DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less
Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus
2018-05-01
We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
On optimizing the treatment of exchange perturbations.
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Chipman, D. M.
1972-01-01
Most theories of exchange perturbations would give the exact energy and wave function if carried out to an infinite order. However, the different methods give different values for the second-order energy, and different values for E(1), the expectation value of the Hamiltonian corresponding to the zeroth- plus first-order wave function. In the presented paper, it is shown that the zeroth- plus first-order wave function obtained by optimizing the basic equation which is used in most exchange perturbation treatments is the exact wave function for the perturbation system and E(1) is the exact energy.
West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus
2017-02-09
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.
Potential applications of low-energy shock waves in functional urology.
Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi
2017-08-01
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...
2017-01-30
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
Adaptive multiconfigurational wave functions.
Evangelista, Francesco A
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N2 and the potential energy curves for the first three singlet states of C2. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu2O2(2+) core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Adaptive multiconfigurational wave functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions.more » The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.« less
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Keshav N.
2010-12-23
The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian.more » (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.« less
Kinetic energy partition method applied to ground state helium-like atoms.
Chen, Yu-Hsin; Chao, Sheng D
2017-03-28
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2014-10-01
We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus
2014-01-01
An analysis based on the variation principle shows that in the molecules H2+, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation. PMID:24880263
Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus
2014-05-28
An analysis based on the variation principle shows that in the molecules H2 (+), H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.
NASA Technical Reports Server (NTRS)
King, H. F.; Komornicki, A.
1986-01-01
Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.
Myocardial effects of local shock wave therapy in a Langendorff model.
Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M
2014-01-01
Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.
Calculations of the heights, periods, profile parameters, and energy spectra of wind waves
NASA Technical Reports Server (NTRS)
Korneva, L. A.
1975-01-01
Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari
2015-09-30
The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
NASA Astrophysics Data System (ADS)
Patil, S. H.; Tang, K. T.; Toennies, J. P.
1999-10-01
Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.
Electronic wave function and binding effects in M-shell ionization of gold by protons
NASA Astrophysics Data System (ADS)
Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.
2018-02-01
The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W.
1990-01-01
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
NASA Astrophysics Data System (ADS)
Nurhidayati, I.; Suparmi, A.; Cari, C.
2018-03-01
The Schrödinger equation has been extended by applying the minimal length formalism for trigonometric potential. The wave function and energy spectra were used to describe the behavior of subatomic particle. The wave function and energy spectra were obtained by using hypergeometry method. The result showed that the energy increased by the increasing both of minimal length parameter and the potential parameter. The energy were calculated numerically using MatLab.
NASA Astrophysics Data System (ADS)
Garcia, C. G.; Canals, M.; Irizarry, A. A.
2016-02-01
Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.
Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.
Preliminary Analysis of a Submerged Wave Energy Device
NASA Astrophysics Data System (ADS)
Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.
On optimizing the treatment of exchange perturbations
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Chipman, D. M.
1972-01-01
A method using the zeroth plus first order wave functions, obtained by optimizing the basic equation used in exchange perturbation treatments, is utilized in an attempt to determine the exact energy and wave function in the exchange process. Attempts to determine the first order perturbation solution by optimizing the sum of the first and second order energies were unsuccessful.
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi
2013-07-01
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.
NASA Astrophysics Data System (ADS)
Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Solovyev, I. I.; Isupov, A. Yu.
2018-01-01
The motion of fast electrons through the crystal during axial channeling could be regular and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties of energy spectra and morphology of wave functions of the individual stationary states. In this report, we investigate the axial channeling of high and low energy electrons and positrons near [100] direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic motion domain occupies only a small part of the phase space for the channeling electrons whereas the motion of the channeling positrons is substantially chaotic for the almost all initial conditions. The energy levels of transverse motion, as well as the wave functions of the stationary states, have been computed numerically. The group theory methods had been used for classification of the computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy levels. The channeling radiation spectrum for the low energy electrons has been also computed.
Energy, momentum, and angular momentum of sound pulses.
Lekner, John
2017-12-01
Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Degenerate R-S perturbation theory
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1973-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
Generalized Jastrow Variational Method for Liquid HELIUM-3-HELIUM-4 Mixtures at T = 0 K.
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, Kavoos
Microscopic theory of dilute liquid { ^3 He}-{^4 He} mixtures is of great interest, because it provides a physical realization of a nearly degenerate weakly interacting Fermion system. An understanding of properties of the mixtures has received considerable attention both theoretically and experimentally over the past thirty years. We present here a variational procedure based on the Jastrow function for the ground state of {^3 He}- {^4 He} mixtures by minimizing the total energy of the mixture using the hypernetted-chain (HNC) approximation and the Percus-Yevick (PY) approximation for the two body correlation functions. Our goal is to compute from first principles the internal energy of the system and the various two body correlation functions at various densities and compare the results with experiment. The Jastrow variational method for the ground state energy of liquid {^4 He} consists of the following ansatz for the wave function Psi_alpha {rm(vec r_{1 alpha},} {vec r_{2alpha},} dots, {vec r_{N _alpha})} = prod _{rm i < j} {rm f_ {alphaalpha}(r_{ij}). } For a {^3 He } system the corresponding ansatz is Psi_beta {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{N_beta})} = {[prod _{i < j} f_{betabeta }(r_{ij})]} Phi {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{Nbeta}),} where Phi is a Slater determinant of plane waves for the ground state of the Fermion system. The total energy per particle can be written in the form: E = x_sp{alpha}{2} E_{alphaalpha} + x_sp{beta}{2 }E_{betabeta } + 2x_{alpha} x_{beta}E _{alphabeta}, where E_{alphaalpha} , E_{betabeta} , E_{alphabeta} are unknown parameters to be determined from a microscopic theory. Using the Jastrow wave function Psi for the mixture, a general expression is given for the ground state energy in terms of the two body potential and two and three body correlation functions. The Kirkwood Super-position Approximation (KSA) is used for the three-body correlation functions. The antisymmetry of the wave function for Fermions is incorporated following the procedure given earlier by Lado, Inguva and Smith. This procedure for treating the antisymmetry of the wave function simplifies the equations for the two-body correlation functions considerably. The equations for the correlation functions are solved in the hypernetted-chain approximation. Once the two-particle correlation functions for the mixture ( ^3He-^4He) have been obtained, the energy is minimized with respect to the variational parameters involved in the Jastrow wave function. The binding energy and the optimal correlation functions are then obtained as a function of the concentration of ^3He atoms in the mixture. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-01-01
In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.
Pfister, R C; Papanicolaou, N; Yoder, I C
1988-01-01
Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.
Schrödinger propagation of initial discontinuities leads to divergence of moments
NASA Astrophysics Data System (ADS)
Marchewka, A.; Schuss, Z.
2009-09-01
We show that the large phase expansion of the Schrödinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
Determination of wave-function functionals: The constrained-search variational method
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Sahni, Viraht; Massa, Lou
2005-09-01
In a recent paper [Phys. Rev. Lett. 93, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ to be a functional of functions χ , ψ=ψ[χ] , rather than a function. A constrained search is first performed over all functions χ such that the wave-function functional ψ[χ] satisfies a physical constraint or leads to the known value of an observable. A rigorous upper bound to the energy is then obtained via the variational principle. In this paper we generalize the constrained-search variational method, applicable to both ground and excited states, to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. We construct analytical three-parameter ground-state functionals for the H- ion and the He atom through the constraint of normalization. We present the results for the total energy E , the expectations of the single-particle operators W=∑irin , n=-2,-1,1,2 , W=∑iδ(ri) , and W=∑iδ(ri-r) , the structure of the nonlocal Coulomb hole charge ρc(rr') , and the expectations of the two particle operators u2,u,1/u,1/u2 , where u=∣ri-rj∣ . The results for all the expectation values are remarkably accurate when compared with the 1078-parameter wave function of Pekeris, and other wave functions that are not functionals. We conclude by describing our current work on how the constrained-search variational method in conjunction with quantal density-functional theory is being applied to the many-electron case.
Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes
NASA Technical Reports Server (NTRS)
Cuntz, M.; Suess, S. T.
2003-01-01
We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.
Accuracy of Hartree-Fock wave functions for electron-H/sub 2/ scattering calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldt, A.N.
1988-05-01
Recent papers on electron-N/sub 2/ scattering by Rumble, Stevens, and Truhlar (J. Phys. B 17, 3151 (1984)) and Weatherford, Brown, and Temkin (Phys. Rev. A 35, 4561 (1987)) have suggested that Hartree-Fock (HF) wave functions may not be accurate for calculating potentials for use in studying electron-molecule collisions. A comparison of results for electron-H/sub 2/ scattering using both correlated and HF wave functions is presented. It is found that for both elastic and inelastic collisions and for all energies considered (up to 10 eV) the HF wave functions yield results in excellent agreement with those obtained from the more accuratemore » wave functions.« less
Momentum and energy transport by waves in the solar atmosphere and solar wind
NASA Technical Reports Server (NTRS)
Jacques, S. A.
1977-01-01
The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.
2007-01-01
It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, H.; Nakashima, H.; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510
2007-12-14
A local Schroedinger equation (LSE) method is proposed for solving the Schroedinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10{sup -5} Hartree in total energy.more » The potential energy curves of H{sub 2} and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.« less
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Does extracorporeal shock wave lithotripsy cause hearing impairment in children?
Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal
2015-03-01
We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Calculation of the nucleon structure function from the nucleon wave function
NASA Technical Reports Server (NTRS)
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Cigar-shaped quarkonia under strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Kei; Yoshida, Tetsuya
2016-03-01
Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-02-01
In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D
2017-10-15
Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep
2015-12-01
The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w = 230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elekina, E. N.; Martynenko, A. P.
2010-03-01
On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the secondmore » order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.« less
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions.
Jerke, Jonathan; Poirier, Bill
2018-03-14
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy-i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted-as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Slamet, Marlina; Sahni, Viraht
2010-04-01
We extend our prior work on the construction of variational wave functions ψ that are functionals of functions χ:ψ=ψ[χ] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions χ chosen such that the functional ψ[χ] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H-, the helium atom He, and its positive ions Li+ and Be2+. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W=∑irin,n=-2,-1,1,2, W=∑iδ(ri), W=-(1)/(2)∑i∇i2, and the two-particle operators W=∑nun,n=-2,-1,1,2, where u=|ri-rj|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals ψ[χ] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schrödinger equation, there exist ψ[χ] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
The Microtremor H/V Spectral Ratio: The Physical Basis of the Diffuse Field Assumption
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.
2016-12-01
The microtremor H/V spectral ratio (MHVSR) is popular to obtain the dominant frequency at a site. Despite the success of MHVSR some controversy arose regarding its physical basis. One approach is the Diffuse Field Assumption, DFA. It is then assumed that noise diffuse features come from multiple scattering within the medium. According to theory, the average of the autocorrelation is proportional to directional energy density (DED) and to the imaginary part of the Green's function for same source and receiver. Then, the square of MHVSR is a ratio of DEDs which, in a horizontally layered system, is 2xImG11/ImG33, where ImG11 and ImG33 are the imaginary parts of Green's functions for horizontal and vertical components. This has physical implications that emerge from the duality DED-force, implicit in the DFA. Consider a surface force at a half-space. The radiated energy is carried away by various wave types and the proportions of each one are precisely the fractions of the energy densities of a diffuse elastic wave field at the free surface. Thus, some properties of applied forces are also characteristics of DEDs. For example, consider a Poisson solid. For a normal point load, 67 per cent of energy is carried away by Rayleigh waves. For the tangential case, it is less well known that, 77 per cent of energy goes as shear waves. In a full space, 92 per cent of the energy is emitted as shear waves. The horizontal DED at the half-space surface implies significant emission of down-going shear waves that explains the curious stair-like resonance spectrum of ImG11. Both ImG11 and ImG33 grow linearly versus frequency and this represents wave emission. For a layered medium, besides wave emission, the ensuing variations correspond to reflected waves. For high frequencies, ImG33 depends on the properties of the top layer. Reflected body waves are very small and Rayleigh waves behave in the top layer as in a kind of mini half-space. From HVSR one can invert the velocity model using the DFA. It is possible to compute efficiently the imaginary part of the Green's functions from the integrals along the radial wavenumber k. This can be made using either the Bouchon DWN method or the Cauchy residue theorem to get the pole contributions of Rayleigh and Love surface waves in the k complex plane. This allows separating the contributions of each wave type.
Wave spectral energy variability in the northeast Pacific
Bromirski, P.D.; Cayan, D.R.; Flick, R.E.
2005-01-01
The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut
2016-04-01
Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, Barbara; Iachello, Francesco; Macek, Michal
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Dietz, Barbara; Iachello, Francesco; Macek, Michal
2017-08-07
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Ultrasonic wireless health monitoring
NASA Astrophysics Data System (ADS)
Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas
2006-03-01
The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares
NASA Technical Reports Server (NTRS)
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
NASA Astrophysics Data System (ADS)
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
A Study of Regional Wave Source Time Functions of Central Asian Earthquakes
NASA Astrophysics Data System (ADS)
Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.
2014-12-01
Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.
Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia
2017-11-14
High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.
2017-12-01
Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D
This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimalmore » control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.« less
Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos
2012-07-11
The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.
Chatterjee, I; Hagmann, M J; Gandhi, O P
1980-01-01
The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.
NASA Technical Reports Server (NTRS)
1976-01-01
The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2008-12-12
The local energy defined by H{psi}/{psi} must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the {psi} under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized {psi}, defined by {sigma}{sup 2}{identical_to}<{psi}|(H-E){sup 2}|{psi}>, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schroedinger equation.more » Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903 724 377 034 119 598 311 159 245 194 4 a.u., which is correct to 32 digits.« less
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
A Survey of WEC Reliability, Survival and Design Practices
Coe, Ryan G.; Yu, Yi-Hsiang; van Rij, Jennifer
2017-12-21
A wave energy converter must be designed to survive and function efficiently, often in highly energetic ocean environments. This represents a challenging engineering problem, comprising systematic failure mode analysis, environmental characterization, modeling, experimental testing, fatigue and extreme response analysis. While, when compared with other ocean systems such as ships and offshore platforms, there is relatively little experience in wave energy converter design, a great deal of recent work has been done within these various areas. Here, this article summarizes the general stages and workflow for wave energy converter design, relying on supporting articles to provide insight. By surveying published workmore » on wave energy converter survival and design response analyses, this paper seeks to provide the reader with an understanding of the different components of this process and the range of methodologies that can be brought to bear. In this way, the reader is provided with a large set of tools to perform design response analyses on wave energy converters.« less
A Survey of WEC Reliability, Survival and Design Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan G.; Yu, Yi-Hsiang; van Rij, Jennifer
A wave energy converter must be designed to survive and function efficiently, often in highly energetic ocean environments. This represents a challenging engineering problem, comprising systematic failure mode analysis, environmental characterization, modeling, experimental testing, fatigue and extreme response analysis. While, when compared with other ocean systems such as ships and offshore platforms, there is relatively little experience in wave energy converter design, a great deal of recent work has been done within these various areas. Here, this article summarizes the general stages and workflow for wave energy converter design, relying on supporting articles to provide insight. By surveying published workmore » on wave energy converter survival and design response analyses, this paper seeks to provide the reader with an understanding of the different components of this process and the range of methodologies that can be brought to bear. In this way, the reader is provided with a large set of tools to perform design response analyses on wave energy converters.« less
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-02-08
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x -axis and y -axis in-plane and z -axis magnetic fields into piezoelectric voltage outputs. Under the x -axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z -axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x -axis vibration (sine-wave, 100 Hz, 3.5 g) and z -axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-01-01
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on. PMID:28208693
NASA Astrophysics Data System (ADS)
Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Birn, J.; Pritchett, P. L.
2017-12-01
Electron interactions with Electromagnetic Ion Cyclotron (EMIC) amd Magnetosnic (MS) waves are considered as a mechanism of electron acceleration up to relativistic energies in the inner magnetosphere. The free energy for these waves is provided by ion populations with unstable energy distributions. It is established that the perpendicular anisotropy (T_perp > T_par) of energetic ions may provide the free energy for EMIC waves. The ring-type ion distributions are considered as the free energy source for the MS waves. Where and how do these distributions formed? To answer this question, we examined ion distribution functions within earthward-contracting dipolarizing flux bundles (DFBs) observed in the near-Earth plasma sheet at R 10 - 12 RE. It was found that ion distributions are often characterized by the perpendicular anisotropy at supra-thermal energies (at velocities V_thermal ≤ v ≤ 2*V_thermal). The effect was found to be stronger at largerbackground Bz (i.e., closer to the dipole). Similar characteristics wereobserved in particle-in-cell and test-particle simulations. Moreover, the simulations showed the ring-type ion distribution formation. These results suggest that ions, injected towards the inner magnetosphere with DFBs may indeed provide free energy for the EMIC and MS wave excitations.
Electron-pair-production cross section in the tip region of the positron spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sud, K.K.; Sharma, D.K.
1984-11-01
The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G
2012-05-07
Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
Edge effect on a vacancy state in semi-infinite graphene
NASA Astrophysics Data System (ADS)
Deng, Hai-Yao; Wakabayashi, Katsunori
2014-09-01
The edge effect on a single vacancy state of semi-infinite graphene (SIG) has been studied using Green's function method within the tight-binding model. In the case of infinite graphene, it is known that a vacancy induces a zero-energy resonance state, whose wave function decays inversely with distance (R) from the vacancy and is not normalizable. However, for SIG with an armchair edge, we find that the corresponding wave function decays as R-2 and hence becomes normalizable owing to the intervalley interference caused by the armchair edge. For SIG with a zigzag edge, the vacancy state depends on the sublattice of the vacancy. When the vacancy and the edge belong to different sublattices, the vacancy has no effect on the zero-energy vacancy state. In contrast, when the vacancy is located on the same sublattice as the edge, the resonance state disappears but the wave function at zero energy is strongly distorted near the vacancy. Our results reveal that the presence of edges crucially changes the vacancy state in graphene, and thus such a state can be used to probe the edge structure.
NASA Astrophysics Data System (ADS)
Lapierre, David; Alijah, Alexander; Kochanov, Roman; Kokoouline, Viatcheslav; Tyuterev, Vladimir
2016-10-01
Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of O163 were determined using a previously developed efficient approach, which combines hyperspherical coordinates and a complex absorbing potential. The calculations are based on a recently computed potential energy surface of ozone determined with a spectroscopic accuracy [Tyuterev et al., J. Chem. Phys. 139, 134307 (2013), 10.1063/1.4821638]. The effect of permutational symmetry on rovibrational dynamics and the density of resonance states in O3 is discussed in detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely vibrational (J =0 ) levels of O163 and O183, both made of bosons with zero nuclear spin, cannot dissociate on the ground-state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue O163 with rotational angular momentum J =0 and 1 up to the dissociation threshold were also computed. For bound levels, good agreement with experimental energies is found: The rms deviation between observed and calculated vibrational energies is 1 cm-1. Rotational constants were determined and used for a simple identification of vibrational modes of calculated levels.
Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.
1997-01-01
It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
A density difference based analysis of orbital-dependent exchange-correlation functionals
NASA Astrophysics Data System (ADS)
Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio
2014-03-01
We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.
Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.
ERIC Educational Resources Information Center
Ley-Koo, E.; And Others
1980-01-01
Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
Papenbrock, T; Reimann, S M; Kavoulakis, G M
2012-02-17
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
Tunable optical and excitonic properties of phosphorene via oxidation
NASA Astrophysics Data System (ADS)
Sadki, S.; Drissi, L. B.
2018-06-01
The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.
Towards an exact factorization of the molecular wave function
NASA Astrophysics Data System (ADS)
Parashar, Shubham; Sajeev, Y.; Ghosh, Swapan K.
2015-10-01
An exact single-product factorisation of the molecular wave function for the timedependent Schrödinger equation is investigated by using an ansatz involving a phase factor. By using the Frenkel variational method, we obtain the Schrödinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter ω in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.
Computing correct truncated excited state wavefunctions
NASA Astrophysics Data System (ADS)
Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.
2016-12-01
We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves
NASA Astrophysics Data System (ADS)
Gupta, Prateek; Scalo, Carlo
2017-11-01
Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less
NASA Astrophysics Data System (ADS)
Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.
2010-01-01
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G
2010-01-08
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
NASA Astrophysics Data System (ADS)
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Wave and ion evolution downstream of quasi-perpendicular bow shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.
1995-01-01
Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.
Extended wave-packet model to calculate energy-loss moments of protons in matter
NASA Astrophysics Data System (ADS)
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Chronopoulos, D
2017-01-01
A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.
On the importance of local orbitals using second energy derivatives for d and f electrons
NASA Astrophysics Data System (ADS)
Karsai, Ferenc; Tran, Fabien; Blaha, Peter
2017-11-01
The all-electron linearized augmented plane wave (LAPW) methods are among the most accurate to solve the Kohn-Sham equations of density functional theory for periodic solids. In the LAPW methods, the unit cell is partitioned into spheres surrounding the atoms, inside which the wave functions are expanded into spherical harmonics, and the interstitial region, where the wave functions are expanded in Fourier series. Recently, Michalicek et al. (2013) reported an analysis of the so-called linearization error, which is inherent to the basis functions inside the spheres, and advocated the use of local orbital basis functions involving the second energy derivative of the radial part (HDLO). In the present work, we report the implementation of such basis functions into the WIEN2k code, and discuss in detail the improvement in terms of accuracy. From our tests, which involve atoms from the whole periodic table, it is concluded that for ground-state properties (e.g., equilibrium volume) the use of HDLO is necessary only for atoms with d or f electrons in the valence and large atomic spheres. For unoccupied states which are not too high above the Fermi energy, HDLO systematically improve the band structure, which may be of importance for the calculation of optical properties.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.
De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka
2013-04-01
Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; P<0.0001) and strongly predicted regional left ventricular recovery (r=0.68; P=0.001). By receiver operating characteristic analysis, a backward-traveling (microcirculatory) expansion wave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.
NASA Astrophysics Data System (ADS)
Ramírez Suárez, O. L.; Sparenberg, J.-M.
2017-09-01
We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.
Localization or tunneling in asymmetric double-well potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dae-Yup, E-mail: dsong@sunchon.ac.kr
An asymmetric double-well potential is considered, assuming that the wells are parabolic around the minima. The WKB wave function of a given energy is constructed inside the barrier between the wells. By matching the WKB function to the exact wave functions of the parabolic wells on both sides of the barrier, for two almost degenerate states, we find a quantization condition for the energy levels which reproduces the known energy splitting formula between the two states. For the other low-lying non-degenerate states, we show that the eigenfunction should be primarily localized in one of the wells with negligible magnitude inmore » the other. Using Dekker’s method (Dekker, 1987), the present analysis generalizes earlier results for weakly biased double-well potentials to systems with arbitrary asymmetry.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).
Quantitative molecular orbital energies within a G0W0 approximation
NASA Astrophysics Data System (ADS)
Sharifzadeh, S.; Tamblyn, I.; Doak, P.; Darancet, P. T.; Neaton, J. B.
2012-09-01
Using many-body perturbation theory within a G 0 W 0 approximation, with a plane wave basis set and using a starting point based on density functional theory within the generalized gradient approximation, we explore routes for computing the ionization potential (IP), electron affinity (EA), and fundamental gap of three gas-phase molecules — benzene, thiophene, and (1,4) diamino-benzene — and compare with experiments. We examine the dependence of the IP and fundamental gap on the number of unoccupied states used to represent the dielectric function and the self energy, as well as the dielectric function plane-wave cutoff. We find that with an effective completion strategy for approximating the unoccupied subspace, and a well converged dielectric function kinetic energy cutoff, the computed IPs and EAs are in excellent quantitative agreement with available experiment (within 0.2 eV), indicating that a one-shot G 0 W 0 approach can be very accurate for calculating addition/removal energies of small organic molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas; ...
2017-12-21
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Coherence in the presence of absorption and heating in a molecule interferometer
Cotter, J. P.; Eibenberger, S.; Mairhofer, L.; Cheng, X.; Asenbaum, P.; Arndt, M.; Walter, K.; Nimmrichter, S.; Hornberger, K.
2015-01-01
Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053
Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing
2018-01-01
As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540
An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific
NASA Technical Reports Server (NTRS)
Eriksen, Charles C.; Richman, James G.
1988-01-01
Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.
Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing
2018-03-04
As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.
Vertical tilts of tropospheric waves - Observations and theory
NASA Technical Reports Server (NTRS)
Ebisuzaki, Wesley
1991-01-01
Two methods are used to investigate the vertical tilts of planetary waves as functions of zonal wavenumber and frequency. The vertical tilts are computed by cross-spectral analysis of the geopotential heights at different pressures. In the midlatitude troposphere, the eastward-moving waves had a westward tilt with height, as expected, but the westward-moving waves with frequencies higher than 0.2/d showed statistically significant eastward vertical tilts. For a free Rossby wave, this implies that the Eliassen-Palm flux is downward along with its energy propagation. A downward energy propagation suggests an upper-level source of these waves. It is proposed that the eastward-tilting waves were forced by the nonlinear interaction of stationary waves and baroclinically unstable cyclone-scale waves. The predicted vertical tilt and phase speed were consistent with the observations. In addition, simulations of a general circulation model were analyzed. In the control run, eastward-tilting waves disappeared when the sources of stationary waves were removed. This is consistent with the present theory.
Exact result in strong wave turbulence of thin elastic plates
NASA Astrophysics Data System (ADS)
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the
Wavelets and spacetime squeeze
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1993-01-01
It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.
Anatomy of quantum critical wave functions in dissipative impurity problems
NASA Astrophysics Data System (ADS)
Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge
2017-02-01
Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.
On the physical interpretation of the nuclear molecular orbital energy.
Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés
2017-06-07
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
First measurement of the beam asymmetry in photoproduction off the proton near threshold
NASA Astrophysics Data System (ADS)
Levi Sandri, P.; Mandaglio, G.; De Leo, V.; Bartalini, O.; Bellini, V.; Bocquet, J.-P.; Capogni, M.; Curciarello, F.; Didelez, J.-P.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Girolami, B.; Giusa, A.; Lapik, A.; Lleres, A.; Mammoliti, F.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Nedorezov, V.; Randieri, C.; Rebreyend, D.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.
2015-07-01
The beam asymmetry in photoproduction off the proton was measured at the GrAAL polarised photon beam with incoming photon energies of 1.461 and 1.480 GeV. For both energies the asymmetry as a function of the meson production angle shows a clear structure, more pronounced at the lowest one, with a change of sign around . The observed behaviour is compatible with P-wave D-wave (or S-wave F-wave) interference, the closer to threshold the stronger. The results are compared to the existing state-of-the-art calculations that fail to account for the data.
Quantum critical point revisited by dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-31
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Evolution of wave function in a dissipative system
NASA Technical Reports Server (NTRS)
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoumaid, A.; Benamira, F.; Guechi, L.
2016-02-15
It is shown that the application of the Nikiforov-Uvarov method by Ikhdair for solving the Dirac equation with the radial Rosen-Morse potential plus the spin-orbit centrifugal term is inadequate because the required conditions are not satisfied. The energy spectra given is incorrect and the wave functions are not physically acceptable. We clarify the problem and prove that the spinor wave functions are expressed in terms of the generalized hypergeometric functions {sub 2}F{sub 1}(a, b, c; z). The energy eigenvalues for the bound states are given by the solution of a transcendental equation involving the hypergeometric function.
Wave processes in dusty plasma near the Moon’s surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, T. I.; Kopnin, S. I.; Popel, S. I., E-mail: popel@iki.rssi.ru
2015-10-15
A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak atmore » 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.« less
NASA Astrophysics Data System (ADS)
Min, Byeong June
2018-03-01
The abundance of glycine (Gly), the simplest amino acid, in meteorites leads us to the next question about its extraterrestrial origin. However, astronomers have not yet found glycine signature in interstellar medium. Laboratory microwave spectroscopy experiments report the most stable Gly conformer has a dipole moment of 4.5 - 5.45 Debye. Theoretical calculations, so far performed only with Gaussian basis functions, has predicted a dipole moment of about 1 Debye. This discrepancy has baffled astronomers. We study the energetics of glycine and its isomers and conformers via plane-wave density functional theory calculations. The geometric structures of the isomers and their conformers are identified, along with their relative stability and their dipole moment. In the case of glycine, we obtain the most stable conformer with a dipole moment of 5.76 Debye, close to the microwave spectroscopy experiments. If the plane wave energy cutoff is reduced to a lower value ( 400 eV) on purpose, the energy ordering reverses to the case with Gaussian basis calculations.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
NASA Astrophysics Data System (ADS)
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
NASA Astrophysics Data System (ADS)
Brückner, Charlotte; Engels, Bernd
2017-01-01
Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
NASA Astrophysics Data System (ADS)
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Z.; Shakeshaft, R.
1994-05-01
We have calculated the energy and angular distributions for double ionization of He(1[ital s][sup 2]) and He(1[ital s]2[ital s] [sup 3][ital S]) by one photon, over a range of photon energies up to a few keV. The calculations were based on using a fairly accurate initial-state wave function, determined so as to exactly satisfy the Kato cusp conditions, and a final-state wave function which is a product of three Coulomb wave functions modified by a short-range correction term. There are at least three different mechanisms for double ionization, and each one leaves a mark on the angular distribution. When themore » energies of the two electrons are equal, the contribution of each mechanism to the angular asymmetry parameter can be estimated on theoretical grounds; we compare these estimates with the calculated results to give a further indication of the roles of the various mechanisms. Concerning the shapes of the energy and angular distributions, we find significant differences between double ionization of singlet and triplet helium; in particular, the probability for one high-energy photon to eject two equal-energy electrons from triplet helium nearly vanishes owing to the Pauli exclusion principle and to interference effects resulting from antisymmetrization. In two appendixes we present some details of the integration involved in the calculations.« less
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.
Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation
NASA Astrophysics Data System (ADS)
Berins, J.; Berins, J.; Kalnacs, A.
2017-08-01
The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2017-10-01
The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.
Relativistic differential-difference momentum operators and noncommutative differential calculus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru
2013-09-15
The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less
Numerical investigation of freak waves
NASA Astrophysics Data System (ADS)
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).
Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases
NASA Astrophysics Data System (ADS)
Morifuji, Masato
2018-01-01
We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.
Exact analytic solution of position-dependent mass Schrödinger equation
NASA Astrophysics Data System (ADS)
Rajbongshi, Hangshadhar
2018-03-01
Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, R. P.; Tripathi, A. K.; Halder, S.
The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2013-12-01
As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Wave turbulence in shallow water models.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2014-06-01
We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 2048{2} points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ∼k{-2} scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ∼k{-4/3}. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.
Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters
NASA Astrophysics Data System (ADS)
Rosenberg, Brian; Mundon, Timothy
2016-11-01
Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.
Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region
NASA Astrophysics Data System (ADS)
Shibuya, Kengo; Saito, Haruo
2018-05-01
We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.
A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester
NASA Astrophysics Data System (ADS)
Yoon, Sunghyun; Cho, Young-Ho
2014-11-01
We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.
Chuang, Yao-Chi; Huang, Tung-Liang; Tyagi, Pradeep; Huang, Chao-Cheng
2016-08-01
We investigated the feasibility of using low energy shock waves for intravesical botulinum toxin A delivery. We also evaluated its efficacy for acetic acid induced bladder hyperactivity in rats. In study 1 magnetic resonance imaging with intravesical administration of Gd-DTPA (Gd-diethylenetriamine pentaacetic acid) contrast medium was performed to visualize increased bladder urothelial permeability after low energy shock waves. In study 2 saline (1 ml) or botulinum toxin A (20 U/1 ml saline) was administered in the bladder with or without low energy shock waves (300 pulses at 0.12 mJ/mm(2)) and retained for 1 hour on day 1. Continuous cystometrograms were performed on day 8 by filling the bladder with saline followed by 0.3% acetic acid. The bladder was harvested for histology, and SNAP-25, SNAP-23 and COX-2 expression by Western blot or immunostaining. Magnetic resonance imaging established bladder urothelial leakage of Gd-DTPA after low energy shock waves, which was not seen in controls. The intercontraction interval was decreased 71.9%, 72.6% and 70.6% after intravesical instillation of acetic acid in saline, saline plus low energy shock wave and botulinum toxin A pretreated rats, respectively. However, rats that received botulinum toxin A plus low energy shock waves showed a significantly reduced response (48.6% decreased intercontraction interval) to acetic acid instillation without compromising voiding function. Rats pretreated with botulinum toxin A plus low energy shock waves showed a decreased inflammatory reaction (p <0.05), and decreased expression of SNAP-23 (p <0.05), SNAP-25 (p = 0.061) and COX-2 (p <0.05) compared with the control group. Low energy shock waves increased urothelial permeability, facilitated intravesical botulinum toxin A delivery and blocked acetic acid induced hyperactive bladder. These results support low energy shock waves as a promising method to deliver botulinum toxin A without the need for injection. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Yong; Dong, Wen-Cai
2013-08-01
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929
Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan
2009-02-01
Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.
NASA Astrophysics Data System (ADS)
Simões Júnior, F. J. R.; Alves, M. V.; Rizzato, F. B.
2005-12-01
Results from plasma wave experiments in spacecrafts give support to nonlinear interactions involving Langmuir, electromagnetic, and ion-acoustic waves in association with type III solar radio bursts. Starting from a general form of Zakharov equation (Zakharov, V.E., 1985. Collapse and self-focusing of Langmuir waves. Hand-book of Plasma Physics Cap.2, 81 121) the equations for electric fields and density fluctuations (density gratings) induced by a pair of counterpropagating Langmuir waves are obtained. We consider the coupling of four triplets. Each two triplets have in common the Langmuir pump wave (forward or backward wave) and a pair of independent density gratings. We numerically solve the dispersion relation for the system, extending the work of (Alves, M.V., Chian, A.C.L., Moraes, M.A.E., Abalde, J.R., Rizzato, F.B., 2002. A theory of the fundamental plasma emission of type- III solar radio bursts. Astronomy and Astrophysics 390, 351 357). The ratio of anti-Stokes (AS) (ω0+ω) to Stokes (S) (ω0-ω) electromagnetic mode amplitudes is obtained as a function of the pump wave frequency, wave number, and energy. We notice that the simultaneous excitation of AS and S distinguishable modes, i.e., with Re{ω}=ω≠0, only occurs when the ratio between the pump wave amplitudes, r is ≠1 and the pump wave vector k0 is <(13)W01/2, W0 being the forward pump wave energy. We also observe that the S mode always receives more energy.
Molecular processes in a high temperature shock layer
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1985-01-01
The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Cosmological gravitational waves
NASA Technical Reports Server (NTRS)
Linder, Eric V.
1988-01-01
A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Kai; Omura, Yoshiharu
2017-10-01
We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.
Electron cyclotron thruster new modeling results preparation for initial experiments
NASA Technical Reports Server (NTRS)
Hooper, E. Bickford
1993-01-01
The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.
Wave energy and swimming performance shape coral reef fish assemblages
Fulton, C.J; Bellwood, D.R; Wainwright, P.C
2005-01-01
Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Paul J.; Pineda Flores, Sergio D.; Neuscamman, Eric
In the regime where traditional approaches to electronic structure cannot afford to achieve accurate energy differences via exhaustive wave function flexibility, rigorous approaches to balancing different states’ accuracies become desirable. As a direct measure of a wave function’s accuracy, the energy variance offers one route to achieving such a balance. Here, we develop and test a variance matching approach for predicting excitation energies within the context of variational Monte Carlo and selective configuration interaction. In a series of tests on small but difficult molecules, we demonstrate that the approach it is effective at delivering accurate excitation energies when the wavemore » function is far from the exhaustive flexibility limit. Results in C3, where we combine this approach with variational Monte Carlo orbital optimization, are especially encouraging.« less
Robinson, Paul J.; Pineda Flores, Sergio D.; Neuscamman, Eric
2017-10-28
In the regime where traditional approaches to electronic structure cannot afford to achieve accurate energy differences via exhaustive wave function flexibility, rigorous approaches to balancing different states’ accuracies become desirable. As a direct measure of a wave function’s accuracy, the energy variance offers one route to achieving such a balance. Here, we develop and test a variance matching approach for predicting excitation energies within the context of variational Monte Carlo and selective configuration interaction. In a series of tests on small but difficult molecules, we demonstrate that the approach it is effective at delivering accurate excitation energies when the wavemore » function is far from the exhaustive flexibility limit. Results in C3, where we combine this approach with variational Monte Carlo orbital optimization, are especially encouraging.« less
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1994-01-01
New calculations of the acoustic wave energy fluxes generated in the solar convective zone have been performed. The treatment of convective turbulence in the sun and solar-like stars, in particular, the precise nature of the turbulent power spectrum has been recognized as one of the most important issues in the wave generation problem. Several different functional forms for spatial and temporal spectra have been considered in the literature and differences between the energy fluxes obtained for different forms often exceed two orders of magnitude. The basic criterion for choosing the appropriate spectrum was the maximal efficiency of the wave generation. We have used a different approach based on physical and empirical arguments as well as on some results from numerical simulation of turbulent convection.
Lin, Chin-Feng; Su, Jiun-Yi; Wang, Hao-Min
2015-09-01
Chronic alcoholism may damage the central nervous system, causing imbalance in the excitation-inhibition homeostasis in the cortex, which may lead to hyper-arousal of the central nervous system, and impairments in cognitive function. In this paper, we use the Hilbert-Huang transformation (HHT) method to analyze the electroencephalogram (EEG) signals from control and alcoholic observers who watched two different pictures. We examined the intrinsic mode function (IMF) based energy distribution features of FP1, FP2, and Fz EEG signals in the time and frequency domains for alcoholics. The HHT-based characteristics of the IMFs, the instantaneous frequencies, and the time-frequency-energy distributions of the IMFs of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers who watched two different pictures were analyzed. We observed that the number of peak amplitudes of the alcoholic subjects is larger than that of the control. In addition, the Pearson correlation coefficients of the IMFs, and the energy-IMF distributions of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers were analyzed. The analysis results show that the energy ratios of IMF4, IMF5, and IMF7 waves of the normal observers to the refereed total energy were larger than 10 %, respectively. In addition, the energy ratios of IMF3, IMF4, and IMF5 waves of the alcoholic observers to the refereed total energy were larger than 10 %. The FP1 and FP2 waves of the normal observers, the FP1 and FP2 waves of the alcoholic observers, and the FP1 and Fz waves of the alcoholic observers demonstrated extremely high correlations. On the other hand, the FP1 waves of the normal and alcoholic observers, the FP1 wave of the normal observer and the FP2 wave of the alcoholic observer, the FP1 wave of the normal observer and the Fz wave of the alcoholic observer, the FP2 waves of the normal and alcoholic FP2 observers, and the FP2 wave of the normal observer and the Fz wave of the alcoholic observer demonstrated extremely low correlations. The IMF4 of the FP1 and FP2 signals of the normal observer, and the IMF5 of the FP1 and FP2 signals of the alcoholic observer were correlated. The IMF4 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer as well as the IMF5 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer exhibited extremely low correlations. In this manner, our experiment leads to a better understanding of the HHT-based IMFs features of FP1, FP2, and Fz EEG signals in alcoholism. The analysis results show that the energy ratios of the wave of an alcoholic observer to its refereed total energy for IMF4, and IMF5 in the δ band for FP1, FP2, and Fz channels were larger than those of the respective waves of the normal observer. The alcoholic EEG signals constitute more than 1 % of the total energy in the δ wave, and the reaction times were 0_4, 4_8, 8_12, and 12_16 s. For normal EEG signals, more than 1 % of the total energy is distributed in the δ wave, with a reaction time 0 to 4 s. We observed that the alcoholic subject reaction times were slower than those of the normal subjects, and the alcoholic subjects could have experienced a cognitive error. This phenomenon is due to the intoxicated central nervous systems of the alcoholic subjects.
Vancoillie, Steven; Malmqvist, Per Åke; Veryazov, Valera
2016-04-12
The chromium dimer has long been a benchmark molecule to evaluate the performance of different computational methods ranging from density functional theory to wave function methods. Among the latter, multiconfigurational perturbation theory was shown to be able to reproduce the potential energy surface of the chromium dimer accurately. However, for modest active space sizes, it was later shown that different definitions of the zeroth-order Hamiltonian have a large impact on the results. In this work, we revisit the system for the third time with multiconfigurational perturbation theory, now in order to increase the active space of the reference wave function. This reduces the impact of the choice of zeroth-order Hamiltonian and improves the shape of the potential energy surface significantly. We conclude by comparing our results of the dissocation energy and vibrational spectrum to those obtained from several highly accurate multiconfigurational methods and experiment. For a meaningful comparison, we used the extrapolation to the complete basis set for all methods involved.
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
Neural rotational speed control for wave energy converters
NASA Astrophysics Data System (ADS)
Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.
2011-02-01
Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Current-induced dissipation in spectral wave models
NASA Astrophysics Data System (ADS)
Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.
2017-03-01
Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.
Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R
2016-12-21
For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H d (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H d by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H d determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich
2015-09-04
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
Waitz, M.; Bello, R. Y.; Metz, D.; ...
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waitz, M.; Bello, R. Y.; Metz, D.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Derivative expansion of wave function equivalent potentials
NASA Astrophysics Data System (ADS)
Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto
2017-04-01
Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKechnie, Scott; Booth, George H.; Cohen, Aron J.
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density-functional theory (DFT) and wave function methods: Hartree-Fock theory (HF), second-order Møller-Plesset perturbation theory (MP2) and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionizationmore » energies obtained from total energy diff calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.« less
Jiao, Fengyu; Wei, Peijun; Li, Li
2017-01-01
Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.
Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions
NASA Astrophysics Data System (ADS)
Shamasundar, K. R.
2018-06-01
We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.
Protective Measurement and Quantum Reality
NASA Astrophysics Data System (ADS)
Gao, Shan
2015-01-01
1. Protective measurements: an introduction Shan Gao; Part I. Fundamentals and Applications: 2. Protective measurements of the wave function of a single system Lev Vaidman; 3. Protective measurement, postselection and the Heisenberg representation Yakir Aharonov and Eliahu Cohen; 4. Protective and state measurement: a review Gennaro Auletta; 5. Determination of the stationary basis from protective measurement on a single system Lajos Diósi; 6. Weak measurements, the energy-momentum tensor and the Bohm approach Robert Flack and Basil J. Hiley; Part II. Meanings and Implications: 7. Measurement and metaphysics Peter J. Lewis; 8. Protective measurements and the explanatory gambit Michael Dickson; 9. Realism and instrumentalism about the wave function: how should we choose? Mauro Dorato and Frederico Laudisa; 10. Protective measurements and the PBR theorem Guy Hetzroni and Daniel Rohrlich; 11. The roads not taken: empty waves, waveform collapse and protective measurement in quantum theory Peter Holland; 12. Implications of protective measurements on de Broglie-Bohm trajectories Aurelien Drezet; 13. Entanglement, scaling, and the meaning of the wave function in protective measurement Maximilian Schlosshauer and Tangereen V. B. Claringbold; 14. Protective measurements and the nature of the wave function within the primitive ontology approach Vincent Lam; 15. Reality and meaning of the wave function Shan Gao; Index.
Landau damping in space plasmas
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
Shock wave treatment improves nerve regeneration in the rat.
Mense, Siegfried; Hoheisel, Ulrich
2013-05-01
The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
The role of coral reef rugosity in dissipating wave energy and coastal protection
NASA Astrophysics Data System (ADS)
Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa
2016-04-01
Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological assemblage changes produces the most accurate assessment of wave energy dissipation across the reef flat. However, the modelled results of bed roughness (e.g. 0.01 for the fore-reef slope) were different to the directly measured rugosity values (0.05 for the fore-reef slope) from three dimension structure-from-motion surveys. In spite of this, the modelled and directly measured values of roughness are similar considering the difficulties outlined in previous research when relating the coral reef structural complexity to a single value of hydrodynamic roughness. Bed roughness was shown to be a secondary factor behind wave breaking in dissipating wave energy. However, without bed friction waves could be an order of magnitude higher in the back-reef environment. Bed friction is also increasingly important in wave dissipation at higher sea levels as wave energy dissipation due to wave breaking is reduced at greater depths. This shows that maintaining a structurally diverse and healthy reef is crucial under future sea level rise scenarios in order to maintain the protection of coastal environments. These results also indicate that significant geomorphic change in coastal environments will occur due to reduced wave dissipation at higher sea levels unless reefs are capable of keeping up with forecasted sea level rise.
Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng
2016-12-15
A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
Hwang, Jungseek
2015-03-04
We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.
Wigner molecules: the strong-correlation limit of the three-electron harmonium.
Cioslowski, Jerzy; Pernal, Katarzyna
2006-08-14
At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.
The gravitational wave stress–energy (pseudo)-tensor in modified gravity
NASA Astrophysics Data System (ADS)
Saffer, Alexander; Yunes, Nicolás; Yagi, Kent
2018-03-01
The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.
NASA Astrophysics Data System (ADS)
Ibach, Harald
2014-12-01
The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.
NASA Astrophysics Data System (ADS)
Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.
2018-01-01
Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.
Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Veltri, P.; Mangeney, A.; Scudder, J. D.
1992-01-01
The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.
Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R
2015-07-01
Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers. Published by Elsevier Inc.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
NASA Astrophysics Data System (ADS)
Zhang, X.; Comins, J. D.; Every, A. G.; Stoddart, P. R.; Pang, W.; Derry, T. E.
1998-11-01
Thin amorphous silicon layers on crystalline silicon substrates have been produced by argon-ion bombardment of (001) silicon surfaces. Thermally induced surface excitations characteristic of this example of a soft-on-hard system have been investigated by surface Brillouin scattering (SBS) as a function of scattering-angle and amorphous-layer thickness. At large scattering angles or for sufficiently large layer thickness, a second peak is present in the SBS spectrum near the low-energy threshold for the continuum of bulk excitations of the system. The measured spectra are analyzed on the basis of surface elastodynamic Green's functions, which successfully simulate their detailed appearance and identify the second peak as either a Sezawa wave (true surface wave) or a pseudo-Sezawa wave (attenuated surface wave) depending on the scattering parameters. The attributes of the pseudo-Sezawa wave are described; these include its asymmetrical line shape and variation in intensity with k∥d (the product of the surface excitation wave vector and the layer thickness), and its emergence as the Sezawa wave from the low-energy side of the Lamb shoulder at a critical value of k∥d. Furthermore, the behavior of a pronounced minimum in the Lamb shoulder near the longitudinal wave threshold observed in the experiments is reported and is found to be in good agreement with the calculated spectra. The elastic constants of the amorphous silicon layer are determined from the velocity dispersion of the Rayleigh surface acoustic wave and the minimum in the Lamb shoulder.
NASA Astrophysics Data System (ADS)
Swerdlow, Josh; Yoo, Jongsoo; Kim, Eun-Hwa; Yamada, Masaaki; Ji, Hantao
2017-10-01
Generation of whistler waves during asymmetric reconnection is studied by analyzing data from a MMS (Magnetospheric Multiscale) event. In particular, the possible role of electron temperature anisotropy in excitation of whistler waves on the magnetosphere side is discussed. The local electron distribution function is fitted into a sum of bi-Maxwellian distribution functions. Then, the dispersion relation solver, WHAMP (waves in homogeneous, anisotropic, multicomponent plasmas), is used to obtain the local dispersion relation and growth rate of the whistler waves. We compare the theoretical calculations with the measured dispersion relation. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.
The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less
Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...
2017-04-18
The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.
The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.
The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less
Pseudopotential plane-wave calculation of the structural properties of yttrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Chou, M.Y.
1991-11-01
The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
NASA Technical Reports Server (NTRS)
Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David
1989-01-01
Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.
Ion-Acoustic Wave-Particle Energy Flow Rates
NASA Astrophysics Data System (ADS)
Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred
2017-10-01
We present an experimental characterization of the energy flow rates for ion acoustic waves. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon, inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 9 eV and B 660 kG. A 4 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the zeroth and first order ion velocity distribution functions (IVDF) is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Using these IVDFs along with Vlasov's equation the different energy rates are measured for different values of ion velocity and separation from the antenna. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.
Arterial wave reflection and subclinical left ventricular systolic dysfunction.
Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R
2011-03-01
Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Climatology of Global Swell-Atmosphere Interaction
NASA Astrophysics Data System (ADS)
Semedo, Alvaro
2016-04-01
At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.
Dynamic cross correlation studies of wave particle interactions in ULF phenomena
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Ab initio computation of the transition temperature of the charge density wave transition in TiS e2
NASA Astrophysics Data System (ADS)
Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian
2015-12-01
We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.
Correlated electron-nuclear dynamics with conditional wave functions.
Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel
2014-08-22
The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.
Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen
2016-02-01
The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.
NASA Astrophysics Data System (ADS)
van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet
2018-04-01
In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.
Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola
2015-12-01
Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
On the Linearly-Balanced Kinetic Energy Spectrum
NASA Technical Reports Server (NTRS)
Lu, Huei,-Iin; Robertson, F. R.
1999-01-01
It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.
Electromagnetic pulses, localized and causal
NASA Astrophysics Data System (ADS)
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi
2007-02-15
We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix
2015-09-25
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-09-01
Angle-resolved photoemission studies of single-crystalline La-doped Bi-Sr-Ca-Cu- 90-K superconductors (Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ) were performed utilizing synchrotron radiation covering the photon energy range 10-40 eV. The data conclusively reveal a dispersionless character of the valence-band states as a function of the wave-vector component parallel to the c axis, in agreement with the predictions of band calculations. Band effects are evident from both intensity modulations of the spectral features in the valence band and from energy dispersions as a function of the wave vector component lying in the basal a-b plane.
Polymer Morphological Change Induced by Terahertz Irradiation
NASA Astrophysics Data System (ADS)
Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro
2016-06-01
As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners
NASA Astrophysics Data System (ADS)
Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu
2018-05-01
Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.
Transport equations for linear surface waves with random underlying flows
NASA Astrophysics Data System (ADS)
Bal, Guillaume; Chou, Tom
1999-11-01
We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.
Nonlinear collisionless electron cyclotron interaction in the pre-ionisation stage
NASA Astrophysics Data System (ADS)
Farina, D.
2018-06-01
Electron cyclotron (EC) wave-particle interaction is theoretically investigated in the pre-ionisation phase, much before collisions and other mechanisms can play a role. In the very first phase of a plasma discharge with EC-assisted breakdown, the motion of an electron at room temperature in a static magnetic field under the action of a localised microwave beam is nonlinear, and transition to states of larger energy can occur via wave trapping. Within a Hamiltonian adiabatic formalism, the conditions at which the particles gain energy in single beam crossing are derived in a rigorous way, and the energy variation is characterized quantitatively as a function of the wave frequency, harmonic number, polarisation and EC power and beam width. Estimates of interest for applications to tokamak start-up are obtained for the first, second and third cyclotron harmonic. The investigation confirms that electrons can easily gain energies well above the ionisation energy in most conditions at the first two harmonics, while not at the third harmonic, as observed in experiments.
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
Strain in shore fast ice due to incoming ocean waves and swell
NASA Astrophysics Data System (ADS)
Fox, Colin; Squire, Vernon A.
1991-03-01
Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.
Rocha, Alexandre B; de Moura, Carlos E V
2011-12-14
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
The two Faces of Equipartition
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Perton, M.; Rodriguez-Castellanos, A.; Campillo, M.; Weaver, R. L.; Rodriguez, M.; Prieto, G.; Luzon, F.; McGarr, A.
2008-12-01
Equipartition is good. Beyond its philosophical implications, in many instances of statistical physics it implies that the available kinetic and potential elastic energy, in phase space, is distributed in the same fixed proportions among the possible "states". There are at least two distinct and complementary descriptions of such states in a diffuse elastic wave field u(r,t). One asserts that u may be represented as an incoherent isotropic superposition of incident plane waves of different polarizations. Each type of wave has an appropriate share of the available energy. This definition introduced by Weaver is similar to the room acoustics notion of a diffuse field, and it suffices to permit prediction of field correlations. The other description assumes that the degrees of freedom of the system, in this case, the kinetic energy densities, are all incoherently excited with equal expected amplitude. This definition, introduced by Maxwell, is also familiar from room acoustics using the normal modes of vibration within an arbitrarily large body. Usually, to establish if an elastic field is diffuse and equipartitioned only the first description has been applied, which requires the separation of dilatational and shear waves using carefully designed experiments. When the medium is bounded by an interface, waves of other modes, for example Rayleigh waves, complicate the measurement of these energies. As a consequence, it can be advantageous to use the second description. Moreover, each spatial component of the energy densities is linked, when an elastic field is diffuse and equipartitioned, to the component of the imaginary part of the Green function at the source. Accordingly, one can use the second description to retrieve the Green function and obtain more information about the medium. The equivalence between the two descriptions of equipartition are given for an infinite space and extended to the case of a half-space. These two descriptiosn are equivalent thanks to the relationship of average autocorrelations with the imaginary part of Green function at the source. Preliminary results are displayed in data sets from Chilpancingo, Mexico, and the Tautona Gold Mine, South Africa, that strongly suggest that equipartition, that guarantees the diffuse nature of seismic fields, has more than one face. Acknowledgements. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Scaling Observations of Surface Waves in the Beaufort Sea
2016-04-14
the treatment of wind input can be improved in partial ice cover using the ice concentration, where wave energy is a function of open water distance...drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time...series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch) when
Triad Resonance in the Gravity-Acoustic Family
NASA Astrophysics Data System (ADS)
Kadri, U.
2015-12-01
Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.
Criticality of the electron-nucleus cusp condition to local effective potential-energy theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016
2003-01-01
Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less
Ohno, Kaoru; Ono, Shota; Isobe, Tomoharu
2017-02-28
The quasiparticle (QP) energies, which are minus of the energies required by removing or produced by adding one electron from/to the system, corresponding to the photoemission or inverse photoemission (PE/IPE) spectra, are determined together with the QP wave functions, which are not orthonormal and even not linearly independent but somewhat similar to the normal spin orbitals in the theory of the configuration interaction, by self-consistently solving the QP equation coupled with the equation for the self-energy. The electron density, kinetic, and all interaction energies can be calculated using the QP wave functions. We prove in a simple way that the PE/IPE spectroscopy and therefore this QP theory can be applied to an arbitrary initial excited eigenstate. In this proof, we show that the energy-dependence of the self-energy is not an essential difficulty, and the QP picture holds exactly if there is no relaxation mechanism in the system. The validity of the present theory for some initial excited eigenstates is tested using the one-shot GW approximation for several atoms and molecules.
Direct pair production in heavy-ion--atom collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.
1983-02-01
Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.
Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems
NASA Technical Reports Server (NTRS)
Temkin, A.
1961-01-01
The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.
Kinetic energy flux budget across air-sea interface
NASA Astrophysics Data System (ADS)
Fan, Yalin; Hwang, Paul
2017-12-01
The kinetic energy (KE) fluxes into subsurface currents (EFc) is an important boundary condition for ocean circulation models. Traditionally, numerical models assume the KE flux from wind (EFair) is identical to EFc, that is, no net KE is gained (or lost) by surface waves. This assumption, however, is invalid when the surface wave field is not fully developed, and acquires KE when it grows in space or time. In this study, numerical experiments are performed to investigate the KE flux budget across the air-sea interface under both uniform and idealized tropical cyclone (TC) winds. The wave fields are simulated using the WAVEWATCH III model under different wind forcing. The difference between EFair and EFc is estimated using an air-sea KE budget model. To address the uncertainty of these estimates resides in the variation of source functions, two source function packages are used for this study: the ST4 source package (Ardhuin et al, 2010), and the ST6 source package (Babanin, 2011). The modeled EFc is significantly reduced relative to EFair under growing seas for both the uniform and TC experiments. The reduction can be as large as 20%, and the variation of this ratio is highly dependent on the choice of source function for the wave model. Normalized EFc are found to be consistent with analytical expressions by Hwang and Sletten (2008) and Hwang and Walsh (2016) and field observations by Terray et al. (1996) and Drennan et al. (1996), while the scatters are more widely in the TC cases due to the complexity of the associated wave field. The waves may even give up KE to subsurface currents in the left rear quadrant of fast moving storms. Our results also suggest that the normalized KE fluxes may depend on both wave age and friction velocity (u*).
NASA Astrophysics Data System (ADS)
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V
2012-06-01
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.
Connection technology of HPTO type WECs and DC nano grid in island
NASA Astrophysics Data System (ADS)
Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin
2016-07-01
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D
In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.
Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.
2016-02-01
Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.
Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
NASA Astrophysics Data System (ADS)
Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos
2017-05-01
Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
Resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-06-01
Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Characteristics of microseisms in South China
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Pan, M.
2017-12-01
Microseisms are generated by coupling ocean waves and the solid earth, and their main frequencies and sources vary in different regions of the world. We use continuous waveforms from three arrays along the southern coast of China to study the types and sources of microseisms in South China. Using cross-correlation functions and a three-component F-K analysis, we found that the main type of microseisms in this area propagates as surface waves, arriving mainly from the east and southeast. We also found that the surface waves have different characteristics: the Rayleigh waves and Love waves have diverse sources, are frequency dependent and have no obvious seasonal changes. In the 0.2-0.25 Hz frequency band, the Rayleigh and Love waves at the W01, W02 and ST arrays show the influences of common microseisms sources from Taiwan and the Luzon Strait. However, in the 0.27-0.5 Hz frequency band, the energy of the microseisms tends to be governed by the offshore sources near the stations. In addition, the Love waves have broader back azimuths than those of the Rayleigh waves, which may due to the energy transfer between Rayleigh and Love waves in the thick sediment layers.
Approximating the Helium Wavefunction in Positronium-Helium Scattering
NASA Technical Reports Server (NTRS)
DiRienzi, Joseph; Drachman, Richard J.
2003-01-01
In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.
Effect of Shock Wave Lithotripsy on Renal Hemodynamics
NASA Astrophysics Data System (ADS)
Handa, Rajash K.; Willis, Lynn R.; Evan, Andrew P.; Connors, Bret A.
2008-09-01
Extracorporeal shock wave lithotripsy (SWL) can injure tissue and decrease blood flow in the SWL-treated kidney, both tissue and functional effects being largely localized to the region targeted with shock waves (SWs). A novel method of limiting SWL-induced tissue injury is to employ the "protection" protocol, where the kidney is pretreated with low-energy SWs prior to the application of a standard clinical dose of high-energy SWs. Resistive index measurements of renal vascular resistance/impedance to blood flow during SWL treatment protocols revealed that a standard clinical dose of high-energy SWs did not alter RI during SW application. However, there was an interaction between low- and high-energy SWL treatment phases of the "protection" protocol such that an increase in RI (vasoconstriction) was observed during the later half of SW application, a time when tissue damage is occurring during the standard high-energy SWL protocol. We suggest that renal vasoconstriction may be responsible for reducing the degree of tissue damage that normally results from a standard clinical dose of high-energy SWs.
Exciton binding energy in a pyramidal quantum dot
NASA Astrophysics Data System (ADS)
Anitha, A.; Arulmozhi, M.
2018-05-01
The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.
Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2015-06-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Ultracompact beam splitters based on plasmonic nanoslits
Zhou, Chuanhong; Kohli, Punit
2011-01-01
An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248
Physical and non-physical energy in scattered wave source-receiver interferometry.
Meles, Giovanni Angelo; Curtis, Andrew
2013-06-01
Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.
Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.
Dragoman, Daniela; Dragoman, Mircea
2015-12-04
We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix
2015-01-01
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave
NASA Astrophysics Data System (ADS)
Jiang, Yanpei
2018-05-01
Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.
Diffuse Waves and Energy Densities Near Boundaries
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G
2009-02-01
Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.
Wind Wave Behavior in Fetch and Depth Limited Estuaries
NASA Astrophysics Data System (ADS)
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
Wind Wave Behavior in Fetch and Depth Limited Estuaries
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design. PMID:28098236
Wind Wave Behavior in Fetch and Depth Limited Estuaries.
Karimpour, Arash; Chen, Qin; Twilley, Robert R
2017-01-18
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
Convergence of quasiparticle self-consistent G W calculations of transition-metal monoxides
NASA Astrophysics Data System (ADS)
Das, Suvadip; Coulter, John E.; Manousakis, Efstratios
2015-03-01
Finding an accurate ab initio approach for calculating the electronic properties of transition-metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition-metal monoxides MnO, CoO, and NiO in their undistorted rocksalt structure within a fully iterated quasiparticle self-consistent G W (QPsc G W ) scheme. We study the convergence of the QPsc G W method, i.e., how the quasiparticle energy eigenvalues and wave functions converge as a function of the QPsc G W iterations, and we compare the converged outputs obtained from different starting wave functions. We find that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. It is important to notice that in some cases the "path" to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When we reach a fully iterated solution, the converged density of states, band gaps, and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wave functions and in reasonably good agreement with the experiment. Finally, this approach provides a clear picture of the interplay between the various orbitals near the Fermi level of these simple transition-metal monoxides. The results of these accurate ab initio calculations can provide input for models aiming at describing the low-energy physics in these materials.
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
Effect of dynamical phase on the resonant interaction among tsunami edge wave modes
Geist, Eric L.
2018-01-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-02-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-04-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
NASA Astrophysics Data System (ADS)
Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy
2016-04-01
As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.
Langhamer, Olivia; Wilhelmsson, Dan
2009-10-01
Several Western European countries are planning for a significant development of offshore renewable energy along the European Atlantic Ocean coast, including many thousands of wave energy devices and wind turbines. There is an increasing interest in articulating the added values of the creation of artificial hard bottom habitats through the construction of offshore renewable energy devices, for the benefit of fisheries management and conservation. The Lysekil Project is a test park for wave power located about 100 km north of Gothenburg at the Swedish west coast. A wave energy device consists of a linear wave power generator attached to a foundation on the seabed, and connected by a wire to a buoy at the surface. Our field experiment examined the function of wave energy foundations as artificial reefs. In addition, potentials for enhancing the abundance of associated fish and crustaceans through manufactured holes of the foundations were also investigated. Assemblages of mobile organisms were examined by visual censuses in July and August 2007, 3 months after deployment of the foundations. Results generally show low densities of mobile organisms, but a significantly higher abundance of fish and crabs on the foundations compared to surrounding soft bottoms. Further, while fish numbers were not influenced by increased habitat complexity (holes), it had a significantly positive effect on quantities of edible crab (Cancer pagurus), on average leading to an almost five-fold increase in densities of this species. Densities of spiny starfish (Marthasterias glacialis) were negatively affected by the presence of holes, potentially due to increased predator abundance (e.g. C. pagurus). These results suggest a species-specific response to enhanced habitat complexity.
Influence of dense plasma on the energy levels and transition properties in highly charged ions
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai
2018-03-01
The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.
Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model
NASA Astrophysics Data System (ADS)
Marsooli, Reza; Orton, Philip M.; Mellor, George
2017-07-01
Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.
Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk
NASA Astrophysics Data System (ADS)
Misra, R.
2000-02-01
We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.
Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method
NASA Astrophysics Data System (ADS)
Kunz, A. B.; Waber, J. T.
1981-08-01
Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.
Bose--Einstein Correlations and Thermal Cluster Formation in High-energy Collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Florkowski, W.; Zalewski, K.
The blast wave model is generalized to include the production of thermal clusters, as suggested by the apparent success of the statistical model of particle production at high energies. The formulae for the HBT correlation functions and the corresponding HBT radii are derived.
Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces
2014-08-31
melting / recrystallization of the subsurface Ag/Cu interface. Observed the formation of a novel, lattice-mismatched interfacial microstruc- ture...calculations were converged within 1 × 10−4 Ryd with respect to wave function cutoff energy, energy density cutoff, and k- point sampling. The A-EAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Gordon M.; Robertson, Amy; Jonkman, Jason
A database of meteorological and ocean conditions is presented for use in offshore wind energy research and design. The original data are from 23 ocean sites around the USA and were obtained from the National Data Buoy Center run by the National Oceanic and Atmospheric Administration. The data are presented in a processed form that includes the variables of interest for offshore wind energy design: wind speed, significant wave height, wave peak-spectral period, wind direction and wave direction. For each site, a binning process is conducted to create conditional probability functions for each of these variables. The sites are thenmore » grouped according to geographic location and combined to create three representative sites, including a West Coast site, an East Coast site and a Gulf of Mexico site. Both the processed data and the probability distribution parameters for the individual and representative sites are being hosted on a publicly available domain by the National Renewable Energy Laboratory, with the intent of providing a standard basis of comparison for meteorological and ocean conditions for offshore wind energy research worldwide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CCmore » self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.« less
Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.
Li, Nianbei; Ren, Jie
2014-08-29
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.
Nucleon-anti-nucleon intruder state of Dirac equation for nucleon in deep scalar potential well
NASA Astrophysics Data System (ADS)
Kuo, T. T. S.; Kuo, T. K.; Osnes, E.; Shu, S.
We solve the Dirac radial equation for a nucleon in a scalar Woods-Saxon potential well of depth V0 and radius r0. A sequence of values for the depth and radius are considered. For shallow potentials with -1000MeV ≤ V0 < 0 the wave functions for the positive-energy states ψ+(r) are dominated by their nucleon component f(r). But for deeper potentials with V0 ≤ -1500MeV the ψ+(r) s begin to have dominant anti-nucleon component f(r). In particular, a special intruder state enters with wave function ψ1/2(r) and energy E1/2. We have considered several r0 values between 2 and 8fm. For V0 ≤ -2000 MeV and the above r0 values. ψ1/2(r) is the only bound positive-energy state and has its g(r) closely equal to -f(r), both having a narrow wave packet shape centered around r0. The E1/2 of this state is practically independent of V0 for the above V0 range and obeys closely the relation E1/2 = ℏc/r0.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sibeck, D. G.
2016-01-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Two-state model based on the block-localized wave function method
NASA Astrophysics Data System (ADS)
Mo, Yirong
2007-06-01
The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1986-01-01
A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.
Modifiying shallow-water equations as a model for wave-vortex turbulence
NASA Astrophysics Data System (ADS)
Mohanan, A. V.; Augier, P.; Lindborg, E.
2017-12-01
The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.
NASA Astrophysics Data System (ADS)
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna; Xu, Haitao
2017-09-01
In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H''(c0) evaluated at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.
Observation of Wave Energy Evolution in Coastal Areas Using HF Radar
2009-09-01
the root-mean-square (RMS) wave height Hrms and mean wave period T as a function of the backscatter power ratio of the second- order to first-order...range Hrms $ 0.3/ko (Hs $ 2.26 m; Barrick 1977a), consideration of values outside this constraint did not change a significantly. Also, the apparent...propagation in the region (section 4c ). Analysis of the data showed that the wavelet filtering is consistent with other techniques (e.g., Fourier band
A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.; Horwitz, J. L.
1997-01-01
The mechanism of lower hybrid wave (LHW) excitation due to the O+ relative drift in a plasma subjected to low-frequency waves (LFWs) is used for analysis of Viking satellite data for events in the cusp/cleft region. In some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed, suggesting the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in space plasmas.
Site-occupation embedding theory using Bethe ansatz local density approximations
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel
2018-06-01
Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.
Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A
2018-05-25
The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.
Modeling of Inner Magnetosphere Coupling Processes
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.
Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.
Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Meath, William J.
The evaluation of second order non-expanded dispersion and induction energies, and the associated damping functions, for interactions involving molecules is discussed with emphasis placed on using the time-dependent coupled Hartree-Fock method. Results are given for the HF-He interaction for all individual partial wave non-expanded dispersion and induction energies varying asymptotically for large R through O(R-8) and O(R-10) respectively and for most of the individual dispersion energies varying as R-9 and R-10. They are used to illustrate various features of charge overlap effects and the damping functions for molecular interactions, which are considerably more complicated than for atom-atom interactions.
Polymer Morphological Change Induced by Terahertz Irradiation
Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro
2016-01-01
As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10−20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984
Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcentire, R. W.; Lui, A. T. Y.; Potemra, T. A.
1990-01-01
The AMPTE CCE spacecraft observed a transverse Pc 5 magnetic pulsation (period of about 200 s) at 2155-2310 UT on November 20, 1985, at a radial distance of 5.7 - 7.0 earth radii, at a magnetic latitude of 1.2 - 19 deg, and near 1300 magnetic local time. The magnetic pulsation exhibits properties consistent with a standing Alfven wave with a second-harmonic standing structure along the ambient magnetic field. The amplitude and the phase of the flux pulsation are found to be a function of the particle detector look direction and the particle energy. The observed energy dependence of the shift is interpreted as the result of a drift-bounce resonance of the ions with the wave. From this interpretation it follows that the wave propagated westward with an azimuthal wave number of approximately 100. Thus the study demonstrates that particle data can be useful for determining the spatial structure of some types of ULF waves.
A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves
NASA Astrophysics Data System (ADS)
Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang
2018-03-01
The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.
NASA Technical Reports Server (NTRS)
Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.
1986-01-01
The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2012-01-28
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
NASA Astrophysics Data System (ADS)
Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang
2018-03-01
During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.
Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter
NASA Astrophysics Data System (ADS)
Michele, Simone; Sammarco, Paolo; d'Errico, Michele
2016-08-01
We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.
Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite
NASA Astrophysics Data System (ADS)
Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.
2017-12-01
Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.
Wave power focusing due to the Bragg resonance
NASA Astrophysics Data System (ADS)
Tao, Ai-feng; Yan, Jin; Wang, Yi; Zheng, Jin-hai; Fan, Jun; Qin, Chuan
2017-08-01
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2016-09-01
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.
Bitter, M; Milner, V
2016-09-30
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Bannuru, Raveendhara R; Flavin, Nina E; Vaysbrot, Elizaveta; Harvey, William; McAlindon, Timothy
2014-04-15
Calcific and noncalcific tendinitis of the shoulder can be unresponsive to conventional therapies. Extracorporeal shock-wave therapy (ESWT) has been suggested as an alternative treatment. To assess the efficacy of ESWT in patients with calcific and noncalcific tendinitis. MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, Web of Science, and Google Scholar were searched up to 1 November 2013. Randomized, controlled trials (RCTs) comparing high-energy versus low-energy ESWT or placebo for treatment of calcific or noncalcific tendinitis of the shoulder. Outcome measures included pain (visual analogue scale score), functional assessment (Constant-Murley score), and resolution of calcifications. Three independent reviewers abstracted data and determined eligibility and quality by consensus. Twenty-eight RCTs met the inclusion criteria. Studies were heterogeneous. Twenty RCTs compared ESWT energy levels and placebo and consistently showed that high-energy ESWT was significantly better than placebo in decreasing pain and improving function and resorption of calcifications in calcific tendinitis. No significant difference was found between ESWT and placebo in treatment of noncalcific tendinitis. The number of RCTs was small, and the studies were heterogeneous. High-energy ESWT is effective for improving pain and shoulder function in chronic calcific shoulder tendinitis and can result in complete resolution of calcifications. This therapy may be underutilized for a condition that can be difficult to manage. None.
NASA Astrophysics Data System (ADS)
Wygant, J. R.
2016-12-01
Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weizhou, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn; Zhang, Yu; Sun, Tao
High-level coupled cluster singles, doubles, and perturbative triples [CCSD(T)] computations with up to the aug-cc-pVQZ basis set (1924 basis functions) and various extrapolations toward the complete basis set (CBS) limit are presented for the sandwich, T-shaped, and parallel-displaced benzene⋯naphthalene complex. Using the CCSD(T)/CBS interaction energies as a benchmark, the performance of some newly developed wave function and density functional theory methods has been evaluated. The best performing methods were found to be the dispersion-corrected PBE0 functional (PBE0-D3) and spin-component scaled zeroth-order symmetry-adapted perturbation theory (SCS-SAPT0). The success of SCS-SAPT0 is very encouraging because it provides one method for energy componentmore » analysis of π-stacked complexes with 200 atoms or more. Most newly developed methods do, however, overestimate the interaction energies. The results of energy component analysis show that interaction energies are overestimated mainly due to the overestimation of dispersion energy.« less
Multilevel quantum Otto heat engines with identical particles
NASA Astrophysics Data System (ADS)
Huang, X. L.; Guo, D. Y.; Wu, S. L.; Yi, X. X.
2018-02-01
A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of W^i (i=B,F) to W_s, where W^B and W^F are the work done by two Bosons and Fermions, respectively, and W_s is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of W^i_M/M to W_s, where W^i_M/M can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of E_n˜ n^2, the results are similar. For the case E_n˜ n, two different conclusions are obtained.
Newtonian self-gravitation in the neutral meson system
NASA Astrophysics Data System (ADS)
Großardt, André; Hiesmayr, Beatrix C.
2015-03-01
We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.
The role of Snell's law for a magnonic majority gate.
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru
2017-08-11
In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.
A new energy transfer model for turbulent free shear flow
NASA Technical Reports Server (NTRS)
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Strong potential wave functions with elastic channel distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macek, J.; Taulbjerg, K.
1989-06-01
The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials
Li, Nianbei; Ren, Jie
2014-01-01
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
Software-type Wave-Particle Interaction Analyzer (SWPIA) by RPWI for JUICE
NASA Astrophysics Data System (ADS)
Katoh, Y.; Kojima, H.; Asamura, K.; Kasaba, Y.; Tsuchiya, F.; Kasahara, Y.; Ishisaka, S.; Kimura, T.; Miyoshi, Y.; Santolik, O.; Bergman, J.; Puccio, W.; Gill, R.; Wieser, M.; Schmidt, W.; Barabash, S.; Wahlund, J.-E.
2017-09-01
Software-type Wave-Particle Interaction Analyzer (SWPIA) will be realized as a software function of Low-Frequency receiver (LF) running on the DPU of RPWI (Radio and Plasma Waves Investigation) for the ESA JUICE mission. SWPIA conducts onboard computations of physical quantities indicating the energy exchange between plasma waves and energetic ions. Onboard inter-instruments communications are necessary to realize SWPIA, which will be implemented by efforts of RPWI, PEP (Particle Environment Package) and J-MAG (JUICE Magnetometer). By providing the direct evidence of ion energization processes by plasma waves around Jovian satellites, SWPIA contributes scientific output of JUICE as much as possible with keeping its impact on the telemetry data size to a minimum.
NASA Astrophysics Data System (ADS)
Baryshev, Yu. V.; Paturel, G.
2001-05-01
We use data on the local 3-dimensional galaxy distribution for studying the statistics of the detection rates of gravitational waves (GW) coming from supernova explosions. We consider both tensor and scalar gravitational waves which are possible in a wide range of relativistic and quantum gravity theories. We show that statistics of GW events as a function of sidereal time can be used for distinction between scalar and tensor gravitational waves because of the anisotropy of spatial galaxy distribution. For calculation of the expected amplitudes of GW signals we use the values of the released GW energy, frequency and duration of GW pulse which are consistent with existing scenarios of SN core collapse. The amplitudes of the signals produced by Virgo and the Great Attractor clusters of galaxies is expressed as a function of the sidereal time for resonant bar detectors operating now (IGEC) and for forthcoming laser interferometric detectors (VIRGO). Then, we calculate the expected number of GW events as a function of sidereal time produced by all the galaxies within 100 Mpc. In the case of axisymmetric rotational core collapse which radiates a GW energy of 10-9Msunc2, only the closest explosions can be detected. However, in the case of nonaxisymmetric supernova explosion, due to such phenomena as centrifugal hangup, bar and lump formation, the GW radiation could be as strong as that from a coalescing neutron-star binary. For radiated GW energy higher than 10-6Msunc2 and sensitivity of detectors at the level h ~ 10-23 it is possible to detect Virgo cluster and Great Attractor, and hence to use the statistics of GW events for testing gravity theories.
The interaction of turbulence with parallel and perpendicular shocks
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-11-01
Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Jochem W; Laird, Daniel; Costello, Ronan
This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.
Wave energy analysis based on simulation wave data in the China Sea
NASA Astrophysics Data System (ADS)
Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da
2018-05-01
In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.
Ultrasound-aided high-resolution biophotonic imaging
NASA Astrophysics Data System (ADS)
Wang, Lihong V.
2003-10-01
We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
Seismic Barrier Protection of Critical Infrastructure from Earthquakes
2017-05-01
structure composed of opposing boreholes or trenches to mitigate seismic waves from diffracting and traveling in the vertical plane. Computational...dams, etc., pose significant risk to civilians while adding tremendous cost and recovery time to regain their functionality. Lower energy earthquakes...the most destructive are surface waves (Rayleigh, Love, shear) which can travel great distances in the far field from the earthquake hypocenter and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi; Thresher, Robert
Marine hydrokinetic energy is a promising and growing piece of the renewable energy sector that offers high predictability and additional energy sources for a diversified energy economy. This report investigates the market opportunities for wave energy along the U.S. coastlines. It is part one of a two-part investigation into the United State's two largest marine hydrokinetic resources (wave and tidal). Wave energy technology is still an emerging form of renewable energy for which large-scale, grid-connected project costs are currently poorly defined. Ideally, device designers would like to know the resource conditions at economical project sites so they can optimize devicemore » designs. On the other hand, project developers need detailed device cost data to identify sites where projects are economical. That is, device design and siting are, to some extent, a coupled problem. This work describes a methodology for identifying likely deployment locations based on a set of criteria that wave energy experts in industry, academia, and national laboratories agree are likely to be important factors for all technology types. This work groups the data for the six criteria into 'locales' that are defined as the smaller of either the local transmission grid or a state boundary. The former applies to U.S. islands (e.g., Hawaii, American Samoa) and rural villages (e.g., in Alaska); the latter applies to states in the contiguous United States. These data are then scored from 0 to 10 according to scoring functions that were developed with input from wave energy industry and academic experts. The scores are aggregated using a simple product method that includes a weighting factor for each criterion. This work presents two weighting scenarios: a long-term scenario that does not include energy price (weighted zero) and a near term scenario that includes energy price. The aggregated scores are then used to produce ranked lists of likely deployment locales. In both scenarios, Hawaii and the Pacific Northwest (northern California, Oregon, and Washington) rank at the top of the lists. Hawaii ranks highest in the near-term scenario because it has high energy costs. In the long-term scenario, Oregon ranks highest because it has a large market and an energetic resource. Several East Coast states and Puerto Rico are also identified as potential wave energy deployment sites if technological innovations make it possible to efficiently generate electricity from the modest resource there. There are also several small-market sites in Alaska and U.S. Pacific Islands that rank particularly well in the near-term analysis due to their high energy prices. These locations may represent opportunities to demonstrate economical wave energy conversion as a stepping-stone to larger markets. Several factors that will affect wave project costs and siting have not been considered here -- including permitting constraints, conflicting use, seasonal resource variability, extreme event likelihood, and distance to ports -- because consistent data are unavailable or technology-independent scoring could not be identified. As the industry continues to mature and converge around a subset of device archetypes with well-defined costs, more precise investigations of project siting that include these factors will be possible. For now, these results provide a high-level guide pointing to the regions where markets and resource will one day support commercial wave energy projects.« less
NASA Astrophysics Data System (ADS)
Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada
2007-01-01
Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.
Discretized energy minimization in a wave guide with point sources
NASA Technical Reports Server (NTRS)
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Teaching Qualitative Energy-Eigenfunction Shape with Physlets
ERIC Educational Resources Information Center
Belloni, Mario; Christian, Wolfgang; Cox, Anne J.
2007-01-01
More than 35 years ago, French and Taylor outlined an approach to teach students and teachers alike how to understand "qualitative plots of bound-state wave functions." They described five fundamental statements based on the quantum-mechanical concepts of probability and energy (total and potential), which could be used to deduce the shape of…
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The epitaxial growth of quantum wells composed of high quality allows the production and application to their device of new structures in low dimensions. The potential profile at the junction is determined by free carriers and by the level of doping. Therefore, the shape of potential is obtained by the electron density. Energy level determines the number of electrons that can be occupied at every level. Energy levels and electron density values of each level must be calculated self consistently. Starting with V(z) test potential, wave functions and electron densities for each energy levels can be calculated to solve Schrödinger equation. If Poisson's equation is solved with the calculated electron density, the electrostatic potential can be obtained. The new V(z) potential can be calculated with using electrostatic potential found beforehand. Thus, the obtained values are calculated self consistently to a certain error criterion. In this study, the energy levels formed in the interfacial potential, electron density in each level and the wave function dependence of material parameters were investigated self consistently.
Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal
2017-09-28
This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- < Naph- < Anth- < Py-DTC. This shift is reversible upon removal of Py-DTC by triethylphosphine gold(i) chloride treatment at room temperature. Furthermore, we performed temperature-dependent (80-300 K) photoluminescence lifetime measurements, which show longer lifetime at lower temperature, suggesting a strong influence of hole wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.
The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
Ogam, Erick; Depollier, Claude; Fellah, Z E A
2010-09-01
Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.
Evaluation of Density Functionals and Basis Sets for Carbohydrates
USDA-ARS?s Scientific Manuscript database
Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of alpha and beta-D-allopyranose, 15 of ...
Feasibility of Wave Energy in Hong Kong
NASA Astrophysics Data System (ADS)
Lu, M.; Hodgson, P.
2014-12-01
Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.
NASA Astrophysics Data System (ADS)
Hofmann, A.; Ritz, U.; Rompe, J.-D.; Tresch, A.; Rommens, P. M.
2015-01-01
Shock wave therapy has been increasingly evaluated as a non-invasive alternative for the treatment of delayed fracture healing and non-unions. Although several clinical studies showed a beneficial effect especially for the hypertrophic type of non-union, little is known about the biological mechanism of its osteogenic effect. To identify the molecular background for the positive effect of shock waves on healing of fracture non-unions, we have analyzed the changes of the global gene expression in human osteoblasts after exposure to shock waves of different energy flux densities. Human osteoblasts were isolated from five patients at non-union sites, treated with 500 impulses of energy flux densities of 0.06 and , and cultured for 96 h. HG-U133A microarrays were used for the analysis of the shock wave-regulated mRNA-transcripts. Differential gene expression was verified by reverse transcriptase polymerase chain reactions. We identified 47 transcripts that showed differential expression after and 45 transcripts after energy treatment. Most intriguing was the up-regulation of neprilysin, calmegin, osteoglycin, asporin, and interleukin-13 receptor-. Eighteen identified genes were previously described to fulfill an important function in bone growth and metabolism. Our study provides the first molecular profile of shock wave-induced gene expression changes in human osteoblasts from patients with hypertrophic fracture non-unions, and it offers a possible molecular explanation for the positive effects of shock waves in patients ridden with this disease.
Assessment of wave energy potential along the south coast of Java Island
NASA Astrophysics Data System (ADS)
Song, Qingyang; Mayerle, Roberto
2018-04-01
The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.
Research on Efficiency of a Wave Energy Conversion System
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-02-01
The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.
Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies
NASA Technical Reports Server (NTRS)
Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)
1998-01-01
The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).
Assessing wave energy effects on biodiversity: the wave hub experience.
Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J
2012-01-28
Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.
Hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-H.; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080; Wang, J.-X.
2004-12-01
Adopting the complete {alpha}{sub s}{sup 4} approach of the perturbative QCD and the updated parton distribution functions, we have estimated the hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*). In the estimate, special care has been paid to the dependence of the production amplitude on the derivative of the wave function at origin which is obtained by the potential model. For experimental references, main theoretical uncertainties are discussed, and the total cross section as well as the distributions of the production with reasonable cuts at the energies of Tevatron and CERN LHC are computed and presented properly.more » The results show that the P-wave production may contribute to the B{sub c}-meson production indirectly by a factor of about 0.5 of the direct production, and according to the estimated cross section, it is further worthwhile to study the possibility of observing the P-wave production itself experimentally.« less
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.
1997-01-01
In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.
Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Hermann; Denkmayr, Tobias; Sponar, Stephan; Lemmel, Hartmut; Jenke, Tobias; Hasegawa, Yuji
2018-05-01
A neutron optical experiment is presented to investigate the paths taken by neutrons in a three-beam interferometer. In various beam paths of the interferometer, the energy of the neutrons is partially shifted so that the faint traces are left along the beam path. By ascertaining an operational meaning to "the particle's path," which-path information is extracted from these faint traces with minimal perturbations. Theory is derived by simply following the time evolution of the wave function of the neutrons, which clarifies the observation in the framework of standard quantum mechanics. Which-way information is derived from the intensity, sinusoidally oscillating in time at different frequencies, which is considered to result from the interfering cross terms between stationary main component and the energy-shifted which-way signals. Final results give experimental evidence that the (partial) wave functions of the neutrons in each beam path are superimposed and present in multiple locations in the interferometer.
Study of the potential of wave energy in Malaysia
NASA Astrophysics Data System (ADS)
Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin
2017-07-01
Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.
Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves
Zheng, Zhupeng; Lei, Ying; Xue, Xin
2014-01-01
Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865
First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves.
Chaussy, Christian; Schmiedt, Egbert; Jocham, Dieter; Brendel, Walter; Forssmann, Bernd; Walther, Volker
2017-02-01
We performed extracorporeally induced destruction of kidney stones on 72 patients. No complications have resulted from the tissue exposure to high energy shock waves. Clearance studies before and after the shock wave treatment indicate no changes in renal function. The method was used successfully in all patients with stones in the renal pelvis. In none of these patients was an open operation required. Two patients with ureteral stones also were treated with shock waves but had to be operated upon because of insufficient destruction of the stone. Copyright © 2002 American Urological Association, Inc.®. Published by Elsevier Inc. All rights reserved.
Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas.
Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira
2016-04-01
An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.
Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira
2016-04-01
An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.
2018-04-12
non-directional) wave spectra, but we consider the energy at high frequencies to be unreliable, so we only use significant waveheight Hs and dominant...spectral density, N=E/s), which is a function of wavenumber or frequency (k or s), direction (θ), space (x,y), and time (t), with spectral density...Elgar 1987). As the spectra are now co-located in time, space , and frequency , the inversion is simply a minimization process for |logVR(6jvH>w(9
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com
2016-02-08
The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less
Improving Short Wave Breaking Behavior In Surfbeat Models
NASA Astrophysics Data System (ADS)
Roelvink, J.; Daly, C.; Vandongeren, A. R.; van Thiel de Vries, J.; McCall, R.
2009-12-01
In present surfzone modeling three approaches are widely applied: short-wave resolving models, ‘surfbeat’ models, which resolve wave energy modulations on the time-scale of wave groups and their associated infragravity waves, and wave averaged models. In all three approaches, wave breaking is a process that is highly schematized and governed by several empirical coefficients. In this presentation we will focus on the breaking process in ‘surfbeat’ models, such as XBeach (Roelvink et al, 2009). These models need to describe the short wave dissipation by breaking as a function of the slowly-varying short wave energy or wave height. The model usually applied is that by Roelvink (1993), which combines a probability that waves are breaking as function of wave heigth over water depth ratio H/h with a bore-type dissipation formulation similar to that by Battjes and Janssen (1978). A drawback of such a formulation is that there is no ‘memory’ in the breaking process, and the amount of breaking instantly varies with the water depth (though the wave height itself does have a memory). For cases with bichromatic waves, or for long-period swell, this does not reflect reality enough: waves that start breaking do not instantly stop breaking once the water depth increases, but continue until some lower threshold is reached. This concept was captured in Dally’s (1992) wave-by-wave approach, where individual waves are tracked in a probabilistic setting. We have now implemented a similar formulation in XBeach, where the property that waves are breaking is tracked; it is switched on when H/h exceeds a first criterion; this property is propagated using an advection equation and when H/h gets below a second criterion breaking is switched off. This formulation can do two things the previous one can’t: maintain groupiness inside the surf zone and have a maximum of wave breaking in the trough after a steep bar, as was observed for instance in Arcilla et al’s (1994) test 1C. Obviously this has important consequences for the forcing of both long waves and mean currents. In our presentation we will show results of comparisons of both formulations. References. Arcilla, A.S., Roelvink, J.A., O'Connor, B.A. Reniers, A., and Jimenez. J.A. The Delta Flume '93 Experiment. Coastal Dynamics '94. Arcilla, Stive and Kraus (eds), ASCE, New York, pp. 488-502. Battjes, J.A. and J.P.F.M. Janssen, (1978), Energy loss and set-up due to breaking in random waves, Proc. 16th Int. Coastal Eng. Conf., Hamburg, vol. 1: 569-587. Dally, W.R. (1992) Random breaking waves: Field verification of a wave-by-wave algorithm for engineering application. Coastal Engineering, Volume 16, Issue 4, March 1992, Pages 369-397. Roelvink, Dano, Ad Reniers, Ap van Dongeren, Jaap van Thiel de Vries, Robert McCall, Jamie Lescinski. Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng. (2009), doi:10.1016/j.coastaleng.2009.08.006 Roelvink, J.A. Dissipation in random wave groups incident on a beach. Coastal Eng., 19 (1993) pp. 127-150.
Internal wave energy flux from density perturbations in nonlinear stratifications
NASA Astrophysics Data System (ADS)
Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.
2017-11-01
Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Himwich, Elizabeth W.; Glocer, Alex; Sibeck, David G.
2015-01-01
The precipitation of high-energy magnetospheric electrons (E greater than 500-600 electronvolts) in the diffuse aurora contributes significant energy flux into Earth's ionosphere. In the diffuse aurora, precipitating electrons initially injected from the plasmasheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can be additionally reflected back into the magnetosphere by the two magnetically conjugated atmospheres, leading to a series of multiple reflections that can greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 kilometers) and the resultant population of secondary electrons and electrons cascading toward lower energies. We present the solution of the Boltzmann.Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E is less than or equal to 600 electronvolts) and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account the role of multiple atmospheric reflections of the precipitated electrons that were initially moved into the loss cone via wave.particle interaction processes in Earth's plasmasheet.
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction
NASA Astrophysics Data System (ADS)
Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.
2016-02-01
Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.; Lynd, Danielle T.
2016-08-01
Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.; Sinha, Chandana
2009-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
NASA Astrophysics Data System (ADS)
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given promising results for the generation of near-shore sand bar from scratch and their growth when forced by fair-weather waves. Here, we use it to explore the coupling between a very simple infra-gravity content and the nucleation of near-shore sand-bars. It is shown that even a very poor infra-gravity content strongly improves the generation of sand bars.
Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Koichi; Maruyama, Ryo; Shimamura, Kohei
2015-08-21
Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η{sub bw}, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm{sup 2}. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the lasermore » spot radius to the disk radius, while η{sub bw} could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm{sup 2}, and the ambient pressure from 0.1 to 101 kPa.« less
NASA Astrophysics Data System (ADS)
Praturi, Divya Sri; Girimaji, Sharath
2017-11-01
Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
NASA Astrophysics Data System (ADS)
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
ON THE ORIGIN AND PHYSICS OF GAMMA FLARES IN CRAB NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machabeli, George; Rogava, Andria; Shapakidze, David, E-mail: andria.rogava@iliauni.edu.ge
We consider parametric generation of electrostatic waves in the magnetosphere of the pulsar PSR0531. The suggested mechanism allows us to convert the pulsar rotational energy into the energy of Langmuir waves. The maximum growth rate is achieved in the “superluminal” area, where the phase velocity of perturbations exceeds the speed of light. Therefore, electromagnetic waves do not damp on particles. Instead, they create plasmon condensate, which is carried out outside of the pulsar magnetosphere and reaches the Crab Nebula. It is shown that the transfer of the energy of the plasmon condensate from the light cylinder to the active regionmore » of the nebula happens practically without losses. Unlike the plasma of the magnetosphere, the one of the nebula contains ions, i.e., it may sustain modulation instability, that leads to the collapse of the Langmuir condensate. Langmuir wave collapse, in turn, leads to the acceleration of the distribution function particles. Furthermore, the processes that lead to self-trapping of the synchrotron radiation are discussed. The self-trapping results in the growth of the radiation intensity, which manifests itself observationally as a flare. The condition for the self-trapping onset is derived, showing that if the phenomenon takes place at 100 MeV, then it does not happen at lower (or higher) energies. This specific kind of higher-/lower-energy cutoff could explain why when we observe the flare at 100 MeV that no enhanced emission is observed at lower/higher energies!.« less
Near Shore Wave Modeling and applications to wave energy estimation
NASA Astrophysics Data System (ADS)
Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.
2012-04-01
The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
NASA Technical Reports Server (NTRS)
Rendell, Alistair P.; Lee, Timothy J.
1991-01-01
The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.
Energy levels and radiative rates for Ne-like ions from Cu to Ga
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2017-11-01
Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-08-24
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-10-19
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Laser-induced shock-wave lithotripsy of canine urocystoliths and nephroliths
NASA Astrophysics Data System (ADS)
Woods, J. P.; Bartels, Kenneth E.; Stair, Ernest L.; Schafer, Steven A.; Nordquist, Robert E.
1997-05-01
Urolithiasis is a common disease affecting dogs which can sometimes be treated with dietary and medical protocols. In many cases, however, medical management cannot be employed because the dietary restrictions are contraindicated, effective medical dissolution protocols for the calculi (uroliths) do not exist, or obstruction by the calculi may result in deterioration of renal function during the time required for medical dissolution. At present, the management of medically untreatable calculi has been surgical removal which may result in temporary but dramatic decrease in renal function, irreversible loss of damaged nephrons, and significant risk, particularly for bilateral or recurrent nephroliths. An innovative technique for the removal of these uroliths would involve laser lithotripsy which transforms light energy into acoustical energy generating a shock wave sufficient to fragment stones (photoacoustic ablation). The laser is transmitted via quartz fibers which are small and flexible and can be used under direct vision through endoscopes resulting in effective fragmentation with little surrounding tissue damage. Lasers are becoming increasingly more utilized in veterinary medicine, in contrast to the limited availability of other non-invasive methods of treatment of nephroliths (i.e. extracorporeal shock-wave lithotripsy).
NASA Astrophysics Data System (ADS)
Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.
2011-02-01
Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.
NASA Astrophysics Data System (ADS)
Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.
2016-06-01
A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.
Hou, Aiqiang; Zhou, Xiaojun; Wang, Ting; Wang, Fan
2018-05-15
Achieving both bond dissociation energies (BDEs) and their trends for the R-X bonds with R = Me, Et, i-Pr, and t-Bu reliably is nontrivial. Density functional theory (DFT) methods with traditional exchange-correlation functionals usually have large error on both the BDEs and their trends. The M06-2X functional gives rise to reliable BDEs, but the relative BDEs are determined not as accurately. More demanding approaches such as some double-hybrid functionals, for example, G4 and CCSD(T), are generally required to achieve the BDEs and their trends reliably. The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is employed to calculated BDEs of these R-X bonds with X = H, CH 3 , OCH 3 , OH, and F in this work. The single Slater-Jastrow wave function is adopted as trial wave function, and pseudopotentials (PPs) developed for quantum Monte Carlo calculations are chosen. Error of these PPs is modest in wave function methods, while it is more pronounced in DFT calculations. Our results show that accuracy of BDEs with FN-DMC is similar to that of M06-2X and G4, and trends in BDEs are calculated more reliably than M06-2X. Both BDEs and trends in BDEs of these bonds are reproduced reasonably with FN-DMC. FN-DMC using PPs can thus be applied to BDEs and their trends of similar chemical bonds in larger molecules reliably and provide valuable information on properties of these molecules.
Entanglement entropy of critical spin liquids.
Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin
2011-08-05
Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
NASA Astrophysics Data System (ADS)
Kohno, Wataru; Kirikoshi, Akimitsu; Kita, Takafumi
2018-03-01
We construct a variational ground-state wave function of weakly interacting M-component Bose-Einstein condensates beyond the mean-field theory by incorporating the dynamical 3/2-body processes, where one of the two colliding particles drops into the condensate and vice versa. Our numerical results with various masses and particle numbers show that the 3/2-body processes between different particles make finite contributions to lowering the ground-state energy, implying that many-body correlation effects between different particles are essential even in the weak-coupling regime of the Bose-Einstein condensates. We also consider the stability condition for 2-component miscible states using the new ground-state wave function. Through this calculation, we obtain the relation UAB2/UAAUBB < 1 + α , where Uij is the effective contact potential between particles i and j and α is the correction, which originates from the 3/2- and 2-body processes.
Fábri, Csaba; Mátyus, Edit; Császár, Attila G
2014-02-05
It is shown that the use of an Eckart-frame embedding with a kinetic energy operator expressed in curvilinear internal coordinates becomes feasible and straightforward to implement for arbitrary molecular compositions and internal coordinates if the operator is defined numerically over a (discrete variable representation) grid. The algorithm proposed utilizes the transformation method of Dymarsky and Kudin to maintain the rotational Eckart condition. In order to demonstrate the applicability and flexibility of our approach the non-rigid ammonia molecule is considered and the corresponding rotational-vibrational energy levels and wave functions are computed using kinetic energy operators with three different embeddings. Two of them fulfill the Eckart conditions corresponding to a trigonal pyramidal (C3v) and a trigonal planar (D3h) reference structure and the third one is a non-Eckart frame. The computed energy levels are, of course, identical, and the structure of the three different wave-function representations are analyzed in terms of the rigid rotor functions for a symmetric top. The possible advantages of one frame representation over another are discussed concerning the interpretation of the rovibrational states in terms of the traditional rigid rotor labels. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytautas, Laimutis; Scuseria, Gustavo E.; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589
2015-09-07
The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyondmore » minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N{sub 2} (6-31G), C{sub 2} (6-31G), and Be{sub 2} (cc-pVTZ). We find that the potential energy profile for H{sub 2}O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be{sub 2} case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N{sub 2} and C{sub 2}, we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of correlated molecular orbitals, simultaneously. We discuss the usefulness of the seniority number concept in addressing both static and dynamic electron correlation problems along dissociation paths.« less
NASA Astrophysics Data System (ADS)
Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás
2018-05-01
In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk
2014-07-10
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less
NASA Astrophysics Data System (ADS)
Gascoyne, A.; Jain, R.; Hindman, B. W.
2014-07-01
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).
Numerical simulation of multi-directional random wave transformation in a yacht port
NASA Astrophysics Data System (ADS)
Ji, Qiaoling; Dong, Sheng; Zhao, Xizeng; Zhang, Guowei
2012-09-01
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2007-01-01
In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.
Quasi-Phasematched Nonlinear Optics: Materials and Devices
2007-04-16
the soliton energy in pump, signal and idler waves as a function of the final wave- vector mismatch in the chirped QPM gratings. We see good agreement...devices including OP-GaAs devices for broadband optical parametric generation (OPG) at mid-infrared wavelengths, bulk PPLN devices for soliton ...Carrasco, and L. Torner,"Engineering of multi-color spatial solitons with chirped-period quasi-phase-matching gratings in optical parametric amplification
Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, A B
1998-08-01
The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less
High-frequency electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Young, T. S. T.
1973-01-01
High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.
Variational methods in supersymmetric lattice field theory: The vacuum sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Meyer-Ortmanns, H.; Roskies, R.
1987-12-15
The application of variational methods to the computation of the spectrum in supersymmetric lattice theories is considered, with special attention to O(N) supersymmetric sigma models. Substantial cancellations are found between bosonic and fermionic contributions even in approximate Ansa$uml: tze for the vacuum wave function. The nonlinear limit of the linear sigma model is studied in detail, and it is shown how to construct an appropriate non-Gaussian vacuum wave function for the nonlinear model. The vacuum energy is shown to be of order unity in lattice units in the latter case, after infinite cancellations.
Electrically tunable g factors in quantum dot molecular spin states.
Doty, M F; Scheibner, M; Ponomarev, I V; Stinaff, E A; Bracker, A S; Korenev, V L; Reinecke, T L; Gammon, D
2006-11-10
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Electrically Tunable g Factors in Quantum Dot Molecular Spin States
NASA Astrophysics Data System (ADS)
Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2006-11-01
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Wigner molecules in carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2010-07-01
We demonstrate that electrons in quantum dots defined by electrostatic gates in semiconductor nanotubes freeze orderly in space realizing a “Wigner molecule.” Our exact diagonalization calculations uncover the features of the electron molecule, which may be accessed by tunneling spectroscopy—indeed some of them have already been observed by Deshpande and Bockrath [Nat. Phys. 4, 314 (2008)]10.1038/nphys895. We show that numerical results are satisfactorily reproduced by a simple ansatz vibrational wave function: electrons have localized wave functions, like nuclei in an ordinary molecule, whereas low-energy excitations are collective vibrations of electrons around their equilibrium positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolfe, R.M.
1976-12-01
The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.
Generalized Jastrow variational method for liquid3He-4He mixtures at T=0 K
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, K.
1989-07-01
The ground state energy of a dilute solution of mass-3 fermions in liquid4He is analyzed by a variational procedure based on the Jastrow many body theory. The antisymmetry of the wave function for fermions is incorporated following the procedure given by Lado, Inguva, and Smith. A set of coupled integrodifferential equations is solved in the hypernetted chain approximation yielding expressions for the binding energy of3He-4He mixtures; the radial distribution function is given together with the total energy for various values of density and the interparticle separation r s.
Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere
NASA Technical Reports Server (NTRS)
Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.
1974-01-01
The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.
Electromagnetic cyclotron-loss-cone instability associated with weakly relativistic electrons
NASA Technical Reports Server (NTRS)
Wong, H. K.; Wu, C. S.; Ke, F. J.; Schneider, R. S.; Ziebell, L. F.
1982-01-01
The amplification of fast extraordinary mode waves at frequencies very close to the electron cyclotron frequency, due to the presence of a population of energetic electrons with a loss-cone type distribution, is studied. Low-energy background electrons are included in the analysis. Two types of loss-cone distribution functions are considered, and it is found that the maximum growth rates for both distribution functions are of the same order of magnitude. When the thermal effects of the energetic electrons are included in the dispersion equation, the real frequencies of the waves are lower than those obtained by using the cold plasma approximation. This effect tends to enhance the growth rate. An idealized case including a parallel electric field such that the distribution function of the trapped energetic electrons is modified is also considered. It is assumed that the parallel electric field can remove the low-energy background electrons away from the source region of radiation. Both these effects increase the growth rate.
Multicharmed Baryon Production in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Zhao, Jiaxing; Zhuang, Pengfei
2017-03-01
We study nuclear medium effect on multicharmed baryon production in relativistic heavy ion collisions. By solving the three-quark Schroedinger equation at finite temperature, we calculate the wave functions and Wigner functions for doubly and triply charmed baryons Ξ_{cc} and Ω_{ccc}. Their production in nuclear collisions is largely enhanced due to the combination of uncorrelated charm quarks in the quark-gluon plasma. It is most probable to discover these new particles in heavy ion collisions at the RHIC and LHC energies.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
NASA Astrophysics Data System (ADS)
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
MB3a Infrasound Sensor Evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; McDowell, Kyle D.
2014-11-01
Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, manufactured by Seismo Wave. These infrasound sensors measure pressure output by a methodology developed by researchers at the French Alternative Energies and Atomic Energy Commission (CEA) and the technology was recently licensed to Seismo Wave for production and sales. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self- calibration ability. The MB3a infrasound sensors are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Influence of hurricane wind field in the structure of directional wave spectra.
NASA Astrophysics Data System (ADS)
Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.
2017-04-01
Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006
The two-electron atomic systems. S-states
NASA Astrophysics Data System (ADS)
Liverts, Evgeny Z.; Barnea, Nir
2010-01-01
A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.
2015-09-15
An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less
Diabatic Definition of Geometric Phase Effects.
Izmaylov, Artur F; Li, Jiaru; Joubert-Doriol, Loïc
2016-11-08
Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunkin, Lauren McNeill
Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regionsmore » to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.« less
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, D. Y.
2017-12-01
In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.
NASA Astrophysics Data System (ADS)
Wang, Zuowei; Biwa, Shiro
2018-03-01
A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.
Theory of superconductivity in a three-orbital model of Sr2RuO4
NASA Astrophysics Data System (ADS)
Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.
2013-10-01
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.
2012-04-01
Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.
Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped
NASA Astrophysics Data System (ADS)
Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag
2018-03-01
Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.
2013-06-15
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.; Hollweg, Joseph V.
2009-12-01
We study the propagation, reflection, and turbulent dissipation of Alfvén waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfvén critical point—that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfvén-wave reflection and turbulent heating into fluid models of the solar wind.
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine
2016-09-01
Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.
2011-11-15
Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associatedmore » with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N{sub 2} improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.« less
NASA Astrophysics Data System (ADS)
Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza
2015-12-01
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.
Experimental Research of a New Wave Energy Conversion Device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-01-01
With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
NASA Astrophysics Data System (ADS)
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-09-02
Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that undermore » regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.« less
A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Ping, Fan
2015-05-01
By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).
Convoluted Quasi Sturmian basis for the two-electron continuum
NASA Astrophysics Data System (ADS)
Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.
2016-09-01
In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2014-11-01
In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.
Thought waves remotely affect the performance (output voltage) of photoelectric cells
NASA Astrophysics Data System (ADS)
Cao, Dayong; Cao, Daqing
2012-02-01
In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.
Traveling wave device for combining or splitting symmetric and asymmetric waves
Möbius, Arnold; Ives, Robert Lawrence
2005-07-19
A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less
Matter-wave dark solitons in boxlike traps
NASA Astrophysics Data System (ADS)
Sciacca, M.; Barenghi, C. F.; Parker, N. G.
2017-01-01
Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.
Phantom of the Hartle–Hawking instanton: Connecting inflation with dark energy
Chen, Pisin; Qiu, Taotao; Yeom, Dong -han
2016-02-20
If the Hartle–Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity.more » This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Lastly, our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.« less
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.
Fusion yield: Guderley model and Tsallis statistics
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Kumar, D.
2011-02-01
The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD
Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; ...
2015-11-02
In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less
Phantom of the Hartle-Hawking instanton: connecting inflation with dark energy
NASA Astrophysics Data System (ADS)
Chen, Pisin; Qiu, Taotao; Yeom, Dong-han
2016-02-01
If the Hartle-Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity. This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.
Electron Energy Distribution function in a weakly magnetized expanding helicon plasma discharge
NASA Astrophysics Data System (ADS)
Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert
2016-09-01
Helicon wave heating is well known to produce high-density plasma source for application in plasma thrusters, plasma processing and many more. Our previous study (B Ellingboe et al. APS Gaseous Electronics Conference 2015, abstract #KW2.005) has shown observation of helicon wave in a weakly magnetized inductively coupled plasma source excited by m =0 antenna at 13.56 MHz. In this paper, we investigated the Electron Energy Distribution Function (EEDF) in the same setup by using an RF compensated Langmuir probe. The ac signal superimposition technique (second harmonic technique) is used to determine EEDF. The EEDF is measured for 5-100 mTorr gas pressure, 100 W - 1.5 kW rf power and at different locations in the source chamber, boundary and diffusion chamber. This paper will discuss the change in the shape of EEDF for various heating mode transitions.
Analytical Wave Functions for Ultracold Collisions.
NASA Astrophysics Data System (ADS)
Cavagnero, M. J.
1998-05-01
Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.
Molecular vibrational trapping revisited: a case study with D2+
Badankó, Péter; Halász, Gábor J.; Vibók, Ágnes
2016-01-01
The present theoretical study is concerned with the vibrational trapping or bond hardening, which is a well-known phenomenon predicted by a dressed state representation of small molecules like and in an intense laser field. This phenomenon is associated with a condition where the energy of the light induced, vibrational level coincides with one of the vibrational levels on the field-free potential curve, which at the same time maximizes the wave function overlap between these two levels. One-dimensional numerical simulations were performed to investigate this phenomenon in a more quantitative way than has been done previously by calculating the photodissociation probability of for a wide range of photon energy. The obtained results undoubtedly show that the nodal structure of the field-free vibrational wave functions plays a decisive role in the vibrational trapping, in addition to the current understanding of this phenomenon. PMID:27550642
WET-NZ Multi-Mode Wave Energy Converter Advancement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, Steven
2013-10-15
The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics; Open-Sea Testing of a New 1:2 Scale Experimental Model; Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status; Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.
The physical basis for estimating wave energy spectra from SAR imagery
NASA Technical Reports Server (NTRS)
Lyzenga, David R.
1987-01-01
Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.
On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng
2018-05-01
Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along with an adjustment of the pre-stretch and pressure difference.
The scattering of low energy positrons by helium
NASA Technical Reports Server (NTRS)
Humberston, J. W.
1973-01-01
Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.
NASA Astrophysics Data System (ADS)
Annaby, M. H.; Asharabi, R. M.
2018-01-01
In a remarkable note of Chadan [Il Nuovo Cimento 39, 697-703 (1965)], the author expanded both the regular wave function and the Jost function of the quantum scattering problem using an interpolation theorem of Valiron [Bull. Sci. Math. 49, 181-192 (1925)]. These expansions have a very slow rate of convergence, and applying them to compute the zeros of the Jost function, which lead to the important bound states, gives poor convergence rates. It is our objective in this paper to introduce several efficient interpolation techniques to compute the regular wave solution as well as the Jost function and its zeros approximately. This work continues and improves the results of Chadan and other related studies remarkably. Several worked examples are given with illustrations and comparisons with existing methods.
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less
Sebastianelli, Francesco; Xu, Minzhong; Kanan, Dalal K; Bacić, Zlatko
2007-07-19
We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method. These calculations reveal that the low-energy T-R dynamics of hydrogen molecules in the large cage are qualitatively different from that inside the small cage, studied by us recently. This is caused by the following: (i) The large cage has a cavity whose diameter is about twice that of the small cage for the hydrogen molecule. (ii) In the small cage, the potential energy surface (PES) for H2 is essentially flat in the central region, while in the large cage the PES has a prominent maximum at the cage center, whose height exceeds the T-R zero-point energy of H2/D2. As a result, the guest molecule is excluded from the central part of the large cage, its wave function localized around the off-center global minimum. Peculiar quantum dynamics of the hydrogen molecule squeezed between the central maximum and the cage wall manifests in the excited T-R states whose energies and wave functions differ greatly from those for the small cage. Moreover, they are sensitive to the variations in the hydrogen-bonding topology, which modulate the corrugation of the cage wall.
Müller, Alexander; Akin-Olugbade, Yemi; Deveci, Serkan; Donohue, John F; Tal, Raanan; Kobylarz, Keith A; Palese, Michael; Mulhall, John P
2008-03-01
Only minimal literature exists on consequences of shock wave therapy (SWT) on erectile function in treatment of Peyronie's disease (PD). This study was undertaken to define SWT impact at varied energy/dose levels at different time points on functional and structural changes in erectile tissue. In 45 rats 2000 shock waves (sw) at 2 BAR were applied to the penis weekly sorted by one, two, and three sessions (high-dose/energy level, HD-1, HD-2, HD-3). Each group was followed for 1, 7, or 28 d before measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Fifteen control animals (C1, C7, C28) underwent anesthesia alone. Another 15 animals were exposed to three SWT sessions applying 1000 sw at 1 BAR and analyzed identically (low-dose/energy level, LD-3-1, -7, -28). Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling assay was used to define the apoptotic index (AI) and Masson's trichrome (MT) staining was prepared to evaluate smooth muscle-to-collagen ratios. ICP/MAP ratios for all C groups displayed a mean of 64%. All SWT groups demonstrated significantly reduced ICP/MAP ratios compared to their corresponding C groups (p<0.05). The LD-3 groups showed a trend toward improved ICP/MAP ratios. LD-3-28 demonstrated significant recovery compared to HD-3-28 (55+/-8% vs. 41+/-10%, p=0.004), but remained reduced compared to C28 (63+/-5%, p=0.03). No statistical differences were seen for MT staining in SWT groups compared to C (p>0.05). AIs for the LD-3 groups were significantly lower compared to the HD-3 groups (p<0.001), but all AIs were significantly increased compared to C groups (p<0.01). Overall, at both energy/dose levels, SWT resulted in a time- and treatment-dependent reduction of ICP/MAP ratios, which might be mediated partly through apoptosis and collagenization of corporal smooth muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
2016-06-24
The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less
Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core
NASA Astrophysics Data System (ADS)
Fernández-Soler, P.; Ruiz Arriola, E.
2017-07-01
The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.
Quantum dynamics study of H+NH3-->H2+NH2 reaction.
Zhang, Xu Qiang; Cui, Qian; Zhang, John Z H; Han, Ke Li
2007-06-21
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.
NASA Astrophysics Data System (ADS)
Junquera, Javier; Aguado-Puente, Pablo
2013-03-01
At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.
NASA Astrophysics Data System (ADS)
Charland, J.; Rey, V.; Touboul, J.
2012-04-01
Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy compared to the incident wave's energy flow and lead to the definition of a characteristic time of the evanescent modes establishment. First results show that the system is influenced by the wave frequency, and geometric parameters such as the deep in front of the obstacle, the deep of immersion and the deep under the obstacle in the case of a submerged plate. The energy trapped by the evanescent modes and under the plate is able to reach around 15% of the incident wave's energy flow. In further studies we will investigate the influence of each geometrical parameter to a better understanding of its contribution in energy trapping.