Sample records for energy transfer study

  1. Vectorial photoinduced energy transfer between boron-dipyrromethene (Bodipy) chromophores across a fluorene bridge.

    PubMed

    Puntoriero, Fausto; Nastasi, Francesco; Campagna, Sebastiano; Bura, Thomas; Ziessel, Raymond

    2010-08-02

    A series of novel multichromophoric, luminescent compounds has been prepared, and their absorption spectra, luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution), and photoinduced intercomponent energy-transfer processes have been studied. The series contains two new multichromophoric systems 1 and 2, each one containing two different boron-dipyrromethene (Bodipy) subunits and one bridging fluorene species, and two fluorene-Bodipy bichromophoric species, 6 and 7. Three monochromophoric compounds, 3, 4, and 5, used as precursors in the synthetic process, were also fully characterized. The absorption spectra of the multichromophoric compounds are roughly the summation of the absorption spectra of their individual components, thus demonstrating the supramolecular nature of the assemblies. Luminescence studies show that quantitative energy transfer occurs in 6 and 7 from the fluorene chromophore to the Bodipy dyes. Luminescence studies, complemented by transient-absorption spectroscopy studies, also indicate that efficient inter-Bodipy energy transfer across the rigid fluorene spacer takes place in 1 and 2, with rate constants, evaluated by several experimental methods, between 2.0 and 7.0 x 10(9) s(-1). Such an inter-Bodipy energy transfer appears to be governed by the Förster mechanism. By taking advantage of the presence of various protonable sites in the substituents of the lower-energy Bodipy subunit of 1 and 2, the effect of protonation on the energy-transfer rates has also been investigated. The results suggest that control of energy-transfer rate and efficiency of inter-Bodipy energy transfer in this type of systems can be achieved by an external, reversible input.

  2. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.

    PubMed

    Chen Hsu, Hsu; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-08-07

    Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).

  3. Collisional Dynamics of the B 3Pi(O+) State of Bromine Monochloride.

    DTIC Science & Technology

    1986-08-01

    many useful discussions on energy transfer studies and continual friendship, to Lt. Brian McFeeters for execution of an RKR program, and to AFWL...2 C. The Halogens and Interhalogens.................... 6 D. The Study of Molecular Energy Transfer............ 9 E. Problem...Matrix.............. 137 8. The BrCl(B) Quenching Mechanism................ 144 9. Energy Transfer with Rare Gases................ 145 10. Summary of

  4. Mechanisms of energy conversion and transfer in bioluminescence. Progress report, August 15, 1976--November 14, 1977. [Renilla (anthozoa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier, M.J.

    1977-01-01

    Progress is reported on the following studies: isolation of luciferase and green fluorescent protein (GFP) from Renilla; chemical properties and chemical reactions of luciferase and GFP; and analogy of energy transfer in bioluminescence to energy transfer in photosynthesis. (HLW)

  5. Enhancing the absorption and energy transfer process via quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang

    2018-07-01

    The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

  6. Ultrafast Energy Transfer Dynamics Between a Polypyridyl Ru(II) Chromophore and a Covalently Attached Acceptor

    NASA Astrophysics Data System (ADS)

    Styers-Barnett, David; Gannon, Erika; Papanikolas, John; Meyer, Thomas

    2003-03-01

    The energy transfer dynamics between the ^3MLCT excited state of a polypyridyl Ru(II) chromophore and a ligand-bound anthracene has been studied using femtosecond transient absorption spectroscopy. Photoexcitation of the metal complex at 450 nm promotes an electron from a d-orbital on the metal to a π* orbital on the bipyridine, forming a metal-to-ligand charge-transfer (MLCT) excited state. Energy transfer to the covalently appended anthracene is followed by the growth of the anthracene excited state absorption at 425 nm, and the simultaneous decay of the ^3MLCT absorption at 380 nm. The observed growth is biexponential, with the fast component attributed to energy transfer (19 ps), and the slow component arising from a combination of interligand electron transfer between the polypyridyl ligands and energy transfer (75 ps).

  7. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  8. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO₂ Film for Emission at 614 nm.

    PubMed

    Mangalam, Vivek; Pita, Kantisara

    2017-08-10

    In this work, we study the energy transfer mechanism from ZnO nanocrystals (ZnO-nc) to Eu 3+ ions by fabricating thin-film samples of ZnO-nc and Eu 3+ ions embedded in a SiO₂ matrix using the low-cost sol-gel technique. The time-resolved photoluminescence (TRPL) measurements from the samples were analyzed to understand the contribution of energy transfer from the various ZnO-nc emission centers to Eu 3+ ions. The decay time obtained from the TRPL measurements was used to calculate the energy transfer efficiencies from the ZnO-nc emission centers, and these results were compared with the energy transfer efficiencies calculated from steady-state photoluminescence emission results. The results in this work show that high transfer efficiencies from the excitonic and Zn defect emission centers is mostly due to the energy transfer from ZnO-nc to Eu 3+ ions which results in the radiative emission from the Eu 3+ ions at 614 nm, while the energy transfer from the oxygen defect emissions is most probably due to the energy transfer from ZnO-nc to the new defects created due to the incorporation of the Eu 3+ ions.

  9. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Scott A.

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy Transfer  Energy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  10. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less

  11. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  12. Classical Trajectory Study of Collision Energy Transfer between Ne and C2H2 on a Full Dimensional Accurate Potential Energy Surface.

    PubMed

    Liu, Yang; Huang, Yin; Ma, Jianyi; Li, Jun

    2018-02-15

    Collision energy transfer plays an important role in gas phase reaction kinetics and relaxation of excited molecules. However, empirical treatments are generally adopted for the collisional energy transfer in the master equation based approach. In this work, classical trajectory approach is employed to investigate the collision energy transfer dynamics in the C 2 H 2 -Ne system. The entire potential energy surface is described as the sum of the C 2 H 2 potential and interaction potential between C 2 H 2 and Ne. It is highlighted that both parts of the entire potential are highly accurate. In particular, the interaction potential is fit to ∼41 300 configurations determined at the level of CCSD(T)-F12a/cc-pCVTZ-F12 with the counterpoise correction. Collision energy transfer dynamics are then carried out on this benchmark potential and the widely used Lennard-Jones and Buckingham interaction potentials. Energy transfers and related probability densities at different collisional energies are reported and discussed.

  13. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jun; Sun Kewei; Zhao Yang

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has beenmore » largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.« less

  14. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  15. Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins.

    PubMed

    Yamashita, Satoshi; Mizuno, Misao; Tran, Duy Phuoc; Dokainish, Hisham M; Kitao, Akio; Mizutani, Yasuhisa

    2018-05-10

    A pathway of vibrational energy flow in myoglobin was studied by time-resolved anti-Stokes ultraviolet resonance Raman spectroscopy combined with site-directed mutagenesis. Our previous study suggested that atomic contacts in proteins provide the dominant pathway for energy transfer while covalent bonds do not. In the present study, we directly examined the contributions of covalent bonds and atomic contacts to the pathway of vibrational energy flow by comparing the anti-Stokes resonance Raman spectra of two myoglobin mutants: one lacked a covalent bond between heme and the polypeptide chain and the other retained the intact bond. The two mutants showed no significant difference in temporal changes in the anti-Stokes Raman intensities of the tryptophan bands, implying that the dominant channel of vibrational energy transfer is not through the covalent bond but rather through van der Waals atomic contacts between heme and the protein moiety. The obtained insights contribute to our general understanding of energy transfer in the condensed phase.

  16. The fluorescence resonance energy transfer (FRET) gate: a time-resolved study.

    PubMed

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2005-01-18

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB.

  17. The fluorescence resonance energy transfer (FRET) gate: A time-resolved study

    PubMed Central

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2005-01-01

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB. PMID:15642946

  18. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  19. Energy flow during Olympic weight lifting.

    PubMed

    Garhammer, J

    1982-01-01

    Data obtained from 16-mm film of world caliber Olympic weight lifters performing at major competitions were analyzed to study energy changes during body segment and barbell movements, energy transfer to the barbell, and energy transfer between segments during the lifting movements contested. Determination of barbell and body segment kinematics and use of rigid-link modeling and energy flow techniques permitted the calculation of segment energy content and energy transfer between segments. Energy generation within and transfer to and from segments were determined at 0.04-s intervals by comparing mechanical energy changes of a segment with energy transfer at the joints, calculated from the scalar product of net joint force with absolute joint velocity, and the product of net joint torque due to muscular activity with absolute segment angular velocity. The results provided a detailed understanding of the magnitude and temporal input of energy from dominant muscle groups during a lift. This information also provided a means of quantifying lifting technique. Comparison of segment energy changes determined by the two methods were satisfactory but could likely be improved by employing more sophisticated data smoothing methods. The procedures used in this study could easily be applied to weight training and rehabilitative exercises to help determine their efficacy in producing desired results or to ergonomic situations where a more detailed understanding of the demands made on the body during lifting tasks would be useful.

  20. Resonance energy transfer: Dye to metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  1. Studies on the interaction between 7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one and cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Kuriakose, Alina C.; Pradeep, C.; Nampoori, V. P. N.; Thomas, Sheenu

    2018-04-01

    Quantum dots (QDs) are well known for their optical properties which differ from those of bulk semiconductors. Herein, we have created an energy transfer platform that combines CdS QDs with a coumarin based dye C485 [7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one]. Spectroscopic studies of energy transfer between the dye donor and CdS QDs as acceptors reveal the occurrence of dynamic quenching. Analysis of the steady-state and time resolved fluorescence measurements of C485 in the presence of CdS QDs infers fluorescence resonance (Förster type) energy transfer (FRET) as responsible for the quenching phenomena. The energy transfer efficiency as well as energy transfer distance for the donor-acceptor pair is calculated using steady-state fluorescence method. Luminescence enhancement of CdS QDs play a critical role in device performance for solar applications and also in the field of biological applications.

  2. Solvent effects on the oxidation (electron transfer) reaction of [Fe(CN) 6] 4- by [Co(NH 3) 5pz] 3+

    NASA Astrophysics Data System (ADS)

    Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F.

    2004-03-01

    Solvent effects on the title reaction were studied in different reaction media constituted by water and organic cosolvents (methanol, tert-butyl alcohol, ethyleneglycol and glucose) at 298.2 K. The results are considered in light of the Marcus-Hush approach for electron transfer reactions. Variations of the electron transfer rate constant are shown to be mainly due to changes in the reaction free energy. On the other hand the energies of the MMCT band, corresponding to the optical electron transfer within the ion pair [Fe(CN) 6] 4-/[Co(NH 3) 5pz] 3+, in the different reaction media, have been obtained. The activation free energies of the thermal electron transfer process have been calculated from the band ( Eop) data, and compared with those obtained from the kinetic study. Quantitative agreement is found between the two series of data. This shows the possibility of estimating activation free energies for electron transfer reactions from static (optical) measurements.

  3. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  4. Resonance Energy Transfer Studies from Derivatives of Thiophene Substituted 1,3,4-Oxadiazoles to Coumarin-334 Dye in Liquid and Dye-Doped Polymer Media

    NASA Astrophysics Data System (ADS)

    Naik, Lohit; Deshapande, Narahari; Khazi, Imtiyaz Ahamed M.; Malimath, G. H.

    2018-02-01

    In the present work, we have carried out energy transfer studies using newly synthesised derivatives of thiophene substituted 1,3,4-oxadiazoles namely, 2-(-4-(thiophene-3-yl)phenyl)-5-(5-(thiophene-3-yl)thiophene-2-yl)-1,3,4-oxadiazole [TTO], 2-(-4-(benzo[b]thiophene-2-yl)phenyl)-5-(5-(benzo[b]thiophene-2-yl)-1,3,4-oxadiozole [TBO] and 2-(4-(4-(trifluoromethyl)phenyl)phenyl)-5-(5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)-1,3,4-oxadiazole [TMO] as donors and laser dye coumarin-334 as acceptor in ethanol and dye-doped polymer (poly(methyl methacrylate) (PMMA)) media following steady-state and time-resolved fluorescence methods. Bimolecular quenching constant ( k q), translation diffusion rate parameter ( k d), diffusion length ( D l), critical transfer distance ( R 0), donor- acceptor distance ( r) and energy transfer efficiency ( E T) are calculated. It is observed that, critical transfer distance is more than the diffusion length for all the pairs. Further, bimolecular quenching constant is also more than the translation diffusion rate parameter. Hence, our experimental findings suggest that overall energy transfer is due to Förster resonance energy transfer (FRET) between donor and acceptor in both the media and for all the pairs. In addition, considerable increase in fluorescence intensity and energy transfer efficiency is observed in dye-doped polymer matrix systems as compared to liquid media. This suggests that, these donor-acceptor pairs doped in PMMA matrix may be used for applications such as energy transfer dye lasers (ETDL) to improve the efficiency and photostability, to enhance tunability and for plastic scintillation detectors.

  5. Tunable energy transfer from d 10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1)

    NASA Astrophysics Data System (ADS)

    Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.

    2007-07-01

    We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.

  6. Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).

    PubMed

    Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E

    2017-12-13

    Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

  7. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close and away from the ground are studied. The energy spectra predicted by WRF-ARW are qualitatively compared with LES results to emphasize the limitations of the currently used turbulence parameterizations. Ongoing validation efforts include: (1) extending the interaction of large scale circulation with wall simulations to finer grids to capture a wider range of wavenumbers; and (2) a coupled 2D-3D simulation is planned to predict the entire atmospheric turbulence spectra at a very low computational expense. The overarching objective of this study to develop turbulence modeling capability based on the energy transfer mechanisms proposed in this study. Such a model will be implemented in WRF-ARW, and applied to atmospheric simulations, for example the prediction of moisture convergence patterns at the meso-scale in the southeast United States (Tao & Barros, 2008).

  8. New electron-energy transfer rates for vibrational excitation of O2

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.

    2003-09-01

    We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.

  9. Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows.

    PubMed

    Lombardi, A; Faginas-Lago, N; Pacifici, L; Grossi, G

    2015-07-21

    Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO2 characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO2 + CO2 collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO2 structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.

  10. Ion imaging study of dissociative charge transfer in the N{sub 2}{sup +}+ CH{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei Linsen; Farrar, James M.

    The velocity map ion imaging method is applied to the dissociative charge transfer reactions of N{sub 2}{sup +} with CH{sub 4} studied in crossed beams. The velocity space images are collected at four collision energies between 0.5 and 1.5 eV, providing both product kinetic energy and angular distributions for the reaction products CH{sub 3}{sup +} and CH{sub 2}{sup +}. The general shapes of the images are consistent with long range electron transfer from CH{sub 4} to N{sub 2}{sup +} preceding dissociation, and product kinetic energy distributions are consistent with energy resonance in the initial electron transfer step. The branching ratiomore » for CH{sub 3}{sup +}:CH{sub 2}{sup +} is 85:15 over the full collision energy range, consistent with literature reports.« less

  11. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    PubMed

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  12. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  13. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  14. Radiative energy transfer from MoS2 excitons to surface plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Li, Bowen; Fang, Zheyu

    2017-12-01

    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  15. Diverse dissolution-recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF.

    PubMed

    Cao, Li-Hui; Li, Hai-Yang; Xu, Hong; Wei, Yong-Li; Zang, Shuang-Quan

    2017-09-12

    Metal-organic frameworks (MOFs) with light-harvesting building blocks provide an excellent platform to study energy transfer in networks with well-defined structures. Here, we report the synthesis, dissolution-recrystallization structural transformation (DRST) and the Förster resonance energy transfer (FRET) properties of a 2D microporous MOF {[Cd 2 (L 1 ) 3 (Hdabco) 2 ]·5DMAc·6H 2 O} n (Cd-MOF, 1). Complex 1 can be dissolved in water and three other products with different dimensions recrystallized from the aqueous solution under diverse reaction conditions were obtained. Due to the porosity and excellent blue luminescence properties of complex 1, we also studied the FRET process between 1 and guest dyes. Two distinct organic dye molecules viz., acridine orange (AO) and rhodamine B (RhB), are encapsulated in 1 which has honeycomb-type nanochannels, and their influence on fluorescence emission has also been studied. The microporous complex 1 in (AO + RhB)@1 serves as an energy funnel that harvests high energy excitation and channels it onto AO and then onto RhB. The steady-state fluorescence and fluorescence dynamics of emission reveal successfully the process of stepwise vectorial energy transfer. Therefore, MOFs could be a class of promising host materials to be further explored in the field of energy transfer between MOF-host and organic guests.

  16. Energy transfer of highly vibrationally excited biphenyl.

    PubMed

    Hsu, Hsu Chen; Dyakov, Yuri; Ni, Chi-Kung

    2010-11-07

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.

  17. Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging

    NASA Astrophysics Data System (ADS)

    Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg

    2018-05-01

    Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.

  18. Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads.

    PubMed

    Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya

    2017-04-07

    Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.

  19. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  20. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    PubMed

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  1. Energy Transfer Processes in (Lu,Gd)AlO3:Ce

    DTIC Science & Technology

    2001-01-01

    studies on energy transfer processes in Ce-activated Lu, Y and Gd aluminum perovskite crystals that contribute to production of scintillation light in...LuAIO3, GdA10 3, cerium, scintillators, VUV spectroscopy, luminescence, time profiles, energy transfer 1. INTRODUCTION The yttrium aluminum perovskite...The Czochralski-grown monocrystals of LuAP:Ce were first evaluated in a garnet -free perovskite phase by Lempicki et al. in 1994 .4 More detailed

  2. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides.

    PubMed Central

    Trautman, J K; Shreve, A P; Violette, C A; Frank, H A; Owens, T G; Albrecht, A C

    1990-01-01

    We report femtosecond transient absorption studies of energy transfer dynamics in the B800-850 light-harvesting complex (LHC) of Rhodobacter sphaeroides 2.4.1. For complexes solubilized in lauryldimethylamine-N-oxide (LDAO), the carotenoid to bacteriochlorophyll (Bchl) B800 and carotenoid to Bchl B850 energy transfer times are 0.34 and 0.20 ps, respectively. The B800 to B850 energy transfer time is 2.5 ps. For complexes treated with lithium dodecyl sulfate (LDS), a carotenoid to B850 energy transfer time of less than or equal to 0.2 ps is seen, and a portion of the total carotenoid population is decoupled from Bchl. In both LDAO-solubilized and LDS-treated complexes an intensity-dependent picosecond decay component of the excited B850 population is ascribed to excitation annihilation within minimal units of the LHC. PMID:2404276

  3. Energy transfer mechanism and probability analysis of submarine pipe laterally impacted by dropped objects

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui

    2016-06-01

    Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.

  4. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  5. Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes.

    PubMed

    Jumper, Chanelle C; van Stokkum, Ivo H M; Mirkovic, Tihana; Scholes, Gregory D

    2018-06-21

    Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pump-probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two "open" structures and two "closed" structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm -1 coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis.

  6. Shining light on the antenna chromophore in lanthanide based dyes.

    PubMed

    Junker, Anne Kathrine R; Hill, Leila R; Thompson, Amber L; Faulkner, Stephen; Sørensen, Thomas Just

    2018-04-03

    Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.

  7. Molecular-wire behavior of OLED materials: exciton dynamics in multichromophoric Alq3-oligofluorene-Pt(II)porphyrin triads.

    PubMed

    Montes, Victor A; Pérez-Bolívar, César; Agarwal, Neeraj; Shinar, Joseph; Anzenbacher, Pavel

    2006-09-27

    Donor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade. Using femtosecond transient spectroscopy, the rate of the singlet-singlet energy transfer was determined. The exponential dependence of the donor-acceptor distance and the respective energy transfer rates of 7.1 x 1010 to 1.0 x 109 s-1 with the attenuation factor â of 0.21 +/- 0.02 A-1 suggest that the energy transfer proceeds via a mixed incohererent wire/superexchange mechanism. In the OLEDs fabricated using the Alq3-oligofluorene-PtTPP triads with better triplet level alignment, the order of a magnitude increase in efficacy appears to be due to facile triplet energy transfer. The devices, where the triplet-triplet energy transfer is of paramount importance, showed high color purity emission (CIE X,Y: 0.706, 0.277), which is almost identical to the emission from thin films. Most importantly, we believe that the design principles demonstrated above are general and may be used to prepare OLED materials with enhanced quantum efficacy at lowered operational potentials, being crucial for improved lifespan of OLEDs.

  8. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  9. Lunar flyby transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie; Qi, Rui

    2017-06-01

    Lunar flyby or lunar gravity assist is a classical technique to change the energy and trajectory of space vehicle in space mission. In this paper, lunar flyby transfers between Sun-Earth/Moon libration point orbits with different energies are investigated in the Sun-Earth-Moon restricted four-body problem. Distinguished by behaviours before and after lunar flyby, classification of lunar flyby orbits is defined and studied. Research indicates that junction point of special regions of four types of lunar flyby orbits denotes the perilune of lunar flyby transfer between libration point orbits. Based on those special perilunes, retrograde and prograde lunar flyby transfers are discussed in detail, respectively. The mean energy level transition distribution is proposed and applied to analyse the influence of phase angle and eccentricity on lunar flyby transfers. The phase space is divided into normal and chaotic intervals based on the topology pattern of transfers. A continuation strategy of lunar flyby transfer in the bicircular model is presented. Numerical examples show that compared with the single-impulse transfers based on patched invariant manifolds, lunar flyby transfers are more energy efficient. Finally, lunar flyby transfers are further extended to the realistic models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marocico, Cristian A.; Zhang, Xia; Bradley, A. Louise, E-mail: bradlel@tcd.ie

    We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform anmore » investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green’s tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r{sup −6} regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.« less

  11. Mechanisms, pathways, and dynamics of excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2006-10-05

    Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively Förster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.

  12. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    PubMed

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  13. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.

    PubMed

    Marocico, Cristian A; Zhang, Xia; Bradley, A Louise

    2016-01-14

    We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.

  14. A BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette for imaging of cellular superoxide.

    PubMed

    Bag, S; Tseng, J-C; Rochford, J

    2015-02-14

    Spectroscopic and in cellulo studies are here reported on the very first BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette where the luminol CL agent is covalently linked to the BODIPY energy-transfer acceptor in a molecular dyad. The efficiency of intramolecular CRET investigated for the BODIPY-luminol dyad was found to be 64% resulting in a dual emissive response. Successful in cellulo biochemiluminescence via CRET was achieved in PMA activated splenocytes.

  15. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    PubMed Central

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-01-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705

  16. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  17. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  18. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri; Ni, Chi-Kung

    2011-05-14

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.

  19. A density functional theory (DFT) and time-dependent density functional theory (TDDFT) study on optical transitions in oligo(p-phenylenevinylene)-fullerene dyads and the applicability to resonant energy transfer.

    PubMed

    Toivonen, Teemu L J; Hukka, Terttu I

    2007-06-07

    The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.

  20. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  1. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  2. Mechanical energy generation and transfer in the racket arm during table tennis topspin backhands.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2016-06-01

    The ability to generate a high racket speed and a large amount of racket kinetic energy on impact is important for table tennis players. The purpose of this study was to understand how mechanical energy is generated and transferred in the racket arm during table tennis backhands. Ten male advanced right-handed table tennis players hit topspin backhands against pre-impact topspin and backspin balls. The joint kinetics at the shoulder, elbow and wrist of the racket arm was determined using inverse dynamics. A majority of the mechanical energy of the racket arm acquired during forward swing (65 and 77% against topspin and backspin, respectively) was due to energy transfer from the trunk. Energy transfer by the shoulder joint force in the vertical direction was the largest contributor to the mechanical energy of the racket arm against both spins and was greater against backspin than against topspin (34 and 28%, respectively). The shoulder joint force directed to the right, which peaked just before impact, transferred additional energy to the racket. Our results suggest that the upward thrust of the shoulder and the late timing of the axial rotation of the upper trunk are important for an effective topspin backhand.

  3. Thermal energy and charge currents in multi-terminal nanorings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin; Kreisbeck, Christoph

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approachmore » and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.« less

  4. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  5. Automated generation and optimization of ballistic lunar capture transfer trajectories

    NASA Astrophysics Data System (ADS)

    Griesemer, Paul Ricord

    The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.

  6. Energy transfer mechanism and optoelectronic properties of (PFO/TiO2)/Fluorol 7GA nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Al-Asbahi, Bandar Ali

    2017-10-01

    Energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO) as a donor in presence of TiO2 nanoparticles (NPs) and Fluorol 7GA as an acceptor with different weight ratios has been investigated by steady-state emission measurements. Based on the absorption and fluorescence measurements, the energy transfer properties, such as quenching rate constant (kSV), energy transfer rate constant (kET), quantum yield (ϕDA), and lifetime (τDA), of the donor in the presence of the acceptor, energy transfer probability (PDA), energy transfer efficiency (η), energy transfer time (τET), and critical distance of the energy transfer (Ro) were calculated. Förster-type energy transfer between the excited donor and ground-state acceptor molecules was the dominant mechanism responsible for the energy transfer as evidenced by large values of kSV, kET, and Ro. Moreover, these composite materials were employed as an emissive layer in organic light-emitting diodes (OLEDs). Additionally, the optoelectronic properties of OLEDs were investigated in terms of current density-voltage characteristics and electroluminescence spectra.

  7. Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.

    PubMed

    Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J

    2014-02-27

    We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.

  8. Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution

    NASA Astrophysics Data System (ADS)

    Morozov, A. A.

    2007-08-01

    Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one.

  9. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  10. Instrumentation for measuring lake and reservoir evaporation by the energy-budget and mass-transfer methods

    USGS Publications Warehouse

    Sturrock, A.M.

    1985-01-01

    Instrumentation currently used by the U.S. Geological Survey in studies of lake and reservoir evaporation is described in this paper. This instrumentation is used for the measurement of solar and terrestrial energy necessary to apply the mass-transfer or energy budget methods. The energy budget requires a quantative determination of all form of energy entering or leaving the lake as well as determination of the change in storage of energy within the lake. (USGS)

  11. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yukihira, Nao; Sugai, Yuko; Fujiwara, Masazumi

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin intomore » a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.« less

  12. The new view of hydrophobic free energy.

    PubMed

    Baldwin, Robert L

    2013-04-17

    In the new view, hydrophobic free energy is measured by the work of solute transfer of hydrocarbon gases from vapor to aqueous solution. Reasons are given for believing that older values, measured by solute transfer from a reference solvent to water, are not quantitatively correct. The hydrophobic free energy from gas-liquid transfer is the sum of two opposing quantities, the cavity work (unfavorable) and the solute-solvent interaction energy (favorable). Values of the interaction energy have been found by simulation for linear alkanes and are used here to find the cavity work, which scales linearly with molar volume, not accessible surface area. The hydrophobic free energy is the dominant factor driving folding as judged by the heat capacity change for transfer, which agrees with values for solvating hydrocarbon gases. There is an apparent conflict with earlier values of hydrophobic free energy from studies of large-to-small mutations and an explanation is given. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  14. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    PubMed

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices.

  15. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    ERIC Educational Resources Information Center

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  16. Generation, absorption, and transfer of mechanical energy during walking in children.

    PubMed

    Umberger, Brian R; Augsburger, Sam; Resig, JoAnne; Oeffinger, Donna; Shapiro, Robert; Tylkowski, Chester

    2013-05-01

    The purpose of this study was to characterize the manner in which net joint moments and non-muscular forces generate, absorb, and transfer mechanical energy during walking in able-bodied children. Standard gait data from seven healthy subjects between 6 and 17 years of age were combined with a dynamic model of the whole body to perform a power analysis based on induced acceleration techniques. These data were used to determine how each moment and force generates energy to, absorbs energy from, and transfers energy among the major body segments. The joint moments were found to induce transfers of mechanical energy between body segments that generally exceeded the magnitudes of energy generation and absorption. The amount of energy transferred by gravitational and velocity-dependent forces was considerably less than for the joint moments. The hip and ankle joint moments had relatively simple power patterns that tended to oppose each other, particularly over the stance phase. The knee joint moment had a more complex power pattern that appeared distinct from the hip and ankle moments. The general patterns of mechanical energy flow were similar to previous reports in adults. The approach described in this paper should provide a useful complement to standard clinical gait analysis procedures. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Study of fission using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Mark, Vermeulen; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Sato, Tetsuya K.; Nagame, Yuichiro; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-11-01

    It is shown that multi-nucleon transfer reaction is a powerful tool to study fission of exotic neutronrich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm, and 18O+237Np were used to measure fission-fragment mass distribution for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited and less neutronrich excited nuclei due to higher-order chance fissions.

  18. A study of the generation of linear energy transfer spectra for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.

    1992-01-01

    The conversion of particle-energy spectra into a linear energy transfer (LET) distribution is a guide in assessing biologically significant components. The mapping of LET to energy is triple valued and can be defined only on open subintervals. A well-defined numerical procedure is found to allow generation of LET spectra on the open subintervals that are integrable in spite of their singular nature.

  19. Energy transfer in turbulence under rotation

    NASA Astrophysics Data System (ADS)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  20. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  1. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60 : Synthesis, Supramolecular Formation and Excited-State Processes.

    PubMed

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis

    2017-09-18

    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H 2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 10 4  m -1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H 2 P, and electron transfer to the coordinated ImC 60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×10 9  s -1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex photochemical events occurring in natural photosynthesis and its implications in building light energy harvesting devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzaki, Satoshi

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application ofmore » NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q y-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.« less

  3. Low-energy transfers to cislunar periodic orbits visiting triangular libration points

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo

    2018-01-01

    This paper investigates the cislunar periodic orbits that pass through triangular libration points of the Earth-Moon system and studies the techniques on design low-energy transfer trajectories. In order to compute periodic orbits, families of impulsive transfers between triangular libration points are taken to generate the initial guesses of periodic orbits, and multiple shooting techniques are applied to solving the problem. Then, varieties of periodic orbits in cislunar space are obtained, and stability analysis shows that the majority of them are unstable. Among these periodic orbits, an unstable periodic orbit in near 3:2 resonance with the Moon is taken as the nominal orbit of an assumed mission. As the stable manifolds of the target orbit could approach the Moon, low-energy transfer trajectories can be designed by combining lunar gravity assist with the invariant manifold structure of the target orbit. In practice, both the natural and perturbed invariant manifolds are considered to obtain the low-energy transfers, which are further refined to the Sun-perturbed Earth-Moon system. Results indicate that (a) compared to the case of natural invariant manifolds, the optimal transfers using perturbed invariant manifolds could reduce flight time at least 50 days, (b) compared to the cheapest direct transfer, the optimal low-energy transfer obtained by combining lunar gravity assist and invariant manifolds could save on-board fuel consumption more than 200 m/s, and (c) by taking advantage of the gravitational perturbation of the Sun, the low-energy transfers could save more fuel consumption than the corresponding ones obtained in the Earth-Moon system.

  4. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  5. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation.

    PubMed

    Wilhelm, Christian; Jakob, Torsten

    2006-03-01

    From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.

  6. Crossed beam (E--VRT) energy transfer experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, I.V.; Hofmann, H.; Rost, K.A.

    A molecular crossed beam apparatus which has been developed to perform electronic-to-vibrational, rotational, translational (E--V,R,T) energy transfer studies is described. Its capabilities are illustrated on the basis of a number of energy transfer spectra obtained for collision systems of the type Na*+Mol(..nu..,j) ..-->..Na+Mol (..nu..',j') where Na* represents a laser excited sodium atom and Mol a diatomic or polyatomic molecule. Because of the lack of reliable dynamic theories on quenching processes, statistical approaches such as the ''linearly forced harmonic oscillator'' and ''prior distributions'' have been used to model the experimental spectra. The agreement is found to be satisfactory, so even suchmore » simple statistics may be useful to describe (E--V,R,T) energy transfer processes in collision systems with small molecules.« less

  7. Alkylation effects on the energy transfer of highly vibrationally excited naphthalene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-11-04

    The energy transfer of highly vibrationally excited isomers of dimethylnaphthalene and 2-ethylnaphthalene in collisions with krypton were investigated using crossed molecular beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques at a collision energy of approximately 300 cm(-1). Angular-resolved energy-transfer distribution functions were obtained directly from the images of inelastic scattering. The results show that alkyl-substituted naphthalenes transfer more vibrational energy to translational energy than unsubstituted naphthalene. Alkylation enhances the V→T energy transfer in the range -ΔE(d)=-100~-1500 cm(-1) by approximately a factor of 2. However, the maximum values of V→T energy transfer for alkyl-substituted naphthalenes are about 1500~2000 cm(-1), which is similar to that of naphthalene. The lack of rotation-like wide-angle motion of the aromatic ring and no enhancement in very large V→T energy transfer, like supercollisions, indicates that very large V→T energy transfer requires special vibrational motions. This transfer cannot be achieved by the low-frequency vibrational motions of alkyl groups. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  9. Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.

    PubMed

    Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier

    2016-08-04

    Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  11. Organic photochemical storage of solar energy. Progress report, February 1, 1979-January 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G. II

    1980-02-01

    Study of valence isomerization of organic compounds has focused on two mechanisms of photosensitization involving either electron donor-acceptor interaction or energy transfer. The quenching of fluorescent sensitizers by isomerizable substrates results in the formation of excited complexes. These sensitizer-substrate pairs are highly polarized, leading to changes in bond order for the substrates. For several substrates such as quadricyclene, hexamethyldewarbenzene, and a nonbornadiene derivative, this perturbation results in efficient valence isomerization. Isomerization observed on irradiation of charge transfer complexes of isomerizable substrates is consistent with a similar exciplex - template mechanism. The energy transfer mechanism of photosensitization has been studied bymore » measuring the temperature dependence of quantum yield for isomerization of dimethyl norbornadiene-2,3-dicarboxylate sensitized by benzanthrone. From temperature and quencher concentration profiles quenching constants have been obtained which are consistent with an endoergic triplet energy transfer mechanism. The thermal upconversion of the low energy triplet of benzanthrone results in a threefold increase in isomerization quantum yield over a 90/sup 0/ temperature range.« less

  12. A model study of assisted adiabatic transfer of population in the presence of collisional dephasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, Shumpei, E-mail: shumpei.masuda@aalto.fi; Rice, Stuart A., E-mail: s-rice@uchicago.edu

    2015-06-28

    Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] andmore » (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.« less

  13. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    PubMed

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  14. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    PubMed

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  15. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms

    DTIC Science & Technology

    2014-09-24

    which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm for energy transfer in photovoltaic

  16. Near-resonant vibration. -->. vibration energy transfer under single-collision conditions. [Propynal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breener, D M

    1981-01-01

    Energy transfer in single collisions of propynal (HC triple bond C-CHO) subsequent to ir multiphonon absorption (CO/sub 2/ laser) was studied. SiF/sub 4/, CH/sub 3/F, CCl/sub 4/, and CH/sub 4/ were added. (DLC)

  17. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.

    2016-10-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  18. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles.

    PubMed

    Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M

    2016-12-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  19. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  20. 10 CFR 1000.1 - Transfer of proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Transfer of proceedings. 1000.1 Section 1000.1 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) TRANSFER OF PROCEEDINGS TO THE SECRETARY OF ENERGY AND THE FEDERAL ENERGY REGULATORY COMMISSION § 1000.1 Transfer of proceedings. (a) Scope. This part establishes the...

  1. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  2. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  3. Offshore Hydrokinetic Energy Conversion for Onshore Power Generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2009-01-01

    Design comparisons have been performed for a number of different tidal energy systems, including a fully submerged, horizontal-axis electro-turbine system, similar to Verdant Tidal Turbines in New York's East River, a platform-based Marine Current Turbine, now operating in Northern Ireland's Strangford Narrows, and the Rotech Lunar Energy system, to be installed off the South Korean Coast. A fourth type of tidal energy system studied is a novel JPL/Caltech hydraulic energy transfer system that uses submerged turbine blades which are mechanically attached to adjacent high-pressure pumps, instead of to adjacent electrical turbines. The generated highpressure water streams are combined and transferred to an onshore hydroelectric plant by means of a closed-cycle pipeline. The hydraulic energy transfer system was found to be cost competitive, and it allows all electronics to be placed onshore, thus greatly reducing maintenance costs and corrosion problems. It also eliminates the expenses of conditioning and transferring multiple offshore power lines and of building offshore platforms embedded in the sea floor.

  4. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  5. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-04-10

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heatmore » transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.« less

  6. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  7. Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, Anupam; Goswami, Nirmal; Lemmens, Peter

    2012-08-15

    Graphical abstract: Förster resonance energy transfer (FRET) studies on the interaction of water soluble arginine-capped CdSe/ZnS QDs with ethidium bromide (EB) labeled synthetic dodecamer DNA. Highlights: ► We have solubilized CdSe/ZnS QD in water replacing their TOPO ligand by L-arginine. ► We have studied arginine@QD–DNA interaction using FRET technique. ► Arginine@QDs act as energy donor and ethidium bromide-DNA acts as energy acceptor. ► We have applied a kinetic model to understand the kinetics of energy transfer. ► Circular dichroism studies revealed negligible perturbation in the DNA B-form in the arg@QD-DNA complex. -- Abstract: We have exchanged TOPO (trioctylphosphine oxide) ligandmore » of CdSe/ZnS core/shell quantum dots (QDs) with an amino acid L-arginine (Arg) at the toluene/water interface and eventually rendered the QDs from toluene to aqueous phase. We have studied the interaction of the water soluble Arg-capped QDs (energy donor) with ethidium (EB) labeled synthetic dodecamer DNA (energy acceptor) using picoseconds resolved Förster resonance energy transfer (FRET) technique. Furthermore, we have applied a model developed by M. Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (EB-DNA) molecules around the donor QDs. Circular dichroism (CD) studies revealed a negligible perturbation in the native B-form structure of the DNA upon interaction with Arg-capped QDs. The melting and the rehybridization pathways of the DNA attached to the QDs have been monitored by the CD which reveals hydrogen bonding is the associative mechanism for interaction between Arg-capped QDs and DNA.« less

  8. Effects of heat transfer and energy absorption in the ablation of biological tissues by pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin

    2006-09-01

    Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.

  9. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    NASA Astrophysics Data System (ADS)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  10. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  11. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.

    PubMed

    Hollerer, Michael; Lüftner, Daniel; Hurdax, Philipp; Ules, Thomas; Soubatch, Serguei; Tautz, Frank Stefan; Koller, Georg; Puschnig, Peter; Sterrer, Martin; Ramsey, Michael G

    2017-06-27

    It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

  12. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  13. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  14. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this energy being distributed over a larger number of states and to higher excitations with increasing numbers of transferred nucleons. Multinucleon transfer is thus a mechanism by which energy can be dissipated from the relative motion before reaching the fusion barrier radius.

  15. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    PubMed

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Review of Orbital Propellant Transfer Techniques and the Feasibility of a Thermal Bootstrap Propellant Transfer Concepts

    NASA Technical Reports Server (NTRS)

    Yoshikawa, H. H.; Madison, I. B.

    1971-01-01

    This study was performed in support of the NASA Task B-2 Study Plan for Space Basing. The nature of space-based operations implies that orbital transfer of propellant is a prime consideration. The intent of this report is (1) to report on the findings and recommendations of existing literature on space-based propellant transfer techniques, and (2) to determine possible alternatives to the recommended methods. The reviewed literature recommends, in general, the use of conventional liquid transfer techniques (i.e., pumping) in conjunction with an artificially induced gravitational field. An alternate concept that was studied, the Thermal Bootstrap Transfer Process, is based on the compression of a two-phase fluid with subsequent condensation to a liquid (vapor compression/condensation). This concept utilizes the intrinsic energy capacities of the tanks and propellant by exploiting temperature differentials and available energy differences. The results indicate the thermodynamic feasibility of the Thermal Bootstrap Transfer Process for a specific range of tank sizes, temperatures, fill-factors and receiver tank heat transfer coefficients.

  17. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    NASA Astrophysics Data System (ADS)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  18. Energy transfer and drag reduction in elasto-inertial turbulence laden with elongated contravariant and covariant polymers

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi

    2015-11-01

    We study elongation and energy-transfer process of polymers released in the homogeneous isotropic turbulence by connecting mesoscopic Brownian description of elastic dumbbells to macroscopic description for the solvent (DNS). The dumbbells are allowed to be advected either affinely with the macroscopically-imposed deformation (contravariant) or completely non-affinely (covariant). We consider the elasto-inertial regime in which the relaxation time of polymer is in the order of the eddy turnover time. Highly-elongated contravariant polymers remove more energy from the large scales than they can dissipate and transfer the excess energy back into the solvent as in P.C. Valente et al. (2014). By deriving the approximate solution of the constitutive equation for the polymer stress (Horiuti et al. 2013), we identified the term responsible for causing this transfer. The skewness of the strain-rate tensor (SikSklSli) in the elastic energy production term transfer the elastic energy back into the smallest scale of the solvent and increase the dissipation. In the covariant polymers, this trend is reversed and leads to enhancement of drag reduction, in accordance with the hypothesis that stretched polymers may behave like rods and exhibit rigidity (de Gennes 1986).

  19. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    NASA Astrophysics Data System (ADS)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  20. Engineering Near-Field Transport of Energy using Nanostructured Materials

    DTIC Science & Technology

    2015-12-12

    increasingly important for a wide range of nanotechnology applications. Recent computational studies on near- field radiative heat transfer (NFRHT) suggest...SECURITY CLASSIFICATION OF: The transport of heat at the nanometer scale is becoming increasingly important for a wide range of nanotechnology...applications. Recent computational studies on near- field radiative heat transfer (NFRHT) suggest that radiative energy transport between suitably chosen

  1. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    PubMed

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P < 0.001). By having an assistant surgeon hold the camera/telescope (rather than one surgeon holding both the active electrode and the camera/telescope), temperature change was reduced to 26 ± 7°C (P < 0.001). Alternative energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P < 0.001) and ultrasonic (0.6 ± 0.3°C; P < 0.001) devices. Stray energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  3. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    ERIC Educational Resources Information Center

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  4. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    NASA Astrophysics Data System (ADS)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  5. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer.

    PubMed

    Tiwari, Vivek; Peters, William K; Jonas, David M

    2017-10-21

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  6. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  7. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  8. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    ERIC Educational Resources Information Center

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Renhui; Sun, Yuanyuan; Song, Kai

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays amore » much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.« less

  10. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  11. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  12. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  13. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The energy transfer from the outer to the inner ring can be reproduced. To deal with a realistic system, we calculated at a macro structural model. The energy transfer between light harvesting complexes is accomplished rapidly via inner rings. By exchange the original pigment to a pigment absorb lower energy, faster energy transfer occurs and the density was trapped in pigment having lower energy. We will compare the result of purple bacteria, which is considered to show longer red edge, cyanobacteria and plants.

  14. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  15. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  16. Synthesis and photoluminescence in Yb doped cerium phosphate CePO4

    NASA Astrophysics Data System (ADS)

    Bhonsule, S. U.; Wankhede, S. P.; Moharil, S. V.

    2018-05-01

    This paper presents the preparation of CePO4 and Yb doped CePO4 using simple solid state reaction method. PL measurements indicated significant energy transfer from Ce3+ to Yb3+ ions. Further evidence of energy transfer was provided by analysis of Luminescence Decay measurements. Energy transfer efficiency of 50% was obtained for 5%Yb doping. Energy transfer from Ce3+ to Yb3+ ions takes place by Cooperative energy transfer mechanism. Such phosphors can be used in white LED's, Lasers and energy saving fluorescent lamps.

  17. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  18. Gas-liquid transfer data used to analyze hydrophobic hydration and find the nature of the Kauzmann-Tanford hydrophobic factor.

    PubMed

    Baldwin, Robert L

    2012-05-08

    Hydrophobic free energy for protein folding is currently measured by liquid-liquid transfer, based on an analogy between the folding process and the transfer of a nonpolar solute from water into a reference solvent. The second part of the analogy (transfer into a nonaqueous solvent) is dubious and has been justified by arguing that transfer out of water probably contributes the major part of the free energy change. This assumption is wrong: transfer out of water contributes no more than half the total, often less. Liquid-liquid transfer of the solute from water to liquid alkane is written here as the sum of 2 gas-liquid transfers: (i) out of water into vapor, and (ii) from vapor into liquid alkane. Both gas-liquid transfers have known free energy values for several alkane solutes. The comparable values of the two different transfer reactions are explained by the values, determined in 1991 for three alkane solutes, of the cavity work and the solute-solvent interaction energy. The transfer free energy is the difference between the positive cavity work and the negative solute-solvent interaction energy. The interaction energy has similar values in water and liquid alkane that are intermediate in magnitude between the cavity work in water and in liquid alkane. These properties explain why the transfer free energy has comparable values (with opposite signs) in the two transfers. The current hydrophobic free energy is puzzling and poorly defined and needs a new definition and method of measurement.

  19. Gas-liquid transfer data used to analyze hydrophobic hydration and find the nature of the Kauzmann-Tanford hydrophobic factor

    PubMed Central

    Baldwin, Robert L.

    2012-01-01

    Hydrophobic free energy for protein folding is currently measured by liquid-liquid transfer, based on an analogy between the folding process and the transfer of a nonpolar solute from water into a reference solvent. The second part of the analogy (transfer into a nonaqueous solvent) is dubious and has been justified by arguing that transfer out of water probably contributes the major part of the free energy change. This assumption is wrong: transfer out of water contributes no more than half the total, often less. Liquid-liquid transfer of the solute from water to liquid alkane is written here as the sum of 2 gas-liquid transfers: (i) out of water into vapor, and (ii) from vapor into liquid alkane. Both gas-liquid transfers have known free energy values for several alkane solutes. The comparable values of the two different transfer reactions are explained by the values, determined in 1991 for three alkane solutes, of the cavity work and the solute-solvent interaction energy. The transfer free energy is the difference between the positive cavity work and the negative solute-solvent interaction energy. The interaction energy has similar values in water and liquid alkane that are intermediate in magnitude between the cavity work in water and in liquid alkane. These properties explain why the transfer free energy has comparable values (with opposite signs) in the two transfers. The current hydrophobic free energy is puzzling and poorly defined and needs a new definition and method of measurement. PMID:22529345

  20. Low-energy ballistic lunar transfers

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.

    A systematic method is developed that uses dynamical systems theory to model, analyze, and construct low-energy ballistic lunar transfers (BLTs). It has been found that low-energy BLTs may be produced by intersecting the stable manifold of an unstable Earth-Moon three-body orbit with the Earth. A spacecraft following such a trajectory is only required to perform a single maneuver, namely, the Trans-Lunar Injection maneuver, in order to complete the transfer. After the Trans-Lunar Injection maneuver, the spacecraft follows an entirely ballistic trajectory that asymptotically approaches and arrives at the target lunar three-body orbit. Because these orbit transfers require no orbit insertion maneuver at the three-body orbit, the transfers may be used to send spacecraft 25--40% more massive than spacecraft sent to the same orbits via conventional, direct transfers. From the targeted three-body orbits, the spacecraft may transfer to nearly any region within the Earth-Moon system, including any location on the surface of the Moon. The systematic methods developed in this research allow low-energy BLTs to be characterized by six parameters. It has been found that BLTs exist in families, where a family of BLTs consists of transfers whose parameters vary in a continuous fashion from one end of the family to the other. The families are easily identified and studied using a BLT State Space Map (BLT Map). The present research studies BLT Maps and has surveyed a wide variety of BLTs that exist in the observed families. It has been found that many types of BLTs may be constructed between 185-km low Earth parking orbits and lunar three-body orbits that require less than 3.27 km/s and fewer than 120 days of transfer time. Under certain conditions, BLTs may be constructed that require less than 3.2 km/s and fewer than 100 days of transfer time. It has been found that BLTs may implement LEO parking orbits with nearly any combination of altitude and inclination; they may depart from their LEO parking orbits nearly any day of each month; and they may target a variety of different classes of unstable Earth-Moon three-body orbits. Finally, studies are provided that address how low-energy transfers impact the design of spacecraft systems and how BLT Maps may be implemented as pragmatic tools in the design of practical lunar missions.

  1. Collective Förster energy transfer modified by planar plasmonic mirror (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander N.

    2015-09-01

    This is an invited presentation devoted to the Förster energy transfer in plasmonic systems. Förster energy transfer processes are now actively studied in various fields that bridge physics, biology and medicine. One can try to control the efficiency of the transfer by embedding the donors and acceptors into the structured electromagnetic environment. Available experimental studies yields contradictory reports on suppressed [1], enhanced [2] or unaffected [3] transfer. We present a rigorous Green function theory of the collective Förster energy transfer between the arrays of donor and acceptor molecules lying on the planar metallic mirror that has been previously available only for spherical nanoparticles [4]. We reveal strong modification of the effective transfer rate by the mirror. The rate can be either suppressed or enhanced depending on the relative positions between acceptor and donor arrays. This is a collective effect, completely absent for a single donor-acceptor pair put above the mirror. Our results may explain the slowdown of the transfer rate recently observed in experiment for dye molecules put on top of plasmonic mirrors and layered hyperbolic metamaterials [1]. [1] T. Tumkur, J. Kitur, C. Bonner, A. Poddubny, E. Narimanov and M. Noginov , Faraday Discuss., 2014 , DOI: 10.1039/C4FD00184B [2] C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, Phys. Rev. Lett. 109, 203601 (2012). [3] P. Andrew and W. L. Barnes, Science 290, 785 (2000). [4] V.N. Pustovit, A.M. Urbas, and T.V. Shahbazyan, Phys. Rev. B 88, 245427(2013)

  2. Energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding.

    PubMed

    Shu, G W; Lin, C C; Lin, H T; Lin, T N; Shen, J L; Chiu, C H; Li, Z Y; Kuo, H C; Lin, C C; Wang, S C; Lin, C A J; Chang, W H

    2011-03-14

    We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

  3. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    PubMed

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements.

  4. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2013-01-29

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  5. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin

    2014-09-16

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  6. From Förster resonance energy transfer to coherent resonance energy transfer and back

    NASA Astrophysics Data System (ADS)

    Clegg, Robert M.; Sener, Melih; Govindjee, .

    2010-02-01

    Photosynthesis converts solar energy into chemical energy. It provides food and oxygen; and, in the future, it could directly provide bioenergy or renewable energy sources, such as bio-alcohol or hydrogen. To exploit such a highly efficient capture of energy requires an understanding of the fundamental physics. The process is initiated by photon absorption, followed by highly efficient and extremely rapid transfer and trapping of the excitation energy. We first review early fluorescence experiments on in vivo energy transfer, which were undertaken to understand the mechanism of such efficient energy capture. A historical synopsis is given of experiments and interpretations by others that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers, where it is converted into useful chemical energy. We conclude by examining the physical basis of some current models concerning the roles of coherent excitons and incoherent hopping in the exceptionally efficient transfer of energy into the reaction center.

  7. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  8. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  9. Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene-aza-boron-dipyrromethene-C60 triad.

    PubMed

    Shi, Wen-Jing; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P

    2013-08-19

    An efficient functional mimic of the photosynthetic antenna-reaction center has been designed and synthesized. The model contains a near-infrared-absorbing aza-boron-dipyrromethene (ADP) that is connected to a monostyryl boron-dipyrromethene (BDP) by a click reaction and to a fullerene (C60 ) using the Prato reaction. The intramolecular photoinduced energy and electron-transfer processes of this triad as well as the corresponding dyads BDP-ADP and ADP-C60 have been studied with steady-state and time-resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge-separated states. Such calculations show that electron transfer from the singlet excited ADP ((1) ADP*) to C60 yielding ADP(.+) -C60 (.-) is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from (1) BDP* to ADP in the dyad BDP-ADP and electron transfer from (1) ADP* to C60 in the dyad ADP-C60 . Sequential energy and electron transfer have also been clearly observed in the triad BDP-ADP-C60 . By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈10(11)  s(-1) ). The dynamics of electron transfer through (1) ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge-separation process from (1) ADP* to C60 has been detected, which gives the relatively long-lived BDP-ADP(.+) C60 (.-) with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge-separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP-ADP and ADP-C60 , and the triad BDP-ADP-C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Baroclinic Instability and Energy Transfer underlying the Kuroshio eddy shedding process in Luzon Strait

    NASA Astrophysics Data System (ADS)

    Lu, J.

    2016-02-01

    The Kuroshio eddy shedding in Luzon Strait has been intensively studied, due to its important role in the energy budgets of the special gap-passing western boundary current and its potential influence to South China Sea. In this study, the eddy-mean flow interaction is first diagnosed with two classical "stationary" methods. Both show that, in a "time-averaged" sense, baroclinic instability and energy transfer provides the energy source for Kuroshio anticyclonic eddy shedding and the accompanied cyclonic eddy growth in Luzon Strait (this eddy pair will be called AC/C-Es for short). To take into account the "nonstationary and intermittent" nature, the temporal evolutions of energy transfer during a typical Kuroshio eddy shedding process are investigated using the localized multi-scale-window energy and vorticity analysis, or MS-EVA for short. Two stages are roughly distinguished according to the evolutionary nature of this process: the growing stage and the shedding stage. In the growing stage, the energy source straddles both the AC/C-Es, indicating mean flow supplies potential energy to both AC/C-Es for growth; the energy transfer hot spot persistently strengthens and expands horizontally as well as vertically from 200-300m to 100-400m depth range, culminating in a maximum of approximately 1.5×10-7 m2s-3. In the shedding stage, the energy source moves onto the accompanied cyclonic eddy, i.e., the mean flow now supplies energy mainly to the cyclonic eddy, making it strong enough to cut off the anticyclonic eddy from Kuroshio, leading to the Kuroshio eddy shedding.

  11. Production of vibrationally excited N 2 by electron impact

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.

    2004-08-01

    Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.

  12. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianjun; Wang Jianji; Stell, George

    2006-10-28

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying themore » solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.« less

  13. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution.

    PubMed

    Polli, Dario; Cerullo, Giulio; Lanzani, Guglielmo; De Silvestri, Sandro; Hashimoto, Hideki; Cogdell, Richard J

    2006-04-01

    In this report, we present a study of carotenoid-bacteriochlorophyll energy transfer processes in two peripheral light-harvesting complexes (known as LH2) from purple bacteria. We use transient absorption spectroscopy with approximately 10 fs temporal resolution, which is necessary to observe the very fast energy relaxation processes. By comparing excited-state dynamics of the carotenoids in organic solvents and inside the LH2 complexes, it has been possible to directly evaluate their energy transfer efficiency to the bacteriochlorophylls. In the case of okenone in the LH2 complex from Chromatium purpuratum, we obtained an energy transfer efficiency of etaET2=63+/-2.5% from the optically active excited state (S2) and etaET1=61+/-2% from the optically dark state (S1); for rhodopin glucoside contained in the LH2 complex from Rhodopseudomonas acidophila these values become etaET2=49.5+/-3.5% and etaET1=5.1+/-1%. The measurements also enabled us to observe vibrational energy relaxation in the carotenoids' S1 state and real-time collective vibrational coherence initiated by the ultrashort pump pulses. Our results are important for understanding the dynamics of early events of photosynthesis and relating it to the structural arrangement of the chromophores.

  14. Energy transfer and motion synchronization between mechanical oscillators through microhydrodynamic coupling

    NASA Astrophysics Data System (ADS)

    Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping

    2017-03-01

    Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.

  15. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  16. A quasi-classical study of energy transfer in collisions of hyperthermal H atoms with SO2 molecules.

    PubMed

    da Silva, Ramon S; Garrido, Juan D; Ballester, Maikel Y

    2017-08-28

    A deep understanding of energy transfer processes in molecular collisions is at central attention in physical chemistry. Particularly vibrational excitation of small molecules colliding with hot light atoms, via a metastable complex formation, has shown to be an efficient manner of enhancing reactivity. A quasi-classical trajectory study of translation-to-vibration energy transfer (T-V ET) in collisions of hyperthermal H( 2 S) atoms with SO 2 (X̃ 1 A ' ) molecules is presented here. For such a study, a double many-body expansion potential energy surface previously reported for HSO 2 ( 2 A) is used. This work was motivated by recent experiments by Ma et al. studying collisions of H + SO 2 at the translational energy of 59 kcal/mol [J. Ma et al., Phys. Rev. A 93, 040702 (2016)]. Calculations reproduce the experimental evidence that during majority of inelastic non-reactive collision processes, there is a metastable intermediate formation (HOSO or HSO 2 ). Nevertheless, the analysis of the trajectories shows that there are two distinct mechanisms in the T-V ET process: direct and indirect. Direct T-V processes are responsible for the high population of SO 2 with relatively low vibrational excitation energy, while indirect ones dominate the conversion from translational energy to high values of the vibrational counterpart.

  17. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1974-01-01

    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.

  18. Role of cation size in the energy of electron transfer to 1:1 polyoxometalate ion pairs {(M+)(Xn+VW11O40)}(8–n)–(M=Li, Na, K)

    Treesearch

    Vladimir A. Grigoriev; Craig L. Hill; Ira A. Weinstock

    2000-01-01

    The use of soluble salts of polyoxometalates (d0-early-transition metal oxygen-anion clusters or POMs) as selective oxidation or electron-transfer catalysts, as probes in physical-organic and biological chemistry, and in the study of electron-and energy-transfer phenomena constitutes a substantial and rapidly growing literature. While rarely addressed, however, POM...

  19. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    NASA Astrophysics Data System (ADS)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  20. Dexter energy transfer pathways

    PubMed Central

    Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.

    2016-01-01

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  1. Dexter energy transfer pathways.

    PubMed

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  2. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    PubMed

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  3. Gyrokinetic turbulence: between idealized estimates and a detailed analysis of nonlinear energy transfers

    NASA Astrophysics Data System (ADS)

    Teaca, Bogdan; Jenko, Frank; Told, Daniel

    2017-04-01

    Using large resolution numerical simulations of gyrokinetic (GK) turbulence, spanning an interval ranging from the end of the fluid scales to the electron gyroradius, we study the energy transfers in the perpendicular direction for a proton-electron plasma in a slab equilibrium magnetic geometry. The plasma parameters employed here are relevant to kinetic Alfvén wave turbulence in solar wind conditions. In addition, we use an idealized test representation for the energy transfers between two scales, to aid our understanding of the diagnostics applicable to the nonlinear cascade in an infinite inertial range. For GK turbulence, a detailed analysis of nonlinear energy transfers that account for the separation of energy exchanging scales is performed. Starting from the study of the energy cascade and the scale locality problem, we show that the general nonlocal nature of GK turbulence, captured via locality functions, contains a subset of interactions that are deemed local, are scale invariant (i.e. a sign of asymptotic locality) and possess a locality exponent that can be recovered directly from measurements on the energy cascade. It is the first time that GK turbulence is shown to possess an asymptotic local component, even if the overall locality of interactions is nonlocal. The results presented here and their implications are discussed from the perspective of previous findings reported in the literature and the idea of universality of GK turbulence.

  4. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  5. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  6. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  7. Experimental study of low-energy charge transfer in nitrogen

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1979-01-01

    Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.

  8. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    PubMed

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  9. Efficient near-field wireless energy transfer using adiabatic system variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from themore » first resonator structure to the second resonator structure through the intermediate resonator structure.« less

  10. Development of broad bandwidth nonlinear spectroscopies for characterization of electronic states in materials systems

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.

    Carbon nanotubes are an interesting class of materials with many exceptional properties that make them appealing for optoelectronic devices. Their optical properties, particularly when cast in thin films, are not well understood. In this thesis, I describe the development of spectroscopic techniques for measuring energy and charge transport processes in thin films of semiconducting carbon nanotubes. Using transient absorption spectroscopy, I observe energy transport on two time scales in these films, with 20% of nanotubes transferring energy to smaller bandgap nanotubes within 300 fs. After 3 ps, 70% of the photoexcitation resides on small bandgap nanotubes. To study the complete landscape of energy transport in thin films of carbon nanotubes, I developed two dimensional white light spectroscopy (2D-WL). In 2D-WL spectroscopy, a broadband, white light supercontinuum is used to both excite and probe the sample. This technique has a bandwidth spanning > 500-1500 nm, a far broader bandwidth than previously reported in 2D electronic spectra. I take advantage of this large bandwidth to study the interactions and evolution of S1 and S2 excitons in a thin film of carbon nanotubes. I find that energy transfers between S1 excitons on a 2 ps time scale and occurs by a non-Forster energy transfer mechanism. In contrast, the energy in the S2 states redistributes on an ultrafast time scale, <100 fs, and undergoes autoionization producing free electrons and holes. I use 2D-WL spectroscopy to study the electronic states in thin films of bare, semiconducting carbon nanotubes. In these films, energy transfer occurs in <100 fs between bare carbon nanotubes and this energy transfer is between parallel nanotubes. By taking advantage of the laser pulse polarization for each interaction, I resolve otherwise difficult to observe couplings between electronic states. To facilitate data interpretation, the orientational response for isotropic two dimensional samples to polarized electric fields is developed. Using polarization control 2D-WL spectroscopy, I measure the coupling between nanotube S1 transitions and radial breathing modes. The doped tubes form trions with transition dipoles that are not parallel to the S1 transition and energy transfer from the S1 exciton to the trion occurs within 1 ps.

  11. Energy transfer dynamics in Light-Harvesting Dendrimers

    NASA Astrophysics Data System (ADS)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  12. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    PubMed

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  13. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    NASA Astrophysics Data System (ADS)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  14. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    PubMed

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  15. Inability of an "energy transfer diagnostician" to distinguish between fertile and infertile women.

    PubMed

    Eisenberg, D M; Davis, R B; Waletzky, J; Yager, A; Landsberg, L; Aronson, M; Seibel, M; Delbanco, T L

    2001-01-22

    Various forms of "energy healing" have become popular in the United States. To test the assertion that an energy healer can, without physical contact, distinguish the presence or absence of internal organ pathology in individuals who lack overt physical findings. Observational randomized study, in which we tested the assertion by a well-recognized alternative healer that he had particular skill in using energy transfer to detect the presence or absence of fertility disorders in women. Convenience sample of 37 women, 28 of whom had documented pathology resulting in infertility, and 9 of whom were fertile. The healer was provided with no medical history and performed diagnostic evaluations without physical contact with the blindfolded, clothed, and silent subjects. We compared to random chance the ability of the healer to establish a diagnosis of fertility or fertility disorder. Teaching hospital. The healer was unable to distinguish the presence or absence of fertility disorders in the study subjects. This study points to further need for fair yet rigorous assessment of claims that energy transfer can lead to accurate clinical diagnoses.

  16. Excitation energy transfer in the photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less

  17. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2 state is accompanied by the formation of an ICT character and dynamic exciton localization, which controls the mechanism of excitation energy transfer to chlorophyll a acceptors in the peridinin-chlorophyll a protein.

  18. A spectroscopist's view of energy states, energy transfers, and chemical reactions.

    PubMed

    Moore, C Bradley

    2007-01-01

    This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.

  19. ENERGY TRANSFERS IN THREE-FREQUENCY CIRCUITS WITH MAGNETIC COUPLING,

    DTIC Science & Technology

    core are studied. Rules are given to determine the type of nonlinear characteristic needed to make energy transfers possible for given frequency...combinations. General energy relations of the Manley Rowe type are discussed, examining the validity and limitations of these relations for the practical...case where the frequency ratios are not irrational. Examples of the use of the analysis are given for oscillators, subringers and amplifiers with a variety of frequency ratios. (Author)

  20. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  1. A quantum mechanical-Poisson-Boltzmann equation approach for studying charge flow between ions and a dielectric continuum

    NASA Astrophysics Data System (ADS)

    Gogonea, Valentin; Merz, Kenneth M.

    2000-02-01

    This paper presents a theoretical model for the investigation of charge transfer between ions and a solvent treated as a dielectric continuum media. The method is a combination of a semiempirical effective Hamiltonian with a modified Poisson-Boltzmann equation which includes charge transfer in the form of a surface charge density positioned at the dielectric interface. The new Poisson-Boltzmann equation together with new boundary conditions results in a new set of equations for the electrostatic potential (or polarization charge densities). Charge transfer adds a new free energy component to the solvation free energy term, which accounts for all interactions between the transferred charge at the dielectric interface, the solute wave function and the solvent polarization charges. Practical calculations on a set of 19 anions and 17 cations demonstrate that charge exchange with a dielectric is present and it is in the range of 0.06-0.4 eu. Furthermore, the pattern of the magnitudes of charge transfer can be related to the acid-base properties of the ions in many cases, but exceptions are also found. Finally, we show that the method leads to an energy decomposition scheme of the total electrostatic energy, which can be used in mechanistic studies on protein and DNA interaction with water.

  2. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  3. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    NASA Astrophysics Data System (ADS)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  4. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    NASA Astrophysics Data System (ADS)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes.

  5. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  6. Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed fluorescence emitters by substitution.

    PubMed

    Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui

    2016-08-01

    A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules.

  7. The influence of compressibility on nonlinear spectral energy transfer - Part 1: Fundamental mechanisms

    NASA Astrophysics Data System (ADS)

    Praturi, Divya Sri; Girimaji, Sharath

    2017-11-01

    Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.

  8. Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging

    NASA Astrophysics Data System (ADS)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2018-03-01

    A new measurement system called "pulsed 2D-2cLIF-EET" has been developed to study temperature fields inside micro-droplets. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurement of droplet size and temperature. Occurrence of morphology-dependent resonances and subsequent stimulated dye emission are accounted for by using "enhanced energy transfer". The energy transfer requires a second dye that allows re-absorption of stimulated emission and thus enables a shift of dye-lasing to higher wavelengths. However, records of the droplet's internal temperature field reveal a nonphysical inhomogeneity that is based on locally changing dye excitation intensity and locally changing efficiency of the energy transfer. Dynamics of the inhomogeneity effect are studied extensively by imaging and spectroscopy. Results are used for method optimization.

  9. Mechanical energy transfers across lower limb segments during stair ascent and descent in young and healthy older adults.

    PubMed

    Novak, Alison C; Li, Qingguo; Yang, Shuozhi; Brouwer, Brenda

    2011-07-01

    Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7±3.0 years) and 32 older adults (67.0±8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm

    NASA Astrophysics Data System (ADS)

    Braud, A.; Girard, S.; Doualan, J. L.; Thuau, M.; Moncorgé, R.; Tkachuk, A. M.

    2000-02-01

    Energy-transfer processes have been quantitatively studied in various Tm:Yb-doped fluoride crystals. A comparison between the three host crystals which have been examined (KY3F10, LiYF4, and BaY2F8) shows clearly that the efficiency of the Yb-->Tm energy transfers is larger in KY3F10 than in LiYF4 or BaY2F8. The dependence of the energy-transfer parameters upon the codopant concentrations has been experimentally measured and compared with the results calculated on the basis of migration-assisted energy-transfer models. Using these energy-transfer parameters and a rate equation model, we have performed a theoretical calculation of the laser thresholds for the 3H4-->3F4 and 3H4-->3H5 laser transitions of the Tm ion around 1.5 and 2.3 μm, respectively. Laser experiments performed at 1.5 μm in Yb:Tm:LiYF4 then led to laser threshold values in good agreement with those derived theoretically. Based on these results, optimized values for the Yb and Tm dopant concentrations for typical values of laser cavity and pump modes were finally derived to minimize the threshold pump powers for the laser transitions around 1.5 and 2.3 μm.

  11. Spectroscopic and Vibrational Energy Transfer Studies in Molecular Bromine

    DTIC Science & Technology

    1993-12-01

    sections were calculated with atomic and molecular radii derived for a (6,12) Lennard - Jones potential from viscosity data tabulated in reference (20). 2...Transfer With Rare Gas Collision Partners ...... 88 4.3.1 Argon .................................................................. 89 4.3.2 Helium ...configuration .................. 12 2 Hund’s cases correlation diagram ...................................................... 14 3 Br 2 potential energy curves

  12. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  13. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface.

    PubMed

    Gao, Rui; Yan, Dongpeng

    2017-01-01

    Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.

  14. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G., E-mail: truhlar@umn.edu

    2014-09-14

    Kohn-Sham (KS) time-dependent density functional theory (TDDFT) with most exchange-correlation functionals is well known to systematically underestimate the excitation energies of Rydberg and charge-transfer excited states of atomic and molecular systems. To improve the description of Rydberg states within the KS TDDFT framework, Gaiduk et al. [Phys. Rev. Lett. 108, 253005 (2012)] proposed a scheme that may be called HOMO depopulation. In this study, we tested this scheme on an extensive dataset of valence and Rydberg excitation energies of various atoms, ions, and molecules. It is also tested on a charge-transfer excitation of NH{sub 3}-F{sub 2} and on the potentialmore » energy curves of NH{sub 3} near a conical intersection. We found that the method can indeed significantly improve the accuracy of predicted Rydberg excitation energies while preserving reasonable accuracy for valence excitation energies. However, it does not appear to improve the description of charge-transfer excitations that are severely underestimated by standard KS TDDFT with conventional exchange-correlation functionals, nor does it perform appreciably better than standard TDDFT for the calculation of potential energy surfaces.« less

  15. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less

  16. Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core

    NASA Astrophysics Data System (ADS)

    Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry

    2016-11-01

    We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.

  17. Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.

    2015-04-01

    In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.

  18. Finite-size corrections to the excitation energy transfer in a massless scalar interaction model

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuki; Yabuki, Tetsuo; Tobita, Yutaka; Ishikawa, Kenzo

    2017-05-01

    We study the excitation energy transfer (EET) for a simple model in which a massless scalar particle is exchanged between two molecules. We show that a finite-size effect appears in EET by the interaction energy due to overlapping of the quantum waves in a short time interval. The effect generates finite-size corrections to Fermi's golden rule and modifies EET probability from the standard formula in the Förster mechanism. The correction terms come from transition modes outside the resonance energy region and enhance EET probability substantially.

  19. The security energy encryption in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  20. Picosecond study of energy transfer between rhodamine 6G and 3,3'-diethylthiacarbocyanine iodide in the premicellar region: förster mechanism with increased local concentration

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyasu; Kusumoto, Yoshihumi; Nakashima, Nobuaki; Yoshihara, Keitaro

    1980-04-01

    The mechanism of enhancement in the energy transfer between rhodamine 6G and 3,3'-diethylthiacarbocyanine iodide by sodium lauryl sulfate in the premicellar region was studied by a picosecond laser technique. The Forster mechanism with an increased local concentration suggesting dye-rich induced micelle formation was concluded from the shape of the decay curve.

  1. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  2. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  3. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    PubMed

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  4. Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I.

    PubMed

    Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra

    2010-11-18

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  5. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Absalan, H; SalmanOgli, A; Rostami, R

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event ormore » a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)« less

  6. Ambipolar nature of dimethyl benzo difuran (DMBDF) molecule: A charge transport study

    NASA Astrophysics Data System (ADS)

    Sahoo, Smruti Ranjan; Sahu, Sridhar

    2017-05-01

    We describe a theoretical study of the charge transport properties of the organic dimethyl benzo difuran (DMBDF) molecule based on density functional theory (DFT). Reorganization energy, ionization potential (IP), electron affinity (EA), energy gaps, transfer integral (t) and charge mobility (μ) has been studied to depict the transport properties in the conjugated organic molecules. We computed, large homo transfer integral and IP value leading to high hole mobility (4.46 cm2/V sec). However, the electron reorganization energy (0.34 eV) and the electron mobility of 1.62 cm2/V sec, infers that the DMBDF organic molecule bears an ambipolar character.

  7. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  8. QM/MM MD and free energy simulation study of methyl transfer processes catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-01-16

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here we review the results of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  9. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film

    PubMed Central

    Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.

    2012-01-01

    Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698

  10. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    PubMed

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  11. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a

    PubMed Central

    Ogren, John I.; Tong, Ashley L.; Gordon, Samuel C.; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E.; Cao, Jianshu

    2018-01-01

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein–protein interactions and lipid–protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid–protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements. PMID:29732092

  12. Interprovincial transfer of embodied energy between the Jing-Jin-Ji area and other provinces in China: A quantification using interprovincial input-output model.

    PubMed

    Chen, Weiming; Wu, Sanmang; Lei, Yalin; Li, Shantong

    2017-04-15

    Commodity trade between regions implies a large amount of energy transfer. As an important economic growth pole of China, the Jing-Jin-Ji area (Beijing-Tianjin-Hebei) is also one of the areas with the largest energy consumption in China. Moreover, the primary energy consumer goods in this area are fossil fuels, such as coal. This has led to serious air pollution in the area. Therefore, the reduction of energy consumption under the premise of maintaining sustained economic growth is an important task of the Jing-Jin-Ji area. In this study, an interprovincial input-output model was applied to quantitatively estimate the embodied energy transfer between Jing-Jin-Ji area and other provinces in China. The results indicated that the Metal and nonmetal mineral processing industry and the Electrical, gas and water industry in the Jing-Jin-Ji area exported a large amount of embodied energy to the Yangtze River Delta and the Pearl River Delta. However, the embodied energy export of the Jing-Jin-Ji area mainly exported by Hebei province. Beijing and Tianjin even have some net import of embodied energy. The embodied energy transfer between Tianjin, Hebei and other provinces was mainly driven by investment, while the main media of embodied energy transfer between Beijing and other provinces was consumption. Therefore, we suggest that the Jing-Jin-Ji area should further increase the degree of dependence on other provinces' energy-intensive products and reduce the export of energy-intensive products. In addition, there should be difference in the energy and industrial policies among Beijing, Tianjin and Hebei, and the problems of high energy consumption and high proportion of heavy industry in Hebei should be first resolved. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spectroscopy and excitation dynamics of the trivalent lanthanides Tm(3+) and Ho(3+) in LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    1995-01-01

    A detailed study of the spectroscopy and excitation dynamics Tm3+ and Ho3+ in yttrium lithium fluoride, LiYF4 (YLF), has been done. Absorption spectroscopy is utilized in the Judd-Ofelt theory to determine radiative transition rates of spontaneous emission. Luminescence spectroscopy is studied under cw diode laser excitation at 785nm. The effect of dopant ion concentration and excitation power on the observed luminescence are considered in these measurements. An analysis of these measurements have been used to determine channels of energy transfer between Tm3+ and Ho3+ ions. The temporal response of Tm and Ho in singly and co-doped YLF to pulsed laser excitation with a Ti:Al2O3 laser and a CoMgF2 laser turned to various wavelengths have also been studied. The energy transfer mechanisms of cross relaxation, upconversion, and resonant energy transfer between Tm3+ and Ho3+ ions have been modeled, and the model parameters extracted by a fitting procedure to the measured temporal response curves. Rate equation approaches to modeling are presented that result in predictions of rate constants for energy transfer processes, as well as more conventional approaches to modeling such as the Forster-Dexter models, which give the interaction strengths in terms of microscopic interaction parameters.

  14. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.; Engel, G. S.

    2015-06-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  15. Energy Transfer Between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ostrander, Joshua; Knepper, Robert; Tappan, Alexander; Kay, Jeffery; Zanni, Martin; Farrow, Darcie

    2017-06-01

    Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vapor-deposited PETN that is absent in solution measurements, consistent with intermolecular energy transfer. The anisotropy is frequency dependent, suggesting spectrally heterogeneous vibrational relaxation. Cross peaks are observed in 2D IR spectra that resolve a specific energy transfer pathway with a 2 ps time scale. Measurements of the transition dipole strength indicate that these vibrational modes are coherently delocalized over at least 15-30 molecules. We discuss the implications of vibrational relaxation between coherently delocalized eigenstates for mechanisms relevant to explosives. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  17. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  18. In vitro energy transfer in Renilla bioluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, W.W.; Cormier, M.J.

    1976-09-23

    A quantitative study of in vitro energy transfer in a natural biological system is reported. The in vitro bioluminescent oxidation of Renilla (sea pansy) luciferin by luciferase produces a broad, structureless emission, peaking in the blue at 490 nm. In contrast, the live animal produces a structured emission peaking in the green at 509 nm. This difference in emission characteristics is due to the presence, in Renilla, of a green fluorescent protein (GFP). Addition of GFP in vitro sensitizes the oxyluciferin product excited state, resulting in the narrow, structured green emission characteristic of GFP fluorescence (lambda/sub max/ 509 nm). Undermore » conditions of efficient in vitro energy transfer (2.7 x 10/sup -6/ M GFP) the radiative quantum yield (with respect to luciferin) increases 5.7-fold from 5.3% (blue pathway) to 30% (green pathway). The fluorescence quantum yield of the Renilla GFP has been measured as 30%; thus, within the precision of our measurements (15% coefficient of variation) the in vitro energy transfer efficiency is a surprising 100%.« less

  19. Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Xu, Rongrong; Hu, Lili; Zhang, Junjie

    2012-04-01

    The fluorescence properties of 2.7 μm emission as well as near infrared emissions in Er3+/Nd3+ doped fluorophosphate glasses are investigated under 800 and 980 nm excitation. The fluorescence dynamics and energy transfer processes between Er and Nd ions in different pumping schemes are reported. Three Judd-Ofelt intensity parameters, energy transfer microparameters, and efficiency have been determined using the Judd-Ofelt and Förster-Dexter theories. The calculated energy transfer efficiency of the Er3+:4I13/2 level to the Nd3+:4I15/2 level is as high as 83.91%. The results indicate that Nd3+ may be an efficient sensitizer for Er3+ to obtain mid-infrared emission and the more suitable pumping scheme of 2.7 μm laser applications for Er3+/Nd3+ doped fluorophosphate glass is 980 nm excitation.

  20. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  1. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  2. Novel Polymers for High Efficiency Renewable and Portable Power Applications

    DTIC Science & Technology

    2015-07-30

    photoelectric, thermoelectric , energy conversions, charge transfer, energy transfer, photoluminescence (PL). REPORT DOCUMENTATION PAGE 11. SPONSOR...of polymer/dye interface of photo generated excitons in the covalent system resulting in more efficient exciton dissociations. 4) For thermoelectric ...studies, it appears the thermoelectric charge carrier generations of the four conjugated polymers doped with iodine at room temperature are in the

  3. Redistribution of carbonyl stretch mode energy in isolated and solvated N-methylacetamide: kinetic energy spectral density analyses.

    PubMed

    Jeon, Jonggu; Cho, Minhaeng

    2011-12-07

    The vibrational energy transfer from the excited carbonyl stretch mode in N-deuterated N-methylacetamide (NMA-d), both in isolation and in a heavy water cluster, is studied with nonequilibrium molecular dynamics (NEMD) simulations, employing a quantum mechanical/molecular mechanical (QM∕MM) force field at the semiempirical PM3 level. The nonequilibrium ensemble of vibrationally excited NMA-d is prepared by perturbing the positions and velocities of the carbonyl C and O atoms and its NEMD trajectories are obtained with a leap-frog algorithm properly modified for the initial perturbation. In addition to the time-domain analysis of the kinetic and potential energies, a novel method for the spectral analysis of the atomic kinetic energies is developed, in terms of the spectral density of kinetic energy, which provides the time-dependent changes of the frequency-resolved kinetic energies without the complications of normal mode analysis at every MD time step. Due to the QM description of the solute electronic structure, the couplings among the normal modes are captured more realistically than with classical force fields. The energy transfer in the isolated NMA-d is found to proceed first from the carbonyl bond to other modes with time scales of 3 ps or less, and then among the other modes over 3-21 ps. In the solvated NMA-d, most of the excess energy is first transferred to other intramolecular modes within 5 ps, which is subsequently dissipated to solvent with 7-19 ps time scales. The contribution of the direct energy transfer from the carbonyl bond to solvent was only 5% with ~7 ps time scale. Solvent reorganization that leads to destabilization of the electrostatic interactions is found to be crucial in the long time relaxation of the excess energy, while the water intramolecular modes do not contribute significantly. Detailed mode-specific energy transfer pathways are deduced for the isolated and solvated NMA-d and they show that the energy transfer in NMA-d is a highly cooperative process among the intramolecular modes and there is no single dominant pathway with more than 30% of transient contribution. © 2011 American Institute of Physics

  4. High Temperature Gas Energy Transfer.

    DTIC Science & Technology

    1982-08-15

    will be made. A theoretical model has been applied to the calculation of energy transfer amounts between molecules as a function of molecular size... theoretical analysis was given of shock tube data for high temperature gas reactions. The data were analyzed to show that colli- sional energy transfer...Systems by I. Oref and B. S. Rabiovitch. In this report a simple theoretical model describing energy transfer probabilities is given. Conservation of

  5. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  6. Photoexcited Energy Transfer in a Weakly Coupled Dimer.

    PubMed

    Alfonso Hernandez, Laura; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-06-18

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. Our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  7. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  8. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  9. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  10. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  11. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  12. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  13. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  14. Visual prosthesis wireless energy transfer system optimal modeling.

    PubMed

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  15. Visual prosthesis wireless energy transfer system optimal modeling

    PubMed Central

    2014-01-01

    Background Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. Methods On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling’s more accuracy for the actual application. Results The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. Conclusions The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system’s further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application. PMID:24428906

  16. Energy and charge transfer dynamics between Alq3 and CdSeS nanocrystals.

    PubMed

    Zhang, Shuping; Liu, Yuqiang; Yang, Yanqiang

    2010-03-01

    The photoluminescence properties of the blend films consisting of organic small molecules and nanocrystals (NCs)--Alq3 and CdSeS NCs--were studied by steady-state and time-resolved photoluminescence (PL) spectroscopy with different excited wavelengths. Both the fluorescence intensity and lifetime are intensively dependent on the NC concentration. The detailed analysis of experiment data proves that Forster energy transfer from the Alq3 to the NCs exists simultaneously with the charge transfer and both compete with each other in the blend films.

  17. Relevance of single-particle and collective excitations in zirconium isotopes populated by neutron transfer reactions in the {sup 90}Zr+{sup 208}Pb system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajtler, M. Varga, E-mail: maja.varga@fizika.unios.hr; Szilner, S.; Malenica, D. Jelavić

    2015-10-15

    Multineutron transfer reaction {sup 90}Zr+{sup 208}Pb has been studied at the energy close to the Coulomb barrier energy by using the PRISMA + CLARA set-up. In this fragment-γ coincidence measurement, the selective properties of the reaction mechanism in the population of the specific states have been discussed. Based on the observed γ transitions of neutron transfer channels, namely {sup 89–94}Zr isotopes, their level schemes have been constructed and updated.

  18. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  19. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    NASA Astrophysics Data System (ADS)

    Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen

    2015-06-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  20. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    PubMed

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  1. Cash and in-kind transfers in poor rural communities in Mexico increase household fruit, vegetable, and micronutrient consumption but also lead to excess energy consumption.

    PubMed

    Leroy, Jef L; Gadsden, Paola; Rodríguez-Ramírez, Sonia; de Cossío, Teresa González

    2010-03-01

    Conditional transfer programs are increasingly popular, but the impact on household nutrient consumption has not been studied. We evaluated the impact of the Programa de Apoyo Alimentario (PAL), a cash and in-kind transfer program, on the energy and nutrient consumption of poor rural households in Mexico. The program has been shown to reduce poverty. Beneficiary households received either a food basket (including micronutrient-fortified milk) or cash. A random sample of 206 rural communities in Southern Mexico was randomly assigned to 1 of 4 groups: a monthly food basket with or without health and nutrition education, a cash transfer with a cost to the government equivalent to the food basket (14 USD/mo) with education, or control. The impact after 14 mo of exposure was estimated in a panel of 5823 households using a double difference regression model with household fixed effects. PAL was associated with increases (P < 0.01) in the consumption of total energy (5-9%), energy from fruits and vegetables (24-28%), and energy from animal source foods (24-39%). It also affected iron, zinc, and vitamin A and C consumption (P < 0.05). The consumption of energy and all nutrients was greater in the food basket group (P < 0.05). Cash and in-kind transfers in populations that are not energy-deficient should be carefully redesigned to ensure that pulling poor families out of poverty leads to improved micronutrient intake but not to increased energy consumption.

  2. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Rosen, M D; Michel, P A

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys ofmore » Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.« less

  3. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  4. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    PubMed

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  5. A case study of energy transfer mechanism from uranium to europium in ZnAl2O4 spinel host by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Mithlesh; Mohapatra, M.

    2016-04-01

    Zinc aluminate (ZAO), a member of spinel class of inorganic compounds has been of much interest of late due to its wide range of use in catalysis, optical, electronic and ceramic industries. When doped with several lanthanides, this material has proved to be a potential host matrix for phosphors. As lanthanides suffer from poor (direct) excitation and emission cross sections, the use of a co-dopant ion can help to circumvent this and extract better emission from a lanthanide doped ZAO system. In this connection, energy transfer mechanism from uranium to europium in the ZAO host was investigated by photoluminescence spectroscopic technique. It was seen that uranium gets stabilized in the hexavalent state as UO66 - (octahedral uranate) where as the lanthanide ion, Eu is stabilized in its trivalent state in the ZAO host. In the co-doped system, an efficient energy transfer pathway from the uranate to europium ion was observed. Based upon emission and life time data a suitable mechanism was proposed for the energy transfer (quenching) process. It was proposed that after excitation by photons, the uranate ions transfer their energy to nearby 5D1 level of Eu3 + ions which non-radiatively de-excites to the corresponding lower levels of 5D0. Further this 5D0 level decays in a radiative mode to the 7F manifold giving the characteristic emission profile of trivalent Eu. It was proposed that both static and dynamic types of energy transfer mechanism were responsible for this process.

  6. Proton transfer in microbial electrolysis cells

    DOE PAGES

    Borole, Abhijeet P.; Lewis, Alex J.

    2017-02-15

    Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less

  7. Proton transfer in microbial electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P.; Lewis, Alex J.

    Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less

  8. Assessment of the Subgrid-Scale Models at Low and High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Horiuti, K.

    1996-01-01

    Accurate SGS models must be capable of correctly representing the energy transfer between GS and SGS. Recent direct assessment of the energy transfer carried out using direct numerical simulation (DNS) data for wall-bounded flows revealed that the energy exchange is not unidirectional. Although GS kinetic energy is transferred to the SGS (forward scatter (F-scatter) on average, SGS energy is also transferred to the GS. The latter energy exchange (backward scatter (B-scatter) is very significant, i.e., the local energy exchange can be backward nearly as often as forward and the local rate of B-scatter is considerably higher than the net rate of energy dissipation.

  9. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  10. Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, W.; Podgorsak, E. B.

    2010-05-01

    A clear understanding of energy transfer and energy absorption in photon interactions with matter is essential for the understanding of radiation dosimetry and development of new dosimetry techniques. The concepts behind the two quantities have been enunciated many years ago and described in many scientific papers, review articles, and textbooks. Data dealing with energy transfer and energy absorption as well as the associated mass energy transfer coefficient and the mass energy absorption coefficient are readily available in web-based tabular forms. However, tables, even when available in detailed and easy to access form, do not lend themselves to serve as visual aid to promote better understanding of the dosimetric quantities related to energy transfer and energy absorption as well as their relationship to the photon energy and absorber atomic number. This paper uses graphs and illustrations, in addition to well-known mathematical relationships, to guide the reader in a systematic manner through the various stages involved in the derivation of energy absorbed in medium and its associated quantity, the mass energy absorption coefficient, from the mass attenuation coefficient.

  11. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    PubMed

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  12. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas J.; Wilson, Mark W. B.; Congreve, Daniel N.; Brown, Patrick R.; Scherer, Jennifer M.; Bischof, Thomas S.; Wu, Mengfei; Geva, Nadav; Welborn, Matthew; Voorhis, Troy Van; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.

    2014-11-01

    Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from ‘dark’ triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to ‘brighten’ low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

  13. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  14. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2018-01-01

    Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the dominant interlayer coupling mechanism between atomically thin TMDs and graphene.

  15. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysismore » of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.« less

  16. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    PubMed

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  17. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGES

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  18. Subwavelength dielectric nanorod chains for energy transfer in the visible range.

    PubMed

    Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua

    2017-10-15

    We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.

  19. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems.

    PubMed

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  20. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  1. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Walper, Scott A.; Susumu, Kimihiro; Dwyer, Chris L.; Medintz, Igor L.

    2015-04-01

    The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed.The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed. Electronic supplementary information (ESI) available: This material includes control experimental data and select deconvoluted spectra. See DOI: 10.1039/c5nr00828j

  2. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.

    PubMed

    Das, Susanta; Nam, Kwangho; Major, Dan Thomas

    2018-03-13

    In recent years, a number of quantum mechanical-molecular mechanical (QM/MM) enzyme studies have investigated the dependence of reaction energetics on the size of the QM region using energy and free energy calculations. In this study, we revisit the question of QM region size dependence in QM/MM simulations within the context of energy and free energy calculations using a proton transfer in a DNA base pair as a test case. In the simulations, the QM region was treated with a dispersion-corrected AM1/d-PhoT Hamiltonian, which was developed to accurately describe phosphoryl and proton transfer reactions, in conjunction with an electrostatic embedding scheme using the particle-mesh Ewald summation method. With this rigorous QM/MM potential, we performed rather extensive QM/MM sampling, and found that the free energy reaction profiles converge rapidly with respect to the QM region size within ca. ±1 kcal/mol. This finding suggests that the strategy of QM/MM simulations with reasonably sized and selected QM regions, which has been employed for over four decades, is a valid approach for modeling complex biomolecular systems. We point to possible causes for the sensitivity of the energy and free energy calculations to the size of the QM region, and potential implications.

  3. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.

    PubMed

    Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2003-02-01

    To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.

  4. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg2+ sensing.

    PubMed

    Chen, Yuncong; Zhang, Weijie; Cai, Yuanjing; Kwok, Ryan T K; Hu, Yubing; Lam, Jacky W Y; Gu, Xinggui; He, Zikai; Zhao, Zheng; Zheng, Xiaoyan; Chen, Bin; Gui, Chen; Tang, Ben Zhong

    2017-03-01

    A novel dark through-bond energy transfer (DTBET) strategy is proposed and applied as the design strategy to develop ratiometric Hg 2+ sensors with high performance. Tetraphenylethene ( TPE ) derivatives with aggregation-induced emission (AIE) characteristics are selected as dark donors to eliminate emission leakage from the donors. The TBET mechanism has been adopted since it experiences less influence from spectral overlapping than Förster resonance energy transfer (FRET), making it more flexible for developing cassettes with large pseudo-Stokes shifts. In this work, energy transfer from the TPE derivatives (dark donor) to a rhodamine moiety (acceptor) was illustrated through photophysical spectroscopic studies and the energy transfer efficiency (ETE) was found to be up to 99%. In the solution state, no emission from the donors was observed and large pseudo-Stokes shifts were achieved (>280 nm), which are beneficial for biological imaging. Theoretical calculations were performed to gain a deeper mechanistic insight into the DTBET process and the structure-property relationship of the DTBET cassettes. Ratiometric Hg 2+ sensors were rationally constructed based on the DTBET mechanism by taking advantage of the intense emission of TPE aggregates. The Hg 2+ sensors exhibited well resolved emission peaks. >6000-fold ratiometric fluorescent enhancement is also achieved and the detection limit was found to be as low as 0.3 ppb. This newly proposed DTBET mechanism could be used to develop novel ratiometric sensors for various analytes and AIEgens with DTBET characteristics will have great potential in various areas including light harvesting materials, environmental science, chemical sensing, biological imaging and diagnostics.

  5. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    PubMed

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-08

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  6. Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    The characteristics of low-energy transfers between the Earth and Moon vary from one month to the next largely due to the Earth's and Moon's non-circular, non-coplanar orbits in the solar system. This paper characterizes those monthly variations as it explores the trade space of low-energy lunar transfers across many months. Mission designers may use knowledge of these variations to swiftly design desirable low-energy lunar transfers in any given month.

  7. Radiationless Electronic Excitation Energy Transfer Between Monolayers of J-Aggregates

    NASA Astrophysics Data System (ADS)

    Chmereva, T. M.; Kucherenko, M. G.

    2018-06-01

    Radiationless electronic excitation energy transfer between monolayers of cyanine dye molecules forming J-aggregates by means of surface plasmons of the metal film of nanometer thickness inserted between the monolayers is theoretically investigated. A dependence of the rate of energy transfer on the geometrical and electrodynamic parameters of the system is established. It is demonstrated that the energy transfer between the monolayers is more effective in the presence of the metal film than in a nonconductive medium.

  8. Investigation of energy transfer in terbium doped Y 2SiO5 phosphor particles

    NASA Astrophysics Data System (ADS)

    Salis, M.; Carbonaro, C. M.; Corpino, R.; Anedda, A.; Ricci, P. C.

    2012-07-01

    The kinetics of luminescence of sol-gel synthesized terbium doped Y 2SiO5 (YSO) phosphor particles is investigated in detail with reference to Tb concentration in the 0.001%-10% range. By increasing the dopant concentration, the luminescence profile changes from a blue to a green peaked emission spectrum because of the energy transfer among centers. The inter-center energy transfer mechanism is well accounted for by the Inokuti-Hirayama (IH) kinetic model which is based on a statistical average of inter-center distance dependent decay modes of the donor luminescence. The distribution of the decay modes is implemented from the Förster-Dexter resonance theory of energy transfer by assuming a rate constant for the energy transfer by multipolar interactions between donors and acceptors. However, the experimental results recorded in the low concentration limit show the presence of green emission contributions in the luminescence spectrum which cannot be related to the Tb concentration; for this reason an additional internal energy transfer mechanism, occurring among levels of the same center, is proposed to account for the recorded emission properties. Thus, a new and more exhaustive model which includes both the internal and external energy transfer processes is considered; the proposed model allows a better explanation of the spectroscopic features of Tb related centers in YSO crystals and discloses the critical concentration and the quantum yields of the different energy transfer mechanisms.

  9. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    NASA Astrophysics Data System (ADS)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  10. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  11. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90 Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  12. Site energies and charge transfer rates near pentacene grain boundaries from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hajime; Tokita, Yuichi

    2015-03-01

    Charge transfer rates near pentacene grain boundaries are derived by calculating the site energies and transfer integrals of 37 pentacene molecules using first-principles calculations. The site energies decrease considerably near the grain boundaries, and electron traps of up to 300 meV and hole barriers of up to 400 meV are generated. The charge transfer rates across the grain boundaries are found to be reduced by three to five orders of magnitude with a grain boundary gap of 4 Å because of the reduction in the transfer integrals. The electron traps and hole barriers also reduce the electron and hole transfer rates by factors of up to 10 and 50, respectively. It is essential to take the site energies into consideration to determine charge transport near the grain boundaries. We show that the complex site energy distributions near the grain boundaries can be represented by an equivalent site energy difference, which is a constant for any charge transfer pass. When equivalent site energy differences are obtained for various grain boundary structures by first-principles calculations, the effects of the grain boundaries on the charge transfer rates are introduced exactly into charge transport simulations, such as the kinetic Monte Carlo method.

  13. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    PubMed Central

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  14. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Wang, Bei; Ai, Xi-Cheng; Zhang, Xing-Kang; Zhao, Jing-Quan; Jiang, Li-Jin

    2004-06-01

    In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.

  15. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-06-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor-acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL).

  16. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  17. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  18. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    PubMed

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  19. Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.

    PubMed

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2010-03-02

    Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.

  20. OGO-6 gas-surface energy transfer experiment

    NASA Technical Reports Server (NTRS)

    Mckeown, D.; Dummer, R. S.; Bowyer, J. M., Jr.; Corbin, W. E., Jr.

    1973-01-01

    The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications.

  1. Optical spectra of La2-xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Ido, T.; Takagi, H.; Arima, T.; Tokura, Y.; Tajima, S.

    1991-04-01

    Optical reflectivity spectra are studied for single crystals of the prototypical high-Tc system La2-xSrxCuO4 over a wide compositional range 0<=x<=0.34, which covers insulating, superconducting, and normal metallic phases. The measurements are made at room temperature over an energy range from 0.004 to 35 eV for the polarization parallel to the CuO2 planes. They are also extended to the perpendicular polarization to study anisotropy and to discriminate the contribution from the CuO2 plane. The present study focuses on the x dependence of the optical spectrum, which makes it possible to sort out the features of the excitations in the CuO2 plane and thus to characterize the electronic structure of the CuO2 plane in the respective phase. Upon doping into the parent insulator La2CuO4 with a charge-transfer energy gap of about 2 eV the spectral weight is rapidly transferred from the charge-transfer excitation to low-energy excitations below 1.5 eV. The low-energy spectrum is apparently composed of two contributions; a Drude-type one peaked at ω=0 and a broad continuum centered in the midinfrared range. The high-Tc superconductivity is realized as doping proceeds and when the transfer of the spectrum weight is saturated. The resulting spectrum in the high-Tc regime is suggestive of a strongly itinerant character of the state in the moderately doped CuO2 plane while appreciable weight remains in the charge-transfer energy region. The spectrum exhibits a second drastic change for heavy doping (x~0.25) corresponding to the superconductor-to-normal-metal transition and becomes close to that of a Fermi liquid. The results are universal for all the known cuprate superconductors including the electron-doped compounds, and they reconcile the dc transport properties with the high-energy spectroscopic results.

  2. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  3. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy transfer rate F and for all four types of D-A pair. Comparison of the calculated D and A fluorescence trajectories with those measured by Weiss and co-workers proves the important role of triplet levels in energy transfer via singlet levels.

  4. Modelling excitonic-energy transfer in light-harvesting complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Kreisbeck, Christoph

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require tomore » utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.« less

  5. [Interaction between strychnine and bovine serum albumin].

    PubMed

    Zhao, Jin; Wang, Zhi; Wu, Qiu-hua; Yang, Xiu-min; Wang, Chun; Hu, Yan-xue

    2006-07-01

    To study the interaction between strychnine and bovine serum albumin. Fluorescence spectroscopy and ultraviolet spectroscopy were used. The static quenching and the non-radiation energy transfer are the two main reasons to leading the fluorescence quenching of BSA. The apparent combining constants (K(A)) between strychnine and BSA are 3.72 x 10(3) at 27 degrees C, 4.27 x 10(3) at 37 degrees C, 4.47 x 10(3) at 47 degrees C and the combining sites are 1.01 +/- 0.03. The combining distance (r = 3.795 nm) and energy transfer efficiency (E = 0.0338) are obtained by Förster's non-radiation energy transfer mechanism. The interaction between strychnine and BSA was driven mainly by hydrophobic force.

  6. Transfer Reactions Near the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Angela

    1999-05-01

    In this talk I give a brief review of the latest experimental and theoretical developments towards the understanding of the nuclear surface via `quasi-elastic transfer reactions' which are among the best tools for such study since they are very localized both in energy and in impact parameter. There are also comments on how the discovery and study of the so called ``halo'' nuclei has changed or confirmed our previous understanding. The continuous transition towards more complicated reactions like two and multinucleon transfer and fusion is also discussed. Since the problem is still far from being solved I will try to point out the direction for further research, discussing the relative advantages and disadvantages of using reactions with light vs. heavy nuclei and low vs. high beam energies. Special attention is paid to the near to the barrier energies which are the main topic of the conference.

  7. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlík, Václav; Seibt, Joachim; Šanda, František

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less

  8. Probing the communication of deoxythymidine triphosphate in HIV-1 reverse transcriptase by communication maps and interaction energy studies.

    PubMed

    Gnanasekaran, Ramachandran

    2017-11-08

    We calculate communication maps for HIV-1 Reverse Transcriptase (RT) to elucidate energy transfer pathways between deoxythymidine triphosphate (dTTP) and other parts of the protein. This approach locates energy transport channels from the dTTP to remote regions of the protein via residues and water molecules. We examine the water dynamics near the catalytic site of HIV-1 RT by molecular dynamics (MD) simulations. We find that, within the catalytic site, the relaxation of water molecules is similar to that of the hydration water molecules present in other proteins and the relaxation time scale is fast enough to transport energy and helps in communication between dTTP and other residues in the system. To quantify energy transfer, we also calculate the interaction energies of dTTP, 2Mg 2+ , doxy-guanosine nucleotide (DG22) with their surrounding residues by using the B3LYP-D3 method. The results, from classical vibrational energy diffusivity and QM interaction energy, are complementary to identify the important residues involved in the process of polymerization. The positive and negative interactions by dTTP with different types of residues in the catalytic region make the residues transfer energy through vibrational communication.

  9. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum.

    PubMed

    West, Robert G; Bína, David; Fuciman, Marcel; Kuznetsova, Valentyna; Litvín, Radek; Polívka, Tomáš

    2018-05-01

    We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S 2 state is active and is complemented by the second pathway via the combined S 1 /ICT state. The S 1 /ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S 1 /ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S 1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S 1 /ICT-Chl a route is the S 1 part of the S 1 /ICT potential surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)-Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet-Triplet Annihilation Upconversion.

    PubMed

    Razi, Syed S; Koo, Yun Hee; Kim, Woojae; Yang, Wenbo; Wang, Zhijia; Gobeze, Habtom; D'Souza, Francis; Zhao, Jianzhang; Kim, Dongho

    2018-05-07

    A boron dipyrromethane (BDP)-containing Pt(II)-Schiff base complex (Pt-BDP), showing ping-pong singlet-triplet energy transfer, was synthesized, and the detailed photophysical properties were investigated using various steady-state and time-resolved transient spectroscopies. Femtosecond/nanosecond transient absorption spectroscopies demonstrated that, upon selective excitation of the BDP unit in Pt-BDP at 490 nm, Förster resonance energy transfer from the BDP unit to the Pt(II) coordination center occurred (6.7 ps), accompanied by an ultrafast intersystem crossing at the Pt(II) coordination center (<1 ps) and triplet-triplet energy transfer back to the BDP moiety (148 ps). These processes generated a triplet state localized at BDP, and the lifetime was 103.2 μs, much longer than the triplet-state lifetime of Pt-Ph (3.5 μs), a complex without the BDP moiety. Finally, Pt-BDP was used as a triplet photosensitizer for triplet-triplet annihilation (TTA) upconversion through selective excitation of the BDP unit or the Pt(II) coordination center at lower excitation energy. An upconversion quantum yield of up to 10% was observed with selective excitation of the BDP moiety, and a large anti-Stokes shift of 0.65 eV was observed upon excitation of the lower-energy band of the Pt(II) coordination center. We propose that using triplet photosensitizers with the ping-pong energy-transfer process may become a useful method for increasing the anti-Stokes shift of TTA upconversion.

  11. Phosphorescence and Energy Transfer in Rigid Solutions.

    ERIC Educational Resources Information Center

    Enciso, E.; Cabello, A.

    1980-01-01

    Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)

  12. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  13. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  14. 10 CFR 32.20 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Records and material transfer reports. 32.20 Section 32.20 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.18 shall maintain records of transfer of...

  15. 10 CFR 32.20 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Records and material transfer reports. 32.20 Section 32.20 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.18 shall maintain records of transfer of...

  16. 10 CFR 32.12 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Records and material transfer reports. 32.12 Section 32.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.11 shall maintain records of transfer of...

  17. 77 FR 73654 - Eau Galle Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption 1. By letter filed October 12, 2012, Eau Galle Renewable Energy Company informed the Commission that its exemption from... transferred to Eau Galle Renewable Energy Company by letter.\\2\\ The project is located on the Eau Galle River...

  18. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  19. Energy Transfer in Turbulence under Rotation

    NASA Astrophysics Data System (ADS)

    Aluie, Hussein; Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous direct and inverse energy cascades. However, the organization of interactions which leads to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow: (i) 2-dimensional interactions amongst triads lying on the 2D3C (or slow) manifold, and (ii) purely 3-dimensional interactions between a sub-set of triads with the same sign of helicity (homo-chiral). Here, we perform a numerical study of high Reynolds rotating flows by means of direct numerical simulations (DNS), in different parameter regimes to highlight both forward and inverse cascade regimes. We find that the inverse cascade at wavenumbers close to the forcing scale is generated by the dominance of homo-chiral interactions which couple the 3-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wavenumbers thanks to a 2-dimensional mechanism. We further analyze the energy transfer that occurs in different regions in the real-space domain. In particular we distinguish high strain from high vorticity regions and quantify their contributions to the cascade.

  20. The dynamics of energy and charge transfer in low and hyperthermal energy ion-solid interactions

    NASA Astrophysics Data System (ADS)

    Ray, Matthew Preston

    The energy and charge transfer dynamics for low and hyperthermal energy (10 eV to 2 keV) alkali and noble gas ions impacting noble metals as a function of incident energy, species and scattering geometry has been studied. The experiments were performed in an ultra-high vacuum scattering chamber attached to a low and hyperthermal energy beamline. The energy transfer was measured for K+ scattered from a Ag(001) surface along the [110] crystalline direction at a fixed laboratory angle of 90°. It was found that as the incident energy is reduced from 100 to 10 eV, the normalized scattered energy increased. Previous measurements have shown a decrease in the normalized energy as the incident ion energy is reduced due to an attractive image force. Trajectory analysis of the data using a classical scattering simulation revealed that instead of undergoing sequential binary collisions as in previous studies, the ion scatters from two surface atoms simultaneously leading to an increased normalized energy. Additionally, charge transfer measurements have been performed for Na + scattering from Ag(001) along the [110] crystalline direction at a fixed laboratory angle of 70°. It was found that over the range of energies used (10 eV to 2 keV), the neutralization probability of the scattered ions varied from ˜30% to ˜70% depending on the incident velocity, consistent with resonant charge transfer. A fully quantum mechanical model that treats electrons independently accurately reproduces the observed data. Measurements of electron-hole pair excitations were used to explore the pathways which a solid uses to dissipate the energy imparted by the incident ion beam. Ultrathin film (10 nm) metal-oxide-semiconductor (Au/SiO2/n-Si) devices were used to detect the electron-hole pairs for cases when the ion deposited all of its translational energy into the solid. The incident ions were incident at an angle normal to the surface of the device to maximize energy deposition and consequently electron-hole pair production. The rectifying metal-oxide-semiconductor device separates the electrons from the holes, allowing a current associated with electron-hole pair production to be measured. In these experiments a number of ion species (He+, Li+ , Ar+, K+) were made incident on multiple devices and the incident energy ranged from 100 eV to 2 keV. It was found that electron-hole pair production increased with incident ion velocity consistent with a kinetic electron excitation model where the electrons in the metal are partially confined to the surface.

  1. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.

    PubMed

    Cooper, Daniel R; Kudinov, Konstantin; Tyagi, Pooja; Hill, Colin K; Bradforth, Stephen E; Nadeau, Jay L

    2014-06-28

    CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthesis methods for water-dispersible Ce0.1La0.9F3/LaF3 and CeF3/LaF3 core/shell nanoparticles and an investigation of energy transfer to photosensitizers. Unbound deuteroporphyrin IX 2,4-disulfonic acid was found to substantially quench the luminescence of large (>10 nm diameter) aminocaproic acid-stabilized nanoparticles at reasonable concentrations and loading amounts: up to 80% quenching at 6% w/w photosensitizer loading. Energy transfer was found to occur primarily through a cascade, with excitation of "regular" site Ce(3+) at 252 nm relayed to photosensitizer molecules at the nanoparticle surface through intermediate "perturbed" Ce(3+) sites. Smaller (<5 nm) citrate-stabilized nanoparticles were coated with the bisphosphonate alendronate, allowing covalent conjugation to chlorin e6 and resulting in static quenching of the nanoparticle luminescence: ∼50% at ∼0.44% w/w. These results provide insight into energy transfer mechanisms that may prove valuable for optimizing similar systems.

  2. Synthesis and energy transfer studies of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}, Nd{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jicheng; Xia, Zhiguo; Liu, Quanlin, E-mail: qlliu@ustb.edu.cn

    2016-02-15

    Highlights: • Cr{sup 3+}/Nd{sup 3+} co-doped LaMgAl{sub 11}O{sub 19} phosphors were synthesized. • The energy transfer mechanism is ascribed to the dipole–quadrupole interaction. • The materials can convert the UV–vis light into near-infrared emission. - Abstract: Cr{sup 3+}/Nd{sup 3+} co-activated LaMgAl{sub 11}O{sub 19} phosphors have been synthesized by high temperature solid-state method. In the LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}/Nd{sup 3+} system, Cr{sup 3+} can absorb the UV–vis photons (350–650 nm), and then energy transfer takes place between Cr{sup 3+} and Nd{sup 3+}, and finally the samples give near infrared emission originated from Nd{sup 3+}. Energy transfer from Cr{sup 3+} to Nd{supmore » 3+} is discussed via the variations of the lifetime values of Cr{sup 3+}, and the mechanism has been ascribed to the dipole–quadrupole interaction. The absorption of Cr{sup 3+} in the visible region and the following energy transfer from Cr{sup 3+} to Nd{sup 3+} indicated that the material can potentially serve as spectral convertors to improve the photovoltaic conversion efficiency of silicon-based solar cell.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Lingyun; Lin, Zekai; Shi, Wenjie

    The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3''-nitro-4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through themore » 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.« less

  4. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.

    PubMed

    Nelson, Tammie R; Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

    2010-04-08

    The rates and magnitudes of vibrational energy transfer between single-wall carbon nanotubes (CNTs) and water are investigated by classical molecular dynamics. The interactions between the CNT and solvent confined inside of the tube, the CNT and solvent surrounding the tube, as well as the solvent inside and outside of the tube are considered for the (11,11), (15,15), and (19,19) armchair CNTs. The vibrational energy transfer exhibits two time scales, subpicosecond and picosecond, of roughly equal importance. Solvent molecules confined within CNTs are more strongly coupled to the tubes than the outside molecules. The energy exchange is facilitated by slow collective motions, including CNT radial breathing modes (RBM). The transfer rate between CNTs and the inside solvent shows strong dependence on the CNT diameter. In smaller tubes, the transfer is faster and the solvent coupling to RBMs is stronger. The magnitude of the CNT-outside solvent interaction scales with the CNT surface area, while that of the CNT-inside solvent exhibits scaling that is intermediate between the CNT volume and surface. The Coulomb interaction between the solvent molecules inside and outside of the CNTs is much weaker than the CNT-solvent interactions. The results indicate that the excitation energy supplied to CNTs in chemical and biological applications is rapidly deposited to the active molecular agents and should remain localized sufficiently long in order to perform the desired function.

  5. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  6. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    PubMed

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  7. Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector.

    PubMed

    Li, Ruifeng; Schneider, Lorenz Maximilian; Heimbrodt, Wolfram; Wu, Huizhen; Koch, Martin; Rahimi-Iman, Arash

    2016-06-20

    Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection.

  8. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers.

    PubMed

    Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Wang, Qi Jie; Xie, Erqing

    2011-10-14

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  9. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    PubMed

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath.

  10. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  11. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  12. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  13. Neutron spectroscopy of γ manganese hydride

    NASA Astrophysics Data System (ADS)

    Antonov, V. E.; Cornell, K.; Dorner, B.; Fedotov, V. K.; Grosse, G.; Kolesnikov, A. I.; Wagner, F. E.; Wipf, H.

    2000-02-01

    The vibrational spectrum of fcc γ-MnH 0.41 synthesized under high pressure of gaseous hydrogen was studied by inelastic neutron scattering at 2 K in the range of energy transfers from 25 to 400 meV. The fundamental band of optical hydrogen vibrations consists of a peak at 111 meV with a broad shoulder towards higher energies, which extends up to about 140 meV. At higher energy transfers, the spectrum originates from multiphonon neutron scattering and exhibits approximately harmonic behaviour. The results are compared with the available data for other metal hydrides.

  14. Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene.

    PubMed

    Federspiel, François; Froehlicher, Guillaume; Nasilowski, Michel; Pedetti, Silvia; Mahmood, Ather; Doudin, Bernard; Park, Serin; Lee, Jeong-O; Halley, David; Dubertret, Benoît; Gilliot, Pierre; Berciaud, Stéphane

    2015-02-11

    The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

  15. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfermore » processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.« less

  16. The Development of Veteran 9th-Grade Physics Teachers' Knowledge for Using Representations to Teach the Topics of Energy Transformation and Transfer

    ERIC Educational Resources Information Center

    West, Andrew

    2011-01-01

    The purpose of this study was to explore and identify the experiences that informed the development of three veteran (15+ years of teaching experience) 9th grade physics teachers' specialized knowledge, or PCK, for using representations to teach the topics of energy transformation and transfer. Through the lens of phenomenography, the study…

  17. Magnetic induced heating of nanoparticle solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S. Hunyadi; Brown, M.; Coopersmith, K.

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  18. Analysis of intrinsic optical bistability in Tm-doped laser-related crystals

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Vondrova, M.; Casimir, D.

    2003-11-01

    We predict and theoretically study intrinsic optical bistability (IOB) mediated by nonlinear energy transfer processes in rare-earth-doped laser-related crystals. In particular, we investigate Tm-Ho and Tm-Yb systems, in which avalanche pumping is overimposed by energy transfer up-conversion. We predict that IOB can be experimentally observed in (Tm,Yb):BaY2F8 crystals in a wide range of experimentally achievable parameters.

  19. Energy and charge transfer in nanoscale hybrid materials.

    PubMed

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  1. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  2. Tunneling induced electron transfer between separated protons

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  3. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  4. Unravelling the mechanisms of vibrational relaxation in solution.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2017-04-01

    We present a systematic study of the mode-specific vibrational relaxation of NO 2 in six weakly-interacting solvents (perfluorohexane, perfluoromethylcyclohexane, perfluorodecalin, carbon tetrachloride, chloroform, and d-chloroform), chosen to elucidate the dominant energy transfer mechanisms in the solution phase. Broadband transient vibrational absorption spectroscopy has allowed us to extract quantum state-resolved relaxation dynamics of the two distinct NO 2 fragments produced from the 340 nm photolysis of N 2 O 4 → NO 2 (X) + NO 2 (A) and their separate paths to thermal equilibrium. Distinct relaxation pathways are observed for the NO 2 bending and stretching modes, even at energies as high as 7000 cm -1 above the potential minimum. Vibrational energy transfer is governed by different interaction mechanisms in the various solvent environments, and proceeds with timescales ranging from 20-1100 ps. NO 2 relaxation rates in the perfluorocarbon solvents are identical despite differences in acceptor mode state densities, infrared absorption cross sections, and local solvent structure. Vibrational energy is shown to be transferred to non-vibrational solvent degrees of freedom (V-T) through impulsive collisions with the perfluorocarbon molecules. Conversely, NO 2 relaxation in chlorinated solvents is reliant on vibrational resonances (V-V) while V-T energy transfer is inefficient and thermal excitation of the surrounding solvent molecules inhibits faster vibrational relaxation through direct complexation. Intramolecular vibrational redistribution allows the symmetric stretch of NO 2 to act as a gateway for antisymmetric stretch energy to exit the molecule. This study establishes an unprecedented level of detail for the cooling dynamics of a solvated small molecule, and provides a benchmark system for future theoretical studies of vibrational relaxation processes in solution.

  5. A full-dimensional potential energy surface and quantum dynamics of inelastic collision process for H2-HF

    NASA Astrophysics Data System (ADS)

    Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian

    2018-05-01

    A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.

  6. Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1.

    PubMed

    Liu, Jia-Li; Zhao, Min; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2017-02-03

    The intermolecular electrochemiluminescence resonance energy transfer (ECL-RET) between luminol and Ru(bpy) 3 2+ was studied extensively to achieve the sensitive bioanalysis owing to the perfect spectral overlap of the donor and acceptor, but it still suffers from the challenging issue of low energy-transfer efficiency. The intramolecular ECL-RET towards the novel ECL compound containing the donor of luminol and the acceptor of Ru(bpy) 2 (mcpbpy) 2+ (Lum-Ru) was designed and investigated. With the high-efficient ECL-RET in one molecule, the highly intense ECL signal of Lum-Ru was obtained owing to the short path of energy transmission and less energy loss between luminol and Ru(bpy) 2 (mcpbpy) 2+ . Lum-Ru was further applied to construct a signal-off electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of a harsh carcinogen of Aflatoxin M1 (AFM1). This sensing platform also provides a significant boost for the trace detection of other biomolecules in clinical analysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  8. 10 CFR 40.51 - Transfer of source or byproduct material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Transfer of source or byproduct material. 40.51 Section 40.51 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Transfer of Source Material § 40.51 Transfer of source or byproduct material. (a) No licensee shall transfer source or...

  9. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS.

    PubMed

    Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P

    2015-05-13

    Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.

  10. 10 CFR 712.18 - Transferring HRP certification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Transferring HRP certification. 712.18 Section 712.18 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program Procedures § 712.18 Transferring HRP certification. (a) For HRP certification to be...

  11. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    NASA Astrophysics Data System (ADS)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  12. Coherent or hopping like energy transfer in the chlorosome ?

    NASA Astrophysics Data System (ADS)

    Nalbach, Peter

    2014-08-01

    Chlorosomes, as part of the light-harvesting system of green bacteria, are the largest and most efficient antennae systems in nature. We have studied energy transfer dynamics in the chlorosome in a simplified toy model employing a master equation. Dephasing and relaxation due to environmental fluctuations are included by Lindblad dephasing and Redfield thermalization rates. We find at room temperature three separate time scales, i.e. 25 fs, 250 fs and 2.5 ps and determine the according energy pathways through the hierarchical structure in the chlorosome. Quantum coherence lives up to 150 fs at which time the energy is spread over roughly 12 pigments in our model.

  13. Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach

    DOE PAGES

    Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.

    2017-11-14

    A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.

  14. Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment

    NASA Astrophysics Data System (ADS)

    Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.

    2012-12-01

    This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.

  15. Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.

    A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.

  16. Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study

    NASA Astrophysics Data System (ADS)

    Ogoh, Wilson; Groulx, Dominic

    2012-03-01

    A numerical study of the effects of the thermal fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system (LHESS) was conducted. Due to the low thermal conductivity of phase change materials (PCMs) used in LHESS, fins were added to the system to increase the rate of heat transfer and charging. Finite elements were used to implement the developed numerical method needed to study and solve for the phase change heat transfer (melting of PCM) encountered in a LHESS during charging. The effective heat capacity method was applied in order to account for the large amount of latent energy stored during melting of the PCM and the moving interface between the solid and liquid phases. The effects of the heat transfer fluid (HTF) velocity on the melting rate of the PCM were studied for configurations having between 0 and 18 fins. Results show that the overall heat transfer rate to the PCM increases with an increase in the HTF velocity. However, the effect of the HTF velocity was observed to be small in configurations having very few fins, owing to the large residual thermal resistance offered by the PCM. However, the effect of the HTF velocity becomes more pronounced with addition of fins; since the thermal resistance on the PCM side of the LHESS is significantly reduce by the large number of fins in the system.

  17. Quantitative Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and smFRET Investigations of the Ribosome

    PubMed Central

    Frank, Joachim; Gonzalez, Ruben L.

    2015-01-01

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pretranslocation complex, which are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule fluorescence resonance energy transfer studies. PMID:25785884

  18. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    PubMed

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  19. Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol

    1996-01-01

    Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).

  20. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.

    PubMed

    Nelson, Tammie R; Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2011-05-12

    We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of the CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsystems. In all cases, the CNT-solvent energy transfer is mediated by slow motions in the frequency range of CNT radial breathing modes.

  1. Parametric study of rock pile thermal storage for solar heating and cooling phase 1

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1977-01-01

    The test data and an analysis were presented, of heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans as the energy storage medium. An attempt was made to optimize can size, can arrangement, and bed flow rates by experimental and analytical means. Liquid filled cans, as storage media, utilize benefits of both solids like rocks, and liquids like water. It was found that this combination of solid and liquid media shows unique heat transfer and heat content characteristics and is well suited for use with solar air systems for space and hot water heating. An extensive parametric study was made of heat transfer characteristics of rocks, of other solids, and of solid containers filled with liquids.

  2. Investigating a Learning Progression for Energy Ideas from upper Elementary through High School

    ERIC Educational Resources Information Center

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2018-01-01

    This study tests a hypothesized learning progression for the concept of energy. It looks at 14 specific ideas under the categories of (i) Energy Forms and Transformations; (ii) Energy Transfer; (iii) Energy Dissipation and Degradation; and (iv) Energy Conservation. It then examines students' growth of understanding within each of these ideas at…

  3. Investigating a Learning Progression for Energy Ideas from Upper Elementary through High School

    ERIC Educational Resources Information Center

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2018-01-01

    This study tests a hypothesized learning progression for the concept of energy. It looks at 14 specific ideas under the categories of (i) Energy Forms and Transformations; (ii) Energy Transfer; (iii) Energy Dissipation and Degradation; and (iv) Energy Conservation. It then examines students' growth of understanding within each of these ideas at…

  4. 10 CFR 1042.120 - Transfers of property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Transfers of property. 1042.120 Section 1042.120 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... recipient sells or otherwise transfers property financed in whole or in part with Federal financial...

  5. 10 CFR 1042.120 - Transfers of property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Transfers of property. 1042.120 Section 1042.120 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... recipient sells or otherwise transfers property financed in whole or in part with Federal financial...

  6. 10 CFR 611.110 - Assignment or transfer of loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Assignment or transfer of loans. 611.110 Section 611.110 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Direct Loan Program § 611.110 Assignment or transfer of loans. (a) The Loan Documents may...

  7. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0138 TITLE: In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical...18Ffluorocholine/ 18F-FDG Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly targeted nearinfrared (NIR) QDs can be used to detect...to examine whether internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly

  8. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  9. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2013-05-01

    Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c

  10. Interaction-component analysis of the effects of urea and its alkylated derivatives on the structure of T4-lysozyme

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Matubayasi, Nobuyuki

    2017-06-01

    The effects of urea and its alkylated derivatives on the structure of T4-lysozyme were analyzed from the standpoint of energetics. Molecular dynamics simulations were conducted with explicit solvent, and the energy-representation method was employed to compute the free energy of transfer of the protein from pure-water solvent to the mixed solvents of water with urea, methylurea, 1,1-dimethylurea, and isopropylurea. Through the decomposition of the transfer free energy into the cosolvent and water contributions, it was observed that the former is partially cancelled by the latter and governs the total free energy of transfer. To determine the interaction component responsible for the transfer energetics, the correlations of the transfer free energy were also examined against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components. It was then found over the set of protein structures ranging from native to (partially) unfolded ones that the transfer free energy changes in parallel with the van der Waals component even when the cosolvent is alkylated. The electrostatic and excluded-volume components play minor roles in the structure modification of the protein, and the denaturing ability of alkylurea is brought by the van der Waals interaction.

  11. Heat transfer characteristics of coconut oil as phase change material to room cooling application

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Harmen

    2017-03-01

    Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.

  12. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles.

    PubMed

    Gilbert, Benjamin; Katz, Jordan E; Huse, Nils; Zhang, Xiaoyi; Frandsen, Cathrine; Falcone, Roger W; Waychunas, Glenn A

    2013-10-28

    An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2',7'-dichlorofluorescein (DCF) anchored to the surface of iron(III) oxide nanoparticles to create iron(II) surface atoms via photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(III) oxide nanoparticles has not been reported. We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(III)-dye complex. Following light absorption, excited state relaxation times of the dye of 115-310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye-oxide energy transfer is energetically forbidden) even though the acceptor states are different. Comparison of the alignment of the excited states of the dye and the unoccupied states of these oxides showed that the dye injects into acceptor states of different symmetry (Ti t2gvs. Fe eg).

  13. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  14. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.

    2017-12-01

    Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.

  15. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    DOE PAGES

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; ...

    2016-03-31

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  16. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  17. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Fragment-based Quantum Mechanical/Molecular Mechanical Simulations of Thermodynamic and Kinetic Process of the Ru2+-Ru3+ Self-Exchange Electron Transfer.

    PubMed

    Zeng, Xiancheng; Hu, Xiangqian; Yang, Weitao

    2012-12-11

    A fragment-based fractional number of electron (FNE) approach, is developed to study entire electron transfer (ET) processes from the electron donor region to the acceptor region in condensed phase. Both regions are described by the density-fragment interaction (DFI) method while FNE as an efficient ET order parameter is applied to simulate the electron transfer process. In association with the QM/MM energy expression, the DFI-FNE method is demonstrated to describe ET processes robustly with the Ru 2+ -Ru 3+ self-exchange ET as a proof-of-concept example. This method allows for systematic calculations of redox free energies, reorganization energies, and electronic couplings, and the absolute ET rate constants within the Marcus regime.

  19. Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes

    PubMed Central

    Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin

    2007-01-01

    Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751

  20. Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles

    DOE PAGES

    Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...

    2016-11-10

    The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less

  1. Time-dependent mean-field determination of the excitation energy in transfer reactions: Application to the reaction 238U on 12C at 6.14 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Scamps, G.; Rodríguez-Tajes, C.; Lacroix, D.; Farget, F.

    2017-02-01

    The internal excitation of nuclei after multinucleon transfer is estimated by using the time-dependent mean-field theory. Transfer probabilities for each channel as well as the energy loss after reseparation are calculated. By combining these two pieces of information, we show that the excitation energy distribution of the transfer fragments can be obtained separately for the different transfer channels. The method is applied to the reaction involving a 238U beam on a 12C target, which has recently been measured at GANIL. It is shown that the excitation energy calculated with the microscopic theory compares well with the experimental observation, provided that the competition with fusion is properly taken into account. The reliability of the excitation energy is further confirmed by the comparison with the phenomenological heavy-ion phase-space model at higher center-of-mass energies.

  2. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  3. Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.

    PubMed

    Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M

    2016-01-21

    Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

  4. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    NASA Astrophysics Data System (ADS)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  5. Transfer of mechanical energy during the shot put.

    PubMed

    Błażkiewicz, Michalina; Łysoń, Barbara; Chmielewski, Adam; Wit, Andrzej

    2016-09-01

    The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee - Right Hip (p = 0.0035), Left Hip - Torso (p = 0.0201), Torso - Right Shoulder (p = 0.0122) and Right Elbow - Right Wrist (p = 0.0001). Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  6. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.

    PubMed

    Sato, Yoshihiro; Doolittle, Brian

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  7. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  8. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides.

    PubMed

    Hörvin Billsten, H; Herek, J L; Garcia-Asua, G; Hashøj, L; Polívka, T; Hunter, C N; Sundström, V

    2002-03-26

    LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with 11 saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S1 level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S1 energy of lycopene in n-hexane was determined to be approximately 12 500 +/- 150 cm(-1), by direct measurement of the S1-S2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S1 energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischianum, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is approximately 80% in lyco-LH2 and approximately 95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S(1) --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt S1 energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S1 state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B800 Q(y) state, leaving only the Crt S1 --> B850 channel, strongly suggesting that Crt S1 --> BChl energy transfer is controlled by the relative Crt S1 and BChl Q(y) energies.

  9. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  10. Quantum Mechanical Calculations of Free Energy and Open-Circuit Voltage in Lattice Modeled Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Lankevich, Vladimir; Bittner, Eric

    In organic photovoltaic devices (OPVs), initially bound electron and hole can take many different paths to dissociate and become free charge carriers. This leads to the increase in their density of states and therefore increase in the entropy of the system. Accurate description of the energy barriers that charges have to overcome, therefore requires calculation of the free energy. Free energy of an OPV is directly related to its open-circuit voltage and depends only on few important parameters such as average life-time of a charge-transfer state, average energy of the charge-transfer state and energetic disorder in the system. We extend these ideas to the quantum mechanical simulations of the dissociation in the lattice modeled bulk-heterojunction system. We observe average excitonic and free energies that agree with theoretical predictions and the number of experimental results from previous studies. We study effects of the energy disorder and importance of the dimensionality and morphology in materials such as polymer-fullerene blends.

  11. Crossed-beam energy transfer: polarization effects and evidence of saturation

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.

    2018-05-01

    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.

  12. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  13. A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Siavosh-Haghighi, Ali; Sewell, Thomas D.; Thompson, Donald L.

    2014-07-01

    Classical molecular dynamics simulations were used to study the relaxation of an excited nitromethane molecule in perfect crystalline nitromethane at 250 K and 1 atm pressure. The molecule was instantaneously excited by statistically distributing energy E∗ between 25.0 kcal/mol and 125.0 kcal/mol among the 21 degrees of freedom of the molecule. The relaxation occurs exponentially with time constants between 11.58 ps and 13.57 ps. Energy transfer from the excited molecule to surrounding quasi-spherical shells of molecules occurs concurrently to both the nearest and next-nearest neighbor shells, but with more energy per molecule transferred more rapidly to the first shell.

  14. Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines

    NASA Astrophysics Data System (ADS)

    Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2004-01-01

    Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.

  15. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.

  16. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach.

    PubMed

    Camporeale, E; Sorriso-Valvo, L; Califano, F; Retinò, A

    2018-03-23

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  17. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  18. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.

    PubMed

    Polívka, Tomas; Niedzwiedzki, Dariusz; Fuciman, Marcel; Sundström, Villy; Frank, Harry A

    2007-06-28

    The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.

  19. Optimal aeroassisted coplanar orbital transfer using an energy model

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1989-01-01

    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  20. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@gznc.edu.cn

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less

  1. 10 CFR 32.56 - Same: Material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Material transfer reports. 32.56 Section 32.56 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.56 Same: Material transfer reports. Each person...

  2. 10 CFR 32.56 - Same: Material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Material transfer reports. 32.56 Section 32.56 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.56 Same: Material transfer reports. Each person...

  3. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  4. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  5. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  6. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  7. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  8. Spontaneous charged lipid transfer between lipid vesicles.

    PubMed

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  9. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  10. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  11. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  12. 10 CFR 40.51 - Transfer of source or byproduct material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Transfer of source or byproduct material. 40.51 Section 40.51 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Transfer of Source... source or byproduct material: (1) To the Department of Energy; (2) To the agency in any Agreement State...

  13. Significance of a Recurring Function in Energy Transfer

    ERIC Educational Resources Information Center

    Mishra, Subodha

    2017-01-01

    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a…

  14. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  15. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  16. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li( 98Rb,αxn) and 7Li( 98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions canmore » be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  17. Mechanism of energy transfer from carotenoids to bacteriochlorophyll : light-harvesting by carotenoids having different extents of {pi}-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desamero, R. Z. B.; Chynwat, V.; van der Hoef, I.

    1998-10-15

    Spheroidene and a series of spheroidene analogues with extents of p-electron conjugation ranging from 7 to 13 carbon-carbon double bonds were incorporated into the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. The structures and spectroscopic properties of the carotenoids and the dynamics of energy transfer from the carotenoid to bacteriochlorophyll (BChl) in the B850 complex were studied by using steady-state absorption, fluorescence, fluorescence excitation, resonance Raman, and time-resolved absorption spectroscopy. The spheroidene analogues used in this study were 5',6'-dihydro-7',8'-didehydrospheroidene, 7',8'-didehydrospheroidene, and 1',2'-dihydro-3',4',7',8'-tetradehydrospheroidene. These data, taken together with results from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene, and spheroidene already published (Frank, H. A.; Farhoosh,more » R.; Aldema, M. L.; DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J. Photochem. Photobiol. 1993, 57, 49. Farhoosh, R.; Chynwat, V.; Gebhard, R.; Lugtenburg, J.; Frank, H. A. Photosynth. Res. 1994, 42, 157), provide a systematic series of molecules for understanding the molecular features that determine the mechanism of energy transfer from carotenoids to BChl in photosynthetic bacterial light-harvesting complexes. The data support the hypothesis that only carotenoids having 10 or less carbon-carbon double bonds transfer energy via their 21Ag (S1) states to BChl to any significant degree. Energy transfer via the 11Bu (S2) state of the carotenoid becomes more important than the S1 route as the number of conjugated carbon-carbon double bonds increases. The results also suggest that the S2 state associated with the Qx transition of the B850 BChl is the most likely acceptor state for energy transfer originating from both the 2{sup 1}A{sub g} (S{sub 1}) and 1{sup 1}B{sub u} (S{sub 2}) states of all carotenoids.« less

  18. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  19. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  20. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acousticmore » energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.« less

  1. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S. B.

    2017-12-01

    Tb doped polyvinyl alcohol: polyvinyl pyrrolidone blends with dibenzoylmethane (DBM) and 1, 10 Phenanthroline (Phen) have been prepared by solution cast technique. Bond formation amongst the ligands and Tb3 + ions in the doped polymer has been confirmed employing Fourier Transform Infrared (FTIR) techniques. Optical properties of the Tb3 + ions have been investigated using UV-Vis absorption, excitation and fluorescence studies excited by different radiations. Addition of dimethylbenzoate and 1, 10 Phenanthroline to the polymer blend increases the luminescence from Tb3 + ions along with energy transfer from the polymer blend itself. Luminescence decay curve analysis affirms the non-radiative energy transfer from DBM and Phen to Tb3 + ions, which is identified as the reason behind this enhancement. The fluorescence decay time of PVA-PVP host decreases from 6.02 ns to 2.31 ns showing an evidence of energy transfer from the host blend to the complexed Tb ions. Similarly the lifetime of DBM and Phen and both in the blend reduces in the complexed system showing the feasibility of energy transfer from these excited DBM and Phen to Tb3 + and is proposed as the cause of the above observations. These entire phenomena have been explained by the energy level diagram.

  2. Energy transport in cooling device by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  3. Modulation of Small-scale Turbulence Structure by Large-scale Motions in the Absence of Direct Energy Transfer.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1996-11-01

    Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117

  4. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

    2018-01-01

    In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

  5. Surfactant-enhanced singlet energy transfer from the charge-transfer excited state of tris(2,2-bipyridine) ruthenium(II)

    NASA Astrophysics Data System (ADS)

    Mandal, Krishnagopal; Demas, J. N.

    1981-12-01

    Very efficient (45-75%) sodium lauryl sulfate (NaLS) enhanced singlet enengy transfer has been demonstrated from the spin-orbit charge-transfer excited state of [Ru(bpy) 3] 2+ (bpy = 2,2'-bipyridine) to the xxx violet, oxazine 1, and rhodamine 101 at concentrations of 10 -5 M, Energy transfer occurs in xxx.

  6. 10 CFR 50.80 - Transfer of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Transfer of licenses. 50.80 Section 50.80 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Transfers of Licenses-Creditors' Rights-Surrender of Licenses § 50.80 Transfer of licenses. (a) No license for a production or...

  7. 10 CFR 32.52 - Same: material transfer reports and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: material transfer reports and records. 32.52 Section 32.52 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.52 Same: material transfer...

  8. 10 CFR 50.80 - Transfer of licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Transfer of licenses. 50.80 Section 50.80 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Transfers of Licenses-Creditors' Rights-Surrender of Licenses § 50.80 Transfer of licenses. (a) No license for a production or...

  9. 10 CFR 52.105 - Transfer of combined license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of combined license. 52.105 Section 52.105 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.105 Transfer of combined license. A combined license may be transferred in...

  10. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  11. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  12. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  13. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  14. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  15. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.

    PubMed

    Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A

    2003-08-01

    The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.

  16. Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide-graphite oxide mesoporous composite

    NASA Astrophysics Data System (ADS)

    Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.

    2015-01-01

    Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.

  17. Free-energy analyses of a proton transfer reaction by simulated-tempering umbrella sampling and first-principles molecular dynamics simulations.

    PubMed

    Mori, Yoshiharu; Okamoto, Yuko

    2013-02-01

    A simulated tempering method, which is referred to as simulated-tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed to study the intramolecular proton transfer reaction of malonaldehyde in an aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated-tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.

  18. Vibrationally enhanced charge transfer and mode/bond-specific H{sup +} and D{sup +} transfer in the reaction of HOD{sup +} with N{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, David M.; Anderson, Scott L.

    2013-09-21

    The reaction of HOD{sup +} with N{sub 2}O was studied over the collision energy (E{sub col}) range from 0.20 eV to 2.88 eV, for HOD{sup +} in its ground state and in each of its fundamental vibrational states: bend (010), OD stretch (100), and OH stretch (001). The dominant reaction at low E{sub col} is H{sup +} and D{sup +} transfer, but charge transfer becomes dominant for E{sub col} > 0.5 eV. Increasing E{sub col} enhances charge transfer only in the threshold region (E{sub col} < 1 eV), but all modes of HOD{sup +} vibrational excitation enhance this channel overmore » the entire energy range, by up to a factor of three. For reaction of ground state HOD{sup +}, the H{sup +} and D{sup +} transfer channels have similar cross sections, enhanced by increasing collision energy for E{sub col} < 0.3 eV, but suppressed by E{sub col} at higher energies. OD stretch excitation enhances D{sup +} transfer by over a factor of 2, but has little effect on H{sup +} transfer, except at low E{sub col} where a modest enhancement is observed. Excitation of the OH stretch enhances H{sup +} transfer by up to a factor of 2.5, but actually suppresses D{sup +} transfer over most of the E{sub col} range. Excitation of the bend mode results in ∼60% enhancement of both H{sup +} and D{sup +} transfer at low E{sub col} but has little effect at higher energies. Recoil velocity distributions at high E{sub col} are strongly backscattered in the center-of-mass frame, indicating direct reaction dominated by large impact parameter collisions. At low E{sub col} the distributions are compatible with mediation by a short-lived collision complex. Ab initio calculations find several complexes that may be important in this context, and RRKM calculations predict lifetimes and decay branching that is consistent with observations. The recoil velocity distributions show that HOD{sup +} vibrational excitation enhances reactivity in all collisions at low E{sub col}, while for high E{sub col} with enhancement comes entirely from the subset of collisions that generate strongly back-scattered product ions.« less

  19. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  20. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  1. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  2. Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments.

    PubMed

    Serio, Nicole; Chanthalyma, Chitapom; Prignano, Lindsey; Levine, Mindy

    2013-11-27

    Reported herein is the use of γ-cyclodextrin for two tandem functions: (a) the extraction of carcinogenic polycyclic aromatic hydrocarbons (PAHs) from oil samples into aqueous solution and (b) the promotion of highly efficient energy transfer from the newly extracted PAHs to a high-quantum-yield fluorophore. The extraction proceeded in moderate to good efficiencies, and the resulting cyclodextrin-promoted energy transfer led to a new, brightly fluorescent signal in aqueous solution. The resulting dual-function system (extraction followed by energy transfer) has significant relevance in the environmental detection and cleanup of oil-spill-related carcinogens.

  3. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...

    2018-06-25

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  4. Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

    NASA Astrophysics Data System (ADS)

    Wang, Bai-Bin; Chang, Chi-Fen; Yang, Wein-Duo

    2013-07-01

    γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse's equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter's theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.

  5. Methods of sequencing and detection using energy transfer labels with cyanine dyes as donor chromophores

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    2000-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  6. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  7. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2014-10-01

    Transfer ( CRET ) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging PRINCIPAL INVESTIGATOR: Susan L. Deutscher...SUBTITLE 5a. CONTRACT NUMBER In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer ( CRET ) Multiplexed Optical Imaging for Human...internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer ( CRET ) coupled with TF- and ErbB2/3- molecularly targeted near-infrared

  8. On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra

    NASA Technical Reports Server (NTRS)

    Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.

    2007-01-01

    This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.

  9. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  10. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  11. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  12. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.

    2011-01-01

    The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.

  13. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    PubMed

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  14. Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells.

    PubMed

    Wang, Huei-Tang; Taufany, Fadlilatul; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2014-05-01

    The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.

  15. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  16. Crossed-beam energy transfer: polarization effects and evidence of saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Colaitis, A.; Follett, R. K.

    In this article, recent results on crossed-beam energy transfer are presented. Wave-length tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves with amplitudes up to δn/n ≈ 0.015. Increasing the initial probe intensity to access larger ion acoustic wave amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam’s polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effectsmore » in a multibeam situation can dramatically enhance the expected amount of energy transfer.« less

  17. Crossed-beam energy transfer: polarization effects and evidence of saturation

    DOE PAGES

    Turnbull, D.; Colaitis, A.; Follett, R. K.; ...

    2018-04-05

    In this article, recent results on crossed-beam energy transfer are presented. Wave-length tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves with amplitudes up to δn/n ≈ 0.015. Increasing the initial probe intensity to access larger ion acoustic wave amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam’s polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effectsmore » in a multibeam situation can dramatically enhance the expected amount of energy transfer.« less

  18. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.

    PubMed

    Chen, Hui-Yuan S; Liberton, Michelle; Pakrasi, Himadri B; Niedzwiedzki, Dariusz M

    2017-03-01

    This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Trampoline-related injuries in children: a preliminary biomechanical model of multiple users.

    PubMed

    Menelaws, Simon; Bogacz, Andrew R; Drew, Tim; Paterson, Brodie C

    2011-07-01

    The recent popularity of domestic trampolines has seen a corresponding increase in injured children. Most injuries happen on the trampoline mat when there are multiple users present. This study sought to examine and simulate the forces and energy transferred to a child's limbs when trampolining with another person of greater mass. The study used a computational biomechanical model. The simulation demonstrated that when two masses bounce out of phase on a trampoline, a transfer of kinetic energy from the larger mass to the smaller mass is likely to occur. It predicted that when an 80 kg adult is on a trampoline with a 25 kg child, the energy transfer is equivalent to the child falling 2.8 m onto a solid surface. Additionally, the rate of loading on the child's bones and ligaments is greater than that on the accompanying adult. Current guidelines are clear that more than one user on a trampoline at a time is a risk factor for serious injury; however, the majority of injuries happen in this scenario. The model predicted that there are high energy transfers resulting in serious fracture and ligamentous injuries to children and that this could be equated to equivalent fall heights. This provides a clear take-home message, which can be conveyed to parents to reduce the incidence of trampoline-related injuries.

  20. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  1. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    NASA Astrophysics Data System (ADS)

    Li, Ailin; Yan, Tianying; Shen, Panwen

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.

  2. Stochastic Modelling of Wireless Energy Transfer

    NASA Technical Reports Server (NTRS)

    Veilleux, Shaun; Almaghasilah, Ahmed; Abedi, Ali; Wilkerson, DeLisa

    2017-01-01

    This study investigates the efficiency of a new method of powering remote sensors by the means of wireless energy transfer. The increased use of sensors for data collection comes with the inherent cost of supplying power from sources such as power cables or batteries. Wireless energy transfer technology eliminates the need for power cables or periodic battery replacement. The time and cost of setting up or expanding a sensor network will be reduced while allowing sensors to be placed in areas where running power cables or battery replacement is not feasible. This paper models wireless channels for power and data separately. Smart scheduling for the data channel is proposed to avoid transmitting data on a noisy channel where the probability of data loss is high to improve power efficiency. Analytical models have been developed and verified using simulations.

  3. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  4. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  5. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational exchange is shown to occur with much greater frequency as the unit cell spacing decreases. The occurrence of orientational exchange generally results in a very rapid dissipation of molecular rotational energy to the lattice which causes a characteristic break to occur in the decay curve. It is shown that 16% of the total energy transfer to the lattice in argon is a result of such rotational energy transfer. The propensity for four-center DF elimination is found to be greater in argon than in either krypton or xenon. The relaxation data show that this effect is not the result of different energy transfer rates but is probably associated with steric effects resulting from the smaller lattice dimensions in argon. Isotope effects upon the energy partitioning in unimolecular reactions of 1,2-difluoroethane and upon the energy transfer dynamics under matrix-isolation conditions are also reported.

  6. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  7. A computational study of photo-induced electron transfer rate constants in subphthalocyanine/C60 organic photovoltaic materials via Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  8. White long-lasting phosphorescence generation in a CaAl2Si2O8 : Eu2+, Mn2+, Dy3+ system through persistent energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Jinsu; Chen, Baojiu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang

    2012-08-01

    Based on the persistent energy transfer principle, Mn2+ was introduced into a CaAl2Si2O8 : Eu2+/Dy3+ phosphor to achieve white long-lasting emissions. Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors with various Mn2+ concentrations were prepared via a solid-state reaction, and the crystal structure of the phosphors was identified by the x-ray diffraction technique. The luminescent properties of the Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors were studied. The energy transfer behaviour from Eu2+ to Mn2+ was analysed within the framework of Dexter theory. The physical mechanism of energy transfer was assigned to the electric dipole-quadrupole interaction. It was also demonstrated that the colour coordinates of the phosphors can be tuned from the blue region to the white region in the colour space. Furthermore, the afterglow decay and thermoluminescence curves were measured, indicating excellent phosphorescence properties of the current phosphors.

  9. Interaction of the alpha-toxin of Staphylococcus aureus with the liposome membrane.

    PubMed

    Ikigai, H; Nakae, T

    1987-02-15

    When the liposome membrane is exposed to the alpha-toxin of Staphylococcus aureus, fluorescence of the tryptophan residue(s) of the toxin molecule increases concomitantly with the degree of toxin-hexamer formation (Ikigai, H., and Nakae, T. (1985) Biochem. Biophys. Res. Commun. 130, 175-181). In the present study, the toxin-membrane interaction was distinguished from the hexamer formation by the fluorescence energy transfer from the tryptophan residue(s) of the toxin molecule to the dansylated phosphatidylethanolamine in phosphatidylcholine liposome. Measurement of these two parameters yielded the following results. The effect of the toxin concentration and phospholipid concentration on these two parameters showed first order kinetics. The effect of liposome size on the energy transfer and the fluorescence increment of the tryptophan residue(s) was only detectable in small liposomes. Under moderately acidic or basic conditions, the fluorescence energy transfer always preceded the fluorescence increment of the tryptophan residue(s). The fluorescence increment at 336 nm at temperatures below 20 degrees C showed a latent period, whereas the fluorescence energy transfer did not. These results were thought to indicate that when alpha-toxin damages the target membrane, the molecule interacts with the membrane first, and then undergoes oligomerization within the membrane.

  10. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M.; Tynan, G. R.; Holland, C.

    2010-03-15

    Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less

  11. Effect of vibrationally excited oxygen on ozone production in the stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.

  12. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  13. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocian, David F.

    2014-08-20

    The long-term objective of the Bocian/Holten/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten group), and electrochemical, electron paramagnetic resonance,more » and resonance Raman studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (1) Determination of the rates of ground-state hole/electron transfer between (hydro)porphyrins in multipigment arrays as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (2) Examination of excited-state energy transfer among hydroporphyrins in multipigment arrrays, including both pairwise and non-adjacent transfer, with a chief aim to identify the relative contributions of through-space (Förster) and through-bond (Dexter) mechanisms of energy transfer, including the roles of site of linker connection and frontier molecular orbital composition. (3) Elucidation of the role of substituents in tuning the spectral and electronic properties of bacteriochlorins, with a primary aim of learning how to shift the long-wavelength absorption band deeper into the near-infrared region. (4) Continued development of the software package PhotochemCAD for spectral manipulations and calculations through the compilation of a database of spectra for naturally occurring and synthetic hydroporphyrins. The availability of such data should augment efforts in the design of light-harvesting systems where spectral coverage in the red and near-infrared regions is desired. Collectively, the proposed studies will provide fundamental insights into molecular properties, interactions, and processes relevant to the design of molecular architectures for solar-energy conversion. The accomplishment of these goals is only possible through a highly synergistic program that encompasses molecular design, synthesis, and characterization.« less

  14. Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV-visible spectrophotometric and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Zulkarnain; Khan, Ishaat M.; Ahmad, Afaq; Miyan, Lal; Ahmad, Musheer; Azizc, Nafe

    2017-08-01

    The charge transfer interaction between p-nitroaniline (PNA) and chloranilic (CAA) acid was studied spectrophotometrically in methanol at different temperatures within the range 298-328 K. This experimental work explores the nature of charge-transfer interactions that play a significant role in chemistry and biology. Structure of synthesized charge transfer (CT) complex was investigated by different technique such as X-ray crystallography, FTIR, 1HNMR, UV-visible spectroscopy, XRD and TGA-DTA, which indicates the presence of N+sbnd Hrbd2bd O- bond between donor and acceptor moieties. Spectrophotometric studies of CT complexes were carried out in methanol at different temperatures to estimate thermodynamic parameters such as formation constant (KCT), molar absorptivity (εCT), free energy change (ΔG), enthalpy change (ΔH), resonance energy (RN), oscillator strength (f), transition dipole moment (μEN) and interaction energy (ECT) were also calculated. The effect of temperatures on all the parameters was studied in methanol. 1:1 stoichiometric of CT-complex was ascertained by Benesi-Hildebrand plots giving straight line, which are good agreement with other analysis. Synthesized CT complex was screened for its antimicrobial activity such as antibacterial activity against two gram-positive bacteria, Staphylococcus aureus and bacillus subtilis and two gram negative bacteria Escherichia coli and pseudomonas aeruginosa, and antifungal activity against fungi Fusarium oxysporum, and Aspergillus flavus.

  15. Articulated Multimedia Physics, Lesson 12, Work, Energy, and Power.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the twelfth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to work, energy, and power. The topics are concerned with kinetic and potential energy, energy transfer in free falling bodies, and conservation laws. The content is arranged in scrambled form, and the use of…

  16. Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes

    NASA Astrophysics Data System (ADS)

    Abdelbar, Mostafa F.; Fayed, Tarek A.; Meaz, Talaat M.; Ebeid, El-Zeiny M.

    2016-11-01

    The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications.

  17. A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds.

    PubMed

    Wang, Changwei; Danovich, David; Shaik, Sason; Mo, Yirong

    2017-04-11

    Typical hydrogen and halogen bonds exhibit red-shifts of their vibrational frequencies upon the formation of hydrogen and halogen bonding complexes (denoted as D···Y-A, Y = H and X). The finding of blue-shifts in certain complexes is of significant interest, which has led to numerous studies of the origins of the phenomenon. Because charge transfer mixing (i.e., hyperconjugation in bonding systems) has been regarded as one of the key forces, it would be illuminating to compare the structures and vibrational frequencies in bonding complexes with the charge transfer effect "turned on" and "turned off". Turning off the charge transfer mixing can be achieved by employing the block-localized wave function (BLW) method, which is an ab initio valence bond (VB) method. Further, with the BLW method, the overall stability gained in the formation of a complex can be analyzed in terms of a few physically meaningful terms. Thus, the BLW method provides a unified and physically lucid way to explore the nature of red- and blue-shifting phenomena in both hydrogen and halogen bonding complexes. In this study, a direct correlation between the total stability and the variation of the Y-A bond length is established based on our BLW computations, and the consistent roles of all energy components are clarified. The n(D) → σ*(Y-A) electron transfer stretches the Y-A bond, while the polarization due to the approach of interacting moieties reduces the HOMO-LUMO gap and results in a stronger orbital mixing within the YA monomer. As a consequence, both the charge transfer and polarization stabilize bonding systems with the Y-A bond stretched and red-shift the vibrational frequency of the Y-A bond. Notably, the energy of the frozen wave function is the only energy component which prefers the shrinking of the Y-A bond and thus is responsible for the associated blue-shifting. The total variations of the Y-A bond length and the corresponding stretching vibrational frequency are thus determined by the competition between the frozen-energy term and the sum of polarization and charge transfer energy terms. Because the frozen energy is composed of electrostatic and Pauli exchange interactions and frequency shifting is a long-range phenomenon, we conclude that long-range electrostatic interaction is the driving force behind the frozen energy term.

  18. Laser-induced transfer of gel microdroplets for cell printing

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Zhigar'kov, V. S.; Churbanova, E. S.; Chutko, E. A.; Evlashin, S. A.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Bagratashvili, V. N.

    2017-12-01

    We study thermal and transport processes involved in the transfer of gel microdroplets under the conditions of laser cell microprinting. The specific features of the interaction of pulsed laser radiation ( λ = 1.064 µm, pulse duration 4 - 200 ns, energy 2 µJ - 1 mJ) with the absorbing gold film deposited on the glass donor substrate are determined. The investigation of the dynamics of transport processes by means of fast optical video recording and optoacoustic methods makes it possible to determine the characteristics of the produced gel jets as functions of the laser operation regimes. The hydrodynamic process of interaction between the laser radiation and the gold coating with the hydrogel layer on it is considered and the temperature in the region of the laser pulse action is estimated. It is shown that in the mechanism of laser-induced transfer a significant role is played by the processes of explosive boiling of water (in gel) and gold. The amount of gold nanoparticles arriving at the acceptor plate in the process of the laser transfer is determined. For the laser pulse duration 8 ns and small energies (less than 10 µJ), the fraction of gold nanoparticles in the gel microdroplets is negligibly small, and their quantity linearly grows with increasing pulse energy. The performed studies offer a base for optimising the processes of laser transfer of gel microdroplets in the rapidly developing technologies of cell microprinting.

  19. Reducing injection loss in drill strings

    DOEpatents

    Drumheller, Douglas S.

    2004-09-14

    A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

  20. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.

    2016-04-25

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less

  1. Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2017-12-01

    Multinucleon transfer reactions near barrier energies have been investigated with a multistep model based on the dinuclear system (DNS) concept, in which the capture of two colliding nuclei, the transfer dynamics, and the deexcitation process of primary fragments are described by an analytical formula, diffusion theory, and a statistical model, respectively. The nucleon transfer takes place after forming the DNS and is coupled to the dissipation of relative motion energy and angular momentum by solving a set of microscopically derived master equations within the potential energy surface. Specific reactions of Ca,4840+124Sn , 40Ca(40Ar,58Ni)+232Th , 40Ca(58Ni)+238U , and Ca,4840(58Ni)+248Cm near barrier energies are investigated. It is found that fragments are produced by multinucleon transfer reactions with maximal yields along the β -stability line. The isospin relaxation is particularly significant in the process of fragment formation. The incident energy dependence of heavy target-like fragments in the reaction of 58Ni+248Cm is analyzed thoroughly.

  2. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  3. 10 CFR 32.55 - Same: Quality assurance; prohibition of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Quality assurance; prohibition of transfer. 32.55 Section 32.55 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...; prohibition of transfer. (a) Each person licensed under § 32.53 shall visually inspect each device and shall...

  4. 10 CFR 52.28 - Transfer of early site permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of early site permit. 52.28 Section 52.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Early Site Permits § 52.28 Transfer of early site permit. An application to transfer an early site...

  5. 10 CFR 52.28 - Transfer of early site permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of early site permit. 52.28 Section 52.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Early Site Permits § 52.28 Transfer of early site permit. An application to transfer an early site...

  6. 10 CFR 32.12 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... product or material at time of transfer of the byproduct material by the licensee. (c)(1) The licensee... 10 Energy 1 2010-01-01 2010-01-01 false Same: Records and material transfer reports. 32.12 Section 32.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...

  7. Interaction-component analysis of the hydration and urea effects on cytochrome c

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Ishizuka, Ryosuke; Karino, Yasuhito; Sakuraba, Shun; Matubayasi, Nobuyuki

    2016-02-01

    Energetics was analyzed for cytochrome c in pure-water solvent and in a urea-water mixed solvent to elucidate the solvation effect in the structural variation of the protein. The solvation free energy was computed through all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were examined over sets of protein structures against the electrostatic and van der Waals components in the average interaction energy of the protein with the solvent and the excluded-volume component in the solvation free energy. It was observed in pure-water solvent that the solvation free energy varies in parallel to the electrostatic component with minor roles played by the van der Waals and excluded-volume components. The effect of urea on protein structure was then investigated in terms of the free-energy change upon transfer of the protein solute from pure-water solvent to the urea-water mixed solvent. The decomposition of the transfer free energy into the contributions from urea and water showed that the urea contribution is partially canceled by the water contribution and governs the total free energy of transfer. When correlated against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components, the transfer free energy exhibited strong correlations with the total change in the solute-solvent energy and its van der Waals component. The solute-solvent energy was decomposed into the contributions from the protein backbone and side chain, furthermore, and neither of the contributions was seen to be decisive in the correlation to the transfer free energy.

  8. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  9. Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration.

    PubMed

    Tomiki, Takeshi; Saitou, Naruya

    2004-08-01

    The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.

  10. 10 CFR 205.323 - Transferability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Transferability. 205.323 Section 205.323 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports... Construction, Connection, Operation, and Maintenance of Facilities for Transmission of Electric Energy at...

  11. 10 CFR 205.323 - Transferability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Transferability. 205.323 Section 205.323 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports... Construction, Connection, Operation, and Maintenance of Facilities for Transmission of Electric Energy at...

  12. Innovative methods of energy transfer.

    PubMed

    McBee, L E

    1996-09-01

    Energy is utilized in many forms for processing egg products and other foods. Energy in the form of heat has commonly been used to kill microorganisms and pasteurize eggs. Transfer of energy by convection and conduction is limited by the properties of the egg product. Energy transfer by radiation is being used to advantage in the development of innovative methods to kill or inactivate microorganisms. A review of the electromagnetic spectrum reveals underutilized forms of energy with unique properties. Specific frequencies and method of application are selected for their ability to focus energy toward the destruction of microorganisms and the production of safe food products for the public.

  13. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  14. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    NASA Astrophysics Data System (ADS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.

    2017-04-01

    Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  15. 78 FR 2985 - Moretown Hydro Energy Company; Ampersand Moretown Hydro, LLC; Notice of Application for Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 5944-021] Moretown Hydro Energy Company; Ampersand Moretown Hydro, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On September 25, 2012, Moretown Hydro Energy Company (transferor...

  16. Manipulating energy transfer in copolymer-based nanocomposites by their controlled nanocaging and release of an ionic styryl dye: a case of an ultrasensitive pH sensor.

    PubMed

    Manna, Anamika; Sahoo, Dibakar; Chakravorti, Sankar

    2012-03-01

    We report an interesting pH-tunable energy transfer between an acceptor ionic styryl dye 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide and a donor charge-transfer dye 1,8-naphthalimide in a vesicular medium. The polyethylene-b-polyethylene glycol block copolymer intercalates with the sodium dodecyl sulfate anionic surfactant to form self-aggregated nanocomposites. These nanocomposites interact with the donor molecules in aqueous solution to form "vesicles", and the donor molecules become attached on the outer wall by hydrogen bonding. The acceptor molecules are observed to be loaded in the vesicular interior. By controlling the spectral overlap of the donor and acceptor molecules by changing the pH of the medium, the energy-transfer efficiency in vesicles has been studied. The efficiency of energy transfer in vesicular media (55%) is found to be less compared to that in aqueous media (80%) at pH 7. The fall in efficiency has been attributed to the perturbation imparted by the vesicular wall due to the good matching of the donor-acceptor distance with the wall thickness. At low pH, the efficiency shows an abrupt increase (95%) due to the release of the acceptor molecules from the vesicular medium causing subsequent reduction of donor-acceptor separation and an increase of the spectral overlap at that pH.

  17. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Gu, Shuangxi; Wei, Xiao; Xue, Minzhao; Zhang, Qing; Sheng, Qiaorong; Liu, Yangang

    2010-12-01

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes α-phased CuPc be partly transformed into the β-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Förster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  18. Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations.

    PubMed

    Beltrán-Leiva, María J; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2018-05-07

    This work presents a theoretical protocol to analyze the symmetry effect on the allowed character of the transitions and to estimate the probability of energy transfer in lanthanide(III) complexes. For this purpose, a complete study was performed based on the multireference CASSCF/PT2 technique along with TDDFT, to build the energy level diagrams and determine the spectral overlap integrals, respectively. This approach was applied on a series of LnIII complexes, viz. [LnCl 3 (DMF) 2 (Dpq)]/[Ln(NO 3 ) 3 (DMF) 2 (Dpq)], where Ln = Sm III , Tb III , Er III /Eu III , Nd III and dpq = dipyridoquinoxaline, synthesized and characterized by Patra et al. ( Dalton Trans. 2015 , 44 ( 46 ), 19844 - 19855 ; CrystEngComm 2016 , 18 ( 23 ), 4313 - 4322 ; Inorg. Chim. Acta 2016 , 451 , 73 - 81 ). A fragmentation scheme was applied where both the ligand and the lanthanide fragments were treated separately but at the same level of theory. The symmetry analysis only partially reproduced the expected results, and a more detailed analysis of the crystal field became necessary. On the other hand, the most probable energy transfer pathways that take place in the complexes were elucidated from the energy gaps between the ligand-localized triplet state and the emitting levels of the lanthanide fragments. These gaps, which are related to the energy transfer rate, properly reproduced the trend reported experimentally for the best and worst yields. Finally, the spectral overlap integral was calculated from the emission spectra of the dpq ligand and the absorption spectra of the lanthanide fragment. The obtained values are in good agreement with the quantum yields calculated for the systems. The most remarkable aspect of this protocol was its ability to explain the emission and nonemission of the studied compounds.

  19. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc).

    PubMed

    Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa

    2012-07-01

    Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Wilson, John W.; Hunter, Abigail

    2005-01-01

    In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.

  1. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  2. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  3. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  4. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false What procedures are to be used to transfer real property at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  5. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  6. Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomohito; Yoshizawa, Shunsuke; Hirano, Atsushi; Tanaka, Takeshi; Shiraki, Kentaro; Hase, Muneaki

    2017-12-01

    Vibrational energy transfer from photoexcited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineering thermally induced biological reactions, for example, in photothermal therapy. Here, we explored vibrational energy transfer from photoexcited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes in SWCNTs depends significantly on the structure of the coupled materials, that is, proteins or biopolymers, indicating that the vibrational energy transfer is governed by overlapping of the phonon densities of states of the SWCNTs and coupled materials.

  7. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  8. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE PAGES

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    2018-04-05

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  9. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  10. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  11. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  12. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery.

    PubMed

    Niemi, Henna; Honkonen, Krista; Korpisalo, Petra; Huusko, Jenni; Kansanen, Emilia; Merentie, Mari; Rissanen, Tuomas T; André, Helder; Pereira, Teresa; Poellinger, Lorenz; Alitalo, Kari; Ylä-Herttuala, Seppo

    2014-10-01

    Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  13. The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films

    NASA Astrophysics Data System (ADS)

    Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik

    2018-05-01

    The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.

  14. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  15. Synthesis, characterisation and optical studies of new tetraethyl- rubyrin-graphene oxide covalent adducts

    NASA Astrophysics Data System (ADS)

    Garg, Kavita; Shanmugam, Ramakrishanan; Ramamurthy, Praveen C.

    2018-02-01

    Tetrathia-rubyrin and graphene oxide (GO) covalent adduct was synthesized, characterised and optical properties were studied. GO-Rubyrin adducts showed fluorescence quenching of rubyrin due to electron or energy transfer from rubyrin to graphene oxide, which also reflected in UV-vis absorbance spectroscopy. The non-linear optical responses were measured through Z scan technique in nano-second regime. The enhanced optical non-linearity was observed after attachment of GO with rubyrin, can be ascribed to the photo-induced electron or energy transfer from the electron rich rubyrin moiety to the electron deficient GO.

  16. The vibrational spectrum and giant tunnelling effect of hydrogen dissolved in α-Mn

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Antonov, V. E.; Bennington, S. M.; Dorner, B.; Fedotov, V. K.; Grosse, G.; Li, J. C.; Parker, S. F.; Wagner, F. E.

    1999-03-01

    Vibrational spectra of α-MnH 0.07 and α-MnD 0.05 were studied by inelastic neutron scattering at temperatures from 1.7 to 200 K over a wide range of energy and momentum transfers. Together with the high-energy bands of the optical vibrations, pronounced peaks at 6.3 and 1.6 meV were observed in the spectra of the samples loaded with H and D, respectively. The study of the temperature, momentum-transfer and isotope dependence of the spectra demonstrated the tunnelling origin of these peaks.

  17. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  18. Matrix Formalism of Synchrobetatron Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; /SLAC

    In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and themore » Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.« less

  19. Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel

    2008-12-07

    The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a ({pi},{pi}*) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet ({pi},{pi}*) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fittedmore » to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.« less

  20. Spectrophotometric and spectroscopic studies of charge transfer complex of 1-Naphthylamine as an electron donor with picric acid as an electron acceptor in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2010-08-01

    The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.

Top