Science.gov

Sample records for energy waste processing

  1. Thermoelectric energy harvesting for a solid waste processing toilet

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  2. Energy from biological processes. Volume III. Appendixes, Part B: Agriculture, unconventional crops, and select biomass wastes

    SciTech Connect

    Not Available

    1980-09-01

    This volume contains the following working papers written for OTA to assist in preparation of the report, Energy from Biological Processes: The Potential of Producing Energy From Agriculture; Cropland Availability for Biomass Production; Energy From Agriculture: Unconventional Crops; Energy From Aquaculture Biomass Systems: Fresh and Brackish Water Aquatic Plants; Energy From Agriculture: Animal Wastes; and Energy From Agriculture: Agricultural Processing Wastes.

  3. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    NASA Astrophysics Data System (ADS)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  4. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  5. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  6. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment.

  7. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  8. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2008-09-01

    in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex. The Office of Environmental...Management (EM) is responsible for the risk reduction and cleanup of the environmental legacy of the Nation’s nuclear weapons program, one of the largest...Cleanup and/or closure of sites ; • Constructing and operating facilities to treat radioactive liquid tank waste into a safe, stable form to enable

  9. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  10. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    environmental cleanup of the national nuclear weapons complex. Energy Security: Promoting America’s energy security through reliable, clean, and affordable...innovations in science and technology Nuclear Security: Ensuring America’s nuclear security Environmental Responsibility: Protecting the environment by...providing a responsible resolution to the environmental legacy of nuclear weapons production 3 What Exactly Does EM Do? The Office of Environmental

  11. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration.

  12. Energy supply of food processing plants and breweries from its specific solid wastes

    SciTech Connect

    Behmel, U.; Leupold, G.; Meyer-Pittroff, R.

    1993-12-31

    Disposal of solid wastes in the food processing industry causes problems. Constant utilization as animal food is not guaranteed any longer and costs for disposal will increase. Biogas production is an alternative for disposal of brewery wastes. Recent investigations have reduced retention time for hydrolysis and total retention time. Retention time is directly proportional to fermenter size consequently resulting in drastic cost reductions. Yielded energy can be utilized in the production line so that fossil fuel use can be reduced with reductions in carbon dioxide emissions. However, some problems remain: sumptous technology; highly qualified specialists; need to reduce ammonia to prevent inhibition of biogas production; cost of technology.

  13. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    PubMed

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s).

  14. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    PubMed

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability.

  15. Resources: food waste is energy waste

    SciTech Connect

    Borghese, A.

    1981-07-01

    Americans waste energy when they waste energy-intensive food, which requires one-sixth of the nation's energy resources to produce, distribute, and prepare. A two-year University of Arizona study of household food waste that divided refuse into straight waste and plate scrapings found that 9% of purchased food was thrown away, and over half that was discarded untouched. Samplings from schools, restaurants, and other institutions reveal similar habits. More food is discarded in the fields and processing plants. A California group (the Gleaners) is among those trying to eliminate harvesting waste, while urban groups are salvaging store and restaurant throwouts. A conscious effort by an informed public can lead to a more-efficient use of food and energy. (DCK)

  16. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  17. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  18. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  19. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    SciTech Connect

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  20. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  1. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing

  2. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  3. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    USDA-ARS?s Scientific Manuscript database

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  4. Biogasification of papaya processing wastes

    SciTech Connect

    Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.

    1984-01-01

    Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.

  5. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  6. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    PubMed

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm(3)). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  8. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant.

  9. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  10. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed.

  11. Textile wastes. [Processing and recycle

    SciTech Connect

    Judkins, J.F. Jr.

    1982-01-01

    A literature review of process technology applied to secondary effluents of textile plants is presented. Studies of waste heat recovery from dyehouse effluents indicate that energy consumption of dyehouses could be reduced by 50% or more. Included are 25 references.

  12. Petroleum Processing Wastes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1978-01-01

    Presents a literature review of the petroleum processing wastes, covering publications of 1977. This review covers studies such as the use of activated carbon in petroleum and petrochemical waste treatment. A list of 15 references is also presented. (HM)

  13. Petroleum Processing Wastes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1978-01-01

    Presents a literature review of the petroleum processing wastes, covering publications of 1977. This review covers studies such as the use of activated carbon in petroleum and petrochemical waste treatment. A list of 15 references is also presented. (HM)

  14. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  15. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe.

  16. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Wasted Food, Wasted Energy: The Embedded Energy in Food Waste in the United States

    PubMed Central

    2010-01-01

    This work estimates the energy embedded in wasted food annually in the United States. We calculated the energy intensity of food production from agriculture, transportation, processing, food sales, storage, and preparation for 2007 as 8080 ± 760 trillion BTU. In 1995 approximately 27% of edible food was wasted. Synthesizing these food loss figures with our estimate of energy consumption for different food categories and food production steps, while normalizing for different production volumes, shows that 2030 ± 160 trillion BTU of energy were embedded in wasted food in 2007. The energy embedded in wasted food represents approximately 2% of annual energy consumption in the United States, which is substantial when compared to other energy conservation and production proposals. To improve this analysis, nationwide estimates of food waste and an updated estimate for the energy required to produce food for U.S. consumption would be valuable. PMID:20704248

  18. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2016-07-12

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  19. Microwave waste processing technology overview

    SciTech Connect

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  20. Microwave waste processing technology overview

    SciTech Connect

    Sprenger, G.S.; Petersen, R.D.

    1995-04-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the ``cold`` demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  1. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    PubMed

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  2. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  3. Military wastes-to-energy applications

    NASA Astrophysics Data System (ADS)

    Kawaoka, K. E.

    1980-11-01

    This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.

  4. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  5. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2016-10-01

    Literature published in 2015 and early 2016 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  6. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  7. A clinical approach to the nutritional care process in protein-energy wasting hemodialysis patients.

    PubMed

    Ruperto, Mar; Sánchez-Muniz, Francisco J; Barril, Guillermina

    2014-04-01

    Malnutrition/wasting/cachexia are complex-disease conditions that frequently remain undiagnosed and/or untreated in up to 75% of prevalent hemodialysis (HD) patients. The nutrition care process (NCP) based on assessment, diagnosis, intervention and monitoring of nutritional status is a systematic method that nutrition professionals use to make decisions in clinical practice. This review examines from a clinical-nutritional practice point of view: a) nutritional status as a mortality causative factor; b) phenotypic characteristics of malnutrition/wasting/cachexia, and c) current trends of NCP with special emphasis on nutritional support and novel nutrient and pharmacologic adjunctive therapies in HD patients. A literature review was conducted using the Pubmed, Science Direct, Scielo, Scopus, and Medline electronic scientific basis. Studies which assessing nutritional status and nutritional support published from 1990 to 2013 in HD patients were included and discussed. From all the epidemiological data analyzed, NCP was the suggested method for identifying malnutrition/ wasting or cachexia in clinical practice. Nutrition support as an unimodal therapy was not completely able to reverse wasting in HD patients. Novel experimental therapeutic strategies including the use of appetite stimulants, ghrelin agonist, MC4-R antagonists, anabolic steroids, anti-inflammatory drugs, cholecalciferol, and other components are still under clinical evaluation. Nutritional status is a strong predictor of morbidity and mortality in HD patients. The terms called malnutrition, wasting and cachexia have different nutritional therapeutics implications. The NCP is a necessary tool for assessing and monitoring nutritional status in the current clinical practice. Novel pharmacological therapies or specific nutrient supplementation interventions studies are required. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes.

    PubMed

    Cavalaglio, Gianluca; Coccia, Valentina; Cotana, Franco; Gelosia, Mattia; Nicolini, Andrea; Petrozzi, Alessandro

    2017-05-31

    A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m(3

  9. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  10. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.

    PubMed

    Lusardi, Marcella R; Kohn, McKenzie; Themelis, Nickolas J; Castaldi, Marco J

    2014-08-01

    A technical analysis has been completed for a commercial-scale two-stage gasification-combustion system. The CLEERGAS (Covanta Low Emissions Energy Recovery GASification) process consists of partial combustion and gasification of as-received municipal solid waste (MSW) on a moving grate producing syngas followed by full combustion of the generated syngas in an adjoining chamber and boiler. This process has been in operation since 2009 on a modified 330-tonne day(-1) waste-to-energy (WTE) line in Tulsa, Oklahoma. Material balances determined that the syngas composition is 12.8% H2 and 11.4% CO, the heating value of the gas in the gasifier section is 4098 kJ Nm(-3), and an aggregate molecular formula for the waste is C6H14.5O5. The analysis of gas measurements sampled from the Tulsa unit showed that the gasification-combustion mode fully processed the MSW at an excess air input of only 20% as compared to the 80-100% typically found in conventional WTE moving grate plants. Other important attributes of the CLEERGAS gasification-combustion process are that it has operated on a commercial scale for a period of over two years with 93% availability and utilizes a moving grate technology that is currently used in hundreds of WTE plants around the world.

  11. Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste.

    PubMed

    Bosmans, A; Auweele, M Vanden; Govaerts, J; Helsen, L

    2011-04-01

    The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500kWkg(wood)(-1)) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  13. Energy from Municipal Waste Program

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Each year Americans throw away 3 quads of energy in the form of municipal waste and pay 6 billion dollars for the privilege. Only about 21 percent of our municipal wastes are used productively to generate electricity or produce new products by recycling. In 1990, waste-to-energy (WTE) plants and recycling efforts contributed roughly half a quad of energy in the form of electricity and reduced energy use. This productive use of waste avoided the disposal of about 50 million tons of wastes to landfills in that year. The Administration National Energy Strategy (NES) estimates that with proper Federal, State, local, and private action the electric generating capacity of WTE facilities could increase 600 percent by 2010 and by over 1200 percent by 2030, compared to 1990 capacity. This would result in about 55 gigawatts (GW) of capacity by 2030, up from roughly 4 GW today. The Department of Energy (DOE) supports an integrated approach to waste management that includes source reduction, WTE, recycling, and landfilling as complementary pieces of a solution to the municipal waste disposal problem. The Energy from Municipal Waste Program, described in this plan, seeks to minimize the productive use of municipal waste as an energy resource to improving its economic and environmental characteristics. While the Program focuses on WTE systems, it is conducted as part of a larger Federal effort that includes source reduction and recycling of wastes to save energy.

  14. Motorcycle waste heat energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  15. Processing of food wastes.

    PubMed

    Kosseva, Maria R

    2009-01-01

    Every year almost 45 billion kg of fresh vegetables, fruits, milk, and grain products is lost to waste in the United States. According to the EPA, the disposal of this costs approximately $1 billion. In the United Kingdom, 20 million ton of food waste is produced annually. Every tonne of food waste means 4.5 ton of CO(2) emissions. The food wastes are generated largely by the fruit-and-vegetable/olive oil, fermentation, dairy, meat, and seafood industries. The aim of this chapter is to emphasize existing trends in the food waste processing technologies during the last 15 years. The chapter consists of three major parts, which distinguish recovery of added-value products (the upgrading concept), the food waste treatment technologies as well as the food chain management for sustainable food system development. The aim of the final part is to summarize recent research on user-oriented innovation in the food sector, emphasizing on circular structure of a sustainable economy.

  16. Health and environmental research. Quarterly report, October 1-December 31, 1981. [Health and environmental effects of waste and biomass to energy processes

    SciTech Connect

    Not Available

    1982-04-01

    Progress on the following studies is summarized: health and environmental impact of waste and biomass to energy processes; characterization of organic pollutants; environmental effects of using municipal solid wastes as a supplementary fuel; microbiological air quality of the Ames Municipal Solid Waste Recovery System; solid waste to methane study; high resolution luminescence spectroscopy (x-ray laser excited Shpol'skii spectroscopy, rotationally cooled fluorescence spectroscopy, and fluorescence line narrowing spectroscopy); lead mission-environmental aspects of energy recovery from waste and biomass; risk assessment of municipal wastes as a supplemental fuel. An executive summary of a report on the health and environmental effects of refuse-derived fuel production and coal co-firing technologies is also included. (JGB)

  17. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt

  18. MLW, TRU, LLW, MIXED, HAZARDOUS WASTES AND ENVIRONMENTAL RESTORATION. WASTE MANAGEMENT/ENERGY SECURITY AND A CLEAN ENVIRONMENT. DFR Decommissioning: the Breeder Fuel Processing

    SciTech Connect

    Bonnet, C.; Potier, P.; Ashton, Brian Morris

    2003-02-27

    The Dounreay site, in North Scotland, was opened in 1955 and a wide range of nuclear facilities have been built and operated there by UKAEA (The United Kingdom Atomic Energy Authority) for the development of atomic energy research. The Dounreay Fast Reactor (DFR) was built between 1955 and 1957, and operated until 1977 for demonstration purposes and for producing electricity. Today, its decommissioning is a key part of the whole Dounreay Site Restoration Plan that integrates the major decommissioning activities such as the fuel treatment and the waste management. The paper presents the contract strategy and provides an overview of the BFR project which consists in the removal of the breeder elements from the reactor and their further treatment. It mainly provides particular details of the Retrieval and Processing Facilities design.

  19. Analysis of Biomethanation Process from market waste to generate bio energy

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Parthiban, A.; Vinod kumar, T.; Chandrasekaran, M.

    2017-03-01

    In this study was to incur that the biogas production from traditional market wastes which were represented by cabbage stem and carrot peeling, white mustard were under taken in a laboratory experiment. To produce biogas, the raw material such as cabbage stem and carrot peeling, white mustard and carrot peeling were mixed until C/N ratio close 30:1. Inoculums starter cow dung is put into digester then water is added until 500 liters. The initial pH is measured at throughout the experiments. The anaerobic digestion process is conducted at temperature of 30ºC and the volumes, pH of the biogas yield were observed daily. Biogas yield and cumulative biogas, total solids were analyzed 35 days. The cumulative biogas yield at the 32th day of digestion for cabbage stem and carrot peeling (exp1), white mustard and carrot peeling (exp2) were 2140 liters and 2421 liters respectively. The highest daily biogas yield is achieved on the 22st day of digestion which is found 123 liters and 141 liters respectively. In the first 10 days, the pH level is observed decrease and increase after the day of 21. Although at the end of digestion period the pH will fall down.

  20. Evaluation of biomass materials as energy sources: Upgrading of tea waste by briquetting process

    SciTech Connect

    Demirbas, A.

    1999-04-01

    Tea waste was briquetted at ambient and elevated temperatures in a calibrated laboratory hydraulic press using a punch and die set for 5--30 minutes under pressures of 300--800 MPa. The effects of the briquetting pressure on the density, the moisture content, and the compressive strength of the briquettes were examined at different pressures. The optimum moisture contents and compressive strengths were found to be 15--18% and 36.2--37.1 MPa for tea wastes samples. The effect of the briquetting temperature and time on the briquette density of tea waste were determined.

  1. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  2. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield.

    PubMed

    Liu, Xinyuan; Li, Ruying; Ji, Min; Han, Li

    2013-10-01

    Batch experiments were conducted to produce hydrogen and methane from waste activated sludge and food waste by two-stage mesophilic fermentation. Hydrogen and methane production, energy yield, soluble organic matters, volatile solid removal efficiency and carbon footprint were investigated during two-stage digestion at various food waste proportions. The highest energy yield reached 14.0 kJ/g-VS at the food waste proportion of 85%, with hydrogen and methane yields of 106.4 ml-H2/g-VS and 353.5 ml-CH4/g-VS respectively. The dominant VFA composition was butyrate for co-digestion and sole food waste fermentation, whereas acetate was dominate in VFA for sole waste activated sludge fermentation. The VS removal efficiencies of co-digestion were 10-77% higher than that of waste activated sludge fermentation. Only 0.1-3.2% of the COD in feedstock was converted into hydrogen, and 14.1-40.9% to methane, with the highest value of 40.9% in methane achieved at food waste proportion of 85%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pilot-Scale Testing of a Fuel Oil-Explosives Cofiring Process for Recovering Energy from Waste Explosives

    DTIC Science & Technology

    1988-06-01

    produced by Holston , Radford, and Iowa Army Ammunition Plants each year. 5 2.1 Current Energetic Material Disposal Alternatives Waste or excess energetic...disposal method for PEP materials, it is an energy-intensive and expensive disposal option. Radford Army Ammunition Plant now operates two incinerators...R. Scala, Energy Recovery from Army Ammunition Plant Solid Waste by Pyrolysis, ARLCU-CR-78030, TRW Defense and Space Systems, Redondo Beach, CA

  4. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  5. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    SciTech Connect

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.; Schoene, Robin P.; Urgun-Demirtas, Meltem

    2016-11-01

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amended digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.

  6. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  7. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    SciTech Connect

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  8. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  9. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  10. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  11. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  12. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  13. Municipal waste processing apparatus

    SciTech Connect

    Mayberry, J L

    1987-01-15

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  14. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  15. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  16. Waste Characterization Process

    SciTech Connect

    Lambert, Patrick E.

    2014-11-01

    The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to include every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.

  17. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  18. Process Waste Assessment - Paint Shop

    SciTech Connect

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  19. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition.

  20. Fruit, vegetable, and grain processing wastes. [Industrial wastes

    SciTech Connect

    Morrell, R.A.; Schmidt, H.E. Jr.

    1982-06-01

    Waste processing methods utilized in the food-processing industry are reviewed. The industrial waste associated with fruits, vegetables, and grain are examined. The utilization of the waste products after processing is discussed.

  1. The United States Department of Energy process for performance assessment for disposal of low-level radioactive waste

    SciTech Connect

    Wood, D.E.; Owens, K.W.; Wilhite, E.L.; Duggan, G.J.

    1993-02-01

    The US Department of Energy (DOE) manages disposal of low-level radioactive waste through the requirements of DOE Order 5820.2A on Radioactive Waste Management. The order specifies long-term performance objectives for permanent disposal, requires a performance assessment to determine compliance with those objectives, and establishes a Peer Review Panel to review those assessments for technical quality and completeness. A Performance Assessment Task Team has been established to provide guidance and recommend policy for implementation and interpretation of the requirements to those preparing the assessments. This paper describes the requirements, the Peer Review Panel, the Performance Assessment Task Team, and their activities to date.

  2. Mathematical modeling of heat transfer processes of coal waste combustion in a chamber of automated energy generating complex

    NASA Astrophysics Data System (ADS)

    Mochalov, Sergey P.; Kalashnikov, Sergey N.; Mochalov, Pavel S.; Song, Guolin; Tang, Guoyi

    2013-04-01

    The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the walls of the swirl chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this problem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units.

  3. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  4. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  5. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  6. Process equipment waste and process waste liquid collection systems

    SciTech Connect

    Not Available

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab.

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Heterogeneous waste processing

    DOEpatents

    Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  9. Process Waste Assessment, Mechanics Shop

    SciTech Connect

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

  10. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  11. Energy Conservation/Waste Reduction in the Processing of Soft (Unfired) Ceramic Particles Via Dynamic Cyclone Classification

    SciTech Connect

    Wright, Steve R.

    2003-04-15

    vanes require more power to overcome their stronger countercurrent flow. Several large commercial classifier manufacturers have expressed interest in licensing the FPDCC technology for commercialization contingent upon performance validation/verification in the laboratory and at selected Beta test sites. The revised target markets for the FPDCC are pharmaceuticals/neutriceuticals, food products/additives, cosmetics and specialty chemicals. Commercial FPDCC devices will improve product yield, reduce production costs, decrease energy consumption, and minimize process/product waste streams.

  12. Energy Conservation/Waste Reduction in the Processing of Soft (Unfired) Ceramic Particles Via Dynamic Cyclone Classification

    SciTech Connect

    Wright, Steve R.

    2003-04-15

    vanes require more power to overcome their stronger countercurrent flow. Several large commercial classifier manufacturers have expressed interest in licensing the FPDCC technology for commercialization contingent upon performance validation/verification in the laboratory and at selected Beta test sites. The revised target markets for the FPDCC are pharmaceuticals/neutriceuticals, food products/additives, cosmetics and specialty chemicals. Commercial FPDCC devices will improve product yield, reduce production costs, decrease energy consumption, and minimize process/product waste streams.

  13. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  14. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  15. Solid Waste/Energy Curriculum.

    ERIC Educational Resources Information Center

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  16. Solid Waste/Energy Curriculum.

    ERIC Educational Resources Information Center

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  17. Energy from waste

    SciTech Connect

    Klass, D.L.; Sen, C.T.

    1987-07-01

    Each day, U.S. cities must dispose of more than 450,000 tons of municipal solid waste (MSW). (See box for definitions of this and other terms.) Historically, it has been reported that 95% of this MSW has been buried in garbage dumps and landfills, but this method is becoming unacceptable as space becomes scarcer and much more costly. According to an estimate by Combustion Engineering Co., a quarter of U.S. cities will run out of landfill space in the next five years, and 80% of them over the next decade. The vast majority of these cities have yet to identify new landfill sites. Meanwhile, the cost of landfilling in some urban areas has risen from nearly /sup ll/ton in 1970 to /50/ton or more and is projected to go even higher. Collection and transportation charges add even more to the cost of disposal. The recent news story of a garbage-laden barge from Long Island sailing national and international waterways in desperate search of a disposal site is a dramatic example of this problem.

  18. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  19. Method for processing aqueous wastes

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1992-12-31

    This invention is comprised of a method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  20. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  1. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  2. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    SciTech Connect

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10/sup -4/, 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10/sup -4/, 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents.

  3. Process energy management

    SciTech Connect

    1994-12-31

    In many facilities, energy management is simply a matter of managing the energy required for lighting and space conditioning. In many others, however, energy management is much more complex and involves large motors and controls, industrial insulation, complex combustion monitoring, unique steam distribution problems, significant amounts of waste heat, etc. Typical facilities offering large energy management opportunities include industrial facilities, large office and commercial operations, government institutions such as schools, hospitals and prisons. Such facilities generally have specialized industrial, commercial or institutional processes that incorporate many of the concepts covered in other chapters. These processes require thorough analytical evaluations to determine the appropriate energy-saving measures. This chapter provides some examples. In this chapter the authors present a suggested procedure for process energy improvement. Then, motors and controls are discussed since they form an integral part of most processes. Next, some sample case studies of process energy management opportunities are provided. Finally, the authors outline some common process activities where better energy management can be practiced. Air compressors are also discussed.

  4. Treatment of ORNL process waste

    SciTech Connect

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Because of the shutdown of the hydrofracture process at ORNL, intensive efforts were made to reduce contaminated liquid waste generation rates. Treatment of slightly radioactive process waste has been dramatically improved. The volume of secondary, radioactively contaminated waste streams and the concentration of pollutants discharged to the environment have been reduced. Further improvements, based on results of research and development, are planned. The future value of alternative flowsheets will be compared with process flexibility to determine the optimal upgrade to the treatment plant. 1 ref., 4 figs., 2 tabs.

  5. Waste-to-energy: Benefits beyond waste disposal

    SciTech Connect

    Charles, M.A.; Kiser, J.V.L. )

    1995-01-01

    More than 125 waste-to-energy plants operate in North America, providing dependable waste disposal for thousands of communities. But the benefits of waste-to-energy plants go beyond getting rid of the garbage. Here's a look at some of the economic, environmental, and societal benefits that waste-to-energy projects have brought to their communities. The reasons vary considerably as to why communities have selected waste-to-energy as a part of their waste management systems. Common on the lists in many communities are a variety of benefits beyond dependable waste disposal. A look at experiences in four communities reveals environmental, economic, energy, and societal benefits that the projects provide to the communities they serve.

  6. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits.

  7. Processing of radioactive waste by the use of low energy ({le} 100 MeV) charged particle accelerators. Optimization problems

    SciTech Connect

    Mushnikov, V.N.; Ozhigov, L.S.; Khizhnyak, N.A.

    1993-12-31

    The radiation processing of long-lived radiotoxic elements is based on transmutation reactions under the action of various particles and energies. Among the different particle sources the most promising is the proton accelerator. The present work studied the process of radiation deactivation in the stationary proton flux as functions of their flux density and energy. The Bateman-Robinson differential equations were solved.

  8. Meat-, fish-, and poultry-processing wastes. [Industrial wastes

    SciTech Connect

    Litchfield, J.H.

    1982-06-01

    A review of the literature dealing with the effectiveness of various waste processing methods for meat-, fish,-, and poultry-processing wastes is presented. Activated sludge processes, anaerobic digestion, filtration, screening, oxidation ponds, and aerobic digestion are discussed.

  9. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  10. Cycle of waste heat energy transformation

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  11. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  12. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  13. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  14. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  15. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, J. OM.; Hitchens, G. D.; Kaba, L.

    1988-01-01

    The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.

  16. Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes.

    PubMed

    Kojima, Naozumi; Mitomo, Aki; Itaya, Yoshinori; Mori, Shigekatsu; Yoshida, Shuichi

    2002-01-01

    This study proposes a recycling system of sludge into active cokes and the fundamental examinations for the application were carried out. In the system, active cokes were produced by carbonizing pellets of sludge in a steam stream. Pyrolysis gas yielded by carbonization can be available to a fuel for a steam generation boiler. The exhaust heat from the boiler is used sequentially for drying of sludge. The active cokes are applied to the adsorbent for dioxin removal in exhaust gas from incinerators of wastes, or for purification of gas obtained in a gasification process of wastes, particularly removal of H2S. The used adsorbent is not recycled, but incinerated in the furnace without a desorption process to decompose adsorbed dioxin or to oxidize H2S for a sequential desulfurization process of SO2. Dry pellets of sludge were carbonized in a quartz tube reactor under various atmospheres. The micro pore structure and the adsorption performance of the cokes produced without activation process were examined. The micro pore structure was influenced by the temperature, the sort of flow gas (N2, CO2 and steam) and carbonization time, and the active cokes produced under the condition of the temperature 823 K for 60 min in the steam atmosphere had a largest specific surface area in the diameter less than 5 nm. The amount of benzene adsorption as an alternative substance of dioxin into the active cokes had a similar quality to a commercial active char produced from coal if it was evaluated by adsorption per a unit specific surface area. This fundamental knowledge must be reflected to an optimum design for development of a simple continuous process to produce the active cokes by a fluidized bed type of the carbonization furnace.

  17. Energy utilization: municipal waste incineration. Final report

    SciTech Connect

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  18. Energy recovery from solid waste. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  19. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  20. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-07-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  1. Converting sensitive waste into cleaner energy

    SciTech Connect

    Schriner, D.; Skinner, R.

    1997-10-01

    The destruction of sensitive unclassified information (SUI) has always been expensive due to the need for special controls to ensure its protection from disclosure to unauthorized persons. The sensitive documents were shredded, buried at the landfill, or sent to a recycling company. The Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL), operated by Lockheed Martin Idaho Technologies Company (LMITCO), has created an innovative method to dispose of its sensitive unclassified paper waste which has security, economic, and environmental benefits. A new cubing facility at the INEEL converts office and industrial waste into compact cubes which are then combined with coal and burned as a source of heat and process steam to run the Idaho Chemical Processing Plant (ICPP) facility. The process-engineered fuel, consisting of 25% cubes and 75% coal, bums cleaner than coal with lower emissions of sulfur dioxide and nitrogen oxides. The alternative fuel also reduces fuel costs, eliminates paying a recycling company, reduces the expense of landfill disposal, increases the life of the landfill, and provides energy to operate a large facility. The Operations Security (OPSEC) team capitalized on this waste to energy technology by recommending that the large quantities of sensitive information (documents) generated at the INEEL be disposed of in this manner. In addition to the economic and environmental benefits, this disposal method minimizes the vulnerabilities of SUI from disclosure to unauthorized personnel. The {open_quotes}cuber{close_quotes} technology has potential application in government and industry for protection of SUI.

  2. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  3. Ultra-high frequency induction energy effects on refractory oxides as applied to processing and immobilization of radioactive waste

    NASA Astrophysics Data System (ADS)

    Roach, Jay A.

    The application of ultra-high frequency induction melting of refractory oxides (i.e. borosilicate glass [BSG]) has been extensively investigated to determine the feasibility of developing and implementing an innovative inductively heated draining technique that is reliable and predictable. The primary purpose is for immobilizing highly radioactive waste streams resulting from reprocessing of spent nuclear fuel. This work has included development and validation of a numerical model, using ANSYS MultiPhysics software, as well as numerous proof-of-concept and pilot-scale experimental tests. The model is a steady state axially-symmetric geometry for a cylindrical water-cooled crucible that includes two separate induction energy sources operating at different frequencies. It accounts for the induction energy interactions, thermal conduction, convection, and radiation effects, as well as hydrodynamic phenomenon due to buoyancy effects. The material property models incorporated into the numerical model include temperature dependence up to 2,000°C of key parameters including density, specific heat, thermal conductivity, and electrical conductivity, which can vary by several orders of magnitude within the temperature variations seen. The model has been experimentally validated, and shown to provide excellent representation of steady state temperature distributions, convection cell configurations, and flow field velocities for molten low conductivity materials. Thus, it provides the capability to conduct parametric studies to understand operational sensitivities and geometry effects that determine the performance of the inductively heated draining device, including scale-up effects. Complementary experimental work has also been conducted to test the model predictions, and iteratively used to improve the model accuracy. However, the primary focus of the experimental efforts was to demonstrate the feasibility of the inductively heated draining technique for application to

  4. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  5. Energy conservation is a waste

    SciTech Connect

    Inhaber, H.

    1998-07-01

    Energy conservation is virtually always a bust. Governments around the world continually trot out new schemes to reduce energy use and promote efficiency. The prime American example of this futility is government regulation of automobile gas mileage. Prompted by the Arab oil embargo of 1973, Congress mandated a doubling of gas mileage. What happened? Gasoline consumption rose from 1973 to the 1990s, as the roads were flooded with energy-efficient cars. Huge sport-utility vehicles crowd parking lots, also thanks to more efficient engines. Conservation fails because it takes no account of economics of human nature. The combination of greater engine efficiency and rising disposable income has produced a true golden age of motoring. In the same way, what is saved by installing special light bulbs is often wasted on new hot tubs, exterior lighting and a host of other energy uses, as homeowners assume that their electric bills will drop off substantially. In spite of these and dozens of other clear failures, the claims for conservation to solve virtually all the national energy dilemmas continue. Few if any are valid. While each of us can reduce energy use in one or two areas, one finds that the nation gradually uses more.

  6. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  7. Biogas and energy production from cattle waste

    SciTech Connect

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking, lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.

  8. Improved FGD dewatering process cuts solid wastes

    SciTech Connect

    Moer, C.; Fernandez, J.; Carraro, B.

    2009-08-15

    In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

  9. Livestock waste-to-energy opportunities

    USDA-ARS?s Scientific Manuscript database

    The use of animal manure and other organic-based livestock wastes as feedstocks for waste-to-energy production has the potential to convert the livestock waste treatment from a liability into a profit center that can generate annual revenues and diversify farm income. This presentation introduces tw...

  10. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  11. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  12. Energy from waste; A Canadian perspective

    SciTech Connect

    Rawson, K.L. )

    1990-01-01

    This paper reports on energy from waste from a Canadian perspective. The recovery of potential energy from waste products is not new in Canada, there are a number of existing facilities. The majority of in-service EFW facilities producing electricity are in the pulp and paper and wood products industries, but there are also several using Municipal Solid Wastes. While project proposals continue to come forward, the topic of energy from waste is receiving a fresh look from environmental regulators in light of growing environmental consciousness in society. Energy from waste continues to have a significant potential for growth in Canada, but the extent of future growth is directly dependent on public acceptability. This public acceptability, in turn, is dependent on the nature of the waste material and the location of the energy recovery facility.

  13. A biological/chemical process for reduced waste and energy consumption, Caprolactam production: Phase 1, Select microorganisms and demonstrate feasibility. Final report

    SciTech Connect

    St.Martin, E.J.

    1995-08-01

    A novel biological/chemical process for converting cyclohexane into caprolactam was investigated. Microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. The proposed bioprocess would be more energy efficient and reduce byproducts and wastes that are generated by the current chemical process. We have been successful in isolating from natural soil and water samples two microorganisms that can utilize cyclohexane as a sole source of carbon and energy for growth. These microorganisms were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants are being developed. These blocked-mutants will be used to convert cyclohexane into caprolactone but, because of the block, be unable to metabolize the caprolactone further and excrete it as a final end product.

  14. Processing of Oak Ridge Mixed Waste Labpacks

    SciTech Connect

    Estes, C. H.; Franco, P.; Bisaria, A.

    2002-02-26

    The Oak Ridge Site Treatment Plan (STP) issued under a Tennessee Commissioner's Order includes a compliance milestone related to treatment of mixed waste labpacks on the Oak Ridge sites. The treatment plan was written and approved in Fiscal Year 1997. The plan involved approximately 1,100 labpacks and 7,400 on-the-shelf labpackable items stored at three Department of Energy (DOE) sites on the Oak Ridge Reservation (ORR). The labpacks and labpack items consist of liquids and solids with various chemical constituents and radiological concerns. The waste must be processed for shipment to a commercial hazardous waste treatment facility or treatment utilizing a Broad Spectrum mixed waste treatment contract. This paper will describe the labpack treatment plan that was developed as required by the Site Treatment Plan and the operations implemented to process the labpack waste. The paper will discuss the labpack inventory in the treatment plan, treatment and disposal options, processing strategies, project risk assessment, and current project status.

  15. Recovery of energy and chrome from chrome tannery wastes

    SciTech Connect

    Muralidhara, H.S.; Maggin, B.; Phipps, H.

    1980-05-30

    An evaluation of the technical performance and cost effectiveness of a low temperature pyrolysis process which uses dry leather tanning wastes to provide energy and chrome tanning liquor for reuse in tanneries is presented. Presently, leather waste is disposed of in landfills, resulting not only in a considerable loss of potential energy (estimated to be 0.7 trillion Btus annually), but an even more significant loss of chromium (estimated to be 1.8 million pounds per year). The pyrolysis process is shown to be technically feasible, economically viable, and can alleviate a leather waste management problem that is becoming increasingly more difficult to handle because of more stringent environmental waste disposal requirements. Leather tanneries can save an estimated $7 to $8 million annually by employing this pyrolysis process to conserve energy and chrome in dry tanning wastes.

  16. Energy from waste: a possible alternative energy source for large size municipalities.

    PubMed

    Eleftheriou, Polyvios

    2007-10-01

    The net calorific values and weight composition of solid waste from all the major municipalities of the island of Cyprus were measured. Representative waste samples were collected, processed and tested for energy generation over a complete year. The energy values appear to vary from city to city depending on the season. The total energy that could be recovered from the waste amounted to approximately 8.5% of the total electricity generation of the island of Cyprus.

  17. Limiting human exposures through the ``as low as reasonably achievable`` process at a Department of Energy mixed waste site

    SciTech Connect

    MacDonell, M.; Peterson, J.; Haroun, L.; Blunt, D.; Dunning, D.

    1994-09-01

    Applying a process to reduce human exposures to levels as low as reasonably achievable (ALARA) is a cornerstone of the US Department of Energy`s radiation protection program, and this process is being used to develop cleanup levels for contaminated sites across the country. Under the ALARA process, exposures and risks are reduced as far below protective criteria as can reasonably be achieved--considering technical, economic, and social factors. Risk-based cleanup levels have been developed for radionuclides and chemicals in surface water and soil at the Weldon Spring site in Missouri, following explicit applications of the ALARA process. Among the lessons learned during these applications were the importance of three factors: (1) soliciting early input from the parties involved--because the ALARA process involves a range of technical and nontechnical issues; (2) maintaining site specificity for the ALARA analyses--because contaminant types and distributions will vary, as will local conditions and constraints; and (3) identifying cleanup levels in the planning phase that are distinct from those developed for the field phase--because remedies can be over-designed if the decision levels are the same as the ALARA goals for field work, such that little increased risk reduction is achieved for substantially higher costs.

  18. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium

    USGS Publications Warehouse

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0. 0003 m yr** minus **1 were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0. 0003 m yr** minus **1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves.

  19. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  20. Potential for energy recovery from solid wastes

    SciTech Connect

    Velzy, C.O.

    1983-01-01

    This paper discusses the technologies, opportunities, and problems of energy-from-refuse systems. Topics considered include the direct combustion of as-received refuse, the mass-burn systems, the combustion of refuse-derived fuel, and the production of methane gas from the organic and cellulosic fraction of solid waste. A DOE-sponsored methane plant operated by Waste Management is now being evaluated at Pompano Beach, Florida. The Europeans have moved ahead so rapidly in the beneficial use of heat from the combustion of their solid waste because of the availability of a ready market for the heat in municipal facilities and/or town district heating systems. It is suggested that the use of the heat from the combustion of solid waste should be broadened to include district heating and cooling, complementary municipal functions (e.g. the disposal of sludges from wastewater treatment), integration in power generation facilities in uses other than direct production of power (e.g. boiler feedwater heating), and in industrial processing.

  1. Drivers for innovation in waste-to-energy technology.

    PubMed

    Gohlke, Oliver; Martin, Johannes

    2007-06-01

    This paper summarizes developments made in the field of waste-to-energy technology between the 1980s and the present. In the USA, many waste-to-energy systems were developed in the 1980s and early 1990s. These plants generated power relatively efficiently (typically 23%) in 60 bar/ 443 degrees C boilers. Unfortunately, the development came to a stop when the US Supreme Court rejected the practice of waste flow control in 1994. Consequently, waste was directed to mega-landfills, associated with very negative environmental impacts. However, given landfill taxes and increased fuel prices, new waste-to-energy projects have recently been developed. Attractive premiums for renewable power production from municipal waste have been introduced in several European countries. This triggered important innovations in the field of improved energy recovery. Examples of modern waste-to-energy plants are Brescia and Amsterdam with net efficiencies of 24 and 30%, respectively. Incineration is traditionally preferred in Japan due to space constraints. New legislation promoted ash melting or gasification to obtain improved ash quality. However, these processes reduce the efficiency in terms of energy, cost and availability. A new oxygen-enriched waste-to-energy system is under development in order to better achieve the required inert ash quality.

  2. The Recovery of Energy from Waste.

    ERIC Educational Resources Information Center

    Baxter, Zeland L.; And Others

    This study unit advocates the use of biomass conversion techniques with municipal solid wastes as a viable action for energy development. The unit includes: (1) an introductory section (providing a unit overview and supportive statements for biomass conversion; (2) a historical review of energy use from wastes; (3) a section on design and…

  3. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  4. Competition of different methods for recovering energy from waste.

    PubMed

    Friege, Henning; Fendel, Ansgar

    2011-10-01

    Waste-to-energy (WtE) facilities have been established worldwide as a sustainable method for the disposal of residual waste. In the present study the following competing WtE systems were compared: (1) municipal solid waste incinerators (MSWIs) with energy recovery; (2) co-incineration of waste in old lignite or coal-fired power plants; (3) substitute [refuse-derived fuel (RDF)] incinerators with energy recovery; and (4) co-incineration of defined waste fractions in cement kilns. In general the municipal solid waste incinerators in Europe are designed for a broad range of municipal and commercial waste without a pre-treatment of the waste. All other WtE processes including the cement kilns require a pre-treatment and are more limited in terms of RDF composition; namely particle size, chlorine content, calorific value. As to Germany, the emission limit values for all facilities are similar. A sensitivity analysis of the economics of boilers using RDF and municipal solid waste leads to the conclusion that the feasibility of RDF incinerators might partially recover if the prices for primary energy increase again. On the other hand, pre-treatment of waste leads to higher costs for RDF. Incineration and recycling capacities are large enough in middle Europe to avoid landfilling of organic waste. The steep decline of gate fees observed in some national spot markets is a clear indicator of an already existing overcapacity. Considering the enormous amount of greenhouse gas emissions saved by WtE facilities in comparison with landfilling, free capacities of WtE installations should be used to incinerate waste from EU member states where waste disposal is still predominantly based on landfilling.

  5. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  6. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  7. Interstate waste transport -- Emotions, energy, and environment

    SciTech Connect

    Elcock, D.

    1993-12-31

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  8. Interstate waste transport -- Emotions, energy, and environment

    SciTech Connect

    Elcock, D.

    1993-01-01

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  9. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  10. Low temperature waste form process intensification

    SciTech Connect

    Fox, K. M.; Cozzi, A. D.; Hansen, E. K.; Hill, K. A.

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  11. Fossil energy waste management. Technology status report

    SciTech Connect

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  12. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, John OM.

    1987-01-01

    An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.

  13. Thermocatalytic conversion of food processing wastes: Topical report, FY 1988

    SciTech Connect

    Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.; Neuenschwander, G.G.

    1989-01-01

    The efficient utilization of waste produced during food processing operations is a topic of growing importance to the industry. While incineration is an attractive option for wastes with relatively low ash and moisture contents (i.e., under about 50 wt % moisture), it is not suitable for wastes with high moisture contents. Cheese whey, brewer's spent grain, and fruit pomace are examples of food processing wastes that are generally too wet to burn efficiently and cleanly. Pacific Northwest Laboratory (PNL) is developing a thermocatalytic conversion process that can convert high-moisture wastes (up to 98 wt % moisture) to a medium-Btu fuel gas consisting primarily of methane and carbon dioxide. At the same time, the COD of these waste streams is reduced by 90% to 99%, Organic wastes are converted by thermocatalytic treatment at 350/degree/C to 400/degree/C and 3000 to 4000 psig. The process offers a relatively simple solution to waste treatment while providing net energy production from wastes containing as little as 2 wt % organic solids (this is equivalent to a COD of approximately 25,000 mg/L). This report describes continuous reactor system (CRS) experiments that have been conducted with food processing wastes. The purpose of the CRS experiments was to provide kinetic and catalyst lifetime data, which could not be obtained with the batch reactor tests. These data are needed for commercial scaleup of the process.

  14. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  15. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  16. Industrial wastes: meat, fish and poultry processing wastes

    SciTech Connect

    Litchfield, J.H.

    1980-06-01

    This article is a review of meat, fish and poultry processing wastes. Reviews on slaughterhouse and packinghouse wastewater treatment methods were mentioned together with processes for protein recovery from wastewater and wastewater treatment sludges.

  17. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  18. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  19. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  20. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  1. Tank Waste Remediation System optimized processing strategy

    SciTech Connect

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  2. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  3. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  4. Waste to Energy at SUNY Cobleskill

    DTIC Science & Technology

    2011-05-10

    Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy

  5. Management of waste from stone processing industry.

    PubMed

    Prasanna, K; Joseph, Kurian

    2007-10-01

    Characteristics of waste generated in stone processing industries, impact of its current disposal practices and waste recycling potential were assessed by field studies. The physical and chemical characteristics of waste are comparable to construction materials like sand and cement. The environmental issues due to the disposal of waste including that on ambient air quality were identified at respective disposal sites. It was found that the waste can be used to replace about 60% of sand and 10% of cement in concrete. Similarly the waste can replace 40% of clay in clay bricks with affecting its compressive strength.

  6. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  7. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  8. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    SciTech Connect

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  9. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  10. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  11. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  12. Hazards Analysis of Energy Recovery from Army Ammunition Plant Solid Waste

    DTIC Science & Technology

    1979-04-01

    wastes, two energy recovery processes currently being used with municipal solid waste and other types of biomass are being considered. One process con...military explosives are finding their way into municipal solid waste (table 1). In several cases investigators dis- covered the origins of...location is different. However, the waste from each site consists of the following types: 1. Non-contaminated - Similar to municipal solid waste except

  13. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  14. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  15. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  16. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  17. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  18. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  19. Industrial utilization of waste derived energy

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A technical and economic feasibility study of a partial oxidation unit was conducted. Major objectives of the program were: (1) disposal of both urban (municipal refuse and sewage sludge) and agricultural (dairy) wastes; and (2) the production of a medium-Btu fuel gas. The investigated wasteshed includes those portions of Western San Bernardino County, Eastern Los Angeles County, and Northwestern Riverside County. The available waste supply, transportation of these waste materials, product quantities and energy products of fuel gas steam, and electricity, markets, ferrous metals, aluminum, nonferrous metals, and slag are studied.

  20. Pelletization process of postproduction plant waste

    NASA Astrophysics Data System (ADS)

    Obidziński, S.

    2012-07-01

    The results of investigations on the influence of material, process, and construction parameters on the densification process and density of pellets received from different mixtures of tobacco and fine-grained waste of lemon balm are presented. The conducted research makes it possible to conclude that postproduction waste eg tobacco and lemon balm wastes can be successfully pelletized and used as an ecological, solid fuels.

  1. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  2. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  3. Hydraulic waste energy recovery, Phase 2

    SciTech Connect

    Not Available

    1992-02-01

    The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

  4. SPEEDUP simulation of liquid waste batch processing. Revision 1

    SciTech Connect

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-10-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950`s. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site.

  5. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    SciTech Connect

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  6. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    PubMed

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes.

  7. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  8. Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions.

    PubMed

    Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F

    2013-01-01

    In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    SciTech Connect

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  10. Process waste assessment for the Radiography Laboratory

    SciTech Connect

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie ({mu}Ci) activity. The photochemical processes generate most of the Radiography Laboratory`s routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance.

  11. Medical waste to energy: experimental study.

    PubMed

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  12. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  13. Advances in processing nuclear waste glasses

    SciTech Connect

    Plodinec, M J

    1988-01-01

    The vitrification of nuclear waste glasses is presenting unique challenges to glass technologists. On the one hand, the composition of the most important constituent of the glass batch/--/the waste/--/may vary widely. On the other hand, the vitrification process itself must be tightly controlled to ensure product quality, public safety, and process reliability. This has led to several important developments in waste vitrification technology, all aimed at improving process control. These include use of process models, use of artificial intelligence techniques, and improved control and measurement of glass redox. 19 refs., 2 figs., 2 tabs.

  14. Conversion of poultry wastes into energy feedstocks.

    PubMed

    Kantarli, Ismail Cem; Kabadayi, Arzu; Ucar, Suat; Yanik, Jale

    2016-10-01

    In this study, conversion of wastes from poultry farming and industry into biochar and bio-oil via thermochemical processes was investigated. Fuel characteristics and chemical structure of biochars and bio-oils have been investigated using standard fuel analysis and spectroscopic methods. Biochars were produced from poultry litter through both hydrothermal carbonization (sub-critical water, 175-250°C) and pyrolysis over a temperature range between 250 and 500°C. In comparison to hydrothermal carbonization, pyrolysis at lower temperatures produced biochar with greater energy yield due to the higher mass yield. Biochars obtained by both processes were comparable to coal. Hydrothermal liquefaction of poultry meal at different temperatures (200-325°C) was conducted and compared to optimize its process conditions. Higher temperatures favored the formation of bio-crude oil, with a maximum yield of 35wt.% at 300°C. The higher heating values of bio-oils showed that bio-oil could be a potential source of synthetic fuels. However, elemental analysis demonstrated the high nitrogen content of bio-oils. Therefore, bio-oils obtained from hydrothermal liquefaction of poultry meal should be upgraded for utilization as a transport and heating fuel.

  15. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  16. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  17. Description of processes for the immobilization of selected transuranic wastes

    SciTech Connect

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet.

  18. Metal, mineral waste processing and secondary recovery

    SciTech Connect

    Reddy, R.G.

    1987-04-01

    Approximately 40 million tons of precious metals chemical wastes are produced in the United States every year. An estimated five percent of these wastes are being reused/recycled to recover the precious and critical metals they contain. The rest of these chemical wastes are disposed of by the methods incineration, dumping at sea and dumping on land. In this paper, an attempt is made to review the research work published during 1985-1986 on metal, mineral waste processing, secondary recovery and safe disposal.

  19. The Museum of Solid Waste and Energy.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This activity geared for grades 5-9 involves students in creating museum stations on eight solid waste and energy topics. While working in groups, students present their station topic to other students who are conducting a "museum tour." In doing so participants are encouraged to enhance their reading, writing, public speaking, and artistic skills…

  20. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  1. Process and apparatus for recycling organic wastes

    SciTech Connect

    Chartrand, J.A.; Perreault, I.

    1982-09-28

    This defines a process and an apparatus to treat wet organic wastes, such as manures, to protect the environment and to recycle the solid content in the form of a soil conditioner or fertilizer. This process and apparatus are made to remove the bad smell and to separate the solid content in a very dry form, adapted to be readily bagged. This process and apparatus are characterized by an efficient conveying and concurrent agitation of the organic wastes in an evaporation furnace and in combination with use of the combustion gases for heat exchange heating of the fluidizing content of the wet organic wastes.

  2. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    SciTech Connect

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  3. Appleton Papers Plant-Wide Energy Assessment Saves Energy and Reduces Waste (Paper machine at Appleton's West Carrollton paper mill)

    SciTech Connect

    2002-03-01

    Plant-wide energy survey at the Appleton Papers, Inc. West Carrollton paper mill resulted in 21 recommendations for projects to reduce energy consumption and waste production and improve process efficiency.

  4. Vitrification development plan for US Department of Energy mixed wastes

    SciTech Connect

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development.

  5. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  6. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  7. Response to partial replacement of yellow corn with potato processing waste as non-traditional source of energy on the productive performance of Ossimi lambs.

    PubMed

    Omer, Hamed A A; Abdel-Magid, Soha S; Ahmed, Sawsan M; Mohamed, Mamdouh I; Awadalla, I M

    2010-08-01

    Twenty-one male growing lambs aged 6 months with an average weight 27.6 +/- 0.24 kg were used to determine the effects of partial replacing yellow corn with potato processing waste (PPW) on performance of Ossimi lambs. Animals divided into three equal groups and assigned for control and two experimental diets containing PPW which was replaced from yellow corn at 0% PPW (R(1)), 25% PPW (R(2)), and 50% PPW (R(3)). The results showed that tested rations were almost isocaloric and isonitrogenous. Dietary treatments had no significant effect on feed intake, while water intake insignificantly decreased. Digestibility coefficients of dry matter, organic matter, and crude protein significantly (P < 0.05) improved. However, dietary treatment had no significant effect on crude fiber and nitrogen-free extract digestibilities. Values of total digestible nutrient and digestible crude protein significantly (P < 0.05) increased. Nitrogen retention was positive for all groups. Dietary treatments had no significant effect on ruminal pH but insignificantly decreased ammonia nitrogen (NH(3)-N) concentrations. However, total volatile fatty acid concentration was increased. Dietary treatments increased molar proportion of volatile fatty acids. Final weight, body weight gain, and average daily gain were significantly (P < 0.05) decreased, while feed conversion ratio insignificantly decreased. Inclusion of PPW decreased total daily feeding costs of experimental rations. PPW could be used as a source of energy in lamb rations instead of corn grain. Also, PPW can be successfully fed to lamb without any adverse effect on their performance, and it can be an economical substitute for grain.

  8. Energy from biological processes

    SciTech Connect

    Not Available

    1980-07-01

    This assessment responds to a request by the Senate Committee on Commerce, Science, and Transportation for an evaluation of the energy potential of various sources of plant and animal matter (biomass). This report complements an earlier OTA report on the Application of Solar Technology to Today's Energy Needs in evaluating the major solar energy resources available to the United States. The findings also will serve as part of the material to be used in an upcoming OTA assessment of synthetic fuels for transportation. This volume presents analyses of prominent biomass issues, summaries of four biomass fuel cycles, a description of biomass' place in two plausible energy futures, and discussions of policy options for promoting energy from biomass. The four fuel cycles - wood, alcohol fuels, grasses and crop residues, and animal wastes - were chosen because of their near- to mid-term energy potential and because of the public interest in them. A second volume presents technical analyses of the resource base, conversion technologies, and end uses that provide a basis for the discussion in this volume. Also included in Volume II are various unconventional approaches to bioenergy production as well as the use of biomass to produce chemicals.

  9. Fruit, vegetable, and grain processing wastes

    SciTech Connect

    Andrews, R.M.; Soderquist, M.R.

    1980-06-01

    This is a literature review of fruit, vegetable and grain processing wastes. The factors affecting water usage and methods of conservation were examined. Various processes were investigated which included the pulp recovery from caustic peeled tomato skin, the dewatering of citrus, washing leafy vegetables with recycled process water and the potato processing industry.

  10. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  11. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  12. Energy efficiency in waste-to-energy and its relevance with regard to climate control.

    PubMed

    Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas

    2008-02-01

    This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted.

  13. Process chemistry for the pretreatment of Hanford tank wastes

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100{degrees}C. The Cr was leached by treating the sludge with alkaline KMnO{sub 4} at 100{degrees}C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved.

  14. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  15. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  16. Process waste assessment: Color print processing (RA-4)

    SciTech Connect

    Catlett, P.

    1994-05-01

    The Kodak RA-4 process is used to develop prints and overhead transparencies from photographic negatives. The assessment was based on usage, effluent discharge, and final disposition of waste generated by the process. Two options explored were bleach-fix regeneration and the conversion to a digital image processing system. The RA-4 process is process is environmentally sound and generates a relatively small amount of waste. The bleach-fix option would provide only a small effluent reduction. The digital imaging conversion option, if fully implemented, could greatly reduce waste generated in the photo lab.

  17. Coupled process modeling and waste package performance

    SciTech Connect

    McGrail, B.P.; Engel, D.W.

    1992-11-01

    The interaction of borosilicate waste glasses with water has been studied extensively and reasonably good models are available that describe the reaction kinetics and solution chemical effects. Unfortunately, these models have not been utilized in performance assessment analyses, except in estimating radionuclide solubilities at the waste form surface. A geochemical model has been incorporated in the AREST code to examine the coupled processes of glass dissolution and transport within the engineering barrier system. Our calculations show that the typical assumptions used in performance assessment analyses, such as fixed solubilities or constant reaction rate at the waste form surface, do not always give conservative or realistic predictions of radionuclide release. Varying the transport properties of the waste package materials is shown to give counterintuitive effects on the release rates of some radionuclides. The use of noncoupled performance assessment models could lead a repository designer to an erroneous conclusion regarding the relative benefit of one waste package design or host rock setting over another.

  18. Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels

    SciTech Connect

    Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

    2003-02-25

    Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF

  19. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants.

  20. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  1. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-12-31

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  2. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  3. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.; Ulerich, N.; Nocito, T.

    1996-12-31

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  4. Municipal waste-to-energy technology assessment

    SciTech Connect

    Barrett, R.E.; Krause, H.H., Jr.; Engdahl, R.B.; Levy, A.; Oxley, J.H. )

    1992-01-01

    Two major technologies are available to burn municipal solid waste (MSW) to generate steam for the production of electricity: mass-burn and refuse-derived fuel (RDF) systems. Mass-burn systems process as-received waste directly in a combustor, such as a reciprocating, rotary, or roller-grate furnace, with only limited removal of undesirable objects. Refuse-derived-fuel (RDF) systems first process the waste to produce refuse-derived fuel via shredding and other operations before combustion in spreader-stoker, fluidized-bed, and other suitable combustors. Although mass-burn systems with specially designed grates are now considered proven technology, there is much interest in RDF systems, because RDF can be used in a wide range of combustors, including some utility power plants of conventional design. However, a number of technical issues remain for both mass-burn and RDF-firing systems, and further research is warranted. Disposal of the ash residues from the combustor and/or the waste from the air-pollution control equipment is a major issue preventing more widespread use of this technology. Selection of materials of construction is also an important issue. Continuous-emission-monitoring requirements may be exceeding the technical capabilities for reliable, long-term operation. The occasional receipt of biologically active waste or waste containing heavy metals is still a troublesome issue. Dioxin emissions seem to be a problem only in plants of early design, although the issue of dioxin emissions continues to be a major one in permit applications and public relations. 58 refs., 28 figs., 16 tabs.

  5. Decontamination processes for waste glass canisters

    SciTech Connect

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO/sub 3/-HF and H/sub 2/C/sub 2/O/sub 4/ to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated.

  6. Exploratory study of complexant concentrate waste processing

    SciTech Connect

    Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

    1993-02-01

    The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

  7. On-Site Field-Feeding Waste to Energy Converter

    DTIC Science & Technology

    2008-12-01

    ON-SITE FIELD- FEEDING WASTE TO ENERGY CONVERTER L. Knowlton* and D. Pickard U.S. Army Natick Soldier Research, Development and Engineering...field- feeding generates tons of solid waste that is a costly logistic burden, requiring personnel, vehi- cles, and fuel that could otherwise be used for...unutilized energy potential. An On-site Field- feeding Waste to Energy Converter (OFWEC) ca- pability would reduce waste into non-hazardous byprod

  8. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  9. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  10. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  11. Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part IV: energy conversion from waste

    SciTech Connect

    Not Available

    1980-01-01

    The study considers the feasibility of energy conversion from wastes. Specifically, the study analyzes the potential for energy recovery from urban wastes in Jamaica, with the Kingston area serving as a case study, and assesses the feasibility of building a prototype demonstration unit for energy recovery from solid wastes at the University of the West Indies (UWI)-Mona Campus. Steam-generating waterwall combustion, refuse-derived fuel systems, pyrolysis, anaerobic biological conversion (biogas), and gas recovery from landfills are discussed as alternative systems for energy recovery from urban wastes.

  12. The use of urban wood waste as an energy resource

    NASA Astrophysics Data System (ADS)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  13. Low Activity Waste Feed Process Control Strategy

    SciTech Connect

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  14. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  15. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  16. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  18. Economic analysis of waste-to-energy industry in China.

    PubMed

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions.

  19. Waste-to-energy compendium: Revised 1982 edition

    NASA Astrophysics Data System (ADS)

    1982-08-01

    This report surveys 49 waste-to-energy recovery projects throughout the United States. Included are ten refuse-derived fuel (RDF) production facilities, eight RDF user facilities, five combined RDF production-user facilities, and 26 mass burning facilities ith energy recovery. Only those facilities that are fully operational or those in advanced stages of startup and shakedown are surveyed. Information is provided on processing capacities, operation and maintenance problems, equipment specifications, capital and operating costs, and the current status of each facility. In addition, process flow schematics are provided for each of the ten RDF production plants and the five RDF production-user plants.

  20. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  1. High-risk biodegradable waste processing by alkaline hydrolysis.

    PubMed

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate.

  2. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Maslar, S.R.

    1992-11-02

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced.

  3. New process converts cellulose waste into high Btu alcohol fuel

    SciTech Connect

    Not Available

    1980-08-01

    In the U.S. about 500 million tons of cellulose ends up in agricultural and municipal waste streams annually. Scientists at New York University have found a way to continuously convert waste cellulose such as sawdust and old newspapers into glucose sugar. It is reported that the process involves a twin-screen extruder and in a small pilot facility the extruder is continuously processing sawdust and newspapers at a rate of 200 pounds per hour. The resulting dark brown sludge contains 30% glucose that can be used to manufacture alcohol. The unreacted material, mainly lignin, can be burned for fuel. It is stated that there is enough energy in this secondary waste to run the alcohol fermentation and distillation process.

  4. Waste utilization as an energy source: Biomass. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the processing of agricultural and forest product wastes for use as energy sources. Articles discuss the utilization of crop residues, sawdust, lumber wastes, and other biomass materials as energy sources. Citations address conversion to both liquid and gaseous synthetic fuels, and the direct combustion of these waste materials for heat production. (Contains 250 citations and includes a subject term index and title list.)

  5. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  6. Process for recovering bromine from waste liquid

    SciTech Connect

    Ikeda, M.; Mohri, A.; Ota, K.; Yamada, T.; Yokomichi, I.

    1982-04-13

    This is a process for recovering bromine from a waste liquid formed in the production of an aniline derivative by ammonolysis of a nuclear substituted bromobenzene derivative with a halogen atom or a functional group. The waste liquid is first subjected to chlorine treatment in alkaline region to remove most part of ammonia and aniline derivatives, and then it is subjected to chlorine treatment in acidic region to recover bromine. The process does not involve danger of explosion accidents and can be smoothly operated.

  7. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction.

  8. Energy cropping on derelict and waste land

    SciTech Connect

    Dennington, V.N.; Chadwick, M.J.; Chase, D.S.

    1983-04-01

    The productivity of broadleaved and coniferous tree species has been determined on a range of derelict and waste land sites. Mean annual yields ranged from 0.54 t ha/sup -1/ for Betula pendula on railway land to 11.8 t ha/sup -1/ for Alnus glutinosa on pulverized fuel ash. Betula pendula, Pinus contorta and Populus robusta yielded more than 4 t ha/sup -1/ on a number of sites. Nutrient analyses show that harvesting a crop of 4 dry t ha/sup -1/ can remove up to 38 kg ha/sup -1/ nitrogen, 2 kg ha/sup -1/ phosphorus and 17 kg ha/sup -1/ potassium. However, 44-68% of the nitrogen, 46-49% of the potassium and 83-94% of the phosphorus in the standing crop at the end of the growing season occur in the foliage. Considerable conservation of nutrients can therefore be achieved by harvesting deciduous species after leaf fall, reducing total yield by about 18%. Nevertheless, in the absence of regular fertilizer additions, repeated harvesting will severely deplete the soil nutrient pool on many derelict sites. Of the total area of 339,000 ha of derelict and waste land, about 50% occurs in sites too small for the production of energy crops. A further 10% occurs in urban areas. Of the remainder, about 5% will be too steep for cultivation and 20% will be unsuitable because of the substrate. Assuming yields equivalent to 4.5 dry t ha/sup -1/yr/sup -1/, the remaining 115,938 ha of derelict and waste land could yield 520,000 dry t yr/sup -1/, representing an energy yield of about 205,000 t oil equivalent, about 0.1% of the United Kingdom energy requirement for the year 2000. 27 references, 2 figures, 10 tables

  9. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Improved Consolidation Process for Producing Ceramic Waste forms

    SciTech Connect

    Hash, Harry C.; Hash, Mark C.

    1998-07-24

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  11. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  12. Methane fermentation process for utilization of organic waste

    NASA Astrophysics Data System (ADS)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  13. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  14. Waste Minimization Study on Pyrochemical Reprocessing Processes

    SciTech Connect

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-07-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  15. Current techniques in rice mill effluent treatment: Emerging opportunities for waste reuse and waste-to-energy conversion.

    PubMed

    Kumar, Anuj; Priyadarshinee, Rashmi; Roy, Abhishek; Dasgupta, Dalia; Mandal, Tamal

    2016-12-01

    Rice mills release huge volumes of wastewater and other by-products when processing paddy rice. The wastewater often contains toxic inorganic and organic contaminants which cause environmental damage when released. Accordingly, cost-effective techniques for removing contaminants are needed. This article reviews current processes for curbing pollution and also reusing and recycling waste products. Novel techniques exist for converting waste products into energy and value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Energy potential of municipal solid waste is limited

    SciTech Connect

    1994-09-01

    Energy recovery from municipal solid waste has the potential for making only a limited contribution to the nation`s overall energy production. Although the current contribution of waste-derived energy production is less than one-half of 1 percent of the nation`s total energy Supply, DOE has set a goal for energy from waste at 2 percent of the total supply by 2010. The industry`s estimates show a smaller role for waste as an energy source in the future. The energy potential from waste is limited not only by the volume and energy content of the waste itself, but also by the factors affecting the use of waste disposal options, including public opposition and the availability of financing. Energy production from waste combustors and from landfill gases generates pollutants, although these are reduced through current regulations that require the use of emissions control technology and define operational criteria for the facilities. Although DOE estimates that one-third of the energy available from waste is available in the form of energy savings through the recycling of materials, the Department`s research in this area is ongoing.

  17. Mixed Waste Focus Area: Department of Energy complex needs report

    SciTech Connect

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  18. Status of high-level waste processing at West Valley

    SciTech Connect

    Howell, A.J.; Baker, M.N. )

    1991-11-01

    The US Department of Energy is charged with the solidification of high-level liquid waste remaining from nuclear fuel reprocessing activities that were conducted at West Valley, New York, between 1966 and 1972. The 2.27 million liters (600,000 gal) of waste in an underground storage tank has separated into a sludge layer, {approximately}10% of the original volume, and a liquid layer. Prior to the high-level waste (HLW) vitrification, volume reduction of the waste is necessary. Sine May 1988, West Valley has successfully processed >1.59 million liters (420,000 gal) of HLW. Processing to date has involved the removal of {sup 139}Cs from the HLW effluent by ion exchange, evaporation to concentrate the effluent to a predetermined salt concentration, and finally cementation. This process has removed {approximately}80% of the {sup 137}Cs from the HLW liquid phase. Modifications are currently being made to begin the second phase of the HLW processing at West Valley. The second phase of HLW processing will include the removal of plutonium as well as cesium from the HLW sludge. This paper describes the progress made to date and the modifications being made to the process and to the feed stream to begin the second phase of HLW processing.

  19. Updraft gasification of salmon processing waste

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  20. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral Processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestimates the levels of metals such as oxo...

  1. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestiates the levels of metals such as oxoa...

  2. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  3. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral Processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestimates the levels of metals such as oxo...

  4. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestiates the levels of metals such as oxoa...

  5. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    SciTech Connect

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  6. Energy cropping on derelict and waste land

    SciTech Connect

    Dennington, V.N.; Chadwick, M.J.; Chase, D.S.

    1983-04-01

    The productivity of broadleaved and coniferous tree species has been determined on a range of derelict and waste land sites. Mean annual yields ranged from 0.54 t ha/sup -1/ for Betula pendula on railway land to 11.8 t ha/sup -1/ for Alnus glutinosa on pulverized fuel ash. Betula pendula, Pinus contorta and Populus robusta yielded more than 4 t ha/sup -1/ on a number of sites. Nutrient analysis show that harvesting a crop of 4 dry t ha/sup -1/ can remove up to 38 kg ha/sup -1/ nitrogen, 2 kg ha/sup -1/ phosphorus and 17 kg ha/sup -1/ potassium. However, 44-68% of the nitrogen, 46-49% of the potassium and 83-94% of the phosphorus in the standing crop at the end of the growing season occur in the foliage. Considerable conservation of nutrients can therefore be achieved by harvesting deciduous species after leaf fall, reducing total yield by about 18%. Nevertheless, in the absence of regular fertilizer additions, repeated harvesting will severely deplete the soil nutrient pool on many derelict sites. Assuming yields equivalent to 4.5 dry t ha/sup -1/ yr/sup -1/, derelict and waste land could yield 520,000 dry t yr/sup -1/ representing an energy yield of about 205,000 t oil equivalent, about 0.1% of the UK energy requirement for the year 2000.

  7. Energy conservation in solid waste management in Bangladesh

    SciTech Connect

    Rahman, M.H.

    1994-12-31

    Recycling of solid wastes has a characteristic pattern in Bangladesh in the context of the general habits and socio-economic status of the population. Extensive resource recovery from solid wastes is being carried out at various stages of disposal. The characteristics of solid wastes at the final disposal site indicate that they contain more than 90% of organic wastes. Hence, anaerobic digestion of these wastes serves a dual purpose in the conservation of energy and of valuable crop nutrients for efficient recycling especially in an agriculture-based economy. This also improves overall environmental sanitation and reduces environmental degradation. In this paper, different recycling and reuse options for solid wastes are critically discussed from the energy recovery and energy conservation point of view. It has been shown that the resource recovery from solid wastes would minimize the energy problem and would lead to a net reduction of greenhouse gases, particularly in the developing world.

  8. Making the Most of Waste Energy

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Thermo-Mechanical Systems Branch at NASA s Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power. The branch s development of new solar and thermal energy technologies is propelling NASA s missions deep into unfamiliar territories of space. Solar dynamic power systems are actively improving the health of orbiting satellites, giving them longer life and a stronger radiation tolerance, thus, creating less need for on-orbit maintenance. For future missions, NASA may probe even deeper into the mysterious cosmos, with the adoption of highly efficient thermal energy converters that have the potential to serve as the source of onboard electrical power for satellites and spacecraft. Research indicates that these thermal converters can deliver up to 5 times as much power as radioisotope thermoelectric generators in use today, for the same amount of radioisotope. On Earth, energy-converting technologies associated with NASA s Thermo-Mechanical Systems Branch are being used to recover and transform low-temperature waste heat into usable electric power, with a helping hand from NASA.

  9. Waste-to-Energy Laboratory. Grades 8-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  10. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  11. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  12. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  13. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  14. Raw liquid waste treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor)

    1980-01-01

    A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.

  15. Waste-to-Energy Technology Brief

    EPA Science Inventory

    ETV's Greenhouse Gas Technology (GHG) Center, operated by Southern Research Institute under a cooperative agreement with US EPA, verified two biogas processing systems and four distributed generation (DG) energy systems in collaboration with the Colorado Governors Office or the N...

  16. Waste-to-Energy Technology Brief

    EPA Science Inventory

    ETV's Greenhouse Gas Technology (GHG) Center, operated by Southern Research Institute under a cooperative agreement with US EPA, verified two biogas processing systems and four distributed generation (DG) energy systems in collaboration with the Colorado Governors Office or the N...

  17. Land treatment for seafood processing waste

    SciTech Connect

    Rubin, A.R.; McClease, J.D.; Morgan, C.B.

    1983-12-01

    The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

  18. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

  19. Urban energy mining from municipal solid waste (MSW) via the enhanced thermo-chemical process by carbon dioxide (CO2) as a reaction medium.

    PubMed

    Kwon, Eilhann E; Castaldi, Marco J

    2012-12-01

    The enhanced gasification of municipal solid waste (MSW) using carbon dioxide (CO(2)) as the gasification medium was investigated to achieve environmentally benign and energy efficient ways for the disposal of MSW. Two main steps of thermal decomposition of MSW were observed. The first thermal degradation step occurs at temperature between 280 and 350°C and consists of the decomposition of the biomass component into light C(1-3)-hydrocarbons. The second thermal degradation step occurs between 380 and 450°C and is mainly attributed to polymer components, such as plastics and rubber, in MSW. To extend this understanding to a more practical level, MSW samples were tested in a drop tube reactor (DTR) at a temperature range from 500 to 1000°C under various atmospheres with CO(2) concentrations of 0-30%. The release of major chemical species from the DTR has been determined using a micro-GC. For example, CO (≈ 30%), H(2) (≈ 25%) and CH(4) (≈ 10%) were generated. Copyright © 2012. Published by Elsevier Ltd.

  20. The Development of Mini Portable Digester Designs for Domestic and Restaurant Solid Waste Processing to be Clean Biogas as Energy's Alternative to Replace LPG

    NASA Astrophysics Data System (ADS)

    Mansur, A.; Janari dan, D.; Setiawan, N.

    2016-02-01

    Biofuel is developed as an alternative source of second generation energy that could be attained from organic waste. This research is purposed to create applicative and cheap Portable digester unit for society. The design concepts’ screening that was made under considerations of the experts is finally resumed. Design 1 with final weight score of 1, design 2 with final weight score of -1, design 3 with final weight score of 2, design 4 with final weight score 3, design 5 with final weight score of -1, design 6 with final weight score of 0. Accepted designs for further concept assessment are design 1, 2 and 6. The result of concept assessment applies weighting for the scoring. Design 1 resulting 2.67, design 2 results 2.15 while design 3 results 2.52. Design 1 is concluded as the design with biggest result, which is 2.67. Its specification is explained as follows: tank capacity of 60 liters, manual rotating crank pivot, tank's material is plastic with symbol 1, material of axle swivel arm is grey cast iron, 2 mm rotary blades with hole. The experiment 1 contained 23.78% methane and 13.65 carbon dioxide that resulted from content test.

  1. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  2. Energy recovery from New York City municipal solid wastes.

    PubMed

    Themelis, Nickolas J; Kim, Young Hwan; Brady, Mark H

    2002-06-01

    This work was part of a major study that examined the policy and technology implications of alternatives for managing the municipal solid wastes (MSW) of New York City. At this time, of the 4.1 million metric tons of MSW collected by the City annually, 16.6% are recycled, 12.4% are combusted in Waste-to-Energy (WTE) plants, and the remaining 71% are landfilled. Despite the heterogeneity of organic materials in MSW, the composite molecular structure can be approximated by the organic compound C6H10O4. A formula was derived that allows the prediction of the heating value of MSW as a function of moisture and glass/metal content and compares well with experimentally derived values. The performance of a leading Waste-to-Energy plant that utilises suspension firing of shredded MSW, processes one million tons of MSW per year, and generates a net of 610 kWh/metric ton was examined. The results of this study showed that WTE processing of the MSW reduces fossil fuel consumption and is environmentally superior to landfilling.

  3. Waste Form Features, Events, and Processes

    SciTech Connect

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  4. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.

  5. Waste immobilization process development at the Savannah River Plant

    SciTech Connect

    Charlesworth, D L

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

  6. Waste-to-energy generation increases

    SciTech Connect

    Hansen, T.

    1995-06-01

    Accoding to a study by Government Advisory Associates Inc. (GAA), wse-to-energy (WTE) facilities located in the US have a generating capacity of 2,963 MW. Another 797 MW will soon be added to this capacity by facilities that are currently under construction or in the advanced planning stages. Capacity will increase by 435 MW if current conceptual sites pan out.Even though fewer WTE projects are being planned, there are more WTE facilities now open than at any time in US history. Electricity is the single energy product for almost half the WTE facilities that are now operating. Most of the facilities are owned by private companies, municipalities or counties. The main purpose of WTE facilities has been, and still is, to reduce the amount of wste that must be buried in landfills. The production of energy has simply reduced waste disposal costs. The sale of electricity involves considerably less financial risk to plant developers since the market for electricity is far more stable. It is still not yet proven that a commercial facility is economically competitive, but it is expected to be less than the cost of using natural gas.

  7. Waste management study: Process development at Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes.

  8. Update on the Transportable Plasma Waste to Energy System at Hurlburt Field

    DTIC Science & Technology

    2010-06-01

    engineers and process technologists • Plasma is traditionally an expensive technology for waste treatment . • Identification of a niche market...systems •Marine expertise led to opportunities on “land-based” waste treatment From a Mere Idea to a Commercial Reality PyroGenesis’ Unique Plasma ...Produces Inert Aggregate Plasma Arc Gasification & Recycling PRRS: Plasma Waste to Energy System Jenbacher JCS 312 Syngas Electricity Recyclables

  9. Mining, processing and reclamation of waste banks

    SciTech Connect

    Carris, D.M.

    1996-12-31

    In 1992, an exploration program was commissioned to identify reserve tonnage and quality of anthracite waste banks located in Carbon, Lackawanna, Luzerne, and Schuylkill Counties, Pennsylvania, as a suitable fuel supply for an independent power project in Eastern Pennsylvania. Fuel specifications for the circulating fluidized bed boiler (CFB) required a plus 7,000 Btu/lb fuel which could not be achieved by dry processing of the bank material, thus requiring a wet cleaning circuit to remove the impurities and upgrade heating value. BOYD designed and managed the exploration program for 17 anthracite waste banks. All of the waste banks were formed from wet breaker plant rejects, mine spoil material and discarded anthracite fines. These waste piles are commonly referred to as {open_quotes}rock banks{close_quotes} by the anthracite industry. Culm banks, not so common, were formed in the earlier years of the anthracite industry by dry breaker facilities. These culm banks contained as much as 50% to 80% anthracite versus the rock banks of 5% to 10%. Most culm banks have been reclaimed and many of the rock banks have been reprocessed multiple times.

  10. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  11. Questions and answers about energy recovery from waste

    NASA Astrophysics Data System (ADS)

    1982-09-01

    Questions and answers about the developing waste-to-energy industry are presented. They are intended as a ready reference for the general public and others interested in exploring the option of utilizing municipal waste as a renewable energy resource. Questions were researched and answered in six broad categories: general information; state-of-the-art; economics/financial; environmental; institutional; and project implementation.

  12. Process Waste Assessment for the Plotting and Digitizing Support Laboratory

    SciTech Connect

    Phillips, N.M.

    1994-04-01

    This Process Waste Assessment was conducted to evaluate the Plotting and Digitizing Support Laboratory, located in Building 913, Room 157. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility.

  13. Solid waste-to-energy overview and status report

    SciTech Connect

    Gershman, H.W.

    1985-08-01

    Effective coordination and management of waste-to-energy projects requires teamwork and a consistent philosophy and understanding of the objectives. The political and local climates in the host community are essential to successful project implementation. It is critical to keep the garbage disposal crisis issue in the foreground of the project during the planning and justification stages. There are many satisfactory approaches to ownership and financing, both private and public, for different locations. The author gives an historical overview of solid waste incineration, then describes the factors which shape individual projects in resource recovery, the economics, and the impact of government policies. A list of major vendors categorizes them under mass burning or processed fuels.

  14. Transportable Waste-to-Energy System (TWES) Energy Recovery From Bare Base Waste

    DTIC Science & Technology

    2008-02-01

    removed and/or partially burned. Instead the furnace, coupled with a shredder , will completely burn the waste and provide heat for water or other...Photos from Ali Al Salem, AF bare base Nov 1998, FOUO-for official use only 8 8 TWES Fuel Processing Bulk Trash Shredder Shredded Fuel TWES Furnace...Program (FEMP) to initiate the conversion. • Will install and test electricity production at Tyndall AFB 15 15 TWES Process Diagram Shredders Useful

  15. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect

    2010-05-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  16. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  18. Investigation of energy recovery from poultry litter and municipal solid waste by thermochemical conversion method in India.

    PubMed

    Kirubakaran, V; Sivaramakrishnan, V; Premalatha, M; Subramanian, P

    2005-10-01

    The waste disposal is becoming a major threat to environmental issues and to sustainable development of mankind. The rapid growth in population and enormous developmental activities are the main causes for the generation of waste in many forms. Hence there is need to redress the concern on environment and efforts to be made for effective collection and disposal of wastes. Most of the solid waste is a mix of household wastes, street wastes, commercial and institutional wastes containing organic as well as inorganic matter. This offers better opportunity to recover energy from organic fraction of wastes by adapting suitable processing and treatment technologies. This paper describes the various technologies need to be adopted for the disposal of poultry waste and municipal solid waste. More emphasis has been given on waste disposal technologies for better environment and economics. The advantages and disadvantages of each disposal technology have been briefed.

  19. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    PubMed

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-08-06

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance of a Danish waste refinery solution against state-of-the-art waste technology alternatives (incineration, mechanical-biological treatment (MBT), and landfilling). In total, 252 scenarios were evaluated, including effects from source-segregation, waste composition, and energy conversion pathway efficiencies. Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by 15-40% compared with incineration), albeit at the potential expense of additional toxic emissions to soil. Society's need for the outputs from waste, i.e., energy products (electricity vs transport fuels) and resources (e.g., phosphorus), and the available waste composition were found decisive for the selection of future technologies. On the basis of the results, it is recommended that a narrow focus on GW aspects should be avoided as most waste technologies may allow comparable performance. Rather, other environmental aspects such as resource recovery and toxic emissions should receive attention in the future.

  20. Developing a Decision Support Tool for Waste to Energy Calculations Using Energy Return on Investment

    DTIC Science & Technology

    2016-12-01

    DECISION SUPPORT TOOL FOR WASTE-TO- ENERGY CALCULATIONS USING ENERGY RETURN ON INVESTMENT by Adam C. Haag December 2016 Thesis Advisor...SUPPORT TOOL FOR WASTE-TO- ENERGY CALCULATIONS USING ENERGY RETURN ON INVESTMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Adam C. Haag 7. PERFORMING...economic viability of sites for waste-to- energy technologies, mirroring the current tool’s capabilities and expanding its use. This tool returns

  1. Problems associated with solid wastes from energy systems

    SciTech Connect

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  2. A review on organic waste to energy systems in India.

    PubMed

    Dhar, Hiya; Kumar, Sunil; Kumar, Rakesh

    2017-08-31

    Waste generation is increasing day-by-day with the growth of population which directly affects the environment and economy. Organic municipal solid waste (MSW) and agriculture sectors contribute towards maximum waste generation in India. Thus, management of organic waste is very much essential with the increasing demand for energy. The present paper mainly focusses on reviewing waste to energy (WtE) potentials, its technologies, and the associated challenges. Different substrates are utilized through various technological options in India. Organic waste has good potential to attain sustainable energy yields with and without affecting the environment. A realistic scenario of WtE technologies and their challenges in line with the existing Indian condition is presented in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Waste to energy and recycling in Hempstead, Long Island

    SciTech Connect

    Aquino, J.T.

    1995-11-01

    Faced with the limiting of landfill disposal by New York state law, a Long Island township opted for both waste-to-energy (WTE) and curbside recycling. Since then, the township and its WTE facility achieved results through state-of-the-art technology, creative agreements, and some compromise. The $360-million, 2,505-tpd WTE facility opened for commercial use in October 1989. Soon after, the town`s waste disposal fees dropped to a reported $79 per ton. The facility has since processed more than 5 million tons of solid waste with an energy value of about 5,200 Btus per pound, slightly above the 4,500- to 5,000-Btu average for a pound of generic MSW. The bond is being paid off through tipping fees and the sale of electricity to the Long Island Lighting Co. (LILCO). The facility is projected to save the town more than $500 million in disposal costs over the next 20 years. And, by using trash to generate electricity, the facility will save the equivalent of 53 million gallons of imported oil.

  4. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    PubMed Central

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393

  5. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    PubMed

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap(-1). In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap(-1) a(-1) for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  6. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  7. Tank waste processing and disposal technology development data summary

    SciTech Connect

    Cruse, J.M.; McGinnis, C.P.

    1994-01-01

    The US Department of Energy`s Waste Management and Technology Development Programs are engaged in a number of projects to develop, demonstrate, test, and evaluate new technologies to support the clean-up and site remediation of more than 300 underground storage tanks containing over 381,000 cubic meters (100 million gallons) of radioactive mixed waste. Significant development is needed within primary processing functions and in determining an overall bounding strategy. This document is a first attempt to summarize the overall strategy and show technology development activities within the strategy. It is intended to serve as an information resource to support understanding, decision making and integration of multiple program technology development activities. Recipients are encouraged to provide comments and input to the authors for incorporation in future revisions.

  8. Energy losses during cooking processes

    SciTech Connect

    Thapar, A.; Engira, R.M.; Sohal, J.S.

    1983-12-01

    A major chunk of the thermal energy of the cooking fuel is wasted due to incomplete consumption, unfunctional design of cooking stoves and utensils. Several studies and their findings which are reported in the present paper pertain to: determination of minimum fuel consumption required for cooking of selected dishes under controlled and normal conditions; analysis of relative amounts of heat loss through different techniques during cooking under normal conditions; evaluation of effectiveness of different energy saving techniques with regard to cooking vessel.

  9. Why energy from waste incineration is an essential component of environmentally responsible waste management

    SciTech Connect

    Porteous, A. . E-mail: s.j.lumbers@open.ac.uk

    2005-07-01

    This paper outlines the key factors involved in adopting energy from waste incineration (EfWI) as part of a waste management strategy. Incineration means all forms of controlled direct combustion of waste. 'Emerging' technologies, such as gasification, are, in the author's view, 5 to 10 years from proven commercial application. The strict combustion regimen employed and the emissions therefrom are detailed. It is shown that EfWI merits consideration as an integral part of an environmentally responsible and sustainable waste management strategy, where suitable quantities of waste are available.

  10. Proceedings of the US Department of Energy Office of Environmental Restoration and Waste Management

    SciTech Connect

    Not Available

    1990-09-01

    The fifth of a series of waste minimization (WMIN)/reduction workshops (Waste Reduction Workshop V) was held at the Little Tree Inn in Idaho Falls, Idaho, on July 24--26, 1990. The workshops are held under the auspices of the US Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM). The purpose of this workshop was to provide a forum for sharing site activities in WMIN/reduction planning. Topics covered were management commitment, organizational structure, goal setting, reporting requirements, data bases and tracking systems, pollution prevention, awareness and incentives, information exchange, process waste assessment (PWA) implementation, and recycling internal and external. The workshops assist DOE waste-generating sites in implementing WMIN/reduction programs, plans, and activities, thus providing for optimal waste reduction within the DOE complex. All wastes are considered within this discipline: liquid, solid, and airborne, within the categories of high-level waste (HLW), transuranic waste (TRU), low-level waste (LLW), hazardous waste, and mixed waste.

  11. Hydrogen ion (H+) in waste acid as a driver for environmentally sustainable processes: opportunities and challenges.

    PubMed

    German, Michael; SenGupta, Arup K; Greenleaf, John

    2013-03-05

    Acid-base neutralization reaction in the aqueous phase is thermodynamically favorable and kinetically fast. Waste acid neutralization is also the most common waste management practice globally. However, waste acid neutralization is yet to be used for any work/energy generation because of the low concentrations of the waste acid and the high heat capacity of aqueous solutions. In this paper, we address potential processes that can effectively take advantage of the high energy inherent in neutralization reactions, in accordance with the goal of sustainable development.

  12. Biocomposites Prepared from Fiber Processing Wastes and Glycerol Polyesters

    USDA-ARS?s Scientific Manuscript database

    Biocomposites were prepared by the addition of flax fiber processing waste to glycerol and adipic acid mixtures. The processing waste consisted of fiber, cuticle, and shive fragments generated during the commercial cleaning of retted flax bast fibers. These waste materials were added at 1, 3, or 5 w...

  13. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  14. Double Shell Tank (DST) Process Waste Sampling Subsystem Specification

    SciTech Connect

    RASMUSSEN, J.H.

    2000-05-03

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

  15. Mems-Based Waste Vibration and Acoustic Energy Harvesters

    DTIC Science & Technology

    2014-12-01

    VIBRATION AND ACOUSTIC ENERGY HARVESTERS by Timothy J. Householder December 2014 Thesis Advisor: Dragoslav Grbovic Co-Advisor: Bruce...2014 Master’ s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS MEMS-BASED WASTE VIBRATION AND ACOUSTIC ENERGY HARVESTERS 6. AUTHOR(S) Timothy J...be retumed to the system. Utilizing an anay of piezoelectric microelectromechanical systems (MEMS) devices to harvest this othe1wise wasted energy

  16. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  17. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility.

    PubMed

    Ren, Xiangyu; Che, Yue; Yang, Kai; Tao, Yun

    2016-02-01

    The application of Waste-to-Energy treatment in Municipal Solid Waste faces strong protest by local communities, especially in cities with high population densities. This study introduces insight into the public awareness, acceptance and risk perception toward Waste-to-Energy through a structured questionnaire survey around a Waste-to-Energy facility in Shanghai, China. The Dichotomous-Choice contingent valuation method was applied to study the willingness to accept of residents as an indicator of risk perception and tolerance. The factors influencing risk perception and the protest response choice were analyzed. The geographical distributions of the acceptance of Waste-to-Energy facility and protest response were explored using geographical information systems. The findings of the research indicated an encouraging vision of promoting Waste-to-Energy, considering its benefits of renewable energy and the conservation of land. A high percentage of protest willingness to accept (50.94%) was highlighted with the effect of income, opinion about Waste-to-Energy, gender and perceived impact. The fuzzy classification among people with different opinions on compensation (valid 0, positive or protest willingness to accept) revealed the existing yet rejected demand of compensation among protesters. Geographical distribution in the public attitude can also be observed. Finally significant statistical relation between knowledge and risk perception indicates the need of risk communication, as well as involving public into whole management process.

  18. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  19. Industrial waste reduction: The process problem

    SciTech Connect

    Valentino, F.W.; Walmet, G.E.

    1986-09-01

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  20. Food waste-to-energy conversion technologies: current status and future directions.

    PubMed

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective.

  1. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  2. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to

  3. Strategic plan for the US Department of Energy Nuclear Weapons Complex Polymer Waste Stream

    SciTech Connect

    Swartz, W.E. Jr.

    1991-08-08

    This plan addresses the objectives and implementation strategy for the US Department of Energy (DOE) Nuclear Weapons Complex (NWC) Polymer Waste Stream (PWS) program through FY 1996. The purpose of the plan is to develop a comprehensive hazard/waste minimization program for PWS projects. The overall focus of the strategy is directed toward hazard/waste minimization for PWS processes. This involves the elimination/minimization of processes and materials that result in potential exposure of the work force to hazardous materials during the production of nuclear weapons and pose a threat to the environment by the potential release of toxic or environmentally harmful materials. The Department of Energy established the Waste Minimization Management Group (WMMG) in August 1990. The WMMG was given the mission of establishing and coordinating a comprehensive program which would minimize waste and hazards in the production of weapons within the NWC.

  4. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  5. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  6. Pyrolysis processing for solid waste resource recovery

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  7. Combustion Technology for Incinerating Wastes from Air Force Industrial Processes.

    DTIC Science & Technology

    1984-02-01

    Conservation and Recovery Act and are properly disposed at cost to the Air Force. Onsite incineration with heat recovery is being considered as a...the heat released during thermal processing could reduce the costs of waste incineration. 0 * Normally, relatively small amounts of individual wastes...wastes. Task 3: Combustion Analysis. Determine and quantify the essential combustion parameters of industrial process wastes with respect to heat

  8. ENERGY EFFICIENT LAUNDRY PROCESS

    SciTech Connect

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  9. Combined decontamination processes for wastes containing PCBs.

    PubMed

    Kastánek, Frantisek; Kastánek, Petr

    2005-01-31

    This project has focused on the development of a complex assembly of mutually corresponding technological units: a low temperature thermal process for the desorption of PCBs and other organics from soils and other contaminated solid wastes; the extraction of PCBs from soils by an ecological friendly aqueous solution of selected surfactants; the chemical decontamination of PCBs in oils and in-oil-in-water emulsions by metallic sodium and potassium in polyethylene glycols in the presence of aluminum powder; the modified alkaline catalyzed chemical decontamination of PCBs in oil-in-water dispersions in a solid-state reactor (in a film of reacting emulsion on solid carriers); and the breakdown of PCBs in aqueous emulsions with activated hydroxyl radicals enhanced by UV radiation. The processes operate in a closed loop configuration with effluents circulating among the process unit. These technologies have been verified at laboratory and pilot-plant scales.

  10. The Louisiana State University waste-to-energy incinerator

    SciTech Connect

    Not Available

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  11. The Louisiana State University waste-to-energy incinerator

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  12. Assessment of TEES reg sign applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    SciTech Connect

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  13. Energy in Solid Waste: A Citizen Guide to Saving.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    This booklet contains information for citizens on solid wastes. It discusses the possible energy available in combustible and noncombustible trash. It suggests how citizens can reduce waste at home through discriminating buying practices and through recycling and reuse of resources. Recommendations are given for community action along with state…

  14. A potential new energy source - Assessment of energy recovery from municipal solid waste

    NASA Astrophysics Data System (ADS)

    Sherwin, E. T.; Nollet, A. R.

    1980-08-01

    The state-of-the-art of recovering resources from the 135 million tons of household, industrial, and commercial wastes generated each year in the United States is discussed. Some of the hazards attendant upon the preliminary shredding of solid wastes at resource recovery plants are described with reference made to the impetus for resource recovery arising from legislation and to the difficulty in finding markets for refuse-derived fuel. Economic factors militating against resource recovery are enumerated, including the unviability of mass-burning systems to generate process or heating steam and/or electrical energy. It is also shown that the cost per ton of incoming waste has been underestimated and that the revenues to be derived from recovered resources have been overestimated. A new system in which separation, that is, classification, of incoming waste is the first step is proposed. This system would avoid the hazards of shredding and would make the recovery of resources less costly. It is shown that the cellulose contained in solid waste could be converted into ethanol.

  15. City of Kansas City, Missouri Public Works Department: Solid waste management plan, district heating and cooling plan, and waste-to-energy feasibility study: Appendix

    SciTech Connect

    Not Available

    1988-01-01

    This paper covers the following topics: Garbage and Trash (Municipal Solid Waste Storage and Ordinance of Kansas City with Proposed Modifications; Contract (Draft Solid Waste Collection Contract); Solid Waste Disposal Services Contract; Electric Power Purchase Agreement; Steam Delivery Agreement; Results of Telecon Survey of Companies Paying for Recycled Materials; Regional Hazardous Waste Processing and Disposal Facilities; Summary of Downtown District Heating Survey; Steam Distribution System Information; Ruling by Missouri Public Service Commission: KCPandL Downtown Steam Heating System for Kansas City, Missouri; and Review of Kansas City Power and Light Waste-to-Energy Study.

  16. Reduction in waste load from a meat processing plant: Beef

    SciTech Connect

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  17. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  18. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    EPA Pesticide Factsheets

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  19. Macroencapsulation of low-level debris waste with the phosphate ceramic process

    SciTech Connect

    Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

    1997-03-01

    Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy`s Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes.

  20. Flax Processing: Use of Waste Streams for Profit

    USDA-ARS?s Scientific Manuscript database

    The waste streams generated by flax fiber processing represent potential sources of value-added co-products that can enhance profits and provide direct economic support for the flax industry. These waste streams include the dust, shive, retting wash water, and waste cellulose. Fatty alcohols (polico...

  1. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  2. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  3. Energy Implications of Materials Processing

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1976-01-01

    Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…

  4. Agronomic use of biotechnologically processed grape wastes.

    PubMed

    Ferrer, J; Páez, G; Mármol, Z; Ramones, E; Chandler, C; Marín, M; Ferrer, A

    2001-01-01

    Grape waste was composted by biodegradation and subsequently used as an organic fertilizer for 20 day-corn. Combinations of recently compressed grape waste and hen droppings (10% w/w) were prepared to study the activating effect of hen droppings and the effect of aeration on the composting process. The final hydrogen potential (pH), %C, %N and C/N ratio, indicated an adequate development of the bioprocess. Satisfactory results were observed when the products were applied at several doses (1,000-4,000 kg/ ha) as a soil conditioner for corn seed germination in greenhouses. Only the addition of hen droppings had a significant effect (P < 0.05) on corn dry matter (14% increase). A dose of 3000 kg/ha was considered as optimal and was used supplemented with triple superphosphate (TSP) in agronomic trials. All the treatments produced greater corn dry matter (P < 0.05) than the chemical industrial fertilizer used as a control (0.52-0.71 g/pot for the organic fertilizers vs 0.45 g/pot for the control). Anaerobic conditions and hen droppings addition significantly produced (P < 0.05) higher corn dry matter.

  5. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect

    TRINER, G.C.

    1999-11-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  6. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.

  7. Optimal utilization of waste-to-energy in an LCA perspective.

    PubMed

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Nuclear energy and waste management pyroprocess for system symbiosis

    NASA Astrophysics Data System (ADS)

    Ogawa, Toru; Minato, Kazuo; Okamoto, Yoshihiro; Nishihara, Kenji

    2007-01-01

    The actinide management has become a key issue in nuclear energy. Recovering and fissioning transuranium elements reduce the long-term proliferation risks and the environmental burden. The better way of waste management will be made by system symbiosis: a combination of light-water reactor and fast reactor and/or accelerator-driven transmutation system should be sought. The new recycling technology should be able to achieve good economy with smaller plants, which can process fuels from different types of reactors on a common technical basis. Ease in handling the higher heat load of transuranium nuclides is also important. Pyroprocesses with the use of molten salts are regarded as the strong candidate for such recycling technology. In JAEA, the first laboratory for the high-temperature chemistry of Am and Cm has been established. The fundamental data will be combined with the computer code for predicting the molten-salts electrolytic processes.

  9. Biogas from bio-waste-potential for an ecological waste and energy management in resort hotels

    SciTech Connect

    Steinbach, D.; Schultheis, A.

    1996-12-31

    This paper gives an overview about waste management in holiday resorts. The objective is to determine the composition of waste and the specific waste quantities per guest. This data represents the basis for planning recycling measures and corresponding treatment facilities. The sorting analyses show the great potential of organic material suitable for biological treatment. Because of the characteristics (water content, structure) of these organic materials, composting is not as suitable as fermentation. Fermentation tests with hotel bio-waste turned out a much higher rate of biogas compared with communal bio-waste. Until now, biogas as a possibility of regenerative energy, has not been taken into consideration for big hotels or holiday resorts. Using biogas as an additional source of energy and the fermentation products as fertilizer would be a further step to an ecologically beneficial tourism.

  10. Feed Composition for Sodium-Bearing Waste Treatment Process

    SciTech Connect

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  11. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    SciTech Connect

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  12. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  13. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    PubMed

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating).

  14. Stabilization of crab scrap and processing waste water. Final report, 1984-1986

    SciTech Connect

    Wolverton, B.C.; McCaleb, R.C.

    1986-12-01

    This report describes, in detail, the application of a National Space Technology Laboratories (NASA) developed technology involving anaerobic-digestion and microbial-filter processes as a possible solution to the blue crab waste-disposal problem. The project attempted to use this technology with crab waste and processing waste water to produce new products of organic fertilizer and methane (energy) while purifying the water to prevent nutrient enrichment of the Chesapeake Bay. Results of the project indicate that significant biogas production can be obtained with crab waste. However, digestion time is excessive, compared to that of cow manure. More work needs to be done on physical and/or chemical pretreatment to render the waste more amenable to digestion. The system was found costly and would not be practical except in periods of high energy prices.

  15. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect

    Lukes, G.C.; Willoughby, O.H.

    2007-07-01

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay

  16. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  17. Process and design considerations for the anaerobic digestion of municipal solid waste

    SciTech Connect

    Shrivastava, S.R.; Bastuk, B.

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  18. Hazardous waste database: Waste management policy implications for the US Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-03-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations.

  19. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.

    PubMed

    Kaya, Muammer

    2016-11-01

    . It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives. Recycling technology aims to take today's waste and turn it into conflict-free, sustainable polymetallic secondary resources (i.e. Urban Mining) for tomorrow. Recycling technology must ensure that e-waste is processed in an environmentally friendly manner, with high efficiency and lowered carbon footprint, at a fraction of the costs involved with setting multibillion dollar smelting facilities. Taking into consideration our depleting natural resources, this Urban Mining approach offers quite a few benefits. This results in increased energy efficiency and lowers demand for mining of new raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Waste-to-Energy and Fuel Cell Technologies Overview

    DTIC Science & Technology

    2011-01-13

    Waste Water Treatment Plants (~4 W/person) • Industrial-scale Food Processing • Landfills • Dairy and Pig Farms (~200 W/ Cow ) • Pulp and Paper Mills...Cleanup Distribution I Utilization Dairy Waste Water Treat Plant Anaerobic Digester Reformation I Fuel Cell Systems ... • Biogas .... ,-1

  2. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  3. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  4. A review of olive mill solid wastes to energy utilization techniques.

    PubMed

    Christoforou, Elias; Fokaides, Paris A

    2016-03-01

    In recent years, the utilization of olive industry by-products for energy purposes has gained significant research interest and many studies have been conducted focused on the exploitation of olive mill solid waste (OMSW) derived from the discontinuous or continuous processing of olive fruits. In this review study, the primary characteristics of OMSW and the techniques used to define their thermal performance are described. The theoretical background of the main waste-to-energy conversion pathways of solid olive mill wastes, as well as the basic pre-treatment techniques for upgrading solid fuels, are presented. The study aims to present the main findings and major conclusions of previously published works undertaken in the last two decades focused on the characterization of olive mill solid wastes and the utilization of different types of solid olive mill residues for energy purposes. The study also aims to highlight the research challenges in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    SciTech Connect

    Young, J C; Johnson, L D

    1980-09-01

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  6. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  7. The Use of Transportable Processing Systems for the Treatment of Radioactive Nuclear Wastes

    SciTech Connect

    Phillips, Ch.; Houghton, D.; Crawford, G.

    2008-07-01

    EnergySolutions has developed two major types of radioactive processing plants based on its experience in the USA and UK, and its exclusive North American access to the intellectual property and know-how developed over 50 years at the Sellafield nuclear site in the UK. Passive Secure Cells are a type of hot cell used in place of the Canyons typically used in US-designed radioactive facilities. They are used in permanent, large scale plants suitable for long term processing of large amounts of radioactive material. The more recently developed Transportable Processing Systems, which are the subject of this paper, are used for nuclear waste processing and clean-up when processing is expected to be complete within shorter timescales and when it is advantageous to be able to move the processing equipment amongst a series of geographically spread-out waste treatment sites. Such transportable systems avoid the construction of a monolithic waste processing plant which itself would require extensive decommissioning and clean-up when its mission is complete. This paper describes a range of transportable radioactive waste processing equipment that EnergySolutions and its partners have developed including: the portable MOSS drum-based waste grouting system, the skid mounted MILWPP large container waste grouting system, the IPAN skid-mounted waste fissile content non-destructive assay system, the Wiped Film Evaporator low liquid hold-up transportable evaporator system, the CCPU transportable solvent extraction cesium separation system, and the SEP mobile shielded cells for emptying radioactive debris from water-filled silos. Maximum use is made of proven, robust, and compact processing equipment such as centrifugal contactors, remote sampling systems, and cement grout feed and metering devices. Flexible, elastomer-based Hose-in-Hose assemblies and container-based transportable pump booster stations are used in conjunction with these transportable waste processing units for

  8. Energy and nutrient recovery from anaerobic treatment of organic wastes

    NASA Astrophysics Data System (ADS)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  9. Waste disposal and treatment in the food-processing industry. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. Specific areas include waste heat recovery, and food industry wastes from meat and seafood processing, dairy and beverage production, and processing of fruits and vegetables. The citations explore conversion of the treated waste to fertilizer, and uses in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste is also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  10. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  11. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  13. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  14. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  15. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  16. New processes harvest farm energy

    SciTech Connect

    Not Available

    1981-10-07

    Three facilities in New York, Connecticut and Arkansas installed by Energy Harvest, a Washington D.C. subsidiary of Sheaffer and Roland (Chicago), will produce gas from cattle and poultry wastes to be used primarily to generate electricity. It is estimated that there is a potential market for three million installations in the U.S. with a 1 quad total energy yield. The three facilities are part of a growing effort to develop new energy sources. Various systems under development are mentioned including a glass-fiber cover digester in Harford, N.Y. costing $15,000 that can generate power for less than 3 cents/kwh and the University of Missouri's scaled up version that can produce 3,500 cubic feet/day of methane at 4 cents/kwh.

  17. Food processing wastes as nutrient sources in algal growth

    SciTech Connect

    Wong, M-H; Chan, W-C; Chu, L-M

    1983-03-01

    Utilization of food processing wastes for biological production will ease part of the disposal problem, especially the potential hazards of eutrophication, andat the same time recycle the inherently rich plant nutrients in the waste materials. The present investigation is an attempt to study the feasibility of using five food processing wastes, including carrot, coconut, eggshell, soybean, and sugarcane, for culturing Chlorella pyrenoidosa (a unicellular green alga).

  18. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    SciTech Connect

    Currier, R.P.

    1994-10-01

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported.

  19. Comparing Waste-to-Energy technologies by applying energy system analysis.

    PubMed

    Münster, Marie; Lund, Henrik

    2010-07-01

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency.

  20. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  1. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  2. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  3. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products.

    PubMed

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-12-25

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete's water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  4. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    PubMed Central

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-01-01

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction. PMID:28787809

  5. Waste to energy applications in the Wisconsin canning industry: Economic and environmental evaluation of anaerobic treatment of vegetable processing wastewaters using a fixed film reactor: Project report

    SciTech Connect

    Stack, C.R.; Stover, E.L.

    1987-01-01

    This study was conducted to investigate the economic and environmental consequences of anaerobic wastewater treatment applied to a vegetable canning plant owned by Our Best Foods, Inc., Pulaski, Wisconsin. A pilot scale, upflow fixed film anaerobic reactor was utilized to determine pollutant removal efficiency, operational parameters, and basis of design of conceptual full scale conceptual full scale systems. Hydraulic retention times (HRT) as low as twelve hours and organic loading rates as high as 1.6 pounds total chemical oxygen demand (COD) per cubic foot of media per day were achieved during the pilot study. The total and soluble COD removals averaged 59% and 79% respectively for the duration of the study. The biogas produced from the anaerobic treatment pilot system typically contained 60 to 65% methane. About 3.0 cubic feet of methane (5.5 cubic feet of biogas) were produced at standard temperature and pressure (STP) per one pound of total COD removed. Wastewaters used in this study were found to be highly variable in their strength and chemical composition. Based upon the results of the pilot study, the projected economics of different hypothetical wastewater treatment options were examined and compared to the economics of the present waste disposal program. 18 refs., 2 figs., 8 tabs.

  6. Sodium Bearing Waste Processing Alternatives Analysis

    SciTech Connect

    Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph

    2003-12-01

    A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on giving Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.

  7. Developing Primary School Children's Understanding of Energy Waste.

    ERIC Educational Resources Information Center

    Kruger, Colin; Summers, Mike

    2000-01-01

    Studies 34 elementary school children's understanding of five aspects of energy waste and the ways in which these conceptions develop following teaching. Concludes that the children had good prior awareness of some behaviors that save energy, but their reasons for thinking this were based largely on everyday intuitive ideas that involved…

  8. Developing Primary School Children's Understanding of Energy Waste.

    ERIC Educational Resources Information Center

    Kruger, Colin; Summers, Mike

    2000-01-01

    Studies 34 elementary school children's understanding of five aspects of energy waste and the ways in which these conceptions develop following teaching. Concludes that the children had good prior awareness of some behaviors that save energy, but their reasons for thinking this were based largely on everyday intuitive ideas that involved…

  9. Processing of different types of organic wastes through vermicomposting.

    PubMed

    Bharadwaj, Alok

    2011-07-01

    In the present study, an effort has been made to utilize different types of organic wastes, i.e. kitchen waste, agro residue, institutional waste and cow dung through the process of vermicomposting. These organic wastes were collected separately, air dried, grinded and mixed in 4:1 ratio with cow dung (w/w). During the period of vermicomposting (75 days), different physico-chemical parameters were analyzed separately. During this process, pH, organic carbon, organic matter and C:N ratio of different organic waste mixtures showed a declining trend, however, total nitrogen, available phosphorus and exchangeable potassium contents showed increasing trend with the advancement of vermicomposting period. Besides, physico-chemical investigations of these wastes, estimation of earthworm population, biomass and number of cocoon produced during vermicomposting were also analyzed separately. It was found that earthworm population, biomass and cocoon production increased significantly as the duration of vermicomposting process increased upto 75 days.

  10. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    PubMed

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  11. Estimation of plutonium content in bituminized waste processed at RISO using isotope ratios

    SciTech Connect

    Brodersen, K.; Carugati, S.; Foltz, K.

    1995-12-31

    Although Denmark has no nuclear power reactors, research related to nuclear energy has been performed at RISO National Laboratory for more than 30 yr. The waste management plant at RISO and the associated storage facilities function as the national center for radioactive waste management in Denmark. No disposal of radioactive waste, however, has so far been carried out. Two-thirds of the collected and processed waste comes from the RISO laboratory itself, which is home to the heavy-water-moderated research reactor, DR3. Most of the long-lived radioisotopes in the stored waste are due to postirradiation studies of spent fuel performed in the now decommissioned hot cells. This report describes the bituminized waste characterization.

  12. Energy production from waste heat by means of elastomers or memory metals

    NASA Astrophysics Data System (ADS)

    Ljung, L.

    1980-05-01

    Calculation of the energy of an ideal heat engine for a flow between waste water and cooling water was made. Also the Brayton, Carnot and Rankine cycles were computed as well as the processes with nitinol or elastomers as converters. It was shown that half the energy can be recovered by a nitinol heat engine which is comparable to or has better efficiency than the Rankine cycle. The memory metal makes better use of the temperature difference than the Rankine cycle. Elastomers or Gadolinium may be used to utilize energy at low waste heat temperatures.

  13. Department of Energy low-level radioactive waste disposal concepts

    SciTech Connect

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  14. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  15. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  16. Energy issues in desalination processes.

    PubMed

    Semiat, Raphael

    2008-11-15

    Water, energy, and environmental issues are closely related. New water techniques consume energy, and innovative renewable energy techniques using biofuels and biodiesel consume an incredible amount of water. Different desalination techniques that consume different energy levels from different sources are in use today. Some people, environmentalists, decision makers, and even scientists, mainly in nonscientific publications, consider energy consumption in desalination to be too high and are seeking new ways of reducing it, which often involves increasing capital investment. Efforts should be directed at reducing not only energy consumption but also total water cost. A competent grasp of thermodynamics and heat and mass transfer theory, as well as a proper understanding of current desalination processes, is essential for ensuring beneficial improvements in desalination processes. Thermodynamics sets the absolute minimum limit of the work energy required to separate water from a salt solution. Unavoidable irreversibilities augment the actual energy consumption, yet modern desalination techniques have succeeded in considerably narrowing the gap between actual and limiting energy levels. The implication of this smaller gap is that only marginal energy reductions are possible. The current energy consumption of different desalination processes is reviewed in this paper. A comparison with other common energy-consuming ventures leads to some interesting conclusions.

  17. Energy or compost from green waste? - A CO(2) - based assessment.

    PubMed

    Kranert, Martin; Gottschall, Ralf; Bruns, Christian; Hafner, Gerold

    2010-04-01

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currently subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO(2)-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Energy or compost from green waste? - A CO{sub 2} - Based assessment

    SciTech Connect

    Kranert, Martin; Gottschall, Ralf; Bruns, Christian; Hafner, Gerold

    2010-04-15

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currently subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.

  19. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    SciTech Connect

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  20. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    EPA Science Inventory

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  1. Safety Evaluation for Hull Waste Treatment Process in JNC

    SciTech Connect

    Kojima, H.; Kurakata, K.

    2002-02-26

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation.

  2. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  3. Improving waste management through a process of learning: the South African waste information system.

    PubMed

    Godfrey, Linda; Scott, Dianne

    2011-05-01

    Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed in the country, such that there is a noticeable improvement. The interviews with officials from municipalities and private waste companies, conducted as part of the piloting of the SAWIS, highlighted that certain organizations, typically private waste companies have been successful in collecting waste data. Through a process of learning, these organizations have utilized this waste data to inform and manage their operations. The drivers of such data collection efforts were seen to be financial (business) sustainability and environmental reporting obligations, particularly where the company had an international parent company. However, participants highlighted a number of constraints, particularly within public (municipal) waste facilities which hindered both the collection of waste data and the utilization of this data to effect change in the way waste is managed. These constraints included a lack of equipment and institutional capacity in the collection of data. The utilization of this data in effecting change was further hindered by governance challenges such as politics, bureaucracy and procurement, evident in a developing country context such as South Africa. The results show that while knowledge is a necessary condition for resultant action, a theoretical framework of learning does not account for all observed factors, particularly external influences.

  4. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    SciTech Connect

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

  5. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    SciTech Connect

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D. ); Anderson, G.L. )

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

  6. Hydraulic waste energy recovery, Phase 2. A technical report

    SciTech Connect

    Not Available

    1992-02-01

    The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

  7. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  8. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    PubMed

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  9. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste.

    PubMed

    Tonini, D; Astrup, T

    2012-01-01

    Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Pyrochemical Processing for Low-Level Waste Production in PEACER

    SciTech Connect

    Byung Gi Park; Il Soon Hwang

    2002-07-01

    A pyrochemical partitioning process has been conceptually designed so that the transmutation of spent LWR fuels in PEACER can produce mainly low-level waste (Class C waste) for near-surface burial. Chloride salt technology developed for IFR has been employed as the baseline. Electrorefining, reductive extraction and salt recycling steps are used to construct overall flowsheet in order to support PEACER operation. The decontamination factor for transuranic elements was estimated based on both thermodynamic models and reported experimental data. It is expected that overall decontamination factor can be as high as 10{sup 5} for transuranic elements. Final wastes from pyrochemical processing for PEACER are noble metals, alkaline earth metal, and lanthanides. The final wastes are stabilized by mixing with zeolite and glass-frits such that concentration limit for class C waste can be met. The volume of Class C waste is estimated to be small enough to make PEACER concept valuable for densely populated countries. (authors)

  11. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  12. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-09-05

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  14. Development of simulated tank wastes for the US Department of Energy`s Underground Storage Tank Integrated Demonstration

    SciTech Connect

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale.

  15. Energy conversion and storage process

    SciTech Connect

    Salmon, O.N.

    1982-01-26

    An energy conversion process is described for converting thermal energy into stored electrochemical energy and then into electrical energy comprising heating a first FeCl2-containing electrolyte melt to produce gaseous FeCl3 and a reductant product in a first chemical reaction, these reaction products being separated, cooled, optionally stored, and combined in a second FeCl2-containing electrolyte melt to cause a reaction to take place which is the reverse of said first reaction, thereby regenerating said first melt and producing heat and electrical energy.

  16. Preliminary evaluation of waste processing in a CELSS

    NASA Technical Reports Server (NTRS)

    Jacquez, Ricardo B.

    1990-01-01

    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.

  17. Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report

    SciTech Connect

    RASMUSSEN, J.H.

    2000-04-25

    This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery.

  18. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  19. Refinery uses bioslurry process to treat RCRA wastes

    SciTech Connect

    Oolman, T.; Baker, R.R.; Renfro, N.L.; Marshall, G.E.

    1996-04-01

    Restrictions on land disposal of oily refinery wastes have forced the refining industry to develop cost-effective methods to treat these wastes before disposal. Valero Refining Company is using an onsite, tank-based biological treatment process to treat oily wastes at its Corpus Christi, Texas, refinery. This system consistently treats these wastes to RCRA universal treatment standards (UTS), thereby allowing direct disposal of the treated residue in a Resource Conservation and Recovery Act (RCRA) permitted landfill. In selecting the biotreatment process, Valero used several criteria including environmental performance, equipment reliability and ability to be integrated into refinery operations and process safety. Capital investment, maintenance and operating costs also were important considerations. This case history shows how Valero successfully used the bioslurry process to treat oily wastes such as API separator sludge and slop-oil emulsion before landfill disposal.

  20. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    SciTech Connect

    Not Available

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992.

  1. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    SciTech Connect

    Not Available

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ``review process technology issues preventing start up of the DWPF.`` This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992.

  2. Comparative study of different waste biomass for energy application.

    PubMed

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  3. Process-based analysis of waste management systems: a case study.

    PubMed

    Villeneuve, J; Michel, P; Fournet, D; Lafon, C; Ménard, Y; Wavrer, P; Guyonnet, D

    2009-01-01

    This paper presents an analysis, using process simulation, of the waste management system applied in a collection basin located in the south of Paris (France). The study was conducted in close cooperation with the "SYCTOM of Paris agglomeration", an operator in charge of managing 2.5 milliontons/yr of municipal solid waste in the Paris area. The analysis includes a description of the current situation of waste management in this collection basin, the construction and calibration of a simulator that reproduces this situation, the simulation of scenarios that account for possible future changes in waste flows and treatment options and finally a comparison of scenario results. Results illustrate the interest of a process-based approach to waste management systems. Such an approach is complementary to life cycle analyses, which usually rely on more generic descriptions of waste treatment units. The detailed analysis of a waste management system using local data on waste streams and treatment units provides technical indicators of system efficiency expressed in terms of recycling rates, energy recovery, emission fluxes and costs. Such information can help reach a consensus with respect to the actual situation of waste management and provides decision-makers with quantitative arguments that can be brought into the public debate.

  4. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  5. Waste container weighing data processing to create reliable information of household waste generation.

    PubMed

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Army Reserve Expands Net Zero Energy, Water, Waste

    SciTech Connect

    Solana, Amy E.

    2015-04-14

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  7. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  8. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  9. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    NASA Technical Reports Server (NTRS)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  10. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    NASA Technical Reports Server (NTRS)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  11. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    PubMed

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes.

  12. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  13. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    EPA Pesticide Factsheets

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  14. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  15. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    SciTech Connect

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher; and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  16. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  17. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  18. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    SciTech Connect

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  19. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-07-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Criticality assessment of the Defense Waste Processing Facility

    SciTech Connect

    Ha, B.C.; Williamson, T.G.; Clemmons, J.S.; Chandler, M.C.

    1996-08-01

    Assessment of nuclear criticality potential of the S-Area Defense Waste Processing Facility (DWPF) is required to ensure the safe processing of radioactive waste for final disposal. At the Savannah River Site (SRS), high-level radioactive wastes are stored as caustic slurries. During storage, the wastes separate into a supernate layer and a sludge layer. The radionuclides from the sludge and supernate will be immobilized into borosilicate glass for storage and eventual disposal. The DWPF will initially immobilize sludge only, with simulated non-radioactive Precipitate Hydrolysis Aqueous (PHA) product. This paper demonstrates that criticality poses only a negligible risk in the DWPF process because of the characteristics of the waste and the DWPF process. The waste contains low concentration of fissile material and many elements which act as neutron poisons. Also, the DWPF process chemistry does not affect separation and accumulation of fissile materials. Experiments showed that DWPF can process all the high-level radioactive wastes currently stored at SRS with negligible criticality risk under normal and abnormal/process upset operation.

  1. Characterization and process technology capabilities for Hanford tank waste disposal

    SciTech Connect

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory`s (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory`s extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory`s radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations.

  2. Processing the THOREX waste at the West Valley demonstration project

    SciTech Connect

    Barnes, S.M.; Schiffhauer, M.A.

    1994-12-31

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins.

  3. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  4. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  5. Co-processing of agricultural and biomass waste with coal

    SciTech Connect

    Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng

    1995-12-31

    A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

  6. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  7. Buying less and wasting less food. Changes in household food energy purchases, energy intakes and energy density between 2007 and 2012 with and without adjustment for food waste.

    PubMed

    Whybrow, Stephen; Horgan, Graham W; Macdiarmid, Jennie I

    2017-05-01

    Consumers in the UK responded to the rapid increases in food prices between 2007 and 2009 partly by reducing the amount of food energy bought. Household food and drink waste has also decreased since 2007. The present study explored the combined effects of reductions in food purchases and waste on estimated food energy intakes and dietary energy density. The amount of food energy purchased per adult equivalent was calculated from Kantar Worldpanel household food and drink purchase data for 2007 and 2012. Food energy intakes were estimated by adjusting purchase data for food and drink waste, using waste factors specific to the two years and scaled for household size. Scotland. Households in Scotland (n 2657 in 2007; n 2841 in 2012). The amount of food energy purchased decreased between 2007 and 2012, from 8·6 to 8·2 MJ/adult equivalent per d (P<0·001). After accounting for the decrease in food waste, estimated food energy intake was not significantly different (7·3 and 7·2 MJ/adult equivalent per d for 2007 and 2012, respectively; P=0·186). Energy density of foods purchased increased slightly from 700 to 706 kJ/100 g (P=0·010). While consumers in Scotland reduced the amount of food energy that they purchased between 2007 and 2012, this was balanced by reductions in household food and drink waste over the same time, resulting in no significant change in net estimated energy intake of foods brought into the home.

  8. Linking quality improvement and energy efficiency/waste reduction

    SciTech Connect

    Lewis, R.E.; Moore, N.L.

    1995-04-01

    For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

  9. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    PubMed

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-09-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh(-1)) and 0.139 (US$ kWh(-1)) for the incineration and gasification plants respectively.

  10. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  11. METALS LEACHING FROM A MINERAL PROCESSING WASTE: A COLUMN STUDY

    EPA Science Inventory

    A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behavior of metals. Leaching tests in the form of column and batch studies were carried out to investigate liquid to solid ratios ranging from 0.7 to 50. Although the waste pass...

  12. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  13. Apparatus for processing municipal solid waste and sewage sludge

    SciTech Connect

    Harendza-harinxma, A. J.

    1980-08-12

    Sewage sludge and municipal solid waste are simultaneously processed by first dissolving a catalyst, such as sodium aluminate, in the sludge, then mixing the sludge-aluminate mixture with the municipal waste to form a carbonizing mixture. After dewatering and drying, the mixture is carbonized in a furnace heated by a mixture of city gas and pyrolysis gases given off by the furnace.

  14. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  15. Kinetic study of solid waste pyrolysis using distributed activation energy model.

    PubMed

    Bhavanam, Anjireddy; Sastry, R C

    2015-02-01

    The pyrolysis characteristics of municipal solid waste, agricultural residues such as ground nut shell, cotton husk and their blends are investigated using non-isothermal thermogravimetric analysis (TGA) with in a temperature range of 30-900 °C at different heating rates of 10 °C, 30 °C and 50 °C/min in inert atmosphere. From the thermograms obtained from TGA, it is observed that the maximum rate of degradation occurred in the second stage of the pyrolysis process for all the solid wastes. The distributed activation energy model (DAEM) is used to study the pyrolysis kinetics of the solid wastes. The kinetic parameters E (activation energy), k0 (frequency factor) are calculated from this model. It is found that the range of activation energies for agricultural residues are lower than the municipal solid waste. The activation energies for the municipal solid waste pyrolysis process drastically decreased with addition of agricultural residues. The proposed DAEM is successfully validated with TGA experimental data.

  16. Disposition of salt-waste from pyrochemical nuclear fuel processing

    SciTech Connect

    Vance, E.R.

    2007-07-01

    Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

  17. A Robust Power Remote Manipulator for Use in Waste Sorting, Processing, and Packaging - 12158

    SciTech Connect

    Cole, Matt; Martin, Scott

    2012-07-01

    Disposition of radioactive waste is one of the Department of Energy's (DOE's) highest priorities. A critical component of the waste disposition strategy is shipment of Transuranic (TRU) waste from DOE's Oak Ridge Reservation to the Waste Isolation Plant Project (WIPP) in Carlsbad, New Mexico. This is the mission of the DOE TRU Waste Processing Center (TWPC). The remote-handled TRU waste at the Oak Ridge Reservation is currently in a mixed waste form that must be repackaged in to meet WIPP Waste Acceptance Criteria (WAC). Because this remote-handled legacy waste is very diverse, sorting, size reducing, and packaging will require equipment flexibility and strength that is not possible with standard master-slave manipulators. To perform the wide range of tasks necessary with such diverse, highly contaminated material, TWPC worked with S.A. Technology (SAT) to modify SAT's Power Remote Manipulator (PRM) technology to provide the processing center with an added degree of dexterity and high load handling capability inside its shielded cells. TWPC and SAT incorporated innovative technologies into the PRM design to better suit the operations required at TWPC, and to increase the overall capability of the PRM system. Improving on an already proven PRM system will ensure that TWPC gains the capabilities necessary to efficiently complete its TRU waste disposition mission. The collaborative effort between TWPC and S.A. Technology has yielded an extremely capable and robust solution to perform the wide range of tasks necessary to repackage TRU waste containers at TWPC. Incorporating innovative technologies into a proven manipulator system, these PRMs are expected to be an important addition to the capabilities available to shielded cell operators. The PRMs provide operators with the ability to reach anywhere in the cell, lift heavy objects, perform size reduction associated with the disposition of noncompliant waste. Factory acceptance testing of the TWPC Powered Remote

  18. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  19. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  20. A process for treatment of mixed waste containing chemical plating wastes

    SciTech Connect

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-02-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr{sup VI} to Cr{sup III} from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions.

  1. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  2. MEMS-Based Waste Vibrational Energy Harvesters

    DTIC Science & Technology

    2013-06-01

    planning. By Executive Order 13514 in October 2009, the Department of the Navy is required to reduce the fleet’s total consumption of petroleum...mandates the consumption of greater than 50 percent of renewable energy from new renewable sources and to implement renewable energy generation projects on...054508-1-054508-7, 2008. [21] A. Ababneh, H. Kreher and U. Schmid, “Etching behaviour of sputter-deposited aluminium nitried thin films in H3PO4 and KOH

  3. TECNETIUM-99 BEHAVIOR IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGES DURING WASTE PROCESSING

    SciTech Connect

    BIBLER, N.E.; FELLINGER, T. L.; HOBBS, D.T.

    2006-01-03

    This paper presents results of a study of the behavior of technetium-99 (Tc-99) during high level waste (HLW) processing operations at Savannah River Site (SRS). Its behavior during HLW processing is important to understand because Tc-99 can fractionate in the waste and appear in both the sludge and the salt tanks at SRS. It can also be soluble in groundwaters and thus is an important radionuclide that may dictate how much waste has to be removed from a tank to prepare it for permanent closure. The HLW processing steps considered in this study are: (1) The initial caustic neutralization of the acidic waste streams generated in the SRS canyons to prepare the waste for storage in the mild steel tanks in the SRS Tank Farm. Waste that is insoluble in caustic precipitates while soluble elements remain in the supernates. At SRS insoluble components are segregated into sludge tanks and soluble components into the salt tanks. (2) The operations in the SRS Tank Farm that wash the sludge in preparation for immobilization for permanent disposal. (3) The sludge immobilization process in the Defense Waste Processing Facility (DWPF) that solidifies the solids into a stable borosilicate glass. The data in this study are from tests performed at SRNL with both a simulated HLW doped with Tc-99 and tests preformed remotely in the Shielded Cells with a sample of actual radioactive HLW that contained Tc-99 and other radionuclides generated in the SRS reactors. Detailed results are discussed in the paper.

  4. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    SciTech Connect

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale.

  5. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  6. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  7. Gills Onions Advanced Energy Recovery System: Turning a Waste Liability into a Renewable Resource

    DTIC Science & Technology

    2011-01-13

    Anaerobic Municipal Solid Waste Food Waste from Residential & Food Service Digestion Fats, Oil, and Grease...FOG) from Food Service Anaerobic Methane Wastewater Treatment Bi lid Digestion Fuel Cells oso s Think Holistically! Your Take Away Points...Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells

  8. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process

    NASA Astrophysics Data System (ADS)

    Gómez, X.; Morán, A.; Cuetos, M. J.; Sánchez, M. E.

    A two-phase fermentation process for the treatment of waste, intended for the recovery of hydrogen for energy use, was investigated in its initial fermentation phase. Hydrogen production was obtained from a mixed culture based on an active mesophilic inoculum without any selective treatment being applied. The liquid stream generated by the hydrogen fermentation process was stabilized in the following, methanogenic, phase for the recovery of methane and further breaking down of the waste stream. The whole process was carried out at a temperature in the mesophilic range (34 °C). The substrate used was an unsterilized mixture of the organic fraction of municipal solid wastes (OFMSW) and slaughterhouse waste from a poultry-processing plant. The hydrogen-producing phase was capable of stable performance under the hydraulic retention times (HRTs) evaluated (3 and 5 days). No methane was detected in the first phase at any point during the whole period of the experiment and the hydrogen yield showed no symptoms of declining as time elapsed. The amount of hydrogen obtained from the fermentation process was in the range of 52.5-71.3 N L kg -1 VS rem.

  9. Pyrolysis process for the treatment of food waste.

    PubMed

    Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian

    2016-10-01

    Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery.

  10. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  11. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  12. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  13. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Accelerator Production of Tritium project process waste assessment

    SciTech Connect

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  15. Summary of LLNL`s accomplishments for the FY93 Waste Processing Operations Program

    SciTech Connect

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy`s (DOE`s) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program`s mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE`s Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section`s contributions in support of DOE`s FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993.

  16. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  17. Technical resource document for assured thermal processing of wastes

    SciTech Connect

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  18. Waste to energy operability enhancement under waste uncertainty via oxygen enrichment.

    PubMed

    Tsiliyannis, Christos Aristeides

    2014-08-19

    Waste to energy (WTE) performance is evaluated by maximization of electrical energy production and throughput, while maintaining low operational costs and complying with emission limits. Uncertainty in the quantities, composition and heating values of received wastes, pose severe operability problems and impair performance and emissions. The present work demonstrates and quantifies the possibility of improving WTE efficiency under feedstock uncertainty via oxygen enrichment of the combustion air. Acting essentially as a nitrogen depletion mechanism, oxygen enrichment has reverse effects compared to excess air (EA); synergistic use provides extended capabilities for performance improvement, without impairing final emissions, while satisfying capacity constraints. Increased oxygen enrichment is required at higher EA to maintain temperature. Lower charging rates of rich wastes (plastics, paper, etc.) or diminishing heating values, require higher oxygen enrichment or lower EA. The opposite holds for lower charging rates of poor wastes (biodegradables, biosludge, inerts, etc.) or rising heating values. The results establish the possibility of nominal designs to respond to feedstock variations and may be useful for low range excess air operation (low cost) or adiabatic operation (high EA, combustor temperature controlled by large fluegas volumes). The vector formulation facilitates digital coding for applications featuring multiple waste mixture variability. A 700000 tpa WTE facility in Athens, now under public-private-partnership contract tender is investigated.

  19. Energy and Energy Waste: A Topic for Science Education.

    ERIC Educational Resources Information Center

    Schlichting, Hans Joachim

    1979-01-01

    Discusses the deficiencies of presenting the theme of energy in the current West German school textbooks. The article emphasizes the structural importance of entropy for the understanding of energy and suggests how the physics teacher can contribute to the development of an appropriate attitude toward the energy crisis. (HM)

  20. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  1. Process waste assessment: Area 143C trichloroethylene vapor degreaser

    SciTech Connect

    Not Available

    1994-04-01

    A process waste assessment (PWA) is a systematic, planned procedure with the overall objective of identifying opportunities and methods to reduce and eliminate waste. This specific PWA examines waste minimization and emission information for the trichloroethylene vapor degreaser in area 143, Chem Clean. Area 143 Chem Clean is involved in the solvent cleaning and acid cleaning (etching) of various metal and ceramic parts in preparation for further processing (e.g., electroplating, brazing, final assembly). A standard set of worksheets for a level three PWA is included.

  2. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  3. Waste wood processing and combustion for energy

    SciTech Connect

    Not Available

    1992-12-31

    This volume contains the proceedings of the Fifth Annual National Biofuels Conference and Exhibition held October 19--22, 1992 in Newton, Massachusetts. Individual papers have been abstracted and indexed for the database.

  4. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  5. A bio-hybrid anaerobic treatment of papaya processing wastes

    SciTech Connect

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  6. High-Level Waste System Process Interface Description

    SciTech Connect

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  7. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  8. Fourteenth annual U.S. Department of Energy low-level radioactive waste management conference: Proceedings

    SciTech Connect

    1993-03-01

    This document contains 69 papers that were presented at the Fourteenth Annual U.S. Department of Energy Low-Level Radioactive Waste Management Conference, November 18--20, 1992, in Phoenix, Arizona. The papers address the following general topics: (a) Performance Management Track: risk assessment; waste characterization; site characterization; facility design; groundwater modeling; monitoring and modeling; and regulatory requirements; (b) Technical Track: waste minimization; new technologies; international perspectives; licensing issues; hot topics; commercial storage; DOE storage; treatment technologies; and mixed waste; and (c) Institutional Track: status report; changes in orders, regulations, and guidance; regulatory compliance issues; communicating risk; hot topics; and storage impacts. Papers have been processed separately for inclusion on the data base.

  9. Clean Fossil Energy Conversion Processes

    NASA Astrophysics Data System (ADS)

    Fan, L.-S.

    2007-03-01

    Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

  10. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will determine...

  11. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will determine...

  12. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will determine...

  13. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will determine...

  14. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will determine...

  15. Next step for waste-to-energy: Better availability, efficiency

    SciTech Connect

    Reason, J.

    1986-07-01

    High availability of a waste-to-energy plant is important for two reasons: (1) The facility must dispose of an endless stream of garbage if it is to receive continued support from the local community, and (2) It must generate enough revenue to repay its construction cost and cover its operating expense. Just a few years ago, there was always an alternative - if the plant wasn't operating, refuse could be bypassed to landfill and there was always a fossil-fired boiler on hand to make up for the lack of steam production. Today, as local communities are at last beginning to realize the benefits of waste-to-energy plants, alternatives are fast disappearing. Contracts with local communities often include fines for nonavailability of the plant. And clearly, revenue from an erratic energy supply is significantly less than could be charged from a firm source.

  16. Waste-to-energy conversion from a microfluidic device

    NASA Astrophysics Data System (ADS)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  17. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    containing hardness salts, resulted in generation of LRW concentrate 300-600 g/l. The method is based on utilization of supersonic ejector for intensification of thermal physic processes and performance of evaporation in brine recycling mode. All proposed technological solutions are totally based on patented Russian developments. Proposed work will allow to construct modular plants, which will be totally prepared for efficient purification of any types of liquid radioactive wastes from radionuclides in case of force majeure. According to proposed scheme concentration level of cesium radionuclides in safe-for-storage form will make up not less than 5000. With respect to purification from cesium radionuclides of liquid radioactive wastes stored at NPP 'Fukushima' about 10 t of inorganic sorbents, loaded in 160 protective filter-containers, will be required for solving this problem. The amount of secondary wastes will be reduced approximately in 5 times in comparison with traditional schemes, applied in purification of secondary LRW of Fukushima-1 by Areva (France) and Kurion (USA) companies. All units of modular plants will be constructed and manufactured as totally automated, providing their twenty-four-hour safe operation. Modular design will ensure efficiency and let optimize the costs of secondary LRW treatment. In order to ensure off-line operation in emergency conditions the plant should be equipped with auxiliary modules: energy and ventilation ones. Under normal conditions these modules can be stored in 'mothballed' condition at special warehouses under the authority of federal bodies. It will be reasonable to choose required transport facilities, the most suitable for transportation of modules to target destination beforehand, using vessel classification list.

  18. Processing of solid low level alpha suspected radioactive waste

    SciTech Connect

    Maes, Michael; Huys, Thomas; Rommes, Jeroen; Tuerlinckx, Robin; Bloemen, Raf

    2013-07-01

    Incineration of low active waste is the most efficient way to obtain high volume reduction factors. Although the initial scenario for processing low active alpha suspected waste (α- activity ≤ 400 MBq/m{sup 3}) in Belgium was supercompaction, incineration was eventually chosen for various benefits concerning volume reduction as well as the elimination of organic compounds improving the long term performance. This specific type of waste is often contaminated with for example mercury, requiring special attention in the treatment of both off-gas en waste water. In this paper it is shown that the CILVA incinerator of Belgoprocess N.V. has a high efficiency to combine both incineration and supercompaction of such types of waste. (authors)

  19. Vermicomposting of milk processing industry sludge spiked with plant wastes.

    PubMed

    Suthar, Surindra; Mutiyar, Pravin K; Singh, Sushma

    2012-07-01

    This work illustrates the vermistabilization of wastewater sludge from a milk processing industry (MPIS) unit spiked with cow dung (CD), sugarcane trash (ST) and wheat straw (WS) employing earthworms Eisenia fetida. A total of nine experimental vermibeds were established and changes in chemical parameters of waste material have been observed for 90 days. Vermistabilization caused significant reduction in pH, organic carbon and C:N ratio and substantial increase in total N, available P and exchangeable K. The waste mixture containing MPIS (60%)+CD (10%)+ST (30%) and MPIS (60%)+CD (10%)+WS (30%) had better waste mineralization rate among waste mixtures studied. The earthworm showed better biomass and cocoon numbers in all vermibeds during vermicomposting operation. Results, thus suggest the suitability of E. fetida for conversion of noxious industrial waste into value-added product for land restoration programme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Waste-to-Energy Evaluation: U.S. Virgin Islands

    SciTech Connect

    Davis, J.; Hasse, S.; Warren, A.

    2011-08-01

    This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.