and opportunities to respond to time- and location-specific prices and customized products. Information and communications technologies from back-room data management centers to intelligent consumer gateways will play an essential role in marketing energy services in a retail access environment. This paper describes the role of information and communications technology in electric industry restructuring and retailing of energy services. It includes a survey of economic analyses on the likelymore » variability in competitive generation prices and consumer responses if such prices are effectively communicated. The paper describes the potential benefits and cost savings associated with flexible consumer responses to price variability. It identifies consumer loads and preferences. Finally, the paper describes the building blocks of information systems being developed to facilitate price-responsive energy management and provide a range of other energy services. Intelligent gateways, analytical tools for facility load prediction and optimizing energy management responses, and electronic commerce applications are discussed.« less
Survey of electrochemical metal winning processes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaaler, L.E.
1979-03-01
The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc,more » lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.« less
NASA Astrophysics Data System (ADS)
Le Comte, Annaïg; Reynier, Yvan; Vincens, Christophe; Leys, Côme; Azaïs, Philippe
2017-09-01
Hybrid supercapacitors, combining capacitive carbon-based positive electrode with a Li-ion battery-type negative electrode have been developed in the pursuit of increasing the energy density of conventional supercapacitor without impacting the power density. However, lithium-ion capacitors yet hardly meet the specifications of automotive sector. Herein we report for the first time the development of new hybrid potassium-ion capacitor (KIC) technology. Compared to lithium-ion capacitor (LIC) all strategic materials (lithium and copper) have been replaced. Excellent electrochemical performance have been achieved at a pouch cell scale, with cyclability superior to 55 000 cycles at high charge/discharge regime. For the same cell scale, the energy density is doubled compared to conventional supercapacitor up to high power regime (>1.5 kW kg-1). Finally, the technology was successfully scaled up to 18650 format leading to very promising prospects for transportation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Biomass torrefaction: A promising pretreatment technology for biomass utilization
NASA Astrophysics Data System (ADS)
Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen
2018-02-01
Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.
Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.
Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver
2017-01-01
Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.
RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan
2015-09-01
JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less
Development of Solid Xenon Bolometers
NASA Astrophysics Data System (ADS)
Dolinski, Michelle; Hansen, Erin
2016-09-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.
Design guidelines of triboelectric nanogenerator for water wave energy harvesters.
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin
2017-05-05
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
Energy for the new millennium.
Goldemberg, J; Johansson, T B; Reddy, A K; Williams, R H
2001-09-01
The evolution of thinking about energy is discussed. When the authors began collaborating 20 years ago, energy was typically considered from a growth-oriented, supply-side perspective, with a focus on consumption trends and how to expand supplies to meet rising demand. They were deeply troubled by the environmental, security and equity implications of that approach. For instance, about two billion people lack access to affordable modern energy, seriously limiting their opportunities for a better life. And energy is a significant contributor to environmental problems, including indoor air pollution, urban air pollution, acidification, and global warming. The authors saw the need to evolve a different perspective in which energy is provided in ways that help solve such serious problems. They argued that energy must become an instrument for advancing sustainable development--economically viable, need-oriented, self-reliant and environmentally sound development--and that the focus should be on the end uses of energy and the services that energy provides. Energy technological options that can help meet sustainable development goals are discussed. The necessity of developing and employing innovative technological solutions is stressed. The possibilities of technological leap-frogging that could enable developing countries to avoid repeating the mistakes of the industrialized countries is illustrated with a discussion of ethanol in Brazil. The role foreign direct investment might play in bringing advanced technologies to developing countries is highlighted. Near- and long-term strategies for rural energy are discussed. Finally, policy issues are considered for evolving the energy system so that it will be consistent with and supportive of sustainable development.
Knowledge network model of the energy consumption in discrete manufacturing system
NASA Astrophysics Data System (ADS)
Xu, Binzi; Wang, Yan; Ji, Zhicheng
2017-07-01
Discrete manufacturing system generates a large amount of data and information because of the development of information technology. Hence, a management mechanism is urgently required. In order to incorporate knowledge generated from manufacturing data and production experience, a knowledge network model of the energy consumption in the discrete manufacturing system was put forward based on knowledge network theory and multi-granularity modular ontology technology. This model could provide a standard representation for concepts, terms and their relationships, which could be understood by both human and computer. Besides, the formal description of energy consumption knowledge elements (ECKEs) in the knowledge network was also given. Finally, an application example was used to verify the feasibility of the proposed method.
Development activities, challenges and prospects for the hydropower sector in Austria
NASA Astrophysics Data System (ADS)
Wagner, Beatrice; Hauer, Christoph; Habersack, Helmut
2017-04-01
This contribution intends to give an overview of hydropower development activities in Austria and deepen the knowledge on actual strategies and planning documents. Thereby, the focus is on a climate and energy policy based perspective, also analyzing economic trends at the hydropower sector due to energy market changes in the last years. This includes a comparison with other political strategies and programs dealing with hydropower exploitation based on selected countries. With respect to technology developments, a concise review on technological innovations, such as hydrokinetic energy conversion systems, and new constructive designs of conventional hydropower plants in Austria will be given. Moreover, potential impacts on environment and aquatic ecosystems are described. Finally, key challenges and prospects will be identified and discussed.
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Energy minimization for self-organized structure formation and actuation
NASA Astrophysics Data System (ADS)
Kofod, Guggi; Wirges, Werner; Paajanen, Mika; Bauer, Siegfried
2007-02-01
An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.
Papageorgiou, A; Barton, J R; Karagiannidis, A
2009-07-01
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.
Induced innovation, energy prices, and the environment
NASA Astrophysics Data System (ADS)
Popp, David Clifford
The process of developing new technologies is a central question for economic theory as well as for public policy in many areas. For example, the development of cleaner, more efficient energy technologies will play an important role in reducing the threat of global warming. To study how technology evolves over time, this dissertation uses patent data on energy innovations from 1970 to 1991 to examine the impact of energy prices on energy-efficient innovations. Before this can be done, however, information on supply-side factors which influence innovation is also needed. In the case of innovation, supply-side factors are the usefulness of the existing base of scientific knowledge. Patent citations are used for this purpose. Subsequent citations to patents granted each year since 1970 are used to show that the returns to research and development (R&D) fall over time for most of the technologies studied. These estimates are then combined with data on demand-side factors, such as energy prices, to estimate a model of induced innovation in energy technologies. Both energy prices and the supply of knowledge are found to have strongly significant positive effects on innovation. Next, the Yale Technology Concordance (YTC), which maps patents to the industries in which they are used, is employed to construct a stock of energy-related knowledge for 14 energy intensive industries. The effect of changes in this stock on energy consumption in these industries is estimated. On average, the present value of energy savings resulting from a new patent is eight million dollars, with the maximum savings coming about five years after the initial patent application. Finally, the results of each regression are combined to simulate the impact of a ten percent energy tax. Initially, simple factor substitution due to the price change has the largest effect. However, because of the cumulative nature of R&D, induced innovation has a much larger effect than factor substitution in the long run. The evidence in this dissertation suggests that prices play an important role in influencing technological change, and that policy-makers can use this to their advantage in designing appropriate environmental policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farthing, G. A.; Rimpf, L. M.
The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.
The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elementsmore » (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less
NASA Technical Reports Server (NTRS)
1981-01-01
This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.
NASA Astrophysics Data System (ADS)
Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; Krey, Volker; McCollum, David L.; Rao, Narasimha D.; Riahi, Keywan; Rogelj, Joeri; De Stercke, Simon; Cullen, Jonathan; Frank, Stefan; Fricko, Oliver; Guo, Fei; Gidden, Matt; Havlík, Petr; Huppmann, Daniel; Kiesewetter, Gregor; Rafaj, Peter; Schoepp, Wolfgang; Valin, Hugo
2018-06-01
Scenarios that limit global warming to 1.5 °C describe major transformations in energy supply and ever-rising energy demand. Here, we provide a contrasting perspective by developing a narrative of future change based on observable trends that results in low energy demand. We describe and quantify changes in activity levels and energy intensity in the global North and global South for all major energy services. We project that global final energy demand by 2050 reduces to 245 EJ, around 40% lower than today, despite rises in population, income and activity. Using an integrated assessment modelling framework, we show how changes in the quantity and type of energy services drive structural change in intermediate and upstream supply sectors (energy and land use). Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation. Our scenario meets the 1.5 °C climate target as well as many sustainable development goals, without relying on negative emission technologies.
Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.
2006-11-14
This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology.more » We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.« less
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
DOT National Transportation Integrated Search
1996-04-01
Ada County was chosen to be a part of the national Operational Test for Intelligent : Transportation Systems (ITS). ITS applies new technologies and concepts to improve : transportation systems, efficiency, mobility, energy and environmental impacts,...
High-Voltage Solid Polymer Batteries for Electric Drive Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eitouni, Hany; Yang, Jin; Pratt, Russell
2014-09-29
The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.
Crowder College MARET Center Facility Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, Amy
This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing fieldmore » of green technology.« less
Renewable Energy Development in Hermosa Beach, California
NASA Astrophysics Data System (ADS)
Morris, K.
2016-12-01
The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e.g., charges from Edison and energy storage); (iii) costs that may be avoided due to promotion of renewable energy; and (iv) comparisons of projected annual nominal costs (in $/MWh and net present values).
Energy in synthetic fertilizers and pesticides: Revisited. Final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, M.G.; English, B.C.; Turhollow, A.F.
1994-01-01
Agricultural chemicals that are derived from fossil-fuels are the major energy intensive inputs in agriculture. Growing scarcity of the world`s fossil resources stimulated research and development of energy-efficient technology for manufacturing these chemicals in the last decade. The purpose of this study is to revisit the energy requirements of major plant nutrients and pesticides. The data from manufacturers energy survey conducted by The Fertilizer Institute are used to estimate energy requirements of fertilizers. Energy estimates for pesticides are developed from consulting previously published literature. The impact of technical innovation in the fertilizer industry to US corn, cotton, soybean and wheatmore » producers is estimated in terms of energy-saving.« less
Scientific challenges in sustainable energy technology
NASA Astrophysics Data System (ADS)
Lewis, Nathan
2006-04-01
We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-30
As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID,more » is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.« less
Modeling the energetic and exergetic self-sustainability of societies with different structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciubba, E.
1995-06-01
The paper examines global energy and exergy flows in various models of organized human societies: from primitive tribal organizations to teocratic/aristocratic societies, to the present industrial (and post-industrial) society, to possible future highly robotized or central control social organizations. The analysis focuses on the very general chain of technological processes connected to the extraction, conversion, distribution and final use of the real energetic content of natural resources (i.e., their exergy): the biological food chain is also considered, albeit in a very simplified and humankind sense. It is argued that, to sustain this chain of processes, it is necessary to usemore » a substantial portion of the final-use energy flow, and to employ a large portion of the total work force sustained by this end-use energy. It is shown that if these quantities can be related to the total exergy flow rate (from the source) and to the total available work force, then this functional relationship takes different forms in different types of society. The procedure is very general: each type of societal organization is reduced to a simple model for which energy and exergy flow diagrams are calculated, under certain well-defined assumptions, which restrain both the exchanges among the functional groups which constitute the model, and the exchanges with the environment. The results can be quantified using some assumptions/projections about energy consumption levels for different stages of technological development which are available in the literature; the procedure is applied to some models of primitive and pre-industrial societies, to the present industrial/post-industrial society, and to a hypothetical model of a future, high-technology society.« less
Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collar, Craig W
2012-11-16
Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step towardmore » potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, Fateme; Rownaghi, Ali A.; Monjezi, Saman
One of the main challenges in the power and chemical industries is to remove generated toxic or environmentally harmful gases before atmospheric emission. To comply with stringent environmental and pollutant emissions control regulations, coal-fired power plants must be equipped with new technologies that are efficient and less energy-intensive than status quo technologies for flue gas cleanup. While conventional sulfur oxide (SOx) and nitrogen oxide (NOx) removal technologies benefit from their large-scale implementation and maturity, they are quite energy-intensive. In view of this, the development of lower-cost, less energy-intensive technologies could offer an advantage. Significant energy and cost savings can potentiallymore » be realized by using advanced adsorbent materials. One of the major barriers to the development of such technologies remains the development of materials that are efficient and productive in removing flue gas contaminants. In this review, adsorption-based removal of SOx/NOx impurities from flue gas is discussed, with a focus on important attributes of the solid adsorbent materials as well as implementation of the materials in conventional and emerging acid gas removal technologies. The requirements for effective adsorbents are noted with respect to their performance, key limitations, and suggested future research directions. The final section includes some key areas for future research and provides a possible roadmap for the development of technologies for the removal of flue gas impurities that are more efficient and cost-effective than status quo approaches.« less
DOT National Transportation Integrated Search
2016-12-01
In order to reduce risky behavior around workzones, this project examines the effectiveness of using in-vehicle : messages to heighten drivers awareness of safety-critical and pertinent workzone information. : This investigation centers around an ...
Automated Cooperative Trajectories
NASA Technical Reports Server (NTRS)
Hanson, Curt; Pahle, Joseph; Brown, Nelson
2015-01-01
This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.
Center for Integration of Medicine and Innovative Technology. Addendum
2009-10-01
development in biomaterials , endoscopic tools, energy delivery, medical imaging, and other novel technologies. 15. SUBJECT TERMS None provided. 16. SECURITY...below. Issues of Concern We have identified a suitable colla borator to conclude the second an d final phase of this project, namely Dr. Gary...patent application will depend on the results of the second phase of t he project, as well as the ex isting int ellectual property on SEE-fitted
Plant engineers solar energy handbook. [Includes glossaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-21
This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less
NASA Astrophysics Data System (ADS)
Zou, Jiajun
2018-01-01
Concentrating solar thermal power (CSP) industry is a strategic emerging industry in China. Its further development is of great significance for promoting the energy revolution, achieving energy saving and emission reduction. In this paper, China’s CSP industry is systematically analysed. First of all, the status quo is elaborated from the perspectives of relevant policies and regulations, market and generation technology development. Secondly, the problems and the underlying reasons of China’s CSP industry are deeply studied. On this basis, the future trends of CSP are expounded on the three levels of policy, market and power generation technology. Finally, a series of feasible countermeasures are put forward, designed to promote the development of CSP industry and the transformation of energy structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambley, Michael R.; Haves, Philip; McDonald, Sean C.
2005-04-13
Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less
Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heatingmore » and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.« less
The future cost of electrical energy storage based on experience rates
NASA Astrophysics Data System (ADS)
Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.
2017-08-01
Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
Catalysis and biocatalysis program
NASA Technical Reports Server (NTRS)
Ingham, J. D.
1993-01-01
This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.
Evaluating the Impact of Air Pollution on Human Health in China: the Price of Clean Air
NASA Astrophysics Data System (ADS)
Wang, X.; Mauzerall, D. L.; Hu, Y.; Russell, A. G.; Woo, J.; Streets, D. G.
2003-12-01
Population growth, rapid urbanization and economic development are contributing to increased energy consumption in China. One of the unintended consequences is poor air quality due to a lack of environmental controls. The coal dependent energy structure in China only worsens the situation. Quantification of the environmental costs resulting from air pollution is needed in order to provide a mechanism for making strategic energy policy that accounts for the life-cycle cost of energy use. However, few such studies have been conducted for China that examine the entire energy system. Here we examine the extent to which public health has been compromised due to elevated air pollution and how China could incorporate environmental costs into future energy and environmental policies. Taking the Shandong region in eastern China as a case study, we develop a high-resolution regional inventory for anthropogenic emissions of NOx, CO, PM2.5, PM10, VOCs, NH3 and SO2. SMOKE (Sparse Matrix Operator Kernel Emissions Modeling System) is used to process spatial and temporal distributions and chemical speciation of the regional emissions, MM5 (the Fifth-Generation NCAR/Penn State Meso-scale Model, Version 3) is used to generate meteorology and Models3/CMAQ (Community Multi-scale Air Quality Modeling System) is used to simulate ambient concentrations of particulates and other gaseous species in this region. We then estimate the mortality and morbidity in this region resulting from exposure to these air pollutants. We also estimate the monetary values associated with the resulting mortality and morbidity and quantify the contributions from various economic sectors (i.e. power generation, transportation, industry, residential and others). Finally, we examine the potential health benefits that adoption of best available or advanced energy (coal-based, in particular) and environmental technologies in different sectors could bring about. The results of these analyses are intended to provide insight into whether China should choose to continue business as usual, adopt marginal, additional environmental controls for conventional energy technologies, or leapfrog to advanced, low-emission energy technologies. Finally, we make recommendations on which energy sector priority should be placed after environmental costs are taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.
The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technologymore » elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
NASA Astrophysics Data System (ADS)
Azar, Elie
Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings to evaluate the human impact on their energy performance. This is expected to boost research on the topic and promote the integration of human-focused interventions in large-scale energy reduction initiatives and policies. Finally, this dissertation presents a roadmap for the future challenges to energy conservation and the steps to take towards a more sustainable building sector and society.
Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; ...
2017-03-23
The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.
The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less
Clinton, William J.
2018-05-03
The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clinton, William J.
The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manwell, James
2013-03-19
The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy
Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives
Bauer, Nico; Calvin, Katherine; Emmerling, Johannes; ...
2016-08-23
Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomicmore » Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO 2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.« less
76 FR 70994 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... collection techniques or other forms of information technology. Please note that in the final version of the....ornl.gov/evaluation_sep.shtml ]. The surveys and data collection forms that compose this information... reductions in consumption of fossil fuel and replacement of fossil fuel generation with renewable energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, R.
2013-03-01
The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.
ERIC Educational Resources Information Center
Orsak, Charles G., Jr.; And Others
The objective of this project was to determine the need for manpower training in solar energy technology and report it on a regional and/or state basis. Three basic questions were to be answered by the project: (1) Based on a survey of solar heating and cooling systems equipment, what types of systems are being manufactured? (2) What is the…
2017-03-01
FINAL REPORT Demonstration of Energy Savings in Commercial Buildings for Tiered Trim and Respond Method in Resetting Static Pressure for VAV...release Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Environmental Security Technology...Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be
Analysis of Drag Reduction Methods and Mechanisms of Turbulent.
Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou
2017-01-01
Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.
An Outlook on Lithium Ion Battery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthiram, Arumugam
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
Student Support for EIPBN 2014 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
The 58th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN), 2014, was held at the Omni Shoreham Hotel in Washington, DC, May 27 to 30, 2014. The EIPBN Conference is recognized as the foremost international meeting dedicated to lithographic science and technology and its application to micro and nanofabrication techniques. The conference brought together 386 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for the realizationmore » of low power integrated circuits. Every year, EIPBN provides financial support for students to attend the conference. Travel support for 43 students came from a mixture of government agencies and corporate donors. The Department of Energy Office of Basic Energy Sciences provided $5,000 to support student travel from US universities to participate at EIPBN 2014 through grant DE-SC0011789.« less
An Outlook on Lithium Ion Battery Technology
Manthiram, Arumugam
2017-09-07
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
An Outlook on Lithium Ion Battery Technology
2017-01-01
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922
Analysis of Drag Reduction Methods and Mechanisms of Turbulent
Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou
2017-01-01
Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allentuck, J; Appleman, J; Carroll, T O
1977-11-01
In compliance with its mandate to accelerate the development and use of energy technologies in furtherance of the state's economic growth and the best interests of its population, the New York State Energy Research and Development Authority (NYSERDA) initiated, in March 1977, an assessment of energy research and development priorities. This report presents a view of the energy supply-demand future of the state, and the ways in which this future can be affected by external contingencies and concerted policies. That view takes into consideration energy supplies that may be available to the state as well as energy demands as theymore » are affected by demographic and economic changes within the state. Also included are the effects of national energy policies and technological developments as they modify both supplies and demands in New York State. Finally, this report proceeds to identify those general technological areas in which the Authority's program can be of greatest potential benefit to the state's social and economic well being. This effort aims at a cost/benefit analysis determination of RD and D priorities. The preliminary analysis thus far indicates these areas as being of highest priority: energy conservation in buildings (promotion and execution of RD and D) and industry; district heating; fuel cell demonstration;solar heating and cooling (analysis, demonstration, and information dissemination); energy-environment interaction (analysis); energy information services; and, in general, the attraction of Federal RD and D programs to the state.« less
Scientific Challenges in Sustainable Energy Technology
NASA Astrophysics Data System (ADS)
Lewis, Nathan
2006-03-01
This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power on the needed scale by the 2050 timeframe. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, John; Fanselow, Dan; Abbas, Charles
2014-08-06
3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.
Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.
The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less
Design guidelines of triboelectric nanogenerator for water wave energy harvesters
NASA Astrophysics Data System (ADS)
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Abu Yazid, Taher; Zu, Jean; Wang, Zhong Lin
2017-05-01
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester’s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
NASA Astrophysics Data System (ADS)
Jin, Yang; Ciwei, Gao; Jing, Zhang; Min, Sun; Jie, Yu
2017-05-01
The selection and evaluation of priority domains in Global Energy Internet standard development will help to break through limits of national investment, thus priority will be given to standardizing technical areas with highest urgency and feasibility. Therefore, in this paper, the process of Delphi survey based on technology foresight is put forward, the evaluation index system of priority domains is established, and the index calculation method is determined. Afterwards, statistical method is used to evaluate the alternative domains. Finally the top four priority domains are determined as follows: Interconnected Network Planning and Simulation Analysis, Interconnected Network Safety Control and Protection, Intelligent Power Transmission and Transformation, and Internet of Things.
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R.
The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less
Coons, James E.; Kalb, Daniel M.; Dale, Taraka; ...
2014-08-31
Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologiesmore » Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.« less
A Plan for Environmental/Energy Education in the Public Community College System of Illinois.
ERIC Educational Resources Information Center
National Field Research Center Inc., Iowa City, IA.
This report examines the environmental training efforts of community colleges in Illinois. The text includes a series of nine model environmental protection curricula and outlines appropriate course descriptions for pollution control and abatement, radiation, and general environmental technology. A final section offers recommendations which…
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
Carbon footprint of forest and tree utilization technologies in life cycle approach
NASA Astrophysics Data System (ADS)
Polgár, András; Pécsinger, Judit
2017-04-01
In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined in the stands are the followings: Stage 1. cleaning cutting Stage 2. selection thinning Stage 3. increment thinning Stage 4. final harvest In these priority impact categories, the life cycle contribution of technologies varied according to the life cycle stages. • The spruce stand showed the smallest contribution in the stages 1, 2, 3 alike. • After the large contribution of beech stand at the beginning (stage 1), it continues representing a moderate level in stage 2 and 3, and it shares the smallest rate in final harvest (stage 4). • The oak stand showed the largest contribution in the stages 2, 3, 4 alike. • In the case of acacia and poplar, we have got the same results as in the case of oak stands. • In the case of short rotation energy plantations (willow, poplar), we got the results typical on stage 4 of spruce stands. We can conclude, that in case of the stage of final harvest, which represents the most significant environmental impact, the ranking of working systems showes the increasing order of „energy plantations - beech - spruce - acacia - poplar - oak". The environmental assessment of technological aspects of land use and land use change represent an important added value to the climate research. Acknowledgement: This research has been supported by the Agroclimate.2 VKSZ_12-1- 2013-0034 project. Keywords: life-cycle assessment / forest utilization technology / carbon footprint / life-cycle thinking
Essays on Energy Technology Innovation Policy
NASA Astrophysics Data System (ADS)
Chan, Gabriel Angelo Sherak
Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U.S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of reform. Policies to "unlock" publicly sponsored inventions from the organizations that develop them have broad impact on private sector innovation. These policies multiply the effect of public research and development funds, but should be strengthened to more rapidly advance the scientific frontier. The second chapter of this dissertation provides some of the first quantitative evidence to support reform in this area. Finally, international policies to facilitate the deployment of climate-friendly technologies in developing countries face serious implementation challenges. The current paradigm of utilizing carbon markets to fund individual projects that would not have otherwise occurred has failed to encourage energy technology deployment in one of the sectors with the greatest experience with such policies. The third chapter of this dissertation suggests that this failure has been largely due to poorly designed procedural rules, but options for reform are available. Mitigation of global climate change will require broad policy response across the full range of scales, sectors, and policy spheres. Undoubtedly, climate mitigation will result in widespread transformation of energy systems. This dissertation focuses on the role of innovation policy in accelerating the transformation of these systems. The range of policies studied in this dissertation can make climate change mitigation more politically feasible and more cost effective by expanding the set of technological choices available to public and private actors faced with incentives and requirements to lower their greenhouse gas emissions to collectively safe levels.
Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler , Michael; Siddiqui, Afzal; Marnay, Chris
The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elander, Rick
NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representativemore » large volume, sustainable feedstock.« less
Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seasholtz, Jeff
2015-08-20
The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the Eastmore » Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).« less
NASA Astrophysics Data System (ADS)
Nolan, Lucy A.
Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature, namely that government policies are important to the implementation of labor-intensive technologies. Finally, this research makes two important contributions to the SAM methodology. It is one of the first SAM modeling exercises to quantify the costs of carbon dioxide emissions and the impact of alternative fuels on regional and human development. The addition of an environmental sector enables the planner to determine carbon dioxide effects resulting from growth in different socioeconomic sectors. This will have implications for greenhouse gas mitigation strategies.
Geothermal energy - Ready for use
NASA Astrophysics Data System (ADS)
Miskell, J. T.
1980-11-01
The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.
NASA Astrophysics Data System (ADS)
Jeandron, Michelle
2008-06-01
The International Atomic Energy Agency (IAEA), which has its headquarters in Vienna, Austria, is a specialized agency of the United Nations (UN) that seeks to promote the safe, secure and peaceful use of nuclear technology. It has three main areas of expertise. It is the world's nuclear inspectorate, sending inspectors to more than 140 UN member states, from Brazil to Japan, to verify that nuclear technology is not being used for military purposes. The IAEA also helps countries to improve their nuclear safety procedures and to prepare for emergencies. Finally, it serves as a focal point for the world's development of nuclear science and technology across all fields.
Diffusion models for innovation: s-curves, networks, power laws, catastrophes, and entropy.
Jacobsen, Joseph J; Guastello, Stephen J
2011-04-01
This article considers models for the diffusion of innovation would be most relevant to the dynamics of early 21st century technologies. The article presents an overview of diffusion models and examines the adoption S-curve, network theories, difference models, influence models, geographical models, a cusp catastrophe model, and self-organizing dynamics that emanate from principles of network configuration and principles of heat diffusion. The diffusion dynamics that are relevant to information technologies and energy-efficient technologies are compared. Finally, principles of nonlinear dynamics for innovation diffusion that could be used to rehabilitate the global economic situation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2012-01-01
This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.
A Day at the Races: NREL Hosts Colorado Middle School Students With STEM Skills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lung, Linda
Technology and imagination came together at the National Renewable Energy Laboratory on May 20 when 53 teams from 18 Colorado middle schools turned a parking lot into a raceway. The students used the technological know-how picked up in science, technology, engineering, and math (STEM) classes to design and build model electric cars. Powered either by a solar panel or a lithium-ion battery, each car competed in time trials and double elimination races. The final races, between eight cars competing in each category, were over in less than 10 seconds.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowdermilk, W. H.; Brothers, L. J.
This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.
Fuel conservation through active control of rotor clearances
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Saunders, A. A.; Wanger, R. P.
1980-01-01
Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.
Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-09-01
The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less
Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian David; DeSantis, Daniel Allan; Saur, Genevieve
This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H 2) production technologies and project their corresponding levelized production cost of H 2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H 2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energymore » usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H 2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H 2 ($/kgH 2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H 2 production, H 2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).« less
Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing
2017-07-07
With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.
Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranganathan, Shashidhar
Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The currentmore » proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.« less
Energy Efficient Engine: Flight propulsion system final design and analysis
NASA Technical Reports Server (NTRS)
Davis, Donald Y.; Stearns, E. Marshall
1985-01-01
The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
...: Regulatory History On January 7, 2010, the NTSB published a final rule entitled, ``Notification and Reporting... submit this certification to the Chief Counsel for Advocacy at the Small Business Administration. This... That Significantly Affect Energy Supply, Distribution, or Use; and the National Technology Transfer and...
NASA Astrophysics Data System (ADS)
Rachi, Hideki
Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, M.D.
One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.
NASA Technical Reports Server (NTRS)
Grossman, G. R.; Roberts, A. S., Jr.
1975-01-01
An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.
Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Thornton C
2014-03-31
Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been mademore » possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June 2014, the E-SMARRT program predicts an average annual estimated savings of 59 Trillion BTUs per year over a 10 year period through Advanced Melting Efficiencies and Innovative Casting Processes. Along with these energy savings, an estimated average annual estimate of CO2 reduction per year over a ten year period is 3.56 Million Metric Tons of Carbon Equivalent (MM TCE).« less
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less
Distributed Wind Market Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsyth, T.; Baring-Gould, I.
2007-11-01
Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, centralmore » station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Ellen
The National Council for Science and the Environment (NCSE) held its 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change, on January 27-29, 2015, at the Hyatt Regency Hotel, Crystal City, VA. The National Conference: Energy and Climate Change developed and advanced partnerships that focused on transitioning the world to a new “low carbon” and “climate resilient” energy system. It emphasized advancing research and technology, putting ideas into action, and moving forward on policy and practice. More than 900 participants from the scientific research, policy and governance, business and civil society, and educationmore » communities attended. The Conference was organized around four themes: (1) a new energy system (including energy infrastructure, technologies and efficiencies, changes in distribution of energy sources, and low carbon transportation); (2) energy, climate and sustainable development; (3) financing and markets; and (4) achieving progress (including ideas for the 21st Conference of Parties to the United Nations Framework Convention on Climate Change). The program featured six keynote presentations, six plenary sessions, 41 symposia and 20 workshops. Conference participants were involved in the 20 workshops, each on a specific energy and climate-related issue. The workshops were designed as interactive sessions, with each workshop generating 10-12 recommendations on the topic. The recommendations were prepared in the final conference report, were disseminated nationally, and continue to be available for public use. The conference also featured an exhibition and poster sessions. The National Conference on Energy and Climate Change addressed a wide range of issues specific to the U.S. Department of Energy’s programs; involved DOE’s scientists and program managers in sessions and workshops; and reached out to a broad array of DOE stakeholders.« less
Sun, Kaiyu; Hong, Tianzhen
2017-04-27
To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). Finally, the study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kaiyu; Hong, Tianzhen
To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). Finally, the study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.« less
NASA Astrophysics Data System (ADS)
Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel
2017-07-01
Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: <1 mS cm-1) using a filter press-based MDC prototype without any energy supply (excluding peristaltic pump energy). This start-up protocol is not only optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake R.
The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology.more » CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.« less
Energy-Based Facial Rejuvenation: Advances in Diagnosis and Treatment.
Britt, Christopher J; Marcus, Benjamin
2017-01-01
The market for nonsurgical, energy-based facial rejuvenation techniques has increased exponentially since lasers were first used for skin rejuvenation in 1983. Advances in this area have led to a wide range of products that require the modern facial plastic surgeon to have a large repertoire of knowledge. To serve as a guide for current trends in the development of technology, applications, and outcomes of laser and laser-related technology over the past 5 years. We performed a review of PubMed from January 1, 2011, to March 1, 2016, and focused on randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidelines including case control, case studies and case reports when necessary, and included 14 articles we deemed landmark articles before 2011. Three broad categories of technology are leading non-energy-based rejuvenation technology: lasers, light therapy, and non-laser-based thermal tightening devices. Laser light therapy has continued to diversify with the use of ablative and nonablative resurfacing technologies, fractionated lasers, and their combined use. Light therapy has developed for use in combination with other technologies or stand alone. Finally, thermally based nonlaser skin-tightening devices, such as radiofrequency (RF) and intense focused ultrasonography (IFUS), are evolving technologies that have changed rapidly over the past 5 years. Improvements in safety and efficacy for energy-based treatment have expanded the patient base considering these therapies viable options. With a wide variety of options, the modern facial plastic surgeon can have a frank discussion with the patient regarding nonsurgical techniques that were never before available. Many of these patients can now derive benefit from treatments requiring significantly less downtime than before while the clinician can augment the treatment to maximize benefit to fit the patient's time schedule.
Exploring the energy benefits of advanced water metering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Michael A.; Hans, Liesel; Piscopo, Kate
Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are basedmore » on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow, due to structural economic and regulatory barriers. In California, we see examples of deployed advanced metering systems with demonstrated embedded energy savings through water conservation and leak detection. Finally, we also see substantial untapped opportunity in the agricultural sector for enabling electric demand response for both traditional peak shaving and more complex flexible and ancillary services through improved water tracking and farm automation.« less
Two-stage collaborative global optimization design model of the CHPG microgrid
NASA Astrophysics Data System (ADS)
Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng
2017-06-01
With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S
2015-01-01
Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less
Laser Shot Peening System Final Report CRADA No. TC-1369-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, B. C.; Harris, F.
This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillingham, Kenneth; Bollinger, Bryan
This is the final report for a systematic, evidence-based project using an unprecedented series of large-scale field experiments to examine the effectiveness and cost-effectiveness of novel approaches to reduce the soft costs of solar residential photovoltaics. The approaches were based around grassroots marketing campaigns called ‘Solarize’ campaigns, that were designed to lower costs and increase adoption of solar technology. This study quantified the effectiveness and cost-effectiveness of the Solarize programs and tested new approaches to further improve the model.
NASA Astrophysics Data System (ADS)
Ebersbach, K. F.; Fischer, A.; Layer, G.; Steinberger, W.; Wegner, M.; Wiesner, B.
1982-07-01
The energy demand in the sector of trade and commerce was registered and analyzed. Measures to improve the energy demand structure are presented. In several typical firms like hotels, office buildings, locksmith's shops, motor vehicle repair shops, butcher's shops, laundries and bakeries, detailed surveys of energy consumption were done and included in a statistic evaluation. Subjects analyzed were: development of the energy supply; technology of energy application; final energy demand broken down into demand for light, power, space heating and process heat as well as the demand for cooling; daily and annual load curves of energy consumption and their dependence on various parameters; and measures to improve the structure of energy demand. Detailed measurement points out negligences in the surveyed firms and shows possibilities for likely energy savings. In addition, standard values for specific energy consumption are obtained.
NASA Astrophysics Data System (ADS)
Ebersbach, K. F.; Fischer, A.; Layer, G.; Steinberger, W.; Wegner, M.; Wiesner, B.
1982-06-01
The energy demand in trade and commerce was analyzed. Measures to improve the energy demand structure are presented. In several typical firms, like hotels, office buildings, locksmith's shops, motor vehicle repair shops, butcher's shops, laundries and bakeries, energy consumption was surveyed and statistically evaluated. Subjects analyzed are: the development of the energy supply; the technology of energy application; the final energy demand broken down into demand for light, power, space heating and process heat as well as the demand for cooling; the daily and annual load curve of energy consumption and its dependence on various parameters; and measures to improve the structure of energy demand. The detailed measurement points out negligences in the surveyed firms and shows some possibilities for likely energy savings. In addition, standard values for specific energy consumption are obtained.
Arctic Energy Technology Development Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney
2008-12-31
The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less
Energy monitoring and managing for electromobility purposes
NASA Astrophysics Data System (ADS)
Slanina, Zdenek; Docekal, Tomas
2016-09-01
This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.
Alternative power supply systems for remote industrial customers
NASA Astrophysics Data System (ADS)
Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.
2017-06-01
The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.
Experimental Neutrino Physics: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Charles E.; Maricic, Jelena
2012-09-05
Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.
The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...
The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...
Audit Report "The Department of Energy's Loan Guarantee Program for Innovative Energy Technologies"
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-02-01
The Energy Policy Act of 2005 authorized the Department of Energy to guarantee loans for new or significantly improved energy production technologies that avoid, reduce, or sequester air pollutants and other greenhouse gases. As of December 2008, Congress authorized the Department to make $42.5 billion in loan guarantees to support innovative energy projects. These guarantees were authorized for up to 80% of the total project costs and were designed to promote the commercial use of innovative technologies. Under the terms of the Act, the loan guarantees are contingent upon reasonable prospect of repayment by the borrower. Consistent with the Energymore » Policy Act, the Department is responsible for soliciting and evaluating loan applications, approving loan guarantees, and monitoring project and loan guarantee performance. through December 2008, the Department had issued five solicitations for projects that support innovative clean coal technologies, energy efficiency, renewable energy, advanced electricity transmission and distribution, and nuclear and fossil energy projects. These solicitations were issued in three phases with the first in August 2006, and the final in September 2008. Eleven substantially complete applications requesting approximately $8.2 billion in loan guarantees had been received by the Department in response to the first solicitation. The Department had begun the review of applications and was in the process of completing due diligence procedures necessary to evaluate projects received in response to the first solicitation. Under current plans, the Department is to issue its first loan guarantees in the spring of 2009. Because of the importance of this program as part of an effort to address the Nation's most challenging and pressing energy needs; and, the potential risk of loss to the United States taxpayers should default occur, we initiated this review to evaluate the Department's progress in establishing internal and operational controls over its Loan Guarantee Program.« less
Energy savings and cost-benefit analysis of the new commercial building standard in China
Zhao, Shanguo; Feng, Wei; Zhang, Shicong; ...
2015-10-07
In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less
Energy savings and cost-benefit analysis of the new commercial building standard in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shanguo; Feng, Wei; Zhang, Shicong
In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less
2005-12-01
M-I (H2C=CHSF5). To 3.5 g potassium hydroxide in 4 mL of water was added 10.5 mL of isopropanol in a 50 mL three-necked flask equipped with an...S- 5 2006 Ne Tech New Era Technology, Inc. 3720 NW 4 3rd Street, Suite 105, Gainesville, Florida 32606-6190, USA Final Report TITLE: Development of ...Senior Scientist, NeTech Research Institute (Subcontractor): University of Florida Dr. William R. Dolbier, Jr., P1 - University of Florida, Crow
Impact and promise of NASA aeropropulsion technology
NASA Technical Reports Server (NTRS)
Saunders, Neal T.; Bowditch, David N.
1987-01-01
The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Lin, Zhenhong; Nealer, Rachael
This paper conducted an analysis of regulatory documents on current energy- and greenhouse gas–relevant conventional vehicle efficiency technologies in the corporate average fuel economy standards (2017 to 2025) and greenhouse gas rulemaking context by NHTSA and EPA. The focus was on identifying what technologies today—as estimated now (2015 to 2016)—receive higher or lower expectations with regard to effectiveness, cost, and consumer adoption than what experts projected during the 2010 to 2011 rulemaking period. A broad range of conventional vehicle efficiency technologies, including gasoline engine and diesel engine, transmission, accessory, hybrid, and vehicle body technologies, was investigated in this analysis. Finally,more » most assessed technologies were found to have had better competitiveness than expected with regard to effectiveness or costs, or both, with costs and market penetration more difficult to predict than technology effectiveness.« less
Xie, Fei; Lin, Zhenhong; Nealer, Rachael
2017-09-30
This paper conducted an analysis of regulatory documents on current energy- and greenhouse gas–relevant conventional vehicle efficiency technologies in the corporate average fuel economy standards (2017 to 2025) and greenhouse gas rulemaking context by NHTSA and EPA. The focus was on identifying what technologies today—as estimated now (2015 to 2016)—receive higher or lower expectations with regard to effectiveness, cost, and consumer adoption than what experts projected during the 2010 to 2011 rulemaking period. A broad range of conventional vehicle efficiency technologies, including gasoline engine and diesel engine, transmission, accessory, hybrid, and vehicle body technologies, was investigated in this analysis. Finally,more » most assessed technologies were found to have had better competitiveness than expected with regard to effectiveness or costs, or both, with costs and market penetration more difficult to predict than technology effectiveness.« less
Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1999-03-02
The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the projectmore » under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.« less
Lighting for Tomorrow: What have we learned and what about the day after tomorrow?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry
2006-08-22
This paper describes Lighting for Tomorrow, a program sponsored by the US Department of Energy Emerging Technologies Program, the American Lighting Association, and the Consortium for Energy Efficiency. The program has conducted a design competition for residential decorative lighting fixtures using energy-efficient light sources. The paper discusses the reasons for development of the design competition, and the intended outcomes of the effort. The two competitive rounds completed to date are described in terms of their specific messaging and rules, direct results, and lessons learned. Experience to date is synthesized relative to the intended outcomes, including new product introductions, increased awarenessmore » of energy efficiency within the lighting industry, and increased participation by lighting showrooms in marketing and selling energy-efficient light fixtures. The paper also highlights the emergence of Lighting for Tomorrow as a forum for addressing market and technical barriers impeding use of energy-efficient lighting in the residential sector. Finally, it describes how Lighting for Tomorrow's current year (2006) program has been designed to respond to lessons from the previous competitions, feedback from the industry, and changes in lighting technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Bennett
The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sizedmore » manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.« less
Student Support for EIPBN 2016 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
The 60th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN) was held in Pittsburgh, PA, from May 31st to June 3rd, 2016. The conference received technical co-sponsorship from the American Vacuum Society (AVS) in cooperation with the Optical Society of America (OSA), and the American Physical Society (APS). The conference was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many published peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Departmentmore » of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0015555).« less
NASA Astrophysics Data System (ADS)
Gilpin, Matthew R.
Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature. In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density. Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results. Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
Active Thermal Control System Development for Exploration
NASA Technical Reports Server (NTRS)
Westheimer, David
2007-01-01
All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.
High-energy laser weapons: technology overview
NASA Astrophysics Data System (ADS)
Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew
2004-09-01
High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.
Comparison of end-of-life tire treatment technologies: a Chinese case study.
Li, Xingfu; Xu, He; Gao, Yingnan; Tao, Yijun
2010-11-01
The aim of this paper is to compare different end-of-life tire (ELT) treatment technologies in China from an environmental and economic perspective. Four treatment technologies were evaluated: ambient grinding, devulcanization, pyrolysis and illegal tire oil extraction. Life cycle assessment (LCA) was applied to evaluate the potential environmental impact of each treatment based on the Eco-indicator 99 (Hierarchist approach) method provided by GaBi 4 software. The final result shows that pyrolysis represents the environmentally benign option while illegal tire oil extraction caused the worst damages. For the three legal treatments, although high credit was obtained when considering avoided impacts from recycled materials and energy, they have great impact as to respiratory effects (inorganic) dominantly contributed by energy production stage, which implies that the emphasis on environmental policies related to ELT treatment should shift from the control of emissions from treatment process to the reduction of energy consumption. A simplified comparison of net benefits and total impacts shows that the most eco-effective ELT treatment technology is pyrolysis, followed by dynamic devulcanization and ambient grinding. The illegal tire oil extraction, however, must be prohibited immediately because of its highest environmental pollution and lowest net benefit. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, L.D.; Kensington, K.
I will tell you how we transferred a technology from the US Department of Energy`s Pacific Northwest Laboratory to the private sector. I`ll begin by telling about the technology and what it does. Then I`ll tell you how we found a commercial partner to market the technology. And I`ll end by telling you some of the lessons we learned and what our customer thinks about the partnership. This is a success for two reasons. First, the people who developed the technology had faith in its potential. And second, they took an active part in the transfer; they didn`t sit backmore » and wait for someone else to do it. That reminds me of Joe. Night after night, Joe prayed for help in winning the lottery, but his prayers went unanswered. Finally he cried out in desperation: ``Lord, give me a break! Please let me win the lottery!`` Suddenly, lightning flashed across the sky and thunder crashed around him. Then, he heard a voice from above: ``Joe! You give ME a break! BUY A TICKET!`` To succeed in tech transfer, you`ve got to have more than faith. You`ve got to buy a ticket. You`ve got to invest time, energy, imagination, and effort. And that`s just what the developers of the waste acid detoxification and reclamation process did.« less
Final environmental assessment: Sacramento Energy Service Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
The Sacramento Area Office (SAO) of the Western Area Power Administration (Western) needs to increase the security of operations, to eliminate overcrowding at the current leased location of the existing facilities, to provide for future growth, to improve efficiency, and to reduce operating costs. The proposed action is to construct an approximate 40,000-square foot building and adjacent parking lot with a Solar Powered Electric Vehicle Charging Station installed to promote use of energy efficient transportation. As funding becomes available and technology develops, additional innovative energy-efficient measures will be incorporated into the building. For example the proposed construction of the Solarmore » Powered Electric Vehicle Charging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.
1978-02-01
Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.
Parametric investigations of target normal sheath acceleration experiments
NASA Astrophysics Data System (ADS)
Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo
2011-10-01
One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.
The development of marine renewable energy in China: prospects, challenges and recommendations
NASA Astrophysics Data System (ADS)
Wang, Ji; Wang, Haifeng; Liu, Yuxin; Chen, Libo; Tang, Jiuting
2018-02-01
In this paper, resources distribution and technology status of tidal energy, wave energy, tidal current energy, ocean thermal energy and salinity gradient energy in China is reviewed, and assessment and advices are given for each category. By analysis, we believe that marine renewable energy is a necessary addition to existent renewable energy to meet the energy demand of the areas and islands where traditional forms of energy are not applicable and it is of great importance in adjusting energy structure of China. This paper describes the potential of marine renewable energy in China, and explores the possible role in future energy systems. As the paper discusses, building on these initiatives, and “realizing” the accelerated development of marine energy, presents a number of challenges. This paper describes a scenario for the accelerated development of marine renewable energy in China from now to 2030. Finally, this paper provides recommendations for future development of marine renewable energy in China.
Open Workshop on Solar Technologies: Proceedings
NASA Astrophysics Data System (ADS)
1980-07-01
The deliberations, conclusions, and recommendations of six panels asked to provide advice to the Department of Energy on the subject of solar energy are detailed. Introductory speeches by seven experts, excerpts from the succeeding two half days of discussion, the final reports for the panel chairpersons, and subsequent discussion and questioning are included. Approximately 125 findings and recommendations were developed by the six panels covering a wide variety of topics. Major recurring themes were recommendations for increased funding, federal program improvement, conservation, outreach programs small business funding, and solar training programs.
NASA Technical Reports Server (NTRS)
Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.
1994-01-01
The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.
Final MTI Data Report: Pilgrim Nuclear Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.
2003-03-17
During the period from May 2000 to September 2001, ocean surface water temperature data was collected at the Pilgrim Nuclear Power Station near Plymouth, MA. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of a local sub-contractor, Marine BioControl Corporation of Sandwich, MA. Permission for setting up the monitoring system was granted by Energy Corporation, which owns the plant site. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.
Laboratory Astrophysics Using High Intensity Particle and Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin
History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.
Lefebvre, M
1979-01-01
The present information production techniques are so inefficient that it is out of the question to generalize them. On the other hand audio-visual communication raises a major political problem, especially for developing countries. Audio-visual equipment has gone through adjustment phases; the example of the tape and cassette recorder is given: 2 technological improvements have completely modified its use; the transistors have allowed considerable reduction in volume and weight as well as the energy necessary; the invention of the cassette has simplified its use. Technological research is following 3 major directions: the production of equipment which consumes little energy; the improvement of electronic component production techniques (towards cheaper electronic components); finally, the designing of systems allowing to stock large quantities of information. The communication systems will probably make so much progress in the areas of technology and programming, that they will soon have very different uses than the present ones. The question is whether our civilizations will let themselves be dominated by these new systems, or whether they will succeed to turn them into progress tools.
Challenges and opportunities of torrefaction technology
NASA Astrophysics Data System (ADS)
Kosov, V. F.; Kuzmina, J. S.; Sytchev, G. A.; Zaichenko, V. M.
2016-11-01
Since the active exploitation and usage of classical non-renewable energy resources the most promising direction is the development of technologies of heat and electricity production from renewable sources—biomass. This is important in terms of reducing the harmful man-made influence of fuel-and-energy sector on the ecological balance. One of the most important aims when using biomass is its pre-treatment. The paper describes the fuel preliminary preparation for combustion with such technological process as torrefaction. Torrefaction allows bringing the biomass fuel as close as it possible to fossil coals for the main thermotechnical parameters. During torrefaction moisture is removed from initial material and the partial thermal decomposition of its components appears. The final torrefied product can be recommended for utilization in existing coal-fired boilers without their major reconstruction. Thus torrefaction technology enables the partial or complete replacement of fossil coal. At JIHT RAS, a torrefaction pilot plant is developed. As heat transfer medium the gas-piston engine exhaust gases were used. Results of researching and proposals for further development are showed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittal, Vijay
2015-11-04
The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This reportmore » provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.« less
The Office of Technology Development technical reports. A bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex;more » Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T.O.
Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issuesmore » for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.« less
A SOCIO-ECONOMIST LOOKS AT THE CURRENT VALUES AND CHANGING NEEDS OF YOUTH. FINAL DRAFT.
ERIC Educational Resources Information Center
THEOBALD, ROBERT
MAN HAS ACHIEVED THE POWER TO CREATE AN ENVIRONMENT SUITED TO HIS NEEDS. THIS POWER COMES FROM DEVELOPMENTS IN THE UTILIZATION OF ENERGY, ADVANCEMENTS IN CHEMISTRY, AN INCREASE IN SCIENTIFIC PROBLEM SOLVING ABILITY AND COMPUTER TECHNOLOGY. THESE SOURCES OF POWER RESULT IN THE DRIVE TOWARD THE DEVELOPMENT OF DESTRUCTIVE POWER, THE CAPABILITY OF…
A New Calorimetry Design for Assessing Proposed Technologies in Low Energy Power Production
2012-12-01
an induction coil, some connectors, switches, insulation materials, and stainless steel and plastic tubing. Water from a common faucet was used as...5. First version of the calorimeter The water exits the faucet and splits via two switches to two tubing structures, which finally both end in the...3 1. Conservation of Mass ..........................................................................3 2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... inspection technology that is used to scan high-density cargo containers for contraband such as illicit drugs... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Notice of Availability of the... Operation of High Energy X-Ray Inspection Systems at Sea and Land Ports of Entry AGENCY: U.S. Customs and...
Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices
2014-03-06
Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an
Ocean power technology design optimization
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...
2017-07-18
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Ocean power technology design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
NASA Astrophysics Data System (ADS)
Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah
2015-09-01
Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.
Developing a scalable artificial photosynthesis technology through nanomaterials by design
NASA Astrophysics Data System (ADS)
Lewis, Nathan S.
2016-12-01
An artificial photosynthetic system that directly produces fuels from sunlight could provide an approach to scalable energy storage and a technology for the carbon-neutral production of high-energy-density transportation fuels. A variety of designs are currently being explored to create a viable artificial photosynthetic system, and the most technologically advanced systems are based on semiconducting photoelectrodes. Here, I discuss the development of an approach that is based on an architecture, first conceived around a decade ago, that combines arrays of semiconducting microwires with flexible polymeric membranes. I highlight the key steps that have been taken towards delivering a fully functional solar fuels generator, which have exploited advances in nanotechnology at all hierarchical levels of device construction, and include the discovery of earth-abundant electrocatalysts for fuel formation and materials for the stabilization of light absorbers. Finally, I consider the remaining scientific and engineering challenges facing the fulfilment of an artificial photosynthetic system that is simultaneously safe, robust, efficient and scalable.
Recovery opportunities for metals and energy from sewage sludges.
Mulchandani, Anjali; Westerhoff, Paul
2016-09-01
Limitations on current wastewater treatment plant (WWTP) biological processes and solids disposal options present opportunities to implement novel technologies that convert WWTPs into resource recovery facilities. This review considered replacing or augmenting extensive dewatering, anaerobic digestion, and off-site disposal with new thermo-chemical and liquid extraction processes. These technologies may better recover energy and metals while inactivating pathogens and destroying organic pollutants. Because limited direct comparisons between different sludge types exist in the literature for hydrothermal liquefaction, this study augments the findings with experimental data. These experiments demonstrated 50% reduction in sludge mass, with 30% of liquefaction products converted to bio-oil and most metals sequestered within a small mass of solid bio-char residue. Finally, each technology's contribution to the three sustainability pillars is investigated. Although limiting hazardous materials reintroduction to the environment may increase economic cost of sludge treatment, it is balanced by cleaner environment and valuable resource benefits for society. Copyright © 2016 Elsevier Ltd. All rights reserved.
An update on the Department of Energy's photovoltaic program
NASA Technical Reports Server (NTRS)
Benner, John P.; Fitzgerald, Mark
1994-01-01
Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvarli, H.
The high energy demand in Turkey is closely linked to economic growth, industrialization, and population increase. Turkish general energy policies are designed to support economic and social development. Natural conditions of Turkey are favorable for utilization of new and renewable energies, such as hydraulic energy, geothermal energy, wind energy, biomass energy, solar energy, and, probably, nuclear energy. As the use of hydraulic and coal in Turkey will reach its full capacity by 2020, imported natural gas, coal, and other resources will be used to meet the energy demand. By 2020, approximately 75% of final energy demand and 67% of electricitymore » supply will be met by coal, oil, and natural gas. Energy investments, which are closely related with the environmental protection, require massive financial resources. It is also important to use standardized equipment and materials in all areas of energy generation, transmission, distribution, and trade. For a sustainable development, the next investments on industry should be made for the clean technologies in regard with being environment-friendly.« less
Nanogenerators for Human Body Energy Harvesting.
Proto, Antonino; Penhaker, Marek; Conforto, Silvia; Schmid, Maurizio
2017-07-01
Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, and thermoelectric physical effects. In designing NGs, the end-user's comfort is a primary concern. Therefore, we focus on recently developed materials giving flexibility and stretchability to NGs. In addition, we summarize common fabrics for NG design. Finally, the mid-2020s market forecasts for these promising technologies highlight the potential for the commercialization of NGs because they may help contribute to the route of innovation for developing self-powered systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowda, Varun; Hogue, Michael
This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less
Hydrogen fuel - Universal energy
NASA Astrophysics Data System (ADS)
Prince, A. G.; Burg, J. A.
The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.
Transmission calculation and intensity suppression for a proton therapy system
NASA Astrophysics Data System (ADS)
Chen, Wei; Yang, Jun; Qin, Bin; Liang, ZhiKai; Chen, Qushan; Liu, Kaifeng; Li, Dong; Fan, Mingwu
2018-02-01
A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250 MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). In this paper we report the main design features of the beam line in HUST-PTF project. The energy selection system (ESS) for energy modulation is discussed in detail, including the collimators, momentum slit and transmission calculation. Due to significant difference among the transmissions of ESS for different energies, the intensity suppression scheme by defocusing beam at high energies on collimators in the beam line is proposed and discussed. Finally, the ratios of beam intensities between low and high energies are expected to be controlled within 10 to meet the clinical requirement, and the beam optics of each energy step after intensity suppression is studied respectively.
Fossil Energy Planning for Navajo Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acedo, Margarita
This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO 2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmentalmore » impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.« less
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Shannon
BETTER Capstone supported 29 student project teams consisting of 155 students over two years in developing transformative building energy efficiency technologies through a capstone design experience. Capstone is the culmination of an undergraduate student’s engineering education. Interdisciplinary teams of students spent a semester designing and prototyping a technological solution for a variety building energy efficiency problems. During this experience students utilized the full design process, including the manufacturing and testing of a prototype solution, as well as publically demonstrating the solution at the Capstone Design Expo. As part of this project, students explored modern manufacturing techniques and gained hands-on experiencemore » with these techniques to produce their prototype technologies. This research added to the understanding of the challenges within building technology education and engagement with industry. One goal of the project was to help break the chicken-and-egg problem with getting students to engage more deeply with the building technology industry. It was learned however that this industry is less interested in trying innovative new concept but rather interested in hiring graduates for existing conventional building efforts. While none of the projects yielded commercial success, much individual student growth and learning was accomplished, which is a long-term benefit to the public at large.« less
Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications
NASA Astrophysics Data System (ADS)
Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.
2015-12-01
A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan
In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principlesmore » of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
In 1983, Fort Valley State University (FVSU) received start-up funds from the US Department of Energy`s Office of Minority Economic Impact to develop a Cooperative Developmental Energy Program (CDEP). The objective of CDEP is to develop a mutually beneficial long-term synergistic relationship among FVSU, two major universities, and the private and governmental sectors of the nation`s energy industry by creating a technology oriented labor base for minorities and women. FVSU accomplishes this objective by (1) developing dual-degree curricula with the University of Oklahoma and the University of Nevada at Las Vegas in energy related disciplines such as engineering, geosciences, andmore » health physics; (2) by recruiting academically talented minority and female students to pursue careers in the above disciplines; and (3) by developing participatory alliances with major energy companies and governmental agencies via internship, co-op, and employment programs. Since its inception in 1983, CDEP has provided over 650 energy internships for FVSU students, they have gained over 250,000 hours of hands-on work experience, and earned over $3 million to help finance their education. Approximately, 900 students have been in the CDEP program. Over 30 have found employment in the energy industry and approximately 35 have gone on to earn Master`s or Ph.D. degrees.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
John Fraser, Association of California Water Agencies, spoke on the effect of energy technology on California's water resources. He pointed out that by the year 2000, a water deficiency of about 2,250,000 acre-feet will exist in California; therefore, many agencies will not indefinitely commit supplies of fresh water for power plant cooling. Legislation for siting power plants along the coastline is summarized. Dr. James Liverman, ERDA, noted a remark by Mr. Fraser that, in its national plan, ERDA ''does not appear to pay much attention to the water issue''; he agrees, but says ERDA is committed to working with themore » Water Resources Council, with establishments in each state. Professor Robert Hagan, Univ. of California, reports on a program to investigate the energy required to develop water, or, in short, to move water to where it is to be used; water which may be associated with the use and conservation of water; the energy associated with waste-water treatment; and waste-water reuse. Speaker Zock Willey, Environmental Defense Fund, briefly evaluated the environmental impact of an energy technology by saying that the public has a right to know and say what the risks are in terms of the trade-offs. Russ Freeman, EIA, says he doesn't believe it possible to have an energy program in the traditional concept of a government program. EPA has learned that energy is an input to every societal process and pollution is an output from virtually everything that society does. The final speaker, Fayne L. Tucker, Lake County Air Pollution Control District, reviewed the potential of geothermal resources, saying that it is believed the Lake County government can, with the state and Federal government, plan geothermal development. It is also believed the Geysers should be considered as a payoff area. An extensive question and answer session completed the workshop. (MCW)« less
NASA Astrophysics Data System (ADS)
Brouwer, Lucas Nathan
Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, Daniel; Jacobson, B.; Murokh, A.
Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less
Automated metadata--final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schissel, David
This report summarizes the work of the Automated Metadata, Provenance Cataloging, and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data Project (MPO Project) funded by the United States Department of Energy (DOE), Offices of Advanced Scientific Computing Research and Fusion Energy Sciences. Initially funded for three years starting in 2012, it was extended for 6 months with additional funding. The project was a collaboration between scientists at General Atomics, Lawrence Berkley National Laboratory (LBNL), and Massachusetts Institute of Technology (MIT). The group leveraged existing computer science technology where possible, and extended or created new capabilities where required. The MPO projectmore » was able to successfully create a suite of software tools that can be used by a scientific community to automatically document their scientific workflows. These tools were integrated into workflows for fusion energy and climate research illustrating the general applicability of the project’s toolkit. Feedback was very positive on the project’s toolkit and the value of such automatic workflow documentation to the scientific endeavor.« less
Advances and challenges in sustainable tourism toward a green economy.
Pan, Shu-Yuan; Gao, Mengyao; Kim, Hyunook; Shah, Kinjal J; Pei, Si-Lu; Chiang, Pen-Chi
2018-09-01
This paper provides an overview of the interrelationships between tourism and sustainability from a cross-disciplinary perspective. The current challenges and barriers in the tourism sustainability, such as high energy use, extensive water consumption and habitat destruction, are first reviewed. Then the key cross-disciplinary elements in sustainable tourism, including green energy, green transportation, green buildings, green infrastructure, green agriculture and smart technologies, are discussed. To overcome the challenges and barriers, a few implementation strategies on achieving sustainable tourism from the aspects of policy/regulation, institution, finance, technology and culture are proposed, along with the framework and details of a key performance indicator system. Finally, prospects of the potential for tourism to contribute to the transformative changes, e.g., a green economy system, are illustrated. This paper shine a light on issues of importance within sustainable tourism and encourage researchers from different disciplines in investigating the inter-relationships among community/culture, environment/ecology, and energy/water/food more broadly. Copyright © 2018 Elsevier B.V. All rights reserved.
Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J
2013-12-01
The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.
High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility
Mihalcea, Daniel; Jacobson, B.; Murokh, A.; ...
2017-03-01
Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less
Status of research and development on photoelectrochemical hydrogen production in Korea
NASA Astrophysics Data System (ADS)
Kim, Jong Won; Lee, Jae S.; Baeg, Jin-Ook
2010-08-01
Conversion of solar energy into hydrogen is one of the most promising renewable energy technologies. Photocatalytic production of hydrogen from water, H2S and organic wastes using semiconductors is one of the potential strategies for converting the sunlight energy into chemical energy. Korea government paid great attention to the hydrogen economy and launched the HERC (Hydrogen Energy R&D Center) for supporting the R&D topics on hydrogen related technologies. The key issue for realizing the commercial application of solar water splitting hydrogen production technique is to find an efficient, stable and low-cost photocatalyst. Our research groups have continuously investigated to find oxide and composite photocatalysts for photoelectrochemical cell with high efficiency using computational design and synthesis method. But, fundamental research on semiconductor doping for band gap shifting and surface chemistry modification is still required. Various reaction media containing sacrificial agents should be developed to match with high activity photocatalysts to further improve the system efficiency. Water containing organic/inorganic waste and sea water are particularly suggested in the consideration that all these water sources are the most available water on the earth to the final commercial application of photocatalytic water splitting technique.
Low-Emissivity, Energy-Control, Retrofit Window Film: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winckler, Lisa
Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogic® trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogic® window films also offer significantly greater energy savings than previously available with window films with similar visiblemore » light transmissions. EnerLogic® window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogic® window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogic® window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogic® window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogic® window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogic® window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogic® window film provides unparalleled glass insulating capabilities for window film products. With its patent-pending low-e technology, EnerLogic® window film has the best insulating performance of any film product available. The insulating power of EnerLogic® window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.« less
Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind
NASA Astrophysics Data System (ADS)
Ren, Xiaohu; Fan, Huiqing; Wang, Chao; Ma, Jiangwei; Zhao, Nan
2018-06-01
Ambient mechanical energy is one of the most abundant energy sources around us. It is a promising approach to solve the problem of energy and environment by harvesting such energy due to its cost-effectiveness, environmental friendliness and sustainability. Recently, triboelectric nanogenerator (TENG) has been proposed as an effective and promising technology for harvesting ambient mechanical energy. Herein, a coaxial rotatory-freestanding TENG (CRF-TENG) was developed and its theoretical model was constructed. An approximate V–Q–α relationship was derived and the explicit analytical solutions of the transferred charge, output current, voltage and average power are obtained from numerically calculation. Finally, to verify the theoretical results, the real output performances of as-fabricated CRF-TENG were measured. The experimental results are consistent with the theoretical ones. The newly developed TENG mode greatly expands the applicability of TENGs for harvesting energy from ambient rotating mechanical motion.
Technology needs for environmental restoration remedial action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J.S.
1992-11-01
This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This ismore » not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander Fridman
2005-06-01
This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental controlmore » business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.« less
Ohio Advanced Energy Manufacturing Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimberly Gibson; Mark Norfolk
2012-07-30
The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing andmore » implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.« less
Allard, Alexandra; Takman, Johanna; Uddin, Gazi Salah; Ahmed, Ali
2018-02-01
We evaluate the N-shaped environmental Kuznets curve (EKC) using panel quantile regression analysis. We investigate the relationship between CO 2 emissions and GDP per capita for 74 countries over the period of 1994-2012. We include additional explanatory variables, such as renewable energy consumption, technological development, trade, and institutional quality. We find evidence for the N-shaped EKC in all income groups, except for the upper-middle-income countries. Heterogeneous characteristics are, however, observed over the N-shaped EKC. Finally, we find a negative relationship between renewable energy consumption and CO 2 emissions, which highlights the importance of promoting greener energy in order to combat global warming.
Cast Metals Coalition Technology Transfer and Program Management Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwyn, Mike
2009-03-31
The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less
Ballistic Missile Defense Final Programmatic Environmental Impact Statement
1994-10-01
included: the need for BMD; budget allocations; procedural problems related to NEPA; nuclear weapon dangers; arms reductions; and potential contravention...2-26 2.6.2 TECHNOLOGY ALTERNATIVES ........................... 2-26 2.6.2.1 Directed Energy Weapons ..................... 2-26 2.6.2.2 Nuclear ...national defense strategy of mutually assured destruction to keep conflicts from escalating beyond conventional warfare to nuclear war. In 1955, the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.L.
1981-01-30
For an agricultural, oil-importing country such as Costa Rica, the use of biomass as a source of transportation fuels is a topic of great interest. This analysis is intended to assist the Costa Rican government and USAID/CR to identify possible biomass energy projects. While emphasis is on technologies for converting biomass into liquid fuels, agronomic issues and alternative energy options are also explored. Costa Rica plans to build six facilities for converting biomass (primarily sugarcane, supplemented by molasses, cassava, and banana wastes) to hydrous ethanol. The following issues relating to biomass conversion technologies are identified: use of hydroelectrically powered drivesmore » in sugarcane processing to allow use of bagasse as a fuel; possible sources and costs of energy for converting starch crops like cassava to ethanol; the optimal method for treating stillage; and the feasibility of using fermentation reactors. No definitive recommendation on the scale of ethanol production is made due to the lack of an environmental impact assessment. Finally, with regard to nonalcohol renewable energy, several ideas warrant consideration: electrically powered mass transit; electric cars; vehicle-mounted gasifiers operating on wood chips or pelletized fuels produced from excess bagasse; anaerobic digestion of animal manure and other agricultural wastes; and energy recovery from municipal solid wastes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura; Brown, Austin; Newes, Emily
The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources usedmore » for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.« less
LED lighting efficacy: Status and directions
Morgan Pattison, Paul; Hansen, Monica; Tsao, Jeffrey Y.
2017-12-28
A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor converted LED packages have the potential for efficacy improvement from 160 lm/W to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacymore » sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. Finally, none of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.« less
LED lighting efficacy: Status and directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan Pattison, Paul; Hansen, Monica; Tsao, Jeffrey Y.
A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor converted LED packages have the potential for efficacy improvement from 160 lm/W to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacymore » sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. Finally, none of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.« less
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
NASA Astrophysics Data System (ADS)
Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.
2004-12-01
The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, T.L.; Dilks, C.L.; Savoie, M.J.
1995-09-01
Relatively poor performance at the aging central heating plants (OH Ps) and planned changes in steam demand at Aberdeen Proving Ground (APG) Edgewood Area, Aberdeen, MD warranted an investigation of alternatives for providing thermal energy to the installation. This study: (1) evaluated the condition of the APG CHPs and heat distribution system, (2) identified thermal energy supply problems and cost-effective technologies to maintain APG`s capability to produce and distribute the needed thermal energy, and (3) recommended renovation and modernization projects for the system. Heating loads were analyzed using computer simulations, and life cycle costs were developed for each alternative. Recommendedmore » alternatives included upgrading the existing system, installing new boilers, consolidating the central heating plants, and introducing the use of absorption chilling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.
2014-10-01
The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Sixmore » Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F. J.; Cooper, J. F.; Haley, D.
Utility deregulation is occurring throughout the world. Energy storage, peak demand leveling and power quality are becoming increasingly important. New, innovative costeffective methods are critical to the financial success or failure of utility companies in the new free market environment. The implementation of energy storage gives a utility the ability to better utilize existing generating capacity. Energy is stored in the periods of low overall demand and then the stored energy is connected to the power grid during peak demand periods. Storing energy in this manner will lead to significant economic benefits to utilities as well as their customers. Furthermore,more » because the utility's system is operated more efficiently there is a direct reduction in atmospheric pollutants including greenhouse gases.« less
Establishment of the International Power Institute. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julius E. Coles
The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.
Energy and Climate Change Report Provides Options for the White House
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
A newly approved energy and climate change report prepared by the President's Council of Advisors on Science and Technology (PCAST) provides a menu of options for President Barack Obama to consider in dealing with climate change and includes components for a national climate preparedness strategy. The report was approved at a 15 March PCAST meeting in Washington, D. C., and is subject to final edits. It is the first report by the advisory council that focuses exclusively on climate, according to PCAST member Daniel Schrag, who provided a presentation about the document at the meeting.
Rana, Md Masud
2017-01-01
This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.
Essays on equity-efficiency trade offs in energy and climate policies
NASA Astrophysics Data System (ADS)
Sesmero, Juan P.
Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.
Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, D. R.; Wilcox, S. M.; Marion, W. F.
2002-04-01
The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project.more » The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, Jeffrey D.
This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less
Impact of novel energy sources: OTEC, wind, goethermal, biomass
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1978-01-01
Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.
Research on PM2.5 emission reduction path of China ‘s electric power industry based on DEA model
NASA Astrophysics Data System (ADS)
Jin, Yanming; Yang, Fan; Liu, Jun
2018-02-01
Based on the theory of data envelopment analysis, this study constructs the environmental performance evaluation model of the power industry, analyzes the performance of development of clean energy, the implementation of electricity replacement, and the development of coal-fired energy-saving and emission-reducing measures. Put forward technology path to reduce emission in the future. The results show that (1) improving the proportion of coal for power generation, speeding up the replacement of electricity is the key to solve the haze in China. (2) With the photovoltaic and other new energy power generation costs gradually reduced and less limit from thermal energy, by final of “thirteenth five-years plan”, the economy of clean energy will surpass thermal energy-saving emission reduction. (3) After 2025, the economy of the electricity replacement will be able to show.
NASA Astrophysics Data System (ADS)
Jaithwa, Ishan
Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.
Status report on renewable energy in the States
NASA Astrophysics Data System (ADS)
Swezey, B.; Sinclair, K.
1992-12-01
As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between 'emerging' and 'established' renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.
Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia
NASA Astrophysics Data System (ADS)
Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.
2018-03-01
Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.
Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Gabe
This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less
Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon
2015-02-17
Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade-off between increased mining risk and deployment of such technologies. Our analysis constitutes a first step toward quantifying and managing the risks associated with natural resource mining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdmann, Gwen
2016-12-20
Alaska is considered a world leader in renewable energy and microgrid technologies. Our workplan started as an analysis of existing wind-diesel systems, many of which were not performing as designed. We aimed to analyze and understand the performance of existing wind-diesel systems, to establish a knowledge baseline from which to work towards improvement and maximizing renewable energy utilization. To accomplish this, we worked with the Alaska Energy Authority to develop a comprehensive database of wind system experience, including underlying climatic and socioeconomic characteristics, actual operating data, projected vs. actual capital and O&M costs, and a catalogue of catastrophic anomalies. Thismore » database formed the foundation for the rest of the research program, with the overarching goal of delivering low-cost, reliable, and sustainable energy to diesel microgrids.« less
The energy performance of thermochromic glazing
NASA Astrophysics Data System (ADS)
Diamantouros, Pavlos
This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen
2015-01-01
This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metalmore » roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].« less
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Raul Subia
GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less
Hydrogen energy systems studies. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, J.M.; Kreutz, T.; Kartha, S.
1996-08-13
The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less
Assessing the costs of photovoltaic and wind power in six developing countries
NASA Astrophysics Data System (ADS)
Schmidt, Tobias S.; Born, Robin; Schneider, Malte
2012-07-01
To support developing countries in greenhouse-gas emission abatement the 2010 Cancún Agreement established various institutions, among others a financial mechanism administered by the Green Climate Fund. However, the instruments for delivering the support and the magnitude of different countries' financial needs are strongly debated. Both debates are predominantly underpinned by rather aggregate and strongly varying top-down cost estimates. To complement these numbers, we provide a more fine-grained bottom-up approach, comparing the cost of the renewable-energy technologies photovoltaics and wind in six developing countries with those of conventional technologies. Our results unveil large cost variations across specific technology-country combinations and show to what extent fossil-fuel subsidies can negatively affect the competitiveness of renewable-energy technologies. Regarding the instrument debate, our results indicate that to foster transformative changes, nationally appropriate mitigation actions are often more suited than a reformed clean development mechanism. Regarding the debate on financial needs, our results highlight the need for a decision on a fair baseline calculation methodology. To this end, we propose a new methodology that incentivizes changes in the baseline through subsidy phase-out. Finally, we contribute to the debate on domestic versus international support for these measures.
Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David
1995-01-01
The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
NASA Astrophysics Data System (ADS)
Iyer, Sridhar
2015-06-01
With the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward "green" ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.
NASA Astrophysics Data System (ADS)
Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro
2017-11-01
New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, Nathaniel Anson
2015-08-01
This report briefly summarizes three publications that resulted from a two-year LDRD. The three publications address a recently emerging reliability issue: namely, that low-energy protons (LEPs) can cause single-event effects (SEEs) in highly scaled microelectronics. These publications span from low to high technology readiness levels. In the first, novel experiments were used to prove that proton direct ionization is the dominant mechanism for LEP-induced SEEs. In the second, a simple method was developed to calculate expected on-orbit error rates for LEP effects. This simplification was enabled by creating (and characterizing) an accelerated space-like LEP environment in the laboratory. In themore » third publication, this new method was applied to many memory circuits from the 20-90 nm technology nodes to study the general importance of LEP effects, in terms of their contribution to the total on-orbit SEE rate.« less
Technology needs for environmental restoration remedial action. Environmental Restoration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J.S.
1992-11-01
This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This ismore » not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.« less
Solar power satellites - Technical, social and political implications
NASA Astrophysics Data System (ADS)
Knelman, F. H.
Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.
NASA Astrophysics Data System (ADS)
Cui, Gaoying; Fan, Jie; Qin, Yuchen; Wang, Dong; Chen, Guangyan
2017-05-01
In order to promote the effective use of demand response load side resources, promote the interaction between supply and demand, enhance the level of customer service and achieve the overall utilization of energy, this paper briefly explain the background significance of design demand response information platform and current situation of domestic and foreign development; Analyse the new demand of electricity demand response combined with the application of Internet and big data technology; Design demand response information platform architecture, construct demand responsive system, analyse process of demand response strategy formulate and intelligent execution implement; study application which combined with the big data, Internet and demand response technology; Finally, from information interaction architecture, control architecture and function design perspective design implementation of demand response information platform, illustrate the feasibility of the proposed platform design scheme implemented in a certain extent.
Russian Nonproliferation Policy and the Korean Peninsula
2006-12-01
petroleum and natural gas, and potential market , Washington would not allow Russia to use Iran in its attempt to increase Russia’s influence in the...ASEM).30 The second goal is to open markets for Russia’s competitive products such as energy resources, high- tech weapons, and nuclear technology...to the Korean weaponry market that the United States has monopolized, its entry into world economic organizations, and, finally, its security
Community Geothermal Technology Program: Fruit drying with geothermal energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-03-14
Largest problem was lack of proper recording and controlling instrumentation. Agricultural products tested were green papaya powder, banana slices, and pineapple slices. Results show that a temperature of 120 F is a good drying temperature. Papaya should be mature green and not overly ripe; banana ripeness is also important; and pineapple slice thickness should be very uniform for even drying. Geothermal drying is feasible. Figs, tabs.
2007-10-01
5.3.1.1 Study of Surf Zone Environment........................................... 5-6 5.3.2 Research Needs: High Priority...Detection of Smaller Munitions Items Study of Surf Zone Environment Improve Navigation Error Analysis Develop Cooperative Cued Platforms...towbodies, AUVs, ROVs, HOVs, and divers. Surveys in high energy surf zones present unique difficulties. Finally, participants stressed that the survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieh, T. G.; Waltz, Z. R.
The purpose of this Cooperative Research and Development Agreement (CRADA) between LLNL and P&W is to develop advanced composites and their processing technologies, resulting in major improviements in the ductility and toughnes of high-strength, high-stiffness TiAl-base composite materials for commercial jet engines and U.S. Department of Energy (DOE) Defense Program applications.
State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System
NASA Astrophysics Data System (ADS)
Zheng, Zhan; Zhang, Yongjun
2017-08-01
Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, JP
2001-08-16
To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less
Novel Low Cost, High Reliability Wind Turbine Drivetrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chobot, Anthony; Das, Debarshi; Mayer, Tyler
2012-09-13
Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large,more » expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain's life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.« less
A preliminary analysis of recent HVAC energy projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddy, P.J.; Haake, C.F.
A typical Government HVAC design over the last 30 years consisted of two oversized (equal tonnage) electric chillers, two oversized (equal NBTU ratings) boilers, an air economizer cycle, a constant air volume system and a central station pneumatic control system. This typical basic layout for plant design has certain advantages such as simplicity and ease to construct throughout the country. The cookie cutter design/build approach suited federal facilities, when utility costs were not a major consideration, in-house maintenance and operations personnel were plentiful and energy conservation was a moral priority and not an economic concern. Those days are history asmore » energy costs have escalated and operating budgets continue to shrink leaving fewer personnel to maintain the same buildings. Advances in HVAC technology and the reduction in costs for energy efficient systems have finally started affecting the Federal Government`s HVAC replacement and new construction designs. This paper is a brief description of three HVAC projects that go outside the traditional government HVAC design parameters. GSA`s Pacific Rim Region, covering the states of Hawaii, California, Nevada, and Arizona, has implemented three HVAC projects utilizing different technologies not normally found in GSA Federal facilities.« less
Country Review of Energy-Efficiency Financial Incentives in the Residential Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol
A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies bymore » addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.« less
Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations
NASA Astrophysics Data System (ADS)
van Ruijven, B. J.; O'Neill, B. C.
2014-12-01
Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D.P., Wilson, C., 2011. Energy Pathways for Sustainable Development, The Global Energy Assessment: Toward a More Sustainable Future. IIASA, Laxenburg, Austria and Cambridge University Press, Cambridge, UK.
Energy efficient engine high pressure turbine ceramic shroud support technology report
NASA Technical Reports Server (NTRS)
Nelson, W. A.; Carlson, R. G.
1982-01-01
This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.
A Techno-Economic Look at SiC WBG from Wafer to Motor Drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench Reese, Samantha R; Horowitz, Kelsey A; Remo, Timothy W
Techno-economic analysis helps benchmark and deliver supply chain and manufacturing insights that can be leveraged by decision-makers to inform investment strategies, policy, and other decisions to promote economic growth and competitiveness. Silicon Carbide (SiC) wide-band gap (WBG) technologies is poised to be an integral contributor to the clean energy economy. We use bottoms-up regional manufacturing cost models to show SiC power electronics, manufactured in volume, could result in final product cost parity with those manufactured with silicon. The models are further leveraged to show innovation pathways to lower cost and potentially expanded technology adoption.
Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie
2010-07-01
The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and US conservation and renewable energymore » industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies. 3 refs.« less
A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions
Kubba, Ali E.; Jiang, Kyle
2014-01-01
This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented. PMID:24922457
3D direct writing fabrication of electrodes for electrochemical storage devices
NASA Astrophysics Data System (ADS)
Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang
2017-06-01
Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.
Educational initiative for EE/RE engineering skills: Solar Two student interns. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norbeck, J.M.
1997-07-01
The US Department of Energy sponsored five student interns from the University of California, Riverside, College of Engineering to work during the summer of 1996 at the Solar Two Energy facility in the Mojave Desert. Through the DOE intern program, engineering students supported the Solar Two Project under the supervision of engineers from Southern California Edison. The prime purpose was to provide outreach and educational support for expanding interactions with university students to increase awareness of careers in renewable energy and energy efficiency fields. The College of Engineering-Center for Environmental Research and Technology (CE-CERT) coordinated this project. CE-CERT is primarilymore » a research facility focusing on air pollution and energy efficiency. CE-CERT serves undergraduate and graduate students by employing them on research projects, supporting them in the research and experimentation required for Senior Design Projects, and sponsoring them in student engineering competitions.« less
Assessment of energy options for Liberia. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-11-01
Under funding from the U.S. Agency for International Development (USAID), the Oak Ridge National Laboratory provided energy planning assistance to the National Energy Committee of the Government of Liberia (GOL), West Africa, during a period of one year ending March 31, 1983. This report outlines the scope of activities of the joint GOL/USAID project and summarizes the major findings by Liberian and U.S. project participants. The study included and examination of current energy use by sector and fuel type, projections of future energy demands, and a preliminary evaluation of a variety of alternative energy resource and technology options for Liberia.more » The primary finding is that Liberia has significant opportunities for the substitution of indigenous energy resources for imported petroleum. The principal candidates are wood energy and hydroelectric power. The major alternatives for wood are gasification technology for small-scale electric and nonelectric applications (e.g., those under about 25-gigajoule/hour input requirements) and wood-fired steam electric generation for larger scale applications where hydroelectric power is unattractive. For major hydroelectric development the principal candidates are the St. Paul River Proposal and the Mano River Proposal. The Mano River Proposal is the smaller of the two and would meet Monrovia area electrical grid requirements and some iron ore mine demand for about the next two decades. An additional important finding of this study is that the Monrovia Petroleum refinery is highly uneconomical and should be closed and petroleum product imported directly. 25 tables.« less
NASA Astrophysics Data System (ADS)
Chen, Wei-Ming
Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease total final energy demand in the long term. In terms of adopting renewable energy, this dissertation suggests increasing the proportion of renewable electricity to 30 percent by 2030, using proven and market competitive renewable technologies to harvest Taiwan's abundant renewable potential. To achieve this goal, it is crucial to construct stable funding sources and promote the transparency, longevity, and certainty of policies.
Source Recertification, Refurbishment, and Transfer Logistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; Duckworth, Leesa L.; Greenfield, Bryce A.
2013-09-01
The 2012 Gap Analysis of Department of Energy Radiological Sealed Sources, Standards, and Materials for Safeguards Technology Development [1] report, and the subsequent Reconciliation of Source Needs and Surpluses across the U.S. Department of Energy National Laboratory Complex [2] report, resulted in the identification of 33 requests for nuclear or radiological sealed sources for which there was potentially available, suitable material from within the U.S. Department of Energy (DOE) complex to fill the source need. Available, suitable material was defined by DOE laboratories as material slated for excess, or that required recertification or refurbishment before being used for safeguards technologymore » development. This report begins by outlining the logistical considerations required for the shipment of nuclear and radiological materials between DOE laboratories. Then, because of the limited need for transfer of matching sources, the report also offers considerations for an alternative approach – the shipment of safeguards equipment between DOE laboratories or technology testing centers. Finally, this report addresses repackaging needs for the two source requests for which there was available, suitable material within the DOE complex.« less
Optimal quantum operations at zero energy cost
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Yang, Yuxiang
2017-08-01
Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.
NASA Astrophysics Data System (ADS)
Porter, Wayne Eliot
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
Scalable Data Management, Analysis, and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Han-Wei
This report is the entire final report for the SciDAC project authored by the whole team. OSU is part of the contributors to the report. This report is organized into sections and subsections, each covering an area of development and deployment of technologies applied to scientific applications of interest to the Department of Energy. Each sub-section includes: 1) a summary description of the research, development, and deployment carried out, the results and the extent to which the stated project objectives were met; 2) significant results, including major findings, developments, or conclusions; 3) products, such as publications and presentations, software developed,more » project website(s), technologies or techniques, inventions, awards, etc., and 4) conclusions of the projects and future directions for research, development, and deployment in this technology area.« less
Staff exchange with Chemical Waste Management. Final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrer, B.J.; Barak, D.W.
1993-12-01
Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry,more » but a proposal for transfer and application of PST to Wheelabrator was made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, J.; VanGeet, O.; Simkus, S.
This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or withinmore » a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.« less
Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria
In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less
Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets
Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; ...
2015-06-03
In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less
The Iodine Satellite (iSat) Project Development Towards Critical Design Review
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence
2015-01-01
Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hong; Johnson, Kenneth I.; Newhouse, Norman L.
Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoffel, T.
Faculty and staff at the University of Texas at Austin collected solar resource measurements at their campus using equipment on loan from the National Renewable Energy Laboratory. The equipment was used to train students on the operation and maintenance of solar radiometers and was returned to NREL's Solar Radiation Research Laboratory upon completion of the CRADA. The resulting data augment the solar resource climatology information required for solar resource characterizations in the U.S. The cooperative agreement was also consistent with NREL's goal of developing an educated workforce to advance renewable energy technologies.
2017-01-01
This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations. PMID:28459848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.
2017-05-01
The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.
Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis
NASA Technical Reports Server (NTRS)
Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee
2016-01-01
The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.
Compact Power Conditioning and RF Systems for a High Power RF Source
2008-12-01
RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system
Application of the Critical Success Factor Methodology to DoD Organization.
1984-09-01
high technology manufacturing, banking, airline, insurance, railway, and automobile . Sullen (6t22-25) lists the current CSFs of the 14 S automobile ...industry as image, quality dealer system, cost control, and meting energy standards. However, in 1981 the automobile CSFs included only styling, quality...bearing on current car purchases as well as future car buys. And finally cost control influenced the auto industry as a CSF, since profit per automobile had
Overview of superconductivity in Japan Strategy road map and R&D status
NASA Astrophysics Data System (ADS)
Tsukamoto, O.
2008-09-01
Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.
Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials
NASA Astrophysics Data System (ADS)
Yeh, Yao-Wen
Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harto, C. B.; Schroeder, J. N.; Horner, R. M.
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less
Schroeder, Jenna N.
2014-12-16
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.
Proposal of an environmental performance index to assess solid waste treatment technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com; Lange, Lisete Celina; Coelho, Lineker Max Goulart
2012-07-15
Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond wastemore » energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian David; Houchins, Cassidy; Huya-Kouadio, Jennie Moton
The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allowmore » comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.« less
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
NASA Astrophysics Data System (ADS)
Jiang, Lei; Ji, Minhe; Bai, Ling
2015-06-01
Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced technologies and more efficient industries. On the other hand, institutional change (i.e., marketization) and innovation (i.e., technological progress) exerted positive impacts on AVEC improvement, as always expected in this and other studies. Finally, the model comparison indicated that SEM was capable of separating spatial effect from the error term of OLS, so as to improve goodness-of-fit and the significance level of individual determinants.
Is this the time for a high-energy laser weapon program?
NASA Astrophysics Data System (ADS)
Kiel, David H.
2013-02-01
The U.S. Department of Defense (DoD) has made large investments weaponizing laser technology for air defense. Despite billions of dollars spent, there has not been a successful transition of a high-energy laser (HEL) weapon from the lab to the field. Is the dream of a low-cost-per-shot, deep-magazine, speed-of-light HEL weapon an impossible dream or a set of technologies that are ready to emerge on the modern battlefield? Because of the rapid revolution taking place in modern warfare that is making conventional defensive weapons very expensive relative to the offensive weapons systems, the pull for less expensive air defense may necessitate a HEL weapon system. Also, due to the recent technological developments in solid-state lasers (SSL), especially fiber lasers, used throughout manufacturing for cutting and welding, a HEL weapon finally may be able to meet all the requirements of ease of use, sustainability, and reliability. Due to changes in warfare and SSL technology advances, the era of HEL weapons isn't over; it may be just starting if DoD takes an evolutionary approach to fielding a HEL weapon. The U.S. Navy, with its large ships and their available electric power, should lead the way.
Energy content of municipal solid waste bales.
Ozbay, Ismail; Durmusoglu, Ertan
2013-07-01
Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.
DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Miller, James E.; Altman, Susan J.
Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less
NASA Astrophysics Data System (ADS)
Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.
2016-05-01
Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.
Thermal energy storage for solar power generation - State of the art
NASA Astrophysics Data System (ADS)
Shukla, K. N.
1981-12-01
High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.
Production of Energy Efficient Preform Structures (PEEPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. John A. Baumann
2012-06-08
Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has beenmore » to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible manufacturing pathways, to identify the best balance of energy consumption and environmental impact. This model has been created and populated with energy consumption data for individual SSJ processes and process platforms. Technology feasibility cases studies were executed, to validate the model, and confirm the ability to create lower buy-to-fly ratio performs and machine these to final configuration aircraft components. This model can now be used as a tool to select manufacturing pathways that offer significant energy savings and, when coupled with a cost model, drive implementation of the SSJ processes.« less
Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation inmore » 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials« less
Advances in Energy Conservation of China Steel Industry
Sun, Wenqiang; Cai, Jiuju; Ye, Zhu
2013-01-01
The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980–2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011–2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics. PMID:23533344
Advances in energy conservation of China steel industry.
Sun, Wenqiang; Cai, Jiuju; Ye, Zhu
2013-01-01
The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.
Rare earth metal-containing ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Mudring, Anja-Verena
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
In situ, operando measurements of rechargeable batteries
Wang, Howard; Wang, Feng
2016-08-01
This article reviews recent in operando measurements (IOMs) for addressing challenges in advancing rechargeable battery (RB) technologies. As the demands on energy and power density of RBs for broader applications continue to grow, current RB technologies are pushed to their theoretical and engineering limits while new approaches are being extensively investigated. Also, IOMs have become more powerful and effective research tools in recent years; they will play an essential role in developing next generation RBs. This review is organized around outstanding issues in battery science and engineering. Finally, we emphasize the critical need for quantifying the distribution and transport ofmore » active ions in functioning batteries over wide temporal and spatial scales in real time.« less
NASA Tech House: An early evaluation
NASA Technical Reports Server (NTRS)
1977-01-01
An architect-engineering firm, as well as university participants, performed system studies, evaluated construction methods, performed cost effectiveness studies, and prepared construction drawings which incorporated the selected technology features into a final design. A Technology Utilization House (Tech House) based on this design was constructed at the NASA Langley Research Center in Hampton, Virginia. The Tech House is instrumented so that the performance of the design features and energy systems can be evaluated during a planned family live-in period. As such, the house is both a demonstration unit and a research laboratory. The Tech House is to demonstrate the kind of single-family residence that will probably be available within the next five years.
Rare earth metal-containing ionic liquids
Prodius, Denis; Mudring, Anja-Verena
2018-03-07
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
NASA Astrophysics Data System (ADS)
Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei
2017-12-01
Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.
Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi
2017-08-13
Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter
2016-06-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY...June 2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 05/2015–08/2015 4. TITLE AND SUBTITLE Modeling and Simulation of a Gallium Nitride...current battery technology has several drawbacks, such as charge leakage, temperature and environment sensitivity, and finite charge cycles. Radioisotope
High-Temperature Rocket Engine
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.
1994-01-01
Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.
Special section guest editorial: Hybrid organic-inorganic solar cells
Nogueira, Ana Flavia; Rumbles, Garry
2015-04-06
In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.
Direct launch using the electric rail gun
NASA Technical Reports Server (NTRS)
Barber, J. P.
1983-01-01
The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.
Fossil energy biotechnology: A research needs assessment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less
Papaya drying and waste conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-02-12
This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less
Energy-level alignment at organic heterointerfaces
Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg
2015-01-01
Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha
2017-01-01
With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.
Space Solar Power Demonstrations: Challenges and Progress
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)
2002-01-01
The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).
Karagiannidis, A; Perkoulidis, G
2009-04-01
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.
Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India
NASA Astrophysics Data System (ADS)
Alam, Tabish; Kulkarni, Kishore
2016-03-01
Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.
Research on the calibration of ultraviolet energy meters
NASA Astrophysics Data System (ADS)
Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming
2016-10-01
Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.
Applications of Fluorogens with Rotor Structures in Solar Cells.
Ong, Kok-Haw; Liu, Bin
2017-05-29
Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.
Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M
2017-09-01
The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Student Outreach With Renewable Energy Technology
NASA Technical Reports Server (NTRS)
Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.
2003-01-01
The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide resources for an Applied Renewable Energy Laboratory offered to both Central State and Wilberforce students. In addition, research endeavors for high school and undergraduates were funded during the summer. The research involved attempts to layer photovoltaic materials on a conducting polymer (polypyrrole) substrate. Two undergraduate students who were interested in polymer research originated this concept. Finally, the university was able to purchase a meteorological station to assist in the analysis of the solar/wind hybrid power system operating at the university.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Robert A.
2007-04-18
From September 1, 2002, to November 30, 2006, the Industrial Assessment Center (IAC) at the University of Illinois at Chicago (UIC) conducted over 120 industrial assessments across 19 different industry types in five different states. In the 1,000+ assessment recommendations written during the award, the UIC-IAC has written recommendations that, if implemented will save several millions of kilowatt-hours of electricity and several million British thermal units of natural gas annually. Additionally, the UIC-IAC has achieved an overall implementation rate in excess of 50%. During the overall span of the award period, the UIC-IAC has trained over 50 students, nearly 25%more » of which have remained in the energy field in some way after graduating from the IAC program. UIC-IAC students have received over $23,000 in scholarships in the last two years alone. During the course of the award, the UIC-IAC has made it a priority to incorporate ITP tools and technologies whenever possible. The ITP Best Practices tools have been used on several assessments and introduced to clients. DOE technologies are constantly compared against assessment clients to determine what technologies have reached the stage where they can effectively be introduced into industrial operations. The UIC-IAC has been involved in several projects for the Department of Energy (DOE), including energy assessments of Department of Defense bases and industrial facilities, the Plant Energy Profiler (PEP) tool assessment, and expanding the range of assessments to include large- energy users. Additionally, the UIC-IAC has forged a close relationship with the Midwest CHP Application Center, working to incorporate combined heat and power (CHP) and distributed generation (DG) technologies into industrial plants. The most recent project is the Save Energy Now (SEN) six- and 12-month follow-up surveys being conducted by UIC-IAC students. The SEN surveys are an effort for the DOE to determine the implementation rate of energy efficiency measures identified by Qualified System (QS) specialists throughout the nation. The UIC-IAC has also written several papers highlighting its work in the arena of energy efficiency. Currently, several UIC-IAC students have submitted a paper to the American Council for an Energy-Efficient Economy (ACEEE). This paper has been accepted by ACEEE and will be presented later in 2007.« less
ERIC Educational Resources Information Center
Dudik, C. E. Jane
2017-01-01
Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…
Energy harvesting by means of flow-induced vibrations on aerospace vehicles
NASA Astrophysics Data System (ADS)
Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu
2016-10-01
This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting technologies in the aerospace field are discussed.
10 CFR 950.37 - Final agreement or final decision.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Final agreement or final decision. 950.37 Section 950.37 Energy DEPARTMENT OF ENERGY STANDBY SUPPORT FOR CERTAIN NUCLEAR PLANT DELAYS Dispute Resolution Process § 950.37 Final agreement or final decision. (a) If the parties reach a Final Agreement on a contract...
Friction Stir Processing of Particle Reinforced Composite Materials
Gan, Yong X.; Solomon, Daniel; Reinbolt, Michael
2010-01-01
The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.
VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, Katherine A.; Haack, Jereme N.; Katipamula, Srinivas
VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide rangemore » of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and medium-sized commercial buildings.« less
Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals?
Imbrogno, Joseph; Belfort, Georges
2016-06-07
Although thermal desalination technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations.
Quantification of Microbial Phenotypes
Martínez, Verónica S.; Krömer, Jens O.
2016-01-01
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694
Overview of Materials and Power Applications of Coated Conductors Project
NASA Astrophysics Data System (ADS)
Shiohara, Yuh; Taneda, Takahiro; Yoshizumi, Masateru
2012-01-01
There are high expectations for coated conductors in electric power applications such as superconducting magnetic energy storage (SMES) systems, power cables, and transformers owing to their ability to contribute to stabilizing and increasing the capacity of the electric power supply grid as well as to reducing CO2 emission as a result of their high critical-current characteristics. Research and development has been performed on wires/tapes and electric power devices worldwide. The Materials and Power Applications of Coated Conductors (M-PACC) Project is a five-year national project in Japan started in 2008, supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO), to develop both coated conductors that meet market requirements and basic technologies for the above-mentioned power applications using coated conductors. In this article, research and development results are reviewed and compared with the interim/final targets of the project, and future prospects are discussed.
Solar thermal repowering utility value analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.; Day, J.; Reed, B.
The retrofit of solar central receiver energy supply systems to existing steam-electric generating stations (repowering) is being considered as a major programmatic thrust by DOE. The determination of a government response appropriate to the opportunities of repowering is an important policy question, and is the major reason for the analysis. The study objective is to define a government role in repowering that constitutes an efficient program investment in pursuit of viable private markets for heliostat-based energy systems. In support of that objective, the study is designed to identify the scope and nature of the repowering opportunity within the larger contextmore » of its contributions to central receiver technology development and commercialization. The Supply and Integration Tasks are documented elsewhere. This report documents the Demand Task, determining and quantifying the sources of the value of repowering and of central receiver technology in general to electric utilities. The modeling tools and assumptions used in the Demand Task are described and the results are presented and interpreted. (MCW)« less
Methods and analysis of factors impact on the efficiency of the photovoltaic generation
NASA Astrophysics Data System (ADS)
Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou
2011-02-01
First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.
Photonics Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Elizabeth
During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about fivemore » percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.« less
Spray Forming Aluminum - Final Report (Phase II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Leon
1999-07-08
The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less
Review of the development of multi-terminal HVDC and DC power grid
NASA Astrophysics Data System (ADS)
Chen, Y. X.
2017-11-01
Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less
The spatial resolution of silicon-based electron detectors in beta-autoradiography.
Cabello, Jorge; Wells, Kevin
2010-03-21
Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.
Integrated nonthermal treatment system study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagi, C.; Bahar, D.; Teheranian, B.
1997-01-01
This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediatedmore » electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.« less
Sun, Jing; Wang, Wenlong; Yue, Qinyan
2016-01-01
Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355
Ames Lab 101: 3D Metals Printer
Ott, Ryan
2018-01-16
To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.
A Survey of Plasmas and Their Applications
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.; Grabbe, C. (Editor)
2006-01-01
Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).
Ames Lab 101: 3D Metals Printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Ryan
2014-02-13
To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3Dmore » printing process in a unique way: for materials discovery.« less
A Systems Model for Power Technology Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2002-01-01
A computer model is under continuing development at NASA Glenn Research Center that enables first-order assessments of space power technology. The model, an evolution of NASA Glenn's Array Design Assessment Model (ADAM), is an Excel workbook that consists of numerous spreadsheets containing power technology performance data and sizing algorithms. Underlying the model is a number of databases that contain default values for various power generation, energy storage and power management and distribution component parameters. These databases are actively maintained by a team of systems analysts so that they contain state-of-art data as well as the most recent technology performance projections. Sizing of the power subsystems can be accomplished either by using an assumed mass specific power (W/kg) or energy (Wh/kg) or by a bottoms-up calculation that accounts for individual component performance and masses. The power generation, energy storage and power management and distribution subsystems are sized for given mission requirements for a baseline case and up to three alternatives. This allows four different power systems to be sized and compared using consistent assumptions and sizing algorithms. The component sizing models contained in the workbook are modular so that they can be easily maintained and updated. All significant input values have default values loaded from the databases that can be over-written by the user. The default data and sizing algorithms for each of the power subsystems are described in some detail. The user interface and workbook navigational features are also discussed. Finally, an example study case that illustrates the model's capability is presented.
DOE perspective on fuel cells in transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, R.
1996-04-01
Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less
Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin
NASA Astrophysics Data System (ADS)
Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong
2017-04-01
The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.
Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contini, Vince; Heinrichs, Mike; George, Paul
The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, andmore » more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.« less
Emissions reduction scenarios in the Argentinean Energy Sector
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...
2016-04-14
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.
Preuster, Patrick; Papp, Christian; Wasserscheid, Peter
2017-01-17
The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.
DOE-INES New Planet Bioenergy Technical Report Final Public Version 7-22-16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niederschulte, Mark; Russell, Kelly; Connors, Keith
INEOS Bio and New Planet Energy Florida formed a joint venture company called INEOS New Planet BioEnergy (“INPB”) in 2009. This venture’s intent was to demonstrate at commercial scale INEOS Bio’s third-generation technology (the “Bio Process”) that converts a variety of lignocellulosic feedstocks into bioethanol and renewable electricity. INPB applied for and was awarded a $50,000,000 Department of Energy (“DOE”) grant in 2009 to support the construction of the commercial demonstration plant. The grant was a cost-sharing arrangement requiring at least 50% equity participation by the grantee. INPB completed construction of the Indian River BioEnergy Center in Vero Beach, Floridamore » in June, 2012. The facility is designed to produce 8 million gallons per year of fuel-grade bioethanol and 6MW of electrical power, with upwards of 2MW exported to the electrical grid. Construction of the Indian River BioEnergy Center was completed on-time and within its capital budget of $121 million.« less
Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.
Li, Feng; Zhou, Zhen
2018-02-01
High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...
2017-06-12
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Wind energy education projects. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziegler, P.; Conlon, T.R.; Arcadi, T.
Two projects under DOE's Small-Scale Appropriate Energy Technology Grants Program have educated the public in a hands on way about wind energy systems. The first was awarded to Peter Ziegler of Berkeley, California, to design and build a walk-through exhibition structure powered by an adjoining wind-generator. This Wind Energy Pavilion was erected at Fort Funston in the Golden Gate National Recreation Area. It currently serves both as an enclosure for batteries and a variety of monitoring instruments, and as a graphic environment where the public can learn about wind energy. The second project, entitled Wind and Kid Power, involved anmore » educational program for a classroom of first through third grades in the Vallejo, Unified School District. The students studied weather, measured wind speeds and built small models of wind machines. They also built a weather station, and learned to use weather instruments. The grant funds enabled them to actually build and erect a Savonius wind machine at the Loma Vista Farm School.« less
NASA Astrophysics Data System (ADS)
1994-05-01
NREL's first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL's outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be accessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL's series publications written for specific audiences and presenting a wide range of subjects. NREL's General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.
Wind turbines: current status, obstacles, trends and technologies
NASA Astrophysics Data System (ADS)
Konstantinidis, E. I.; Botsaris, P. N.
2016-11-01
The last decade the installation of wind farms around the world is spreading rapidly and wind energy has become a significant factor for promoting sustainable development. The scope of the present study is to indicate the present status of global wind power expansion as well as the current state of the art in the field of wind turbine technology. The RAM (reliability/availability/maintenance) section is also examined and the Levelized Cost of Energy for onshore/ offshore electricity production is presented. Negative consequences that go with the rapid expansion of wind power like accidents, environmental effects, etc. are highlighted. Especially visual impact to the landscape and noise pollution are some factors that provoke social reactions. Moreover, the complicated and long permitted process of a wind power plant, the high capital cost of the investment and the grid instability due to the intermittent nature of wind, are also significant obstacles in the development of the wind energy production. The current trends in the field of research and development of onshore and offshore wind power production are analyzed. Finally the present study is trying to achieve an estimation of where the wind industry targets for the years to come.
Development of a Nonlinear Acoustic Phased Array and its Interaction with Thin Plates
NASA Astrophysics Data System (ADS)
Anzel, Paul; Donahue, Carly; Daraio, Chiara
2015-03-01
Numerous technologies are based on the principle of focusing acoustic energy. We propose a new device to focus sound waves which exploits highly nonlinear dynamics. The advantages of this device are the capability of generating very highly powerful acoustic pulses and potential operation in high-temperature environments where traditional piezoelectrics may fail. This device is composed of rows of ball bearings placed in contact with a medium of interest and with an actuator on the top. Elastic spherical particles have a contact force that grows with their relative displacement to the three-halves power (Hertzian contact). When several spheres are placed in a row, the particles support the propagation of ``solitary waves''--strong, compact stress-wave pulses whose tendency to disperse is counteracted by the nonlinearity of the sphere's contact force. We present results regarding the experimental operation of the device and its comparison to theory and numerical simulations. We will show how well this system is capable of focusing energy at various locations in the medium, and the limits imposed by pre-compression. Finally, the effects of timing error on energy focusing will be demonstrated. This research has been supported by a NASA Space Technology Research Fellowship.
Photovoltaic at Hollywood and Desert Breeze Recreational Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Shane
Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectivesmore » and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of Energy’s Solar Energy Technology Program. The project improves the integration and performance of solar electricity directly through implementation of cutting edge technology. The project further addresses this goal by laying important ground work and infrastructure for integration into the utility grid in future related projects. There will also be added security, reliability, and diversity to the energy system by providing and using reliable, secure, distributed electricity in Clark County facilities as well as sending such electricity back into the utility electric grid. A final major objective met by the Solar Project will be the displacement of energy derived by fossil fuels with clean renewable energy created by photovoltaic panels.« less
Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao
2018-06-11
Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin
2016-08-24
Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.
A novel method for energy harvesting simulation based on scenario generation
NASA Astrophysics Data System (ADS)
Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min
2018-06-01
Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.
Variations in embodied energy and carbon emission intensities of construction materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Omar, Wan-Mohd-Sabki; School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis; Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au
2014-11-15
Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters inmore » material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.« less
NASA Astrophysics Data System (ADS)
Claude, Jean-Michel
2017-04-01
The growth of renewable energies likes wind and solar requires pumped-storage plants to increase their performances to stabilize grid frequency and voltage. The introduction of a full-power converter constitutes the ultimate step forward to meet the requirement in a safe, reliable and sustainable manner. This article quickly introduces the converter topology and technology before describing the performances it aims to deliver to the grid. Finally, converter bypass is discussed.
Bibliography on Cold Regions Science and Technology. Volume 43. Part 2
1989-12-01
Norem, H., ci a ). ’(1987, p.363-379. engl Influence of ship hull forms on propulsion performance in 1985-1988. Kujals, P.. (1989. p.1 118-1 129... performance of& a ship in ipi Radiative energy budget in the cloudy and hazy Arctic as.Msrkhisskiy interfluve (1988, p.3.1 1, rusl 43Z51 red rfies...2820 els and a ship model between two ice model baims (1988. M.V. Arctic manocuvriog performance is ice. Final report Oxygen isotopic cemposition and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.
The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paret, Paul
The National Renewable Energy Laboratory (NREL) will conduct thermal and reliability modeling on three sets of power modules for the development of a next generation inverter for electric traction drive vehicles. These modules will be chosen by General Motors (GM) to represent three distinct technological approaches to inverter power module packaging. Likely failure mechanisms will be identified in each package and a physics-of-failure-based reliability assessment will be conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
2013-08-01
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aptekar, Alexander
The final report on New York City College of Technology (City Tech) DURA (Diverse | Urban | Resilient | Adaptable) home project. City Tech has participated in the Solar Decathlon 2015 project as DURA. The DURA team consists of students, faculty, volunteers, Service Corps participants, Industry advisers, recent graduates and others. The DURA team researched, designed, and constructed a zero energy prototype house. This process was a valuable opportunity for City Tech as a project of such scale has not been completed before with the integration of so many departments and their students.
Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Lee Kenneth
2017-03-01
This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.
NASA Astrophysics Data System (ADS)
Jornet, Josep Miquel; Thawdar, Ngwe; Woo, Ethan; Andrello, Michael A.
2017-05-01
Terahertz (THz) communication is envisioned as a key wireless technology to satisfy the need for 1000x faster wireless data rates. To date, major progress on both electronic and photonic technologies are finally closing the so-called THz gap. Among others, graphene-based plasmonic nano-devices have been proposed as a way to enable ultra-broadband communications above 1THz. The unique dynamic complex conductivity of graphene enables the propagation of Surface Plasmon Polariton (SPP) waves at THz frequencies. In addition, the conductivity of graphene and, thus, the SPP propagation properties, can be dynamically tuned by means of electrostatic biasing or material doping. This result opens the door to frequency-tunable devices for THz communications. In this paper, the temporal dynamics of graphene-enhanced metallic grating structures used for excitation and detection of SPP waves at THz frequencies are analytically and numerically modeled. More specifically, the response of a metallic grating structure built on top of a graphene-based heterostructure is analyzed by taking into account the grating period and duty cycle and the Fermi energy of the graphene layer. Then, the interfacial charge transfer between a metallic back-gate and the graphene layer in a metal/dielectric/graphene stack is analytically modeled, and the range of achievable Fermi energies is determined. Finally, the rate at which the Fermi energy in graphene can be tuned is estimated starting from the transmission line model of graphene. Extensive numerical and simulation results with COMSOL Multi-physics are provided. The results show that the proposed structure enables dynamic frequency systems with THz bandwidths, thus, enabling resilient communication techniques such as time-hopping THz modulations.
Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A
2011-04-01
Electric field-assisted dewatering, also called electro-dewatering (EDW), is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. The application of these additional fields can be applied to either or both dewatering stages (filtration and/or compression), or as a pre-or post-treatment of the dewatering process. In this study, the performance of the EDW on wastewater sludge was investigated. Experiments were carried out on a laboratory filtration/compression cell, provided with electrodes, in order to apply an electrical field. The chosen operating conditions pressure (200-1200 kPa) and voltage (10-50 V) are sufficient to remove a significant proportion of the water that cannot be removed using mechanical dewatering technologies alone. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of EDW on (i) the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of EDW and (ii) the energy consumption calculated for each additional mass of water removed. A two-factor central composite design was used to establish the optimum conditions for the EDW of wastewater sludge. Experiments showed that the use of an electric field combined with mechanical compression requires less than 10 and 25% of the theoretical thermal drying energy for the low and moderate voltages cases, respectively. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
USD Catalysis Group for Alternative Energy - Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoefelmeyer, James
2014-10-03
I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate inmore » significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests funding through the Department of Energy (DoE) to establish this multidisciplinary research cluster in the area of catalysis. This long-term approach includes synthesis, characterization, catalyst evaluation, modeling, and scale-up. The project includes plans to acquire instrumentation critical to enabling competitive research. These acquisitions will complement existing resources in the state. The effect of implementation of the proposed efforts will be to significantly enhance state infrastructure in personnel and equipment, and lead to a nationally and internationally recognized research center.« less
Introduction to energy storage with market analysis and outlook
NASA Astrophysics Data System (ADS)
Schmid, Robert; Pillot, Christophe
2014-06-01
At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the market in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis.
Industrial applications study. Volume V. Bibliography of relevant literature. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som
1976-12-01
This five-volume report represents an initial Phase O evaluation of waste heat recovery and utilization potential in the manufacturing portion of the industrial sector. The scope of this initial phase was limited to the two-digit SIC level and addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, a successful methodology and approaches for data gathering and assessment are established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. The first section of the bibliography lists extensive citations for allmore » industries. The next section is composed of an extensive literature search with abstracts for industrial energy conservation. EPA publications on specific industries and general references conclude the publication. (MCW)« less
NASA Astrophysics Data System (ADS)
Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu
2017-04-01
We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel yields. Additionally, the effects of biomass raw material on ash characteristics and behavior as well as on the fine particle and gas emissions in biomass-fired combustion plants will be evaluated. Thus, the project goes an extra mile in addressing both technological and environmental effects of bioenergy production with combustion processes. Finally, with a voluntary participation of companies with excellent track record in biogas production and CHP technology in participating countries, the project aims to bridge the gap between science, technology and industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittal, Vijay; Lampis, Anna Rosa
The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such asmore » renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting approximately 30 principal investigators and some 70 graduate students and other researchers. Its researchers are multi-disciplinary, conducting research in three principal areas: power systems, power markets and policy, and transmission and distribution technologies. The research is collaborative; each project involves researchers typically at two universities working with industry advisors who have expressed interest in the project. Examples of topics for recent PSERC research projects include grid integration of renewables and energy storage, new tools for taking advantage of increased penetration of real-time system measurements, advanced system protection methods to maintain grid reliability, and risk and reliability assessment of increasingly complex cyber-enabled power systems. A PSERC’s objective is to proactively address the technical and policy challenges of U.S. electric power systems. To achieve this objective, PSERC works with CERTS to conduct technical research on advanced applications and investigate the design of fair and transparent electricity markets; these research topics align with CERTS research areas 1 and 2: Real-time Grid Reliability Management (Area 1), and Reliability and Markets (Area 2). The CERTS research areas overlap with the PSERC research stems: Power Systems, Power Markets, and Transmission and Distribution Technologies, as described on the PSERC website (see http://www.pserc.org/research/research_program.aspx). The performers were with Arizona State University (ASU), Cornell University (CU), University of California at Berkeley (UCB), and University of Illinois at Urbana-Champaign (UIUC). PSERC research activities in the area of reliability and markets focused on electric market and power policy analyses. The resulting studies suggest ways to frame best practices using organized markets for managing U.S. grid assets reliably and to identify highest priority areas for improvement. PSERC research activities in the area of advanced applications focused on mid- to long-term software research and development, with anticipated outcomes that move innovative ideas toward real-world application. Under the CERTS research area of Real-time Grid Reliability Management, PSERC has been focused on Advanced Applications Research and Development (AARD), a subgroup of activities that works to develop advanced applications and tools to more effectively operate the electricity delivery system, by enabling advanced analysis, visualization, monitoring and alarming, and decision support capabilities for grid operators.« less
This page contains the Final PSD Permit Extension Letter for Energy Answers Arecibo Puerto Rico Renewable Energy Project, issued on April 10, 2017 and the EPA Public Announcement for Final PSD Permit Extension for Energy Answers Arecibo, PR.
The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry
2016-01-01
Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.
GEM*STAR: Time for an Alternative Way Forward
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2011-10-01
The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.
Moonlight project promotes energy-saving technology
NASA Astrophysics Data System (ADS)
Ishihara, A.
1986-01-01
In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.
Smart City Energy Interconnection Technology Framework Preliminary Research
NASA Astrophysics Data System (ADS)
Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu
2018-01-01
to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.
NASA Astrophysics Data System (ADS)
Shadrina, A.; Saruev, L.; Vasenin, S.
2016-09-01
This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented.
Research development of thermal aberration in 193nm lithography exposure system
NASA Astrophysics Data System (ADS)
Wang, Yueqiang; Liu, Yong
2014-08-01
Lithographic exposure is the key process in the manufacture of the integrated circuit, and the performance of exposure system decides the level of microelectronic manufacture technology. Nowadays, the 193nm ArF immersion exposure tool is widely used by the IC manufacturer. With the uniformity of critical dimension (CDU) and overlay become tighter and the requirement for throughput become higher, the thermal aberration caused by lens material and structure absorbing the laser energy cannot be neglected. In this paper, we introduce the efforts and methods that researcher on thermal aberration and its control. Further, these methods were compared to show their own pros and cons. Finally we investigated the challenges of thermal aberration control for state of the art technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-01
The program objective was to develop and test technologies which improve the Northrop Grumman electric powertrain and lead to the volume production of an electric powertrain with the power, smoothness, and cost of an internal combustion engine. Accomplishments for this program are summarized in the following six topic areas and selected figures are shown: (1) The 100 hp powertrain was commercialized; (2) The Chrysler EPIC minivan was commercialized; (3) The 230 hp powertrain was commercialized; (4) The Blue Bird electric school and commercial buses were commercialized; (5) Related developments were initiated for DoD and energy systems applications; and (6) Severalmore » key powertrain technologies were researched and advanced.« less
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
ATLID beam steering mechanism and derived new piezoelectric-based devices for optical applications
NASA Astrophysics Data System (ADS)
Bourgain, F.; Barillot, F.; Belly, C.; Claeyssen, F.
2015-09-01
In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APA® and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APA® technology, which allows the combination of long stroke while maintaining high resolution positioning of optical elements, is presented with experimental performances.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, T.; Contos, L.; Adams, L.
1992-03-01
The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less
Reprint of: Pyrolysis technologies for municipal solid waste: a review.
Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing
2015-03-01
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
NASA Astrophysics Data System (ADS)
Prehoda, Emily W.
This thesis presents three examples of U.S. energy policy and demonstrates how these policies violate the principles of energy justice. First, requiring only Federal agencies to obtain a percentage of energy production from renewables violates the distributive energy justice principle through a lack of a federal renewable energy policy which distributes the potential for unequal electrical grid failure to populations. Second, U.S. energy policy violates the procedural energy justice principle through inequitable participation and poor knowledge dissemination that, in some cases, contributes to stagnant renewable targets during the decision-making process and inequitable distribution of the benefits associated with renewable energy arguably resulting from differential representation of economic groups in policy decision making. Third, the United States' continued reliance on and subsidization of fossil fuel extraction and use, violates the prohibitive energy justice principle by causing physical harm to humans and the environment. Finally, a lack of federal renewable energy policy hinders comprehensive energy policy including diversifying the U.S. renewable energy portfolios. Considering energy policy through the framework of energy justice offers a means of evaluating existing policy and can improve future energy policy decision-making. Demanding energy justice ensures that all populations have equitable distribution, participation, and access to affordable, efficient, and clean energy technologies that contribute to obtaining basic needs.
Chemistry for Energy Technology I. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
Chemistry for Energy Technology II. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
Particle and nuclear physics instrumentation and its broad connections
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...
2016-12-20
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
Particle and nuclear physics instrumentation and its broad connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
George C. Vradis
2003-07-01
This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), Foster-Miller, Inc., and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The DOE's contribution to this project is $572,525 out of a total of $772,525. The present report summarizes the accomplishments of the project during its third three-month period (from April 2003 through June 2003). The project was initiated with delay in February 2003 due to contractual issues that emerged between NGA and Foster-Miller, Inc. The two organizations are working diligently to maintain the program's pace and expectmore » to complete it in time. The efforts of the project focused during this period in finalizing the assessment of the tether technology, which is intended to be used as the means of communication between robot and operator. Results indicate that the tether is a viable option under certain pipeline operating conditions, but not all. Concerns also exist regarding the abrasion resistance of the tether, this issue being the last studied. Substantial work was also conducted on the design of the robotic platform, which has progressed very well. Finally, work on the MFL sensor, able to negotiate all pipeline obstacles (including plug valves), was initiated by PII following the successful completion of the subcontract negotiations between Foster-Miller and PII. The sensor design is at this point the critical path in the project's timetable.« less
Landi, Daniele; Gigli, Silvia; Germani, Michele; Marconi, Marco
2018-05-01
The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively -86% and -45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nanotechnologies for efficient solar and wind energy harvesting and storage
NASA Astrophysics Data System (ADS)
Eldada, Louay A.
2010-08-01
We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.
Fundamental understanding and rational design of high energy structural microbatteries
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; ...
2017-11-21
We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.S.Reid; J.F.Sena; A.L.Martinez
2002-10-01
This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodiummore » heat pipe to the penetration of water.« less
Fundamental understanding and rational design of high energy structural microbatteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel
We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Citterio, M.; Camplani, A.; Cannon, M.
SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less
NASA Astrophysics Data System (ADS)
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-06-01
The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udengaard, Niels; Knight, Richard; Wendt, Jesper
This final report presents the results of a four-year technology demonstration project carried out by a consortium of companies sponsored in part by a $25 million funding by the Department of Energy (DOE) under the American Recovery and Reinvestment Act (ARRA). The purpose of the project was to demonstrate a new, economical technology for the thermochemical conversion of woody biomass into gasoline and to demonstrate that the gasoline produced in this way is suitable for direct inclusion in the already existing gasoline pool. The process that was demonstrated uses the Andritz-Carbona fluidized-bed steam-oxygen gasification technology and advanced tar reforming catalyticmore » systems to produce a clean syngas from waste wood, integrated conventional gas cleanup steps, and finally utilizes Haldor Topsoe’s (Topsoe) innovative Topsoe Improved Gasoline Synthesis (TIGASTM) syngas-to-gasoline process. Gas Technology Institute (GTI) carried out the bulk of the testing work at their Flex Fuel development facility in Des Plaines, Illinois; UPM in Minnesota supplied and prepared the feedstocks, and characterization of liquid products was conducted in Phillips 66 labs in Oklahoma. The produced gasoline was used for a single-engine emission test at Southwest Research Institute (SwRI®) in San Antonio, TX, as well as in a fleet test at Transportation Research Center, Inc. (TRC Inc.) in East Liberty, Ohio. The project benefited from the use of existing pilot plant equipment at GTI, including a 21.6 bone dry short ton/day gasifier, tar reformer, Morphysorb® acid gas removal, associated syngas cleanup and gasifier feeding and oxygen systems.« less
Tree Topping Ceremony at NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2003-01-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.
2003-02-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.