Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project
NASA Astrophysics Data System (ADS)
Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.
2012-04-01
Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
Transport of phase space densities through tetrahedral meshes using discrete flow mapping
NASA Astrophysics Data System (ADS)
Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor
2017-01-01
Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.
NASA Astrophysics Data System (ADS)
Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.
2015-10-01
Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.
Stochastic Ion Heating by the Lower-Hybrid Waves
NASA Technical Reports Server (NTRS)
Khazanov, G.; Tel'nikhin, A.; Krotov, A.
2011-01-01
The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.
The "shallow-waterness" of the wave climate in European coastal regions
NASA Astrophysics Data System (ADS)
Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2017-07-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
Classification of Nortes in the Gulf of Mexico derived from wave energy maps
NASA Astrophysics Data System (ADS)
Appendini, C. M.; Hernández-Lasheras, J.
2016-02-01
Extreme wave climate in the Gulf of Mexico is determined by tropical cyclones and winds from the Central American Cold Surges, locally referred to as Nortes. While hurricanes can have catastrophic effects, extreme waves and storm surge from Nortes occur several times a year, and thus have greater impacts on human activities along the Mexican coast of the Gulf of Mexico. Despite the constant impacts from Nortes, there is no available classification that relates their characteristics (e.g. pressure gradients, wind speed), to the associated coastal impacts. This work presents a first approximation to characterize and classify Nortes, which is based on the assumption that the derived wave energy synthetizes information (i.e. wind intensity, direction and duration) of individual Norte events as they pass through the Gulf of Mexico. First, we developed an index to identify Nortes based on surface pressure differences of two locations. To validate the methodology we compared the events identified with other studies and available Nortes logs. Afterwards, we detected Nortes from the 1986/1987, 2008/2009 and 2009/2010 seasons and used their corresponding wind fields to derive the wave energy maps using a numerical wave model. We used the energy maps to classify the events into groups using manual (visual) and automatic classifications (principal component analysis and k-means). The manual classification identified 3 types of Nortes and the automatic classification identified 5, although 3 of them had a high degree of similarity. The principal component analysis indicated that all events have similar characteristics, as few components are necessary to explain almost all of the variance. The classification from the k-means indicated that 81% of analyzed Nortes affect the southeastern Gulf of Mexico, while a smaller percentage affects the northern Gulf of Mexico and even less affect the western Caribbean.
Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.
Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-12-01
Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.
Redistribution of energy available for ocean mixing by long-range propagation of internal waves.
Alford, Matthew H
2003-05-08
Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.
Adjoint-Based Sensitivity Maps for the Nearshore
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Ngodock, Hans
2013-04-01
The wave model SWAN (Booij et al., 1999) solves the spectral action balance equation to produce nearshore wave forecasts and climatologies. It is widely used by the coastal modeling community and is part of a variety of coupled ocean-wave-atmosphere model systems. A variational data assimilation system (Orzech et al., 2013) has recently been developed for SWAN and is presently being transitioned to operational use by the U.S. Naval Oceanographic Office. This system is built around a numerical adjoint to the fully nonlinear, nonstationary SWAN code. When provided with measured or artificial "observed" spectral wave data at a location of interest on a given nearshore bathymetry, the adjoint can compute the degree to which spectral energy levels at other locations are correlated with - or "sensitive" to - variations in the observed spectrum. Adjoint output may be used to construct a sensitivity map for the entire domain, tracking correlations of spectral energy throughout the grid. When access is denied to the actual locations of interest, sensitivity maps can be used to determine optimal alternate locations for data collection by identifying regions of greatest sensitivity in the mapped domain. The present study investigates the properties of adjoint-generated sensitivity maps for nearshore wave spectra. The adjoint and forward SWAN models are first used in an idealized test case at Duck, NC, USA, to demonstrate the system's effectiveness at optimizing forecasts of shallow water wave spectra for an inaccessible surf-zone location. Then a series of simulations is conducted for a variety of different initializing conditions, to examine the effects of seasonal changes in wave climate, errors in bathymetry, and variations in size and shape of the inaccessible region of interest. Model skill is quantified using two methods: (1) a more traditional correlation of observed and modeled spectral statistics such as significant wave height, and (2) a recently developed RMS spectral skill score summed over all frequency-directional bins. The relative advantages and disadvantages of these two methods are considered. References: Booij, N., R.C. Ris, and L.H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649-7666. Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
Müller, Alexander; Akin-Olugbade, Yemi; Deveci, Serkan; Donohue, John F; Tal, Raanan; Kobylarz, Keith A; Palese, Michael; Mulhall, John P
2008-03-01
Only minimal literature exists on consequences of shock wave therapy (SWT) on erectile function in treatment of Peyronie's disease (PD). This study was undertaken to define SWT impact at varied energy/dose levels at different time points on functional and structural changes in erectile tissue. In 45 rats 2000 shock waves (sw) at 2 BAR were applied to the penis weekly sorted by one, two, and three sessions (high-dose/energy level, HD-1, HD-2, HD-3). Each group was followed for 1, 7, or 28 d before measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Fifteen control animals (C1, C7, C28) underwent anesthesia alone. Another 15 animals were exposed to three SWT sessions applying 1000 sw at 1 BAR and analyzed identically (low-dose/energy level, LD-3-1, -7, -28). Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling assay was used to define the apoptotic index (AI) and Masson's trichrome (MT) staining was prepared to evaluate smooth muscle-to-collagen ratios. ICP/MAP ratios for all C groups displayed a mean of 64%. All SWT groups demonstrated significantly reduced ICP/MAP ratios compared to their corresponding C groups (p<0.05). The LD-3 groups showed a trend toward improved ICP/MAP ratios. LD-3-28 demonstrated significant recovery compared to HD-3-28 (55+/-8% vs. 41+/-10%, p=0.004), but remained reduced compared to C28 (63+/-5%, p=0.03). No statistical differences were seen for MT staining in SWT groups compared to C (p>0.05). AIs for the LD-3 groups were significantly lower compared to the HD-3 groups (p<0.001), but all AIs were significantly increased compared to C groups (p<0.01). Overall, at both energy/dose levels, SWT resulted in a time- and treatment-dependent reduction of ICP/MAP ratios, which might be mediated partly through apoptosis and collagenization of corporal smooth muscle.
Mapping wave breaking and residual foam using infrared remote sensing
NASA Astrophysics Data System (ADS)
Carini, R. J.; Jessup, A. T.; Chickadel, C.
2012-12-01
Quantifying wave breaking in the surfzone is important for the advancement of models that seek to accurately predict energy dissipation, near-shore circulation, wave-current interactions, and air-sea gas transfer. Electro-optical remote sensing has been used to try to identify breaking waves. However, the residual foam, left over after the wave has broken, is indistinguishable from active foam in the visible band, which makes identification of active breaking difficult. Here, we explore infrared remote sensing of breaking waves at near-grazing incidence angles to differentiate between active and residual foam in the surfzone. Measurements were made at two field sites: Duck, NC, in September 2010 (Surf Zone Optics) and New River Inlet, NC, in May 2012 (RIVET). At both sites, multiple IR cameras were mounted to a tower onshore, viewing the surfzone at near-grazing incidence angles. For near-grazing incidence angles, small changes in viewing angle, such as those produced by the slope of a wave face, cause large modulations of the infrared signal. Therefore, the passage of waves can be seen in IR imagery. Wave breaking, however, is identified by the resulting foam. Foam has a higher emissivity than undisturbed water and thus appears warmer in an IR image. Residual foam cools quickly [Marmorino and Smith, 2005], thereby making its signal distinct from that of foam produced during active wave breaking. We will use these properties to develop a technique to produce spatial and temporal maps of active breaking and residual foam. These products can then be used to validate current models of surfzone bubbles and foam coverage. From the maps, we can also estimate energy dissipation due to wave breaking in the surfzone and compare this to estimates made with in situ data.; Infrared image of the surfzone at Duck, NC. Examples of actively breaking foam and cool residual foam are labeled.
Quantization of Time-Like Energy for Wave Maps into Spheres
NASA Astrophysics Data System (ADS)
Grinis, Roland
2017-06-01
In this article we consider large energy wave maps in dimension 2+1, as in the resolution of the threshold conjecture by Sterbenz and Tataru (Commun. Math. Phys. 298(1):139-230, 2010; Commun. Math. Phys. 298(1):231-264, 2010), but more specifically into the unit Euclidean sphere S^{n-1} \\subsetRn with {n≥2}, and study further the dynamics of the sequence of wave maps that are obtained in Sterbenz and Tataru (Commun. Math. Phys. 298(1):231-264, 2010) at the final rescaling for a first, finite or infinite, time singularity. We prove that, on a suitably chosen sequence of time slices at this scaling, there is a decomposition of the map, up to an error with asymptotically vanishing energy, into a decoupled sum of rescaled solitons concentrating in the interior of the light cone and a term having asymptotically vanishing energy dispersion norm, concentrating on the null boundary and converging to a constant locally in the interior of the cone, in the energy space. Similar and stronger results have been recently obtained in the equivariant setting by several authors (Côte, Commun. Pure Appl. Math. 68(11):1946-2004, 2015; Côte, Commun. Pure Appl. Math. 69(4):609-612, 2016; Côte, Am. J. Math. 137(1):139-207, 2015; Côte et al., Am. J. Math. 137(1):209-250, 2015; Krieger, Commun. Math. Phys. 250(3):507-580, 2004), where better control on the dispersive term concentrating on the null boundary of the cone is provided, and in some cases the asymptotic decomposition is shown to hold for all time. Here, however, we do not impose any symmetry condition on the map itself and our strategy follows the one from bubbling analysis of harmonic maps into spheres in the supercritical regime due to Lin and Rivière (Ann. Math. 149(2):785-829, 1999; Duke Math. J. 111:177-193, 2002), which we make work here in the hyperbolic context of Sterbenz and Tataru (Commun. Math. Phys. 298(1), 231-264, 2010).
NASA Astrophysics Data System (ADS)
Scanu, Sergio; Peviani, Maximo; Carli, Filippo Maria; Paladini de Mendoza, Francesco; Piermattei, Viviana; Bonamano, Simone; Marcelli, Marco
2015-04-01
This work proposes a multidisciplinary approach in which wave power potential maps are used as baseline for the application of environmental monitoring techniques identified through the use of a Database for Environmental Monitoring Techniques and Equipment (DEMTE), derived in the frame of the project "Marine Renewables Infrastructure Network for Emerging Energy Technologies" (Marinet - FP7). This approach aims to standardize the monitoring of the marine environment in the event of installation, operation and decommissioning of Marine Energy Conversion Systems. The database has been obtained through the collection of techniques and instrumentation available among the partners of the consortium, in relation with all environmental marine compounds potentially affected by any impacts. Furthermore in order to plan marine energy conversion schemes, the wave potential was assessed at regional and local scales using the numerical modelling downscaling methodology. The regional scale lead to the elaboration of the Italian Wave Power Atlas, while the local scale lead to the definition of nearshore hot spots useful for the planning of devices installation along the Latium coast. The present work focus in the application of environmental monitoring techniques identified in the DEMTE, in correspondence of the hotspot derived from the wave potential maps with particular reference to the biological interaction of the devices and the management of the marine space. The obtained results are the bases for the development of standardized procedures which aims to an effective application of marine environmental monitoring techniques during the installation, operation and decommissioning of Marine Energy Conversion Systems. The present work gives a consistent contribution to overcome non-technological barriers in the concession procedures, as far as the protection of the marine environment is of concern.
Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone
NASA Astrophysics Data System (ADS)
Carini, R. J.; Chickadel, C. C.; Jessup, A. T.
2016-02-01
In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H
2014-11-01
Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
Middle atmosphere electrical energy coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1989-01-01
The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Strong Effects of Vs30 Heterogeneity on Physics-Based Scenario Ground-Shaking Computations
NASA Astrophysics Data System (ADS)
Louie, J. N.; Pullammanappallil, S. K.
2014-12-01
Hazard mapping and building codes worldwide use the vertically time-averaged shear-wave velocity between the surface and 30 meters depth, Vs30, as one predictor of earthquake ground shaking. Intensive field campaigns a decade ago in Reno, Los Angeles, and Las Vegas measured urban Vs30 transects with 0.3-km spacing. The Clark County, Nevada, Parcel Map includes urban Las Vegas and comprises over 10,000 site measurements over 1500 km2, completed in 2010. All of these data demonstrate fractal spatial statistics, with a fractal dimension of 1.5-1.8 at scale lengths from 0.5 km to 50 km. Vs measurements in boreholes up to 400 m deep show very similar statistics at 1 m to 200 m lengths. When included in physics-based earthquake-scenario ground-shaking computations, the highly heterogeneous Vs30 maps exhibit unexpectedly strong influence. In sensitivity tests (image below), low-frequency computations at 0.1 Hz display amplifications (as well as de-amplifications) of 20% due solely to Vs30. In 0.5-1.0 Hz computations, the amplifications are a factor of two or more. At 0.5 Hz and higher frequencies the amplifications can be larger than what the 1-d Building Code equations would predict from the Vs30 variations. Vs30 heterogeneities at one location have strong influence on amplifications at other locations, stretching out in the predominant direction of wave propagation for that scenario. The sensitivity tests show that shaking and amplifications are highly scenario-dependent. Animations of computed ground motions and how they evolve with time suggest that the fractal Vs30 variance acts to trap wave energy and increases the duration of shaking. Validations of the computations against recorded ground motions, possible in Las Vegas Valley due to the measurements of the Clark County Parcel Map, show that ground motion levels and amplifications match, while recorded shaking has longer duration than computed shaking. Several mechanisms may explain the amplification and increased duration of shaking in the presence of heterogeneous spatial distributions of Vs: conservation of wave energy across velocity changes; geometric focusing of waves by low-velocity lenses; vertical resonance and trapping; horizontal resonance and trapping; and multiple conversion of P- to S-wave energy.
NASA Astrophysics Data System (ADS)
Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth
2017-04-01
The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.
Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2017-04-01
We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.
Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection
NASA Astrophysics Data System (ADS)
Argall, M. R.; Paulson, K. W.; Ahmadi, N.; Matsui, H.; Torbert, R. B.; Alm, L.; Le Contel, O.; Khotyaintsev, Y. V.; Wilder, F. D.; Turner, D. L.; Strangeway, R. J.; Schwartz, S. J.; Magnes, W.; Giles, B. L.; Lindqvist, P. A.; Ergun, R.; Mauk, B.; Leonard, T. W.
2017-12-01
Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.
Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry
NASA Astrophysics Data System (ADS)
Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.
2013-01-01
This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.
Mapping of spin wave propagation in a one-dimensional magnonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa
2016-07-28
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Surface acoustic waves voltage controlled directional coupler
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.
1988-10-01
An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.
High-Resolution Measurement of Beach Morphological Response to Hurricane-Induced Wave Dynamics
NASA Astrophysics Data System (ADS)
Starek, M.; Slatton, K. C.; Adams, P.
2005-12-01
During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the sudden increase in wave energy delivered to the coast resulted in drastic changes to the coastal morphology. The purpose of this study was to investigate the direct effects of deep-water wave climate and energy setups induced by the hurricanes and relate those processes to the observed change in shoreline morphology. The availability of research-grade Airborne Laser Swath Mapping (ALSM) altimetry data, often referred to as Light Detection and Ranging (LiDAR) data, enabled sub-meter spatial sampling of the coastal topography. The ALSM data were acquired by the University of Florida's Geosensing Engineering and Mapping (GEM) Center. Offshore wave measurements were obtained from the NOAA NDBC buoy network for the Gulf Coast region. The ALSM data acquired shortly before and after the three major hurricane landfalls near the Phillips Inlet barrier island region of Bay County, Florida, were used to calculate changes in the shoreline position and identify regions of erosion and deposition. Time series data of offshore wave height, period, and direction were transformed, through shoaling and refraction calculations, to nearshore wave conditions which were correlated to observed changes in beach morphology. Hurricane wave conditions drove severe shoreline retreat on the west-side of the inlet (~15+ meters) but affected the east-side shoreline minimally. The eastern backside of the inlet, however, witnessed a significant volume of washover sediment.
Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean
NASA Technical Reports Server (NTRS)
Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.;
2016-01-01
Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.; Barnes, D. C.
2013-01-01
We describe the extension of the recent charge- and energy-conserving one-dimensional electrostatic particle-in-cell algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036] to mapped (body-fitted) computational meshes. The approach maintains exact charge and energy conservation properties. Key to the algorithm is a hybrid push, where particle positions are updated in logical space, while velocities are updated in physical space. The effectiveness of the approach is demonstrated with a challenging numerical test case, the ion acoustic shock wave. The generalization of the approach to multiple dimensions is outlined.
Small-scale structure and turbulence observed in MAP/WINE)
NASA Technical Reports Server (NTRS)
Blix, T. A.
1989-01-01
During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul
2018-04-01
We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.
Radio Astronomers Develop New Technique for Studying Dark Energy
NASA Astrophysics Data System (ADS)
2010-07-01
Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical capabilities of current instruments -- the team used their intensity-mapping technique to accumulate the radio waves emitted by the hydrogen gas in large volumes of space including many galaxies. "Since the early part of the 20th Century, astronomers have traced the expansion of the Universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them," said Jeffrey Peterson, of Carnegie Mellon University. The astronomers also developed new techniques that removed both man-made radio interference and radio emission caused by more-nearby astronomical sources, leaving only the extremely faint radio waves coming from the very distant hydrogen gas. The result was a map of part of the "cosmic web" that correlated neatly with the structure shown by the earlier optical study. The team first proposed their intensity-mapping technique in 2008, and their GBT observations were the first test of the idea. "These observations detected more hydrogen gas than all the previously-detected hydrogen in the Universe, and at distances ten times farther than any radio wave-emitting hydrogen seen before," said Ue-Li Pen of the University of Toronto. "This is a demonstration of an important technique that has great promise for future studies of the evolution of large-scale structure in the Universe," said National Radio Astronomy Observatory Chief Scientist Chris Carilli, who was not part of the research team. In addition to Chang, Peterson, and Pen, the research team included Kevin Bandura of Carnegie Mellon University. The scientists reported their work in the July 22 issue of the scientific journal Nature.
Study on THz wave generation from air plasma induced by quasi-square Airy beam
NASA Astrophysics Data System (ADS)
Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin
2018-01-01
Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.
Multi-channel Analysis of Passive Surface Waves (MAPS)
NASA Astrophysics Data System (ADS)
Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.
2017-12-01
Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be used for accurate and fast imaging of high-frequency surface wave energy, and some examples also show that high quality imaging similar to those with active sources can be generated only by the use of a few minutes of noise. The use of cultural noise in town, MAPS can image S-wave velocity structure from the ground surface to hundreds of meters depth.
Soares-Santos, M.; Kessler, R.; Berger, E.; ...
2016-05-27
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 degmore » $^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $$5\\sigma$$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$$^{2}$$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.« less
NASA Astrophysics Data System (ADS)
Gunn, J. P.; Petržílka, V.; Fuchs, V.; Ekedahl, A.; Goniche, M.; Hillaret, J.; Kočan, M.; Saint-Laurent, F.
2009-11-01
According to theory, Landau damping transfers the power carried by the high n//>50 components of the lower hybrid (LH) wave to thermal SOL electrons and stochastically accelerates them up to a few keV [1]. What amounts to a few percent of the injected LH power is thus transported along field lines and strikes plasma facing components, leading to the formation of well known "LH hot spots." We report on the first measurements of both the energy from 0 to 1 keV and the radial-poloidal distributions of the accelerated electrons using a retarding field analyzer. Two distinct electron populations are present : a cold, thermal population with temperatures between 10 and 30 eV, and a suprathermal component. Only partial attenuation of the electron flux was achieved at maximum applied voltage, indicating energies greater than 1 keV. Detailed 2D mapping of the hot spots was obtained by varying the safety factor stepwise during a single discharge. The radial width of the suprathermal electron beam at full power is rather large, at least about 5-6 cm, in contrast to Landau damping theory of the launched wave that predicts the radial width of the hot spots should not exceed a few millimetres [2]. The electron flux far from the grill is intermittent, with a typical burst rate of the order of 10 kHz.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.
1993-01-01
An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.
Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra
NASA Astrophysics Data System (ADS)
Felipe, T.; Khomenko, E.; Collados, M.
2011-07-01
We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.
A Machine LearningFramework to Forecast Wave Conditions
NASA Astrophysics Data System (ADS)
Zhang, Y.; James, S. C.; O'Donncha, F.
2017-12-01
Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in computational expense. The low computational cost (and by association low computer-power requirement) means that the machine learning algorithms could be installed on a wave-energy converter as a form of "edge computing" where a device could forecast its own 48-hour energy production.
HeatWave: the next generation of thermography devices
NASA Astrophysics Data System (ADS)
Moghadam, Peyman; Vidas, Stephen
2014-05-01
Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.
Spatial control of recollision wave packets with attosecond precision.
Kitzler, Markus; Lezius, Matthias
2005-12-16
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Pitarka, A.; Mellors, R. J.
2016-12-01
The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
Dynamic cross correlation studies of wave particle interactions in ULF phenomena
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Alvioli, M.; Frankfurt, L.; Guzey, V.; ...
2017-02-20
Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Standard map in magnetized relativistic systems: fixed points and regular acceleration.
de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B
2010-08-01
We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.
NASA Astrophysics Data System (ADS)
Kiely, Thomas G.; Freericks, J. K.
2018-02-01
In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.
Dark field photoelectron emission microscopy of micron scale few layer graphene
NASA Astrophysics Data System (ADS)
Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.
2012-08-01
We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.
Li, Zan; Millan, Robyn M.; Hudson, Mary K.; ...
2014-12-23
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
Experiments on Alfv'en waves in high beta plasmas
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Pribyl, Patrick; Cooper, Chris; Vincena, Stephen
2008-11-01
The propagation of Alfv'en waves in high beta plasmas is of great interest in solar wind studies as well as in astrophysical plasmas. Alfv'en wave propagation in a high beta plasma is studied on the axis of a toroidal device at UCLA. The vacuum vessel is 30 meters in circumference, 2 meters wide and 3 meters tall. The plasma has a cross sectional area of 20 cm^2 and can be as long as 120 m which is hundreds of parallel Alfv'en wavelengths. The waves are launched using two orthogonal 5-turn , 5.7 cm diameter loops. The AC currents (10 kHz < f < 250 kHz) to the loops are as high as 2 kA p-p, producing fields of 1 kG on the axis of the antenna. The antenna coils are independently driven such that waves with arbitrary polarization can be launched. Movable three axis magnetic pickup loops detect the wave and are used to construct field maps in the machine. Wave propagation results as a function of plasma beta and input wave energy will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zan; Millan, Robyn M.; Hudson, Mary K.
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
Numerical investigation of freak waves
NASA Astrophysics Data System (ADS)
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
ON THE GEOMETRY OF THE IBEX RIBBON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylla, Adama; Fichtner, Horst
2015-10-01
The Energetic Neutral Atom (ENA) full-sky maps obtained with the Interstellar Boundary Explorer (IBEX) show an unexpected bright narrow band of increased intensity. This so-called ENA ribbon results from charge exchange of interstellar neutral atoms with protons in the outer heliosphere or beyond. Among other hypotheses it has been argued that this ribbon may be related to a neutral density enhancement, or H-wave, in the local interstellar medium. Here we quantitatively demonstrate, on the basis of an analytical model of the principal large-scale heliospheric structure, that this scenario for the ribbon formation leads to results that are fully consistent withmore » the observed location of the ribbon in the full-sky maps at all energies detected with high-energy sensor IBEX-Hi.« less
Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters
NASA Astrophysics Data System (ADS)
Tang, Xiaping; Churazov, Eugene
2017-07-01
We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.
NASA Technical Reports Server (NTRS)
Strangeway, R. J.; Crawford, G. K.
1995-01-01
Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.
Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-03-01
We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )<(0.1 - 56 )×10-8 erg cm-2 s-1 Hz-1(f /25 Hz )α -1 depending on the sky location Θ and the spectral power index α . For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω (f ,Θ )<(0.39 - 7.6 )×10-8 sr-1(f /25 Hz )α depending on Θ and α . Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7 ,5.5 , and 7.0 )×10-25 , respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.
2004-01-01
SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.
NASA Technical Reports Server (NTRS)
Soares-Santos, M.; Kessler, R.; Burger, E.; Annis, J.; Brout, D.; Buckley-Geer, E.; Chen, H.; Cowperthwaite, P. S.; Diehl, H.T.; Doctor, Z.;
2016-01-01
We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(exp 2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5(sigma) point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(exp 2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i-z)= 1, 0, -1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.
Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity
Danson, Christopher M.; Pocha, Shirin M.; Bloomberg, Graham B.; Cory, Giles O.
2009-01-01
Summary The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration. PMID:18032787
Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity.
Danson, Christopher M; Pocha, Shirin M; Bloomberg, Graham B; Cory, Giles O
2007-12-01
The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration.
Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.
2002-01-01
Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.
Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira
2017-01-01
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566
Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira
2017-03-23
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Space-time properties of wind-waves: a new look at directional wave distributions
NASA Astrophysics Data System (ADS)
Leckler, Fabien; Ardhuin, Fabrice; Benetazzo, Alvise; Fedele, Francesco; Bergamasco, Filippo; Dulov, Vladimir
2014-05-01
Few accurate observed directional wave spectra are available in the literature at spatial scales ranging between 0.5 and 5.0 m. These intermediate wave scales, relevant for air-sea fluxes and remote sensing are also expected to feed back on the dominant wave properties through wave generation. These wave scales can be prolifically investigated using the well-known optical stereo methods that provides, from a couple of synchronized images, instantaneous representation of wave elevations over a given sea surface. Thus, two stereo systems (the so-called Wave Acquisition Stereo Systems, WASS) were deployed on top of the deep-water platform at Katsiveli, in the Black Sea, in September 2011 and 2013. From image pairs taken by the couple of synchronized high-resolution cameras, ocean surfaces have been reconstructed by stereo-triangulation. Here we analyze sea states corresponding to mean wind speeds of 11 to 14 m/s, and young wave ages of 0.35 to 0.42, associated to significant wave heights of 0.3 to 0.55m. As a result, four 12 Hz time evolutions of sea surface elevation maps with areas about 10 x 10 m2 have been obtained for sequence durations ranging between 15 and 30 minutes, and carefully validated with nearby capacitance wave gauges. The evolving free surfaces elevations were processed into frequency-wavenumber-direction 3D spectra. We found that wave energy chiefly follows the dispersion relation up to frequency of 1.6Hz and wavenumber of 10 rad/m, corresponding to wavelength of about 0.5 m. These spectra also depict well the energy contribution from non-linear waves, which is quantified and compared to theory. A strong bi-modality of the linear spectra was also observed, with the angle of the two maxima separated by about 160 degrees. Furthermore, spectra also exhibit the bimodality of the non-linear part. Integrated over positive frequencies to obtain wavenumber spectra unambiguous in direction, the bimodality of the spectra is partially hidden by the energy from second order waves, in particular from wave harmonics of the peak waves. However, the obtained spreading functions and integrals question the isotropy of the spectrum at high frequencies, generally assumed to explain deep water pressure measurement.
Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir
NASA Astrophysics Data System (ADS)
Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.
2012-12-01
An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.
A system and method for online high-resolution mapping of gastric slow-wave activity.
Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2014-11-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.
A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph
Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.
2016-01-01
We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179
Directions for rf-controlled intelligent microvalve
NASA Astrophysics Data System (ADS)
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Cattell, C.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.; Lotko, W.; Streltsov, A. V.
2000-10-01
Observations by the Polar satellite of large Poynting flux in the plasma sheet boundary layer at geocentric distances of 4 to 6 RE and between 22 and 3 hrs magnetic local time were correlated with H-bay signatures from ground magnetometer records. We provide evidence that large Poynting fluxes occur during the substorm expansion phase. The Poynting fluxes exceeded 1 ergs/cm²s (125 ergs/cm²s when mapped to 100 km), were dominantly directed toward the ionosphere, and were associated with Alfvén waves. These observations demonstrate the importance of Alfvén wave power as a means of energy transport from the distant magnetotail to the ionosphere during the most dynamic phase of substorms.
Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc
2002-07-01
Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Boundary identification and error analysis of shocked material images
NASA Astrophysics Data System (ADS)
Hock, Margaret; Howard, Marylesa; Cooper, Leora; Meehan, Bernard; Nelson, Keith
2017-06-01
To compute quantities such as pressure and velocity from laser-induced shock waves propagating through materials, high-speed images are captured and analyzed. Shock images typically display high noise and spatially-varying intensities, causing conventional analysis techniques to have difficulty identifying boundaries in the images without making significant assumptions about the data. We present a novel machine learning algorithm that efficiently segments, or partitions, images with high noise and spatially-varying intensities, and provides error maps that describe a level of uncertainty in the partitioning. The user trains the algorithm by providing locations of known materials within the image but no assumptions are made on the geometries in the image. The error maps are used to provide lower and upper bounds on quantities of interest, such as velocity and pressure, once boundaries have been identified and propagated through equations of state. This algorithm will be demonstrated on images of shock waves with noise and aberrations to quantify properties of the wave as it progresses. DOE/NV/25946-3126 This work was done by National Security Technologies, LLC, under Contract No. DE- AC52-06NA25946 with the U.S. Department of Energy and supported by the SDRD Program.
Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007
Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.
2008-01-01
In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Generative Modeling for Machine Learning on the D-Wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thulasidasan, Sunil
These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.
Seismic detection of a hydraulic fracture from shear-wave VSP data at Lost Hills Field, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, M.A.; Winterstein, D.F.
1994-01-01
The authors describe the results of a geophysical experiment in which shear waves (S-waves) were used to detect the presence of a hydraulic fracture in a diatomite reservoir at the Lost Hills Field. They show evidence that transient S-waves recorded in a monitor well represent diffracted energy that disappears as the fracture closes. They also show how, using simple models, one can establish limits on fracture lengths and heights by accurately modeling the scattered wavefield. These limits are dependent upon both the recording geometry and the wavelength of the S-waves incident on the fracture. The principles of S-wave recording andmore » processing described here can provide important information about the geometry of induced fractures, which are becoming increasingly important for enhanced recovery. The paper presents background information about the Lost Hills Field and provide other details relevant for mapping induced fractures. The remainder of the paper treats the data processing and modeling of the experiment itself and discusses the implications for future experiments of this type.« less
Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G
2017-05-01
Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Domina, Anastasiia; Palmer, Matthew; Vlasenko, Vasil; Sharples, Jonathan; Green, Mattias; Stashchuk, Nataliya
2017-04-01
Internal gravity waves (IWs) have been recognised as one of the main drivers of climate controlling circulation, sustaining fisheries in shelf seas and CO2-pump system. High frequency IWs are particularly important to internal mixing in the shelf seas, where they contain an enhanced fraction of the available baroclinic energy. The origin, generation mechanism, propagation and spatial distribution of these waves are unfortunately still poorly understood since they are difficult to measure and simulate, and are therefore not represented in the vast majority of ocean and climate models. In this study we aim to increase our understanding of high frequency IWs dynamics in shelf seas through a combination of observational (from moorings and ocean gliders) and modelling methods (MITgcm), and test the hypothesis that "Solitary waves are responsible for driving a large fraction of the vertical diffusivity at the shelf edge and adjacent shelf region". A new high-resolution (50m horizontal) MITgcm configuration is employed to identify the generation and propagation of IWs in a regional shelf sea and subsequently identify internal wave generation hotspots by using calculated Froude number and body force maps. We assess the likely impact of changing seasonal and climate forcing on IWs with a range of different density structures. Our model suggests that under increasing stratification, the IW field becomes more energetic at all frequencies, however the increase in energy is not evenly distributed. While energy in the dominant low frequency IWs increase by 20-40%, energy associated with high frequency waves increases by as much as 90%. These model results are compared to varying stratification scenarios from observations made during 2012 and 2013 to interpret the impact on continental shelf sea IW generation and propagation. We use the results from a turbulence enabled ocean glider to assess the impact that this varying wavefield has on internal mixing, and discuss the implications this might have on future climate scenarios.
Exact analytic solution of position-dependent mass Schrödinger equation
NASA Astrophysics Data System (ADS)
Rajbongshi, Hangshadhar
2018-03-01
Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2017-03-24
We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8} erg cm^{-2} s^{-1} Hz^{-1}(f/25 Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8} sr^{-1}(f/25 Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5, and 7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
NASA Astrophysics Data System (ADS)
Bartrand, J.; Abbott, R. E.
2017-12-01
We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity
Bull, Simon H.; O’Grady, Gregory; Du, Peng
2015-01-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024
NASA Astrophysics Data System (ADS)
Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut
2017-10-01
We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).
Rayleigh-wave Tomography Study of Northwestern Canada
NASA Astrophysics Data System (ADS)
McLellan, M. E.; Audet, P.; Schaeffer, A. J.
2015-12-01
Due to the ongoing collision of the Yakutat block with the North American plate in southeastern Alaska, a significant amount of deformation is occurring in the northern Canadian Cordillera. The stress transfer associated with the accretion of this terrane is believed to be responsible for the seismicity across this widespread region. Estimates of crustal thickness within the Mackenzie and Richardson Mountains provide constraints on models describing the evolution of crustal roots responsible for supporting such belts that transmit tectonic stresses over long distances (>1000 km); unfortunately, current seismic velocity models used to map crustal thickness have limited resolution due to sparse coverage by seismograph networks. Here we use data from a new regional seismograph network (Yukon-Northwest Seismograph Network - YNSN) as well as permanent stations to map out crustal structure. Crustal thickness variations can be obtained from 3-D seismic velocity models determined from the inversion of surface-wave dispersion data. In this work we present preliminary results of a regional tomography study of northwestern Canada, encompassing the northern Canadian Cordillera, using dispersion curves derived from ambient noise cross-correlations in addition to teleseismic two-station interferometry. We collected all available vertical component seismic data from stations located in the Yukon and surrounding regions from the period between June 2012 and June 2015. Using this data set, we first cross-correlated hour-long segments of the ambient seismic noise between all available stations pairs that share common data availability and obtained virtual Rayleigh waves with energy over periods 10-50 s that are predominantly sensitive to crust and uppermost mantle structure. This data set is complemented by Rayleigh-wave dispersion measurements, spanning the period range 25—175 s, derived by cross-correlating vertical component data from teleseismic earthquakes (M>5) lying along the great circle path between individual station pairs. We then measured group and phase velocities from these Rayleigh wave data sets and produced the first regional, high-resolution, azimuthally anisotropic phase and group velocity maps of northwestern Canada.
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.
2018-02-01
We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.
Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E
2007-09-04
The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.
NASA Astrophysics Data System (ADS)
Fraternale, Federico; Domenicale, Loris; Staffilani, Gigliola; Tordella, Daniela
2018-06-01
This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge's procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech. 2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number-Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.
Optimizing Spectral Wave Estimates with Adjoint-Based Sensitivity Maps
2014-02-18
J, Orzech MD, Ngodock HE (2013) Validation of a wave data assimilation system based on SWAN. Geophys Res Abst, (15), EGU2013-5951-1, EGU General ...surface wave spectra. Sensitivity maps are generally constructed for a selected system indicator (e.g., vorticity) by computing the differential of...spectral action balance Eq. 2, generally initialized at the off- shore boundary with spectral wave and other outputs from regional models such as
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W; Greenleaf, James F; Chen, Shigao
2014-06-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. Applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. Decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. Using a robust 2-D shear wave speed calculation to reconstruct 2-D shear elasticity maps from each filter direction; and 4. Compounding these 2-D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view, 2-D and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
West, Loyd Travis
Site characterization is an essential aspect of hazard analysis and the time-averaged shear-wave velocity to 30 m depth "Vs30" for site-class has become a critical parameter in site-specific and probabilistic hazard analysis. Yet, the general applicability of Vs30 can be ambiguous and much debate and research surround its application. In 2007, in part to mitigate the uncertainty associated with the use of Vs30 in Las Vegas Valley, the Clark County Building Department (CCBD) in collaboration with the Nevada System of Higher Education (NSHE) embarked on an endeavor to map Vs30 using a geophysical methods approach for a site-class microzonation map of over 500 square miles (1500 km2) in southern Nevada. The resulting dataset, described by Pancha et al. (2017), contains over 10,700 1D shear-wave-velocity-depth profiles (SWVP) that constitute a rich database of 3D shear-wave velocity structure that is both laterally and vertical heterogenous. This study capitalizes on the uniquely detailed and spatially dense CCBD database to carry out sensitivity tests on the detailed shear-wave-velocity-profiles and the Vs30 utilizing 1D and 3D site-response approaches. Sensitivity tests are derived from the 1D oscillator response of a single-degree-of-freedom-oscillator and from 3D finite-difference deterministic simulations up to 15 Hz frequency using similar model parameters. Results demonstrate that the detailed SWVP are amplifying ground motions by roughly 50% over the simple Vs30 models, above 4.6 Hz frequency. Numerical simulations also depict significant lateral resonance, focusing, and scattering from seismic energy attributed to the 3D small-scale heterogeneities of the shear-wave-velocity profiles that result in a 70% increase in peak ground velocity. Additionally, PGV ratio maps clearly establish that the increased amplification from the detailed SWVPs is consistent throughout the model space. As a corollary, this study demonstrates the use of finite-differencing numerical based methods to simulate ground motions at high frequencies, up to 15 Hz.
On mantle heterogeneity and anisotropy as mapped by inversion of global surface wave data
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J.; Deschamps, F.
2008-12-01
We jointly invert Love and Rayleigh wave dispersion curves for the Earth's mantle composition, thermal state, P and S wave anisotropy at different locations on the Earth, based on self-consistent thermodynamic calculations. The method consists of four parts: 1. The composition of the Earth is modeled by the chemical system CaO-FeO-MgO- Al2O3-SiO2. Given these parameters and a geotherm (also an unknown), we calculate stable mineral modes, elastic properties, bulk density at the prevailing physical conditions using Gibbs free energy minimisation. Voigt-Reuss-Hill averaging is subsequently emplouyed to compute radial isotropic P and S wave velocity profiles in the elastic limit. 2. Anisotropic P and S wave velocities are determined from the isotropic ones by employing the relations ξ=(Vsh/Vsv)2, φ = (Vpv/Vph)2, η=F/(2A-L), Vs=(2Vsv2+Vsh2)/3 and Vp=(Vpv2+4Vph2)/5. The former three parameters are the standard anisotropy parameters, that we also invert for. 4. From these radial profiles, i.e. of Vsv, Vsh, Vph, Vpv and ρ, sunthetic Love and Rayleigh wave dispersion curves are calculated. The dispersion curves, which comprise fundamental and overtones up to 5th (Love) and 6th (Rayleigh) order have been extracted from global surface wave velocity maps. Given the above scheme, the data are at each location are jointly inverted using a Markov Chain Monte Carlo algorithm, from which a range of compositions, temperatures and radial profiles of anisotropy parameters, fitting data within uncertainties, are obtained. Our method has several advantages over standard approaches, in that no scaling relationships between Vs and Vp and ρ and Vs have to be introduced, implying that the full sensitivity of Rayleigh and Love waves to the parameters Vs, Vp and ρ is accounted for. In this particular study we investigate 5 locations distributed across the globe and reveal mantle chemical and thermal differences at these locations.
Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2012-01-01
Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690
The Middle Atmosphere Program: Winter In Northern Europe (MAP/WINE)
NASA Technical Reports Server (NTRS)
Vonzahn, U.
1982-01-01
The goals of map/wind (winter in Northern Europe) are to better understand: (1) the interaction of planetary waves of tropospheric origin; (2) the temporal and spatial development of sudden stratospheric warmings; (3) the temporal and spatial development of mesospheric cooling events in conjunction with stratospheric warmings; (4) the vertical and horizontal transport of minor constituents; (5) the effects on the chemistry of neutral and charged species of the large temperature changes occurring during stratospheric warmings and mesospheric cooling; (6) sources of turbulent energy; (7) the temporal and spatial development of turbulent layers; and (8) the contributions of dynamical processes to the heating and cooling of the mesospheric and turbopause region.
Wave Breaking Dissipation in Fetch-Limited Seas
NASA Astrophysics Data System (ADS)
Schwendeman, M.; Thomson, J. M.; Gemmrich, J.
2012-12-01
Breaking waves on the ocean surface control wave growth and enhance air-sea interaction, yet field measurements of breaking are limited. A promising technique for field measurements of wave breaking uses the breaking crest length distribution Λ(c), introduced by Phillips (1985). However, calculating dynamic quantities from Λ(c) requires knowledge of the breaking strength parameter, b. Estimates of a b have varied over many orders of magnitude, and recent studies have attempted to model b in terms of sea state, such as wave steepness or saturation. We present comprehensive observations of breaking in fetch-limited conditions from Juan de Fuca Strait, WA. The wave evolution along fetch is explained by an observed energy budget using the radiative transfer equation (RTE), and the evolution is consistent with existing empirical fetch laws. Estimates of Λ(c) increase along fetch and are consistent with directly measured breaking rates. Using novel in situ measures of dissipation, as well as a residual term from the RTE budget, we obtain robust estimates of the wave breaking strength b. Results suggest that b decreases with wave steepness and saturation, in contrast with recent laboratory results (Drazen et al, 2008). This trend is discussed in terms of the fetch evolution and associated broadening of the equilibrium range in the wave spectra.Map of drifter tracks colored by wave height for two days in Juan de Fuca Strait, WA.
Local recovery of the compressional and shear speeds from the hyperbolic DN map
NASA Astrophysics Data System (ADS)
Stefanov, Plamen; Uhlmann, Gunther; Vasy, Andras
2018-01-01
We study the isotropic elastic wave equation in a bounded domain with boundary. We show that local knowledge of the Dirichlet-to-Neumann map determines uniquely the speed of the p-wave locally if there is a strictly convex foliation with respect to it, and similarly for the s-wave speed.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.; Barnes, D. C.
2012-03-01
A recent proof-of-principle study proposes an energy- and charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly charge- and energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved.[4pt] [1] Chen, Chac'on, Barnes, J. Comput. Phys. 230 (2011). [0pt] [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999).
Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi
Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.
Robustness against non-magnetic impurities in topological superconductors
NASA Astrophysics Data System (ADS)
Nagai, Y.; Ota, Y.; Machida, M.
2014-12-01
We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.
Assessing Controls on the Geometry and Dimensions of Modern Barrier Islands
NASA Astrophysics Data System (ADS)
Mulhern, J.; Johnson, C. L.; Martin, J. M.
2015-12-01
Barrier islands are highly ephemeral features, shaped by wave, tide, and storm energy. The processes that govern the size, shape, and motion of barrier islands are not well constrained, yet central to coastal dynamics. While the global distribution of barrier islands has been mapped and assessed, there is little consensus on the forces controlling barrier island formation, motion, or preservation. This study presents a new semi-global database of modern barrier islands to better understand their morphology and spatial distribution. We have mapped, in Google Earth, the subaerial extent of >350 barrier islands and spits, measuring spatial characteristic such as exposed area, perimeter, length, and width. These objects are cross-referenced with parameters that potentially control morphology, including tidal range, wave height, climate, distance from the continental shelf, proximity to fluvial output, and tectonic setting. This approach provides a more optimal framework to assess controls on coastal features, including barrier island morphology, and to investigate potential geometric scaling relationships. Preliminary analysis shows trends in the spatial characteristics of barrier islands. There is a strong linear relationship between the perimeter and length (y= -0.59 + 0.42x, R2=0.95). Linear trends also relate length to area when the data are separated by tidal range to wave height ratio. Assessment of barrier island shape supports the hypothesis of Hayes (1979) that barrier islands in wave-dominated settings are long and linear while those in mixed energy setting are more rounded. The barrier islands of the Texas Gulf of Mexico are larger than the global average for the database, with distinctly longer length values (41.16 km vs. 15.77 km respectively) and larger areas (103.81 km2 vs. 42.14 km2 respectively). Initial assessment shows that tidal range and wave height are primary controls barrier island dimensions. Future work will consider climate, latitude, fluvial input, and tectonic regime as additional factors. Assessing modern barrier islands will lend insight into potential paleomorphodynamic relationships and help determine how islands are transferred into the rock record, with implications for sequence stratigraphy, subsurface reservoirs, etc.
NASA Astrophysics Data System (ADS)
Wang, K.; Luo, Y.; Yang, Y.
2016-12-01
We collect two months of ambient noise data recorded by 35 broadband seismic stations in a 9×11 km area near Karamay, China, and do cross-correlation of noise data between all station pairs. Array beamforming analysis of the ambient noise data shows that ambient noise sources are unevenly distributed and the most energetic ambient noise mainly comes from azimuths of 40o-70o. As a consequence of the strong directional noise sources, surface wave waveforms of the cross-correlations at 1-5 Hz show clearly azimuthal dependence, and direct dispersion measurements from cross-correlations are strongly biased by the dominant noise energy. This bias renders that the dispersion measurements from cross-correlations do not accurately reflect the interstation velocities of surface waves propagating directly from one station to the other, that is, the cross-correlation functions do not retrieve Empirical Green's Functions accurately. To correct the bias caused by unevenly distributed noise sources, we adopt an iterative inversion procedure. The iterative inversion procedure, based on plane-wave modeling, includes three steps: (1) surface wave tomography, (2) estimation of ambient noise energy and (3) phase velocities correction. First, we use synthesized data to test efficiency and stability of the iterative procedure for both homogeneous and heterogeneous media. The testing results show that: (1) the amplitudes of phase velocity bias caused by directional noise sources are significant, reaching 2% and 10% for homogeneous and heterogeneous media, respectively; (2) phase velocity bias can be corrected by the iterative inversion procedure and the convergences of inversion depend on the starting phase velocity map and the complexity of the media. By applying the iterative approach to the real data in Karamay, we further show that phase velocity maps converge after ten iterations and the phase velocity map based on corrected interstation dispersion measurements are more consistent with results from geology surveys than those based on uncorrected ones. As ambient noise in high frequency band (>1Hz) is mostly related to human activities or climate events, both of which have strong directivity, the iterative approach demonstrated here helps improve the accuracy and resolution of ANT in imaging shallow earth structures.
Putney, Joy; Hilbert, Douglas; Paskaranandavadivel, Niranchan; Cheng, Leo K.; O'Grady, Greg; Angeli, Timothy R.
2016-01-01
Objective The aim of this study was to develop, validate, and apply a fully automated method for reducing large temporally synchronous artifacts present in electrical recordings made from the gastrointestinal (GI) serosa, which are problematic for properly assessing slow wave dynamics. Such artifacts routinely arise in experimental and clinical settings from motion, switching behavior of medical instruments, or electrode array manipulation. Methods A novel iterative COvaraiance-Based Reduction of Artifacts (COBRA) algorithm sequentially reduced artifact waveforms using an updating across-channel median as a noise template, scaled and subtracted from each channel based on their covariance. Results Application of COBRA substantially increased the signal-to-artifact ratio (12.8±2.5 dB), while minimally attenuating the energy of the underlying source signal by 7.9% on average (-11.1±3.9 dB). Conclusion COBRA was shown to be highly effective for aiding recovery and accurate marking of slow wave events (sensitivity = 0.90±0.04; positive-predictive value = 0.74±0.08) from large segments of in vivo porcine GI electrical mapping data that would otherwise be lost due to a broad range of contaminating artifact waveforms. Significance Strongly reducing artifacts with COBRA ultimately allowed for rapid production of accurate isochronal activation maps detailing the dynamics of slow wave propagation in the porcine intestine. Such mapping studies can help characterize differences between normal and dysrhythmic events, which have been associated with GI abnormalities, such as intestinal ischemia and gastroparesis. The COBRA method may be generally applicable for removing temporally synchronous artifacts in other biosignal processing domains. PMID:26829772
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-08-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.
NASA Astrophysics Data System (ADS)
Desai, M. I.; McComas, D. J.; Christian, E. R.; Mewaldt, R. A.; Schwadron, N.
2014-12-01
Solar energetic particles or SEPs from suprathermal (few keV) up to relativistic (~few GeV) speeds are accelerated near the Sun in at least two ways, namely, (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy (>10s MeV) protons pose serious radiation threats to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of SEP events has eluded us primarily because their properties, as observed near Earth orbit, are smeared due to mixing and contributions from many important physical effects. Thus, despite being studied for decades, several key questions regarding SEP events remain unanswered. These include (1) What are the contributions of co-temporal flares, jets, and CME shocks to impulsive and gradual SEP events?; (2) Do flares contribute to large SEP events directly by providing high-energy particles and/or by providing the suprathermal seed population?; (3) What are the roles of ambient turbulence/waves and self-generated waves?; (4) What are the origins of the source populations and how do their temporal and spatial variations affect SEP properties?; and (5) How do diffusion and scattering during acceleration and propagation through the interplanetary medium affect SEP properties observed out in the heliosphere? This talk describes how during the next decade, inner heliospheric measurements from the Solar Probe Plus and Solar Orbiter in conjunction with high sensitivity measurements from the Interstellar Mapping and Acceleration Probe will provide the ground-truth for various models of particle acceleration and transport and address these questions.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-02-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.
NASA Astrophysics Data System (ADS)
Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.
2016-12-01
Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvioli, M.; Frankfurt, L.; Guzey, V.
Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less
Source mechanisms of volcanic tsunamis.
Paris, Raphaël
2015-10-28
Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).
CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobotka, M.; Heinzel, P.; Švanda, M.
Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less
Coastal geomorphological study of pocket beaches in Crete, with the use of planview indices.
NASA Astrophysics Data System (ADS)
Alexandrakis, George; Karditsa, Aikaterini; Poulos, Serafim; Kampanis, Nikos
2013-04-01
The formation of pocket beaches is a result of a large number of processes and mechanisms that vary on space and time scales. This study aims in defining the planform characteristics of pocket beaches in Crete Isl. and to determine their sheltering effect, embaymentization and their status of equilibrium. Thus, data from 30 pocket beaches along the coastline of Crete, with different geomorphological and hydrodynamical setting, were collected. Planform parameters were applied and coastal planview indices from the bibliography were applied. The parameters included: length and orientation of the headlands between the pocket beach; length between the bay entrance and the center of the beach; lengths of the i) embayed shoreline, ii) embayed beach, iii) beach segment located at the shadow of a headland; linear distance and orientation between the edges of the embayed beach; direction of the incident wave energy flux; wave crest obliquity to the control line; beach area, maximum beach width and headland orientation and river/ torrent catchment areas in beach zones that an active river system existed (Bowman et al.2009). For the morphological mapping of the study areas, 1:5000 orthophoto maps were used. Wave regime has been calculated with the use of prognostic equations and utilising local wind data (mean annual frequency of wind speed and direction), provided by the Wind and Wave Atlas of the Eastern Mediterranean Sea. The diffraction and refraction of the waves has been simulated with the use of numerical models. The study shows that Cretan pocket beaches display a wide range of indentation, suggesting that is the result of several parameters that include tectonics, coastal hydrodynamics and river catchment areas. The more indented bays are, the shorter their beaches become, while low-indented pocket beaches are the widest and the longest ones. Beaches with headland with large length appear to be more protected and receive smaller amount of wave energy. Most of the Cretan pocket beaches have limited sediment supply for the mainland, while they appear to be in an unstable status. D. Bowman, J. Guillén, L. López, V. Pellegrino (2009), Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain). Geomorphology, 108, 191-199
Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.
Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D
1998-08-01
Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the unavailability of temperature monitoring in the early version of the Navistar catheter, the location of the arrhythmia, and the history of arrhythmia control with flecainide. No attempt was made to limit fluoroscopy time in our study population. Nevertheless, despite data acquisition from 120-320 anatomically distinct sites during global and more detailed focal atrial mapping, total fluoroscopy exposure was typically < 30 minutes and was as little as 12 minutes. The detailed display capabilities of the CARTO system appear to offer the potential of enhancing our understanding of atrial anatomy, atrial activation, and their relationship to surface ECG P wave morphology during focal atrial tachycardias.
NASA Astrophysics Data System (ADS)
Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy
2016-04-01
As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights will be presented using a 100: 1 time compression.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; ...
2016-04-18
Here, We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe 2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe 2 and MoS 2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent densitymore » of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.« less
NASA Technical Reports Server (NTRS)
Kato, S.
1989-01-01
Japan contributed much to MAP in many branches. The MU (middle and upper atmosphere) radar, in operation during the MAP period, produced various novel possibilities in observations of middle atmosphere dynamics; possibilities which were fairly well realized. Gravity wave saturation and its spectrum in the mesosphere were observed successfully. Campaign observations by radars between Kyoto and Adelaide were especially significant in tidal and planetary wave observations. In Antarctica, middle atmosphere observation of the dramatic behavior of aerosols in winter is well elucidated together with the ozone hole. Theoretical and numerical studies have been progressing actively since a time much earlier than MAP. Now it is pointed out that gravity waves play an important role in producing the weak wind region in the stratosphere as well as the mesosphere.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
From retinal waves to activity-dependent retinogeniculate map development.
Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen
2012-01-01
A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.
Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Howard, Andrew B.; Aghazarian, Hrand; Rankin, Arturo L.
2012-01-01
PSSEARCH provides predictive sea state estimation, coupled with closed-loop feedback control for automated ride control. It enables a manned or unmanned watercraft to determine the 3D map and sea state conditions in its vicinity in real time. Adaptive path-planning/ replanning software and a control surface management system will then use this information to choose the best settings and heading relative to the seas for the watercraft. PSSEARCH looks ahead and anticipates potential impact of waves on the boat and is used in a tight control loop to adjust trim tabs, course, and throttle settings. The software uses sensory inputs including IMU (Inertial Measurement Unit), stereo, radar, etc. to determine the sea state and wave conditions (wave height, frequency, wave direction) in the vicinity of a rapidly moving boat. This information can then be used to plot a safe path through the oncoming waves. The main issues in determining a safe path for sea surface navigation are: (1) deriving a 3D map of the surrounding environment, (2) extracting hazards and sea state surface state from the imaging sensors/map, and (3) planning a path and control surface settings that avoid the hazards, accomplish the mission navigation goals, and mitigate crew injuries from excessive heave, pitch, and roll accelerations while taking into account the dynamics of the sea surface state. The first part is solved using a wide baseline stereo system, where 3D structure is determined from two calibrated pairs of visual imagers. Once the 3D map is derived, anything above the sea surface is classified as a potential hazard and a surface analysis gives a static snapshot of the waves. Dynamics of the wave features are obtained from a frequency analysis of motion vectors derived from the orientation of the waves during a sequence of inputs. Fusion of the dynamic wave patterns with the 3D maps and the IMU outputs is used for efficient safe path planning.
Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2014-11-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.
Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.
2014-01-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066
EMIC Waves Observed in Conjunction with BARREL Electron Precipitation
NASA Astrophysics Data System (ADS)
Weaver, C.; Engebretson, M. J.; Lessard, M.; Halford, A. J.; Millan, R. M.; Horne, R. B.; Singer, H. J.
2013-05-01
Electromagnetic ion-cyclotron (EMIC) waves have been detected at Halley, Antarctica coinciding with observations of electron precipitation on high altitude balloons from the Balloon Array for RBSP Relativistic Electron Losses (BARREL) campaign launched in early 2013 from SANAE IV and Halley Station. The balloons were launched such that both spatial and temporal properties of electron precipitation might be examined. With a magnetic foot point mapped to the radiation belts, Halley is an ideal location to capture ground based signatures that coincide with electron precipitation. EMIC waves have been shown, both theoretically and through statistical surveys, to pitch angle scatter energetic protons and relativistic electrons via cyclotron resonance and contribute to radiation belt dynamics. EMIC waves were detected at Halley Station 23 times from 12 Jan - 4 Feb with 17 of those waves occurring during times when at least one BARREL balloon observed precipitation in one or more energy channels. High resolution magnetometer data from GOES 13 (which has a magnetic foot point near WAIS Divide, Antarctica-located about 2.5 hours, in MLT, west of Halley) show similar EMIC wave structure and frequency to 9 waves observed at Halley, suggesting the source region extended to at least the longitude and L value of GOES 13 during some events. The ground observed waves appeared in all local times and during both quiet and disturbed intervals.
Tympanal travelling waves in migratory locusts.
Windmill, James F C; Göpfert, Martin C; Robert, Daniel
2005-01-01
Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Wave power focusing due to the Bragg resonance
NASA Astrophysics Data System (ADS)
Tao, Ai-feng; Yan, Jin; Wang, Yi; Zheng, Jin-hai; Fan, Jun; Qin, Chuan
2017-08-01
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
2008-09-30
We hope to quantify crack nucleation and growth (Ashby and Sammis, 1990) as an S-wave generation mechanism in the far-field (Sammis, 2002) and to map...wave generation mechanism in the far-field (Sammis, 2002) and to map the cone of damage (Patton et al. 2005; Stevens et al. 2003) above a source...Two of the proposed mechanisms for S-wave generation involve secondary processes related to the damage and deformations caused by the explosions. First
HIRAX: a probe of dark energy and radio transients
NASA Astrophysics Data System (ADS)
Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.
2016-08-01
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.
2014-12-01
Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)
Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-10-01
A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
Warped frequency transform analysis of ultrasonic guided waves in long bones
NASA Astrophysics Data System (ADS)
De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.
2010-03-01
Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
Storlazzi, C.D.; Logan, J.B.; Field, M.E.
2003-01-01
High-resolution Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) laser-determined bathymetric data were used to define the morphology of spur-and-groove structures on the fringing reef off the south coast of Molokai, Hawaii. These data provide a basis for mapping and analyzing morphology of the reef with a level of precision and spatial coverage never before attained. An extensive fringing coral reef stretches along the central two-thirds of Molokai's south shore (???40 km); along the east and west ends there is only a thin veneer of living coral with no developed reef complex. In total, ???4800 measurements of spur-and-groove height and the distance between adjacent spur crests (wavelength) were obtained along four isobaths. Between the 5m and 15m isobaths, the mean spur height increased from 0.7 m to 1.6 m, whereas the mean wavelength increased from 71 m to 104 m. Reef flat width was found to exponentially decrease with increasing wave energy. Overall, mean spur-and-groove height and wavelength were shown to be inversely proportional to wave energy. In high-energy environments, spur-and-groove morphology remains relatively constant across all water depths. In low-energy environments, however, spur-and-groove structures display much greater variation; they are relatively small and narrow in shallow depths and develop into much larger and broader features in deeper water. Therefore, it appears that waves exert a primary control on both the small and large-scale morphology of the reef off south Molokai.
Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments
NASA Astrophysics Data System (ADS)
Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.
2016-12-01
Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and emphasizes that the WIGED mechanism is very important to image subsurface gas plumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; Moortel, I. De; Doorsselaere, T. Van
Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. Inmore » the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s{sup −1}, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.« less
NASA Technical Reports Server (NTRS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.;
2000-01-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.
2000-08-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
NASA Technical Reports Server (NTRS)
Yamanaka, M. D.
1989-01-01
In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.
Wave energy analysis based on simulation wave data in the China Sea
NASA Astrophysics Data System (ADS)
Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da
2018-05-01
In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less
The observed relationship between wave conditions and beach response, Ocean Beach, San Francisco, CA
Hansen, J.E.; Barnard, P.L.
2009-01-01
Understanding how sandy beaches respond to storms is critical for effective sediment management and developing successful erosion mitigation efforts. However, only limited progress has been made in relating observed beach changes to wave conditions, with one of the major limiting factors being the lack of temporally dense beach topography and nearshore wave data in most studies. This study uses temporally dense beach topographic and offshore wave data to directly link beach response and wave forcing with generally good results. Ocean Beach is an open coast high-energy sandy beach located in San Francisco, CA, USA. From April 2004 through the end of 2008, 60 three-dimensional topographic beach surveys were conducted on approximately a monthly basis, with more frequent “short-term surveys during the winters of 2005-06 and 2006-07. Shoreline position data from the short-term surveys show good correlation with offshore wave height, period, and direction averaged over several days prior to the survey (mean R*=0.54 for entire beach). There is, however, considerable alongshore variation in model performance, with R- values ranging from 0.81 to 0.19 for individual sections of the beach. After wave height, the direction of wave approach was the most important factor in determining the response of the shoreline, followed by wave period. Our results indicate that an empirical predictive model of beach response to wave conditions at Ocean Beach is possible with frequent beach mapping and wave data, and that such a model could be useful to coastal managers.
Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P
2013-01-01
Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749
Combined distributed and concentrated transducer network for failure indication
NASA Astrophysics Data System (ADS)
Ostachowicz, Wieslaw; Wandowski, Tomasz; Malinowski, Pawel
2010-03-01
In this paper algorithm for discontinuities localisation in thin panels made of aluminium alloy is presented. Mentioned algorithm uses Lamb wave propagation methods for discontinuities localisation. Elastic waves were generated and received using piezoelectric transducers. They were arranged in concentrated arrays distributed on the specimen surface. In this way almost whole specimen could be monitored using this combined distributed-concentrated transducer network. Excited elastic waves propagate and reflect from panel boundaries and discontinuities existing in the panel. Wave reflection were registered through the piezoelectric transducers and used in signal processing algorithm. Proposed processing algorithm consists of two parts: signal filtering and extraction of obstacles location. The first part was used in order to enhance signals by removing noise from them. Second part allowed to extract features connected with wave reflections from discontinuities. Extracted features damage influence maps were a basis to create damage influence maps. Damage maps indicated intensity of elastic wave reflections which corresponds to obstacles coordinates. Described signal processing algorithms were implemented in the MATLAB environment. It should be underlined that in this work results based only on experimental signals were presented.
Scattering - a probe to Earth's small scale structure
NASA Astrophysics Data System (ADS)
Rost, S.; Earle, P.
2009-05-01
Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
NASA Astrophysics Data System (ADS)
Yang, Li; Pu, Han
2016-09-01
We show that the wave function in one spatial sector x1
Feasibility of Wave Energy in Hong Kong
NASA Astrophysics Data System (ADS)
Lu, M.; Hodgson, P.
2014-12-01
Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.
Assessment of wave energy potential along the south coast of Java Island
NASA Astrophysics Data System (ADS)
Song, Qingyang; Mayerle, Roberto
2018-04-01
The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.
NASA Astrophysics Data System (ADS)
Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.
2016-06-01
Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion possible future improvements to the setup and the power flow algorithm are discussed.
Research on Efficiency of a Wave Energy Conversion System
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-02-01
The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.
Assessing wave energy effects on biodiversity: the wave hub experience.
Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J
2012-01-28
Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Liu, X.; Bhartia, P. K.
2007-01-01
Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.
Temporal Evolution of Chromospheric Oscillations in Flaring Regions: A Pilot Study
NASA Astrophysics Data System (ADS)
Monsue, T.; Hill, F.; Stassun, K. G.
2016-10-01
We have analyzed Hα intensity images obtained at a 1 minute cadence with the Global Oscillation Network Group (GONG) system to investigate the properties of oscillations in the 0-8 mHz frequency band at the location and time of strong M- and X-class flares. For each of three subregions within two flaring active regions, we extracted time series from multiple distinct positions, including the flare core and quieter surrounding areas. The time series were analyzed with a moving power-map analysis to examine power as a function of frequency and time. We find that, in the flare core of all three subregions, the low-frequency power (˜1-2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency- and time-dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flare cores. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset. Dark lanes of reduced wave power are also visible in the power maps, which may arise from the interaction of the acoustic waves and the magnetic field.
TEMPORAL EVOLUTION OF CHROMOSPHERIC OSCILLATIONS IN FLARING REGIONS: A PILOT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monsue, T.; Stassun, K. G.; Hill, F., E-mail: teresa.monsue@vanderbilt.edu, E-mail: keivan.stassun@vanderbilt.edu, E-mail: hill@email.noao.edu
2016-10-01
We have analyzed H α intensity images obtained at a 1 minute cadence with the Global Oscillation Network Group (GONG) system to investigate the properties of oscillations in the 0–8 mHz frequency band at the location and time of strong M- and X-class flares. For each of three subregions within two flaring active regions, we extracted time series from multiple distinct positions, including the flare core and quieter surrounding areas. The time series were analyzed with a moving power-map analysis to examine power as a function of frequency and time. We find that, in the flare core of all threemore » subregions, the low-frequency power (∼1–2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency- and time-dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flare cores. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset. Dark lanes of reduced wave power are also visible in the power maps, which may arise from the interaction of the acoustic waves and the magnetic field.« less
Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F
2016-07-03
Climate change has increased the occurrence of heat waves, causing heat stress among humans and livestock, with potentially fatal consequences. Heat stress maps provide information about related health risks and insight for control strategies. Weather data were collected throughout Southern Ontario, and the heat stress index (HSI) was estimated for 2010-2012. Geostatistical kriging was applied to map heat stress, heat waves, and control periods. Average HSI for each period ranged from 55 to 78 during control periods, and from 65 to 84 during heat waves, surpassing levels where morbidity is known to increase substantially. Heat stress followed a temporally consistent geographic pattern. HSI maps indicate high-risk areas for heat-related illness and indicate areas where agriculture and human health may be at increased risk in future.
Study of the potential of wave energy in Malaysia
NASA Astrophysics Data System (ADS)
Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin
2017-07-01
Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.
Sound Velocity and Strength of Beryllium along the Principal Hugoniot using Quartz Windows
NASA Astrophysics Data System (ADS)
McCoy, Chad; Knudson, Marcus; Desjarlais, Michael
2017-06-01
The measurement of the interface wave profile is a traditional method to determine the strength of a shocked material. A novel technique was developed to enable wave profile measurements with quartz windows, extending the range of pressures where wave profile measurements are possible beyond lithium fluoride windows. The technique uses the quartz sound velocity to map Lagrangian characteristics from the shock front back to the material interface and determine the particle velocity profile in a sample. This technique was applied to experiments conducted on beryllium at the Sandia Z Accelerator. We present measurements of the longitudinal and bulk sound velocity across the beryllium shock-melt transition and the strength of solid beryllium for pressures from 130 to 200 GPa. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction
NASA Astrophysics Data System (ADS)
Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.
2016-02-01
Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.
Teleseismic surface wave study of S-wave velocity structure in Southern California
NASA Astrophysics Data System (ADS)
Prindle-Sheldrake, K. L.; Tanimoto, T.
2002-12-01
We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.
Internal gravity wave contributions to global sea surface variability
NASA Astrophysics Data System (ADS)
Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.
2016-02-01
High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.
Near Shore Wave Modeling and applications to wave energy estimation
NASA Astrophysics Data System (ADS)
Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.
2012-04-01
The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.
McGarr, A.; Fletcher, Joe B.
2000-01-01
Using the Northridge earthquake as an example, we demonstrate a new technique able to resolve apparent stress within subfaults of a larger fault plane. From the model of Wald et al. (1996), we estimated apparent stress for each subfault using τa = (G/β)/2 where G is the modulus of rigidity, β is the shear wave speed, and is the average slip rate. The image of apparent stress mapped over the Northridge fault plane supports the idea that the stresses causing fault slip are inhomogeneous, but limited by the strength of the crust. Indeed, over the depth range 5 to 17 km, maximum values of apparent stress for a given depth interval agree with τa(max)=0.06S(z), where S is the laboratory estimate of crustal strength as a function of depth z. The seismic energy from each subfault was estimated from the product τaDA, where A is subfault area and D its slip. Over the fault zone, we found that the radiated energy is quite variable spatially, with more than 50% of the total coming from just 15% of the subfaults.
PMP-2 Report: Equatorial Wave Dynamics
NASA Technical Reports Server (NTRS)
Hirota, I.
1982-01-01
The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-08-24
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-10-19
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Comb-push Ultrasound Shear Elastography (CUSE) with Various Ultrasound Push Beams
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Greenleaf, James F.; Chen, Shigao
2013-01-01
Comb-push Ultrasound Shear Elastography (CUSE) has recently been shown to be a fast and accurate two-dimensional (2D) elasticity imaging technique that can provide a full field-of- view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE – Focused CUSE (F-CUSE) and Marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g. kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging. PMID:23591479
Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Zhao, Heng; Greenleaf, James F; Chen, Shigao
2013-08-01
Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE-focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.
NASA Astrophysics Data System (ADS)
Borfecchia, Flavio; Micheli, Carla; Belmonte, Alessandro; De Cecco, Luigi; Sannino, Gianmaria; Bracco, Giovanni; Mattiazzo, Giuliana; Vittoria Struglia, Maria
2016-04-01
Marine renewable energy extraction plays a key role both in energy security of small islands and in mitigation of climate change, but at the same time poses the important question of monitoring the effects of the interaction of such devices with the marine environment. In this work we present a new methodology, integrating satellite remote sensing techniques with in situ observations and biophysical parameters analysis, for the monitoring and mapping of Posidonia Oceanica (PO) meadows in shallow coastal waters. This methodology has been applied to the coastal area offshore Pantelleria Island (Southern Mediterranean) where the first Italian Inertial Sea Wave Energy Converter (ISWEC) prototype has been recently installed. The prototype, developed by the Polytechnic of Turin consists of a platform 8 meters wide, 15 meters long and 4.5 meters high, moored at about 800 meters from the shore and at 31 m depth. It is characterized by high conversion efficiency, resulting from its adaptability to different wave conditions, and a limited environmental impact due to its mooring innovative method with absence of fixed anchors to the seabed. The island of Pantelleria, is characterized by high transparency of coastal waters and PO meadows ecosystems with still significant levels of biodiversity and specific adaptation to accentuated hydrodynamics of these shores. Although ISWEC is a low-impact mooring inertial system able to ensure a reliable connection to the electric grid with minimal impact on seagrass growing in the seabed, the prototype installation and operation involves an interaction with local PO and seagrass meadows and possible water transparency decreasing. In this view monitoring of local PO ecosystem is mandatory in order to allow the detection of potential stress and damages due to ISWEC related activities and/or other factors. However, monitoring and collection of accurate and repetitive information over large areas of the necessary parameters by means of traditional methods (e.g. diving and plants counting), can be difficult and expensive. To overcome these limits we present an integrated methodology for effective monitoring and mapping of PO meadows using satellite/airborne EO (Earth Observation) techniques calibrated by means of sea truth measurements and laboratory genetics analyses. During last summer a sea truth campaign over the areas of interest has been performed and point measurements of several biophysical parameters (biomass, shoot density, cover) related to PO phenology has been acquired by means of original sampling method on the stations distributed along a bathymetry gradient starting from the ISWEC location, at 31 m. of depth. The Landsat 8 OLI with the Sentinel 2 MSI (recently made available within the Copernicus EU program) synchronous satellite multispectral data, including the entire coastal area of interest, were acquired and preprocessed with the objective to test their improved mapping capabilities of PO distribution and related biophysical parameters on the basis of the previously developed operative methods and near synchronous sea truth data. The processed point samples measurements were then exploited for multispectral data calibration, with the support of the statistic and bio-optical modelling approaches to obtain improved thematic maps of the local PO distributions.
NASA Astrophysics Data System (ADS)
Garcia, C. G.; Canals, M.; Irizarry, A. A.
2016-02-01
Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.
Advancing precision cosmology with 21 cm intensity mapping
NASA Astrophysics Data System (ADS)
Masui, Kiyoshi Wesley
In this thesis we make progress toward establishing the observational method of 21 cm intensity mapping as a sensitive and efficient method for mapping the large-scale structure of the Universe. In Part I we undertake theoretical studies to better understand the potential of intensity mapping. This includes forecasting the ability of intensity mapping experiments to constrain alternative explanations to dark energy for the Universe's accelerated expansion. We also considered how 21 cm observations of the neutral gas in the early Universe (after recombination but before reionization) could be used to detect primordial gravity waves, thus providing a window into cosmological inflation. Finally we showed that scientifically interesting measurements could in principle be performed using intensity mapping in the near term, using existing telescopes in pilot surveys or prototypes for larger dedicated surveys. Part II describes observational efforts to perform some of the first measurements using 21 cm intensity mapping. We develop a general data analysis pipeline for analyzing intensity mapping data from single dish radio telescopes. We then apply the pipeline to observations using the Green Bank Telescope. By cross-correlating the intensity mapping survey with a traditional galaxy redshift survey we put a lower bound on the amplitude of the 21 cm signal. The auto-correlation provides an upper bound on the signal amplitude and we thus constrain the signal from both above and below. This pilot survey represents a pioneering effort in establishing 21 cm intensity mapping as a probe of the Universe.
Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex.
Nakanishi, Osamu; Suetsugu, Shiro; Yamazaki, Daisuke; Takenawa, Tadaomi
2007-03-01
Members of the family of WASP-family Verprolin homologous proteins (WAVEs) activate the Arp2/3 complex to induce actin polymerization. The WAVE family comprises three proteins, namely, WAVE1, WAVE2 and WAVE3. Among them, WAVE2 is crucial for activation of the Arp2/3 complex for the formation of branched actin filaments in lamellipodia. Activation of mitogen-activated protein (MAP) kinase signalling results in the phosphorylation of the WAVE family proteins; however, which of the three WAVE proteins is phosphorylated is unclear. We found that in vitro WAVE2 is directly phosphorylated by a MAP kinase, i.e. extracellular signal-regulated kinase (ERK) 2. The proline-rich region and the verprolin, cofilin and acidic (VCA) region of WAVE2 were phosphorylated. Interestingly, the phosphorylated VCA region had a higher affinity for the Arp2/3 complex. However, the phosphorylation of the VCA region resulted in reduced induction of Arp2/3-mediated actin polymerization in vitro. The role of the phosphorylation of the proline-rich region was not determined.
NASA Astrophysics Data System (ADS)
Livermont, E. A.
2014-12-01
Within the U.S., coastal ocean current mapping with HF radar has matured to the point where it is now considered an essential component of regional ocean observing systems. A Mid-Atlantic HF radar network now provides high-resolution coverage within five localized networks, which are linked together to cover the full range of the Mid-Atlantic coast. While the primary focus of these networks has been on offshore current mapping observations, a long-term objective has been to develop and evaluate nearshore waves and currents. Of particular interest is the height of ocean waves that play a crucial role in engineering projects, ship navigation and design, vessel traffic control as well as shoreline protection, beach erosion, and mitigation of oil spills and ocean pollution. The radars owned by Rutgers University cover the coastline of New Jersey at multiple frequencies from 4.5 to 25 MHz. Their echoes contain information on both currents and waves from deep water up into the shallow coastal zone, providing an excellent archive for this study. Radar sea-echo spectra consist of dominant first-order peaks surrounded with lower-energy second-order structures. Present analysis methods assume that the waves do not interact with the ocean floor. The assumption of deep water is often invalid close to the coast and for broad continental shelves, and is particularly inadequate to describe the second-order sea-echo used to give information on ocean waves. Additionally, second-order echo is often only visible above the noise floor at close ranges. In this paper, a shallow water spectral theory is implemented at four locations on the New Jersey coast- Strathmere, Wildwood, Brant Beach, and Sea Bright. The corrected wave characteristics extracted from the HF radars were then compared to several in situ wave measurements. The first three sites—Strathmere, Wildwood and Brant Beach—were validated against two long-term (1999-2007) wave gauges deployed by Stevens Institute of Technology in 5 meters of water. Based on this initial comparison, several additional corrections to the radar processing were implemented. The site at Sea Bright was used for independent verification and validated against an ADCP deployed for three weeks in March 2012.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
NASA Technical Reports Server (NTRS)
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
Site-occupation embedding theory using Bethe ansatz local density approximations
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel
2018-06-01
Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.
Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.
2003-01-01
We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.
2011-12-01
We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.
Lamb Wave Tomography for Corrosion Mapping
NASA Technical Reports Server (NTRS)
Hinders, Mark K.; McKeon, James C. P.
1999-01-01
As the world-wide civil aviation fleet continues to age, methods for accurately predicting the presence of structural flaws-such as hidden corrosion-that compromise airworthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical-waveguide physics. Our work focuses on using a variety of different tomographic reconstruction techniques to graphically represent the Lamb wave data in images that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on thickness, we can convert the travel times of the fundamental Lamb modes into a thickness map of the inspection region. In this paper we show results for the identification of single or multiple back-surface corrosion areas in typical aluminum aircraft skin structures.
Frequency-constant Q, unity and disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargreaves, N.D.
1995-12-31
In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
NASA Astrophysics Data System (ADS)
Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza
2015-12-01
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.
Experimental Research of a New Wave Energy Conversion Device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-01-01
With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.
NASA Astrophysics Data System (ADS)
Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.
2011-05-01
On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-09-02
Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that undermore » regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.« less
Loss of Water from Saturn's E-Ring Through Ion Pick-Up
NASA Technical Reports Server (NTRS)
Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Blanco-Cano, X.; Smith, E. J.; Tsurutani, B. T.
2005-01-01
One of the possible loss processes for Saturn s E-ring is ionization followed by acceleration by the electric field associated with the corotating magnetized plasma. It is possible to determine if this process is occurring by detecting electromagnetic waves at the gyrofrequency of water group ions. If the energy the particle gains in this pick-up process is sufficiently great, the picked up ions will generate ion cyclotron waves. Pioneer 11 and Voyager 1 both observed intervals of such waves associated with water group ions during their passes through Saturn s E-ring. Presently the magnetometer onboard the Cassini spacecraft is also seeing water group ion cyclotron oscillations. The Cassini data allow the spatial and temporal behavior of the waves to be mapped in ways not possible during the previous flybys. Analyses of these waves allow us to study the rate of mass loading and its latitudinal and local time variation. In conjunction with previous data, we can then determine the variation as the inclination of the ring to the Sun changes, in accordance with Saturn's seasons. These waves may be the clue to how Saturn powers its magnetosphere as the newly born ions could be the driver for the radial motion of the plasma and to how the E-ring may play the equivalent role to that of Io in the jovian magnetosphere.
Traveling wave device for combining or splitting symmetric and asymmetric waves
Möbius, Arnold; Ives, Robert Lawrence
2005-07-19
A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.
Potential applications of low-energy shock waves in functional urology.
Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi
2017-08-01
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.
Phase-dependent above-barrier ionization of excited-state electrons.
Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin
2012-05-21
The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.
sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Slocum, R. K.; Spore, N.
2015-12-01
Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both empirical and numerical models predicting coast inundation and erosion in advance of storms.
Source of the dayside cusp aurora.
Mende, S B; Frey, H U; Angelopoulos, V
2016-08-01
Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.
A study on spectral energy for the end of the twentieth century the basis of the NCEP reanalysis-II
NASA Astrophysics Data System (ADS)
Aranha, A. F.; Veiga, J. A.; Yoshida, M. C.
2013-05-01
The energy cycle proposed by Lorenz (1955) is composed of the behavior of the average energy from the atmosphere and characteristics of atmospheric energy deviations from this average, respectively called basic state and perturbed state. However, it is possible to discretize the energy contained in the atmosphere disturbed state, decomposing the fields of the various disturbances or harmonics wave type, so as to measure and analyze the energy of these disorders according to their number or wavelength, this methodology described second Saltzman (1957). Therefore, in view of the spectral analysis as a methodological basis, this work aims to study the energy contained by the atmosphere in disturbed state. Considering the terms of power generation potential available for nth waves due to diabatic heating, represented by (G(n)), potential energy of nth wave (P(n)) and kinetic energy of nth wave (K(n)) and the conversion of energy between the energy nth kinetic and potential energy of waves nth waves given by (C(n)). The variables used in the calculation of the terms above are, temperature (T) orthogonal components of the wind (u, v, w) and geopotential height (G) from a data set from the National Center for Environmental Prediction (NCEP) considering daily shared values on a regular grid with a spatial resolution of 2.5° × 2.5°, distributed in 12 pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 hPa ) for the 1970 to 1999 period. The results show that for kinetic energy of disturbance to nth wave, the amount of energy is somewhat dammed during for the first 10 wave numbers in this range are the planetary waves and waves. Observing this way, we can conclude that these waves are responsible for much of the kinetic energy in disturbed state. A characteristic and a difference in the distribution of energy between kinetic energy and potential energy disturbed total available to disturbance, is the derivative of the energy wavenumber presented by P(n) as a derivative smoother, showing that the cascade potential energy no great leaps in energy between wavenumbers 10 onwards. The term conversion in potential energy of the disturbed state P(n) into kinetic energy of disorders K(n) reorensented by C(n) reveals important features in the energy spectrum. According to the results, the seasonal climatology of C(n), we note that the potential energy of the disturbed state feeds both the planetary waves and intermediate waves as synoptic scale. However, the production of kinetic energy of the waves from the energy potential of the perturbed state is greater for wavelengths larger or smaller number of waves. Note also that this term varies widely throughout the seasons. Importantly, negative values of C(n) are likely to occur, which would represent the conversion of kinetic energy into potential energy of the waves of the basic state. The values of the term climatological power generation potential available to nth waves due to diabatic heating, represented by G(n). The results show that the wavelength ranges 1 to 15 are primarily given for converting potential energy into kinetic energy.
Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.
2015-01-01
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615
NASA Astrophysics Data System (ADS)
Pang, Guanghua; Feng, Jikun; Lin, Jun
2016-11-01
We imaged the crust structure beneath Jilin Province and Liaoning Province in China with fundamental mode Rayleigh waves recorded by 60 broadband stations deployed in the region. Surface-wave empirical Green's functions were retrieved from cross-correlations of inter-station data and phase velocity dispersions were measured using a frequency-time analysis method. Dispersion measurements were then utilized to construct 2D phase velocity maps for periods between 5 and 35 s. Subsequently, the phase-dispersion curves extracted from each cell of the 2D phase velocity maps were inverted to determine the 3D shear wave velocity structures of the crust. The phase velocity maps at different periods reflected the average velocity structures corresponding to different depth ranges. The maps in short periods, in particular, were in excellent agreement with known geological features of the surface. In addition to imaging shear wave velocity structures of the volcanoes, we show that obvious low-velocity anomalies imaged in the Changbaishan-Tianchi Volcano, the Longgang-Jinlongdingzi Volcano, and the system of the Dunmi Fault crossing the Jingbohu Volcano, all of which may be due to geothermal anomalies.
Using Kinect to Measure Wave Spectrum
NASA Astrophysics Data System (ADS)
Fong, J.; Loose, B.; Lovely, A.
2012-12-01
Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
NASA Astrophysics Data System (ADS)
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
California State Waters Map Series—Offshore of Pigeon Point, California
Cochrane, Guy R.; Watt, Janet T.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-12-15
Seafloor habitats in the Offshore of Pigeon Point map area lie within the Shelf (continental shelf) megahabitat. Significant rocky outcrops, which support kelp-forest communities in the nearshore and rocky-reef communities in deeper water, dominate the inner shelf waters. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Wave Dissipation on Low- to Super-Energy Coral Reefs
NASA Astrophysics Data System (ADS)
Harris, D. L.
2016-02-01
Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.
Nogami, Yoshie; Ishizu, Tomoko; Atsumi, Akiko; Yamamoto, Masayoshi; Kawamura, Ryo; Seo, Yoshihiro; Aonuma, Kazutaka
2013-03-01
Recently developed vector flow mapping (VFM) enables evaluation of local flow dynamics without angle dependency. This study used VFM to evaluate quantitatively the index of intraventricular haemodynamic kinetic energy in patients with left ventricular (LV) diastolic dysfunction and to compare those with normal subjects. We studied 25 patients with estimated high left atrial (LA) pressure (pseudonormal: PN group) and 36 normal subjects (control group). Left ventricle was divided into basal, mid, and apical segments. Intraventricular haemodynamic energy was evaluated in the dimension of speed, and it was defined as the kinetic energy index. We calculated this index and created time-energy index curves. The time interval from electrocardiogram (ECG) R wave to peak index was measured, and time differences of the peak index between basal and other segments were defined as ΔT-mid and ΔT-apex. In both groups, early diastolic peak kinetic energy index in mid and apical segments was significantly lower than that in the basal segment. Time to peak index did not differ in apex, mid, and basal segments in the control group but was significantly longer in the apex than that in the basal segment in the PN group. ΔT-mid and ΔT-apex were significantly larger in the PN group than the control group. Multiple regression analysis showed sphericity index, E/E' to be significant independent variables determining ΔT apex. Retarded apical kinetic energy fluid dynamics were detected using VFM and were closely associated with LV spherical remodelling in patients with high LA pressure.
Wave-particle interactions in rotating mirrorsa)
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-05-01
Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Reducing injection loss in drill strings
Drumheller, Douglas S.
2004-09-14
A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.
A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy
NASA Astrophysics Data System (ADS)
Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan
2018-01-01
The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.
Diagnostic Characteristics of Submesoscale Coastal Surface Currents
NASA Astrophysics Data System (ADS)
Soh, Hyun Sup; Kim, Sung Yong
2018-03-01
Submesoscale kinetic energy (KE) spectra and fluxes at the length scales ranging from 2 to 25 km are estimated from hourly and O(1) km-scale coastal surface current maps observed from shore-based high-frequency radars off southern San Diego. The one-dimensional wave number-domain KE spectra of the surface currents have decay slopes between k-2 and k-3 at a wave number (k) of 0.5 km-1. The KE spectra exhibit anisotropy associated with anisotropic circulation, which is constrained by the shoreline and bottom bathymetry. Moreover, the KE spectra exhibit weak seasonality related to the regional submesoscale eddies and low-frequency circulation with weak seasonal variability. The estimated KE fluxes are categorized into four cases of purely forward cascades and inverse cascades at all wave numbers, inverse-then-forward cascades with a single zero-crossing within the range of wave numbers (0.04 to 0.5 km-1), and residuals, which account for approximately 33%, 39%, 19%, and 9% of the total number of realizations, respectively. An injection scale where forward enstrophy cascade and inverse energy cascade occur is estimated to be 5 to 10 km from the cases of the inverse-then-forward cascade, which is consistent with the length scales of the regional submesoscale eddies. Thus, the regional submesoscale processes are initiated by surface frontogenesis due to the weak seasonal low-frequency surface circulation and topography-related currents, then maintained by baroclinic instabilities associated with the seasonal mixed layer and O(10) km-scale submesoscale eddies with weak seasonal variability.
Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R
2018-02-01
High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.
NASA Astrophysics Data System (ADS)
Armstrong, Richard L.
It is now just over a decade since OPEC escalated the price of oil and triggered a flurry of alternate energy research and changing energy consumption practices. One scientific impact of that historical economic turning point was the launching of geothermal exploration programs of unprecedented intensity that focused on Cenozoic volcanic rocks and active, as well as fossil, geothermal systems. The good science that was already being done on such rocks and systems was both accelerated and diluted by government-funded research and energy industry exploration efforts. After the initial flood of detailed reports, gray literature, and documents interred in company files, we are observing the appearance of syntheses of just what happened and what progress was achieved during the geothermal boom (which has now wilted to the quiet development of a few most promising sites). Recent examples of geothermal synthesis literature include the book Geothermal Systems by L. Rybach and L.J. Muffler (John Wiley, New York, 1981), publications like Oregon Department of Geology and Mineral Industries Paper 15 by G.R. Priest et al. (1983) entitled “Geology and geothermal resources of central Oregon Cascade range,” and informative maps like the U.S. Geological Survey series summarizing late Cenozoic volcanic rock distribution and age (R.G. Luedke and R.L. Smith, maps 1-1091 A to D, 1979 to 1982), and state and regional geothermal resources maps (NOAA National Geophysical Data Center, 1977-1982). The book under review here is part of this second literature wave, a useful primary reference, collection of syntheses, and literature guide but certainly not unique.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Design guidelines of triboelectric nanogenerator for water wave energy harvesters.
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin
2017-05-05
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
NASA Astrophysics Data System (ADS)
Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.
2017-12-01
Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.
Wave Energy Potential in the Latvian EEZ
NASA Astrophysics Data System (ADS)
Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.
2016-06-01
The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.
Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons
NASA Astrophysics Data System (ADS)
Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.
2015-08-01
Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.
California State Waters Map Series: Drakes Bay and vicinity, California
Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.
2015-01-01
Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.
NASA Technical Reports Server (NTRS)
Vincent, R. A. (Editor); Edwards, B. (Editor); Hirota, I. (Editor)
1991-01-01
Extended abstracts from the fourth workshop on the technical and scientific aspects of mesosphere stratosphere troposphere (MST) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; the dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence, intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.
Wave Energy Prize - 1/20th Testing - Harvest Wave Energy
Wesley Scharmen
2016-08-26
Data from the 1/20th scale testing data completed on the Wave Energy Prize for the Harvest Wave Energy team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.
Variability in total ozone associated with baroclinic waves
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Wallace, John M.
1991-01-01
One-point regression maps of total ozone formed by regressing the time series of bandpass-filtered geopotential height data have been analyzed against Total Ozone Mapping Spectrometer data. Results obtained reveal a strong signature of baroclinic waves in the ozone variability. The regressed patterns are found to be similar in extent and behavior to the relative vorticity patterns reported by Lim and Wallace (1991).
NASA Technical Reports Server (NTRS)
Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero
1988-01-01
The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.
The Effect of Waves on the Tidal-Stream Energy Resource
NASA Astrophysics Data System (ADS)
Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.
2016-02-01
The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.
Prospects and applicability of wave energy for South Africa
NASA Astrophysics Data System (ADS)
Lavidas, George; Venugopal, Vengatesan
2018-03-01
Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.
A View into Saturn through its Natural Seismograph
NASA Astrophysics Data System (ADS)
Mankovich, Christopher
2018-04-01
Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to aid in resolving long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. Notably, several newly observed density waves and bending waves (Nicholson et al., in preparation) align with outer Lindblad and outer vertical resonances for non-sectoral (m!=l) Saturn f-modes of relatively high angular degree, and we present normal mode identifications for these waves. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints, point to other resonance locations that should experience strong forcing, and use the full set of observed waves to estimate Saturn's bulk rotation rate.
On the interplay between cosmological shock waves and their environment
NASA Astrophysics Data System (ADS)
Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent
2017-05-01
Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.
Building a Pre-Competitive Knowledge Base to Support Australia's Wave Energy Industry
NASA Astrophysics Data System (ADS)
Hoeke, R. K.; Hemer, M. A.; Symonds, G.; Rosebrock, U.; Kenyon, R.; Zieger, S.; Durrant, T.; Contardo, S.; O'Grady, J.; Mcinnes, K. L.
2016-02-01
A pre-competitive, query-able and openly available spatio-temporal atlas of Australia's wind-wave energy resource and marine management uses is being delivered. To provide the best representation of wave energy resource information, accounting for both spatial and temporal characteristics of the resource, a 34+yr numerical hindcast of wave conditions in the Australian region has been developed. Considerable in situ and remotely sensed data have been collected to support calibration and validation of the hindcast, resulting in a high-quality characterisation of the available wave resource in the Australian domain. Planning for wave energy projects is also subject to other spatial constraints. Spatial information on alternative uses of the marine domain including, for example, fisheries and aquaculture, oil and gas, shipping, navigation and ports, marine parks and reserves, sub-sea cables and infrastructure, shipwrecks and sites of cultural significance, have been compiled to complement the spatial characterisation of resource and support spatial planning of future wave energy projects. Both resource and spatial constraint information are being disseminated via a state-of-the-art portal, designed to meet the needs of all industry stakeholders. Another aspect currently impeding the industry in Australia is the limited evidence-base of impacts of wave energy extraction on adjacent marine and coastal environments. To build this evidence base, a network of in situ wave measurement devices have been deployed surrounding the 3 wave energy converters of Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to calibrate and validate numerical simulations of the project site. Early stage results will be presented.
Nanthakumar, Kumaraswamy; Jalife, José; Massé, Stéphane; Downar, Eugene; Pop, Mihaela; Asta, John; Ross, Heather; Rao, Vivek; Mironov, Sergey; Sevaptsidis, Elias; Rogers, Jack; Wright, Graham; Dhopeshwarkar, Rajesh
2007-07-01
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
A Novel Web Application to Analyze and Visualize Extreme Heat Events
NASA Astrophysics Data System (ADS)
Li, G.; Jones, H.; Trtanj, J.
2016-12-01
Extreme heat is the leading cause of weather-related deaths in the United States annually and is expected to increase with our warming climate. However, most of these deaths are preventable with proper tools and services to inform the public about heat waves. In this project, we have investigated the key indicators of a heat wave, the vulnerable populations, and the data visualization strategies of how those populations most effectively absorb heat wave data. A map-based web app has been created that allows users to search and visualize historical heat waves in the United States incorporating these strategies. This app utilizes daily maximum temperature data from NOAA Global Historical Climatology Network which contains about 2.7 million data points from over 7,000 stations per year. The point data are spatially aggregated into county-level data using county geometry from US Census Bureau and stored in Postgres database with PostGIS spatial capability. GeoServer, a powerful map server, is used to serve the image and data layers (WMS and WFS). The JavaScript-based web-mapping platform Leaflet is used to display the temperature layers. A number of functions have been implemented for the search and display. Users can search for extreme heat events by county or by date. The "by date" option allows a user to select a date and a Tmax threshold which then highlights all of the areas on the map that meet those date and temperature parameters. The "by county" option allows the user to select a county on the map which then retrieves a list of heat wave dates and daily Tmax measurements. This visualization is clean, user-friendly, and novel because while this sort of time, space, and temperature measurements can be found by querying meteorological datasets, there does not exist a tool that neatly packages this information together in an easily accessible and non-technical manner, especially in a time where climate change urges a better understanding of heat waves.
NASA Astrophysics Data System (ADS)
Livingston, W.
The occasion of a total eclipse impacts the human observer with a bewildering rapid sequence of phenomena: mid-day cooling, failing light without accustomed color change, shadow-bands transiting the ground, cessation of bird sounds, possible frantic beating of jungle drums, Baily's beads, appearance of flame-like prominences, and most fantastic of all the solar corona. The author considers that although the corona is known to be 2 - 20(106)K, there is a lack of consensus on the heating mechanism, except the energy must be non-thermal and derived from surface and sub-surface convective motions. Theoreticians invoke the Joule dissipation of magnetic fields by Alfvén waves, electric currents in loop structures, or MHD turbulence. Although eclipse experiments to discriminate between these ideas generally fail, the sighting of 'plasmoids' was reported from the CFHT on Mauna Kea at the 1991 eclipse. Future experiments include: IR mapping of the coronal spectrum, spectroscopic velocity measurements, and the continued search for waves, nanoflares, and plasmoids.
Padgett, Miles [University of Glasgow, Glasgow, Scotland
2017-12-09
Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?
Performance of arrays of direct-driven wave energy converters under optimal power take-off damping
NASA Astrophysics Data System (ADS)
Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan
2016-08-01
It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.
Mass, Energy, Space And Time Systemic Theory---MEST
NASA Astrophysics Data System (ADS)
Cao, Dayong
2010-03-01
Things have their physical system of the mass, energy, space and time of themselves-MEST. The matter have the physical systemic moel like that the mass-energy is center and the space-time is around. The time is from the frequency of wave, the space is from the amplitude of wave. What is the physical effection of the wave. The gravity and inertial force is from the wave. Not only the planets have the mass and the kinetic energy, but also it have the wave and the wave energy. According to the equivalence principle of the general relativity, there is the equation: ma=mg and mv^2 /2= δmc^2. The energy equation of the planets: E=mv^2=mgr (v is velocity) be bring put forward. In quantum mechanics, according to the quantum light theory and the de Broglie's theory , there are the equation of the wave: E=hν, p=h/λ (h is Planck constant, p is momentum, λ is the wavelengh), and there is the equation of the wave: E=mc^2. So the energy equation of the planets: E=mv^2 = mv^2 /2 + δmc^2 (mv^2 /2= δmc^2 ) be bring put forward. The equation: δmc^2 show that the planets have the wave of itself, and the wave give the planets the energy. So it do not fall from the heaven. When the matter go into the heaven, it need get the wave energy (like the potential energy). So we can make a new light-flight with the light-driving force.
Fault zone characterization using P- and S-waves
NASA Astrophysics Data System (ADS)
Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger
2014-05-01
Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.
A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory
NASA Astrophysics Data System (ADS)
Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.
2016-02-01
Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.
Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY
NASA Astrophysics Data System (ADS)
Soares, S. M.; Natarov, A.; Richards, K. J.
2016-05-01
A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.
NASA Astrophysics Data System (ADS)
Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey
Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.
Preliminary Analysis of a Submerged Wave Energy Device
NASA Astrophysics Data System (ADS)
Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.
Experimental investigation on the hydrodynamic performance of a wave energy converter
NASA Astrophysics Data System (ADS)
Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu
2017-06-01
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.
NASA Astrophysics Data System (ADS)
Tsuji, H.; Ebihara, Y.; Tanaka, T.
2017-04-01
An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.
Rayleigh wave tomography of the British Isles from ambient seismic noise
NASA Astrophysics Data System (ADS)
Nicolson, Heather; Curtis, Andrew; Baptie, Brian
2014-08-01
We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the lower crust such as Northern Ireland, the eastern Irish Sea and northwest Wales.
Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart.
Nauleau, Pierre; Melki, Lea; Wan, Elaine; Konofagou, Elisa
2017-09-01
Arrhythmias can be treated by ablating the heart tissue in the regions of abnormal contraction. The current clinical standard provides electroanatomic 3-D maps to visualize the electrical activation and locate the arrhythmogenic sources. However, the procedure is time-consuming and invasive. Electromechanical wave imaging is an ultrasound-based noninvasive technique that can provide 2-D maps of the electromechanical activation of the heart. In order to fully visualize the complex 3-D pattern of activation, several 2-D views are acquired and processed separately. They are then manually registered with a 3-D rendering software to generate a pseudo-3-D map. However, this last step is operator-dependent and time-consuming. This paper presents a method to generate a full 3-D map of the electromechanical activation using multiple 2-D images. Two canine models were considered to illustrate the method: one in normal sinus rhythm and one paced from the lateral region of the heart. Four standard echographic views of each canine heart were acquired. Electromechanical wave imaging was applied to generate four 2-D activation maps of the left ventricle. The radial positions and activation timings of the walls were automatically extracted from those maps. In each slice, from apex to base, these values were interpolated around the circumference to generate a full 3-D map. In both cases, a 3-D activation map and a cine-loop of the propagation of the electromechanical wave were automatically generated. The 3-D map showing the electromechanical activation timings overlaid on realistic anatomy assists with the visualization of the sources of earlier activation (which are potential arrhythmogenic sources). The earliest sources of activation corresponded to the expected ones: septum for the normal rhythm and lateral for the pacing case. The proposed technique provides, automatically, a 3-D electromechanical activation map with a realistic anatomy. This represents a step towards a noninvasive tool to efficiently localize arrhythmias in 3-D. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.
2011-12-01
When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.
NASA Technical Reports Server (NTRS)
Petzoldt, K.
1989-01-01
For the MAP/WINE winter temperature and wind measurements of rockets were combined with SSU radiances (Stratospheric Sounder Unit onboard the NOAA satellites) and stratopause heights from the Solar Mesosphere Explorer (SME) to get a retrieved data set including all available information. By means of this data set a hemispheric geopotential height, temperature and geostrophic wind fields eddy transports for wave mean flow interaction and potential vorticity for the interpretation of nonlinear wave breaking could be computed. Wave reflection at critical lines was investigated with respect of stratospheric warmings. The meridional gradient of the potential vorticity and focusing of wave activity is compared with derived data from satellite observations during other winters.
Sigurdson, Kris; Cooray, Asantha
2005-11-18
We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.
Sturm, F. P.; Tong, X. M.; Palacios, A.; ...
2017-01-09
Here, we used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H 2 molecules. A nuclear wave packet is created in the B 1Σmore » $$+\\atop{u}$$ state of the neutral H 2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the B 1Σ$$+\\atop{u}$$ electronic state, the effective H 2 + ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We also found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H 2*, the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis.« less
WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruehl, Kelley; Michelen, Carlos; Bosma, Bret
2016-08-01
The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is amore » follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.« less
NASA Astrophysics Data System (ADS)
Yang, Y.
2013-12-01
Since the emerging of ambient noise tomography in 2005, it has become a well-established method and been applied all over the world to imaging crustal and uppermost mantle structures because of its exclusive capability to extract short period surface waves. Most studies of ambient noise tomography performed so far use surface waves at periods shorter than 40/50 sec. There are a few studies of long period surface wave tomography from ambient noise (longer than 50 sec) in continental and global scales. To our knowledge, almost no tomography studies have been performed using long period surface waves (~50-200 sec) from ambient noise in regional scales with an aperture of several hundred kilometres. In this study, we demonstrate the capability of using long period surface waves from ambient noise in regional surface wave tomography by showing a case study of western USA using the USArray Transportable component (TA). We select about 150 TA stations located in a region including northern California, northern Nevada and Oregon as the 'base' stations and about 200 stations from Global Seismographic Network (GSN) and The International Federation of Digital Seismograph Networks (FDSN) as the 'remote' stations. We perform monthly cross-correlations of continuous ambient noise data recorded in 2006-2008 between the 'base' stations and the 'remote' stations and then use a stacking method based on instantaneous phase coherence to stack the monthly cross-correlations to obtain the final cross-correlations. The results show that high signal-to-noise ratio long period Raleigh waves are obtained between the 'base' stations and 'remote' stations located several thousand or even more than ten thousand kilometres away from the 'base' stations. By treating each of the 'remote' station as a 'virtual' teleseismic earthquake and measuring surface wave phases at the 'base' stations, we generate phase velocity maps at 50-200 sec periods in the regions covered by the 'base' stations using an array-based two-plane-wave tomography method. To evaluate the reliability of the resulting phase velocity maps, we compare them with published phase velocity maps using the same tomography method but based on teleseismic data. The comparison shows that long period surface wave phase velocity maps based 'virtual' events from ambient noise and those based on natural earthquakes are very similar with differences within the range of uncertainties. The similarity of phase velocity maps justifies the application of long period surface waves from ambient noise in regional lithosphere imaging. The successful extraction of long period surface waves between station pairs with distances as long as several thousand or ten thousand kilometres can link seismic arrays located in different continents, such as CEArray in China and USArray in USA. With the rapid developments of large scale seismic arrays in different continents, those inter-continental surface waves from ambient noise can be incorporated in both regional- and global-scale surface wave tomography to significantly increase the path coverage in both lateral and azimuthal senses, which is essential to improving imaging of high resolution heterogeneities and azimuthal anisotropy, especially at regions with gaps of azimuthal distributions of earthquakes.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto
2017-04-01
The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.
A statistical survey of ultralow-frequency wave power and polarization in the Hermean magnetosphere.
James, Matthew K; Bunce, Emma J; Yeoman, Timothy K; Imber, Suzanne M; Korth, Haje
2016-09-01
We present a statistical survey of ultralow-frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin-Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left-handed polarized waves dominate the dawnside magnetosphere, while right-handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time-of-flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm -3 .
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
Design guidelines of triboelectric nanogenerator for water wave energy harvesters
NASA Astrophysics Data System (ADS)
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Abu Yazid, Taher; Zu, Jean; Wang, Zhong Lin
2017-05-01
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester’s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
The geomorphic effect of recent storms - Quantifying meso scale abrasion across a shore platform
NASA Astrophysics Data System (ADS)
Cullen, Niamh; Bourke, Mary; Naylor, Larissa
2017-04-01
Boulder abrasion trails (BATs) are lineations on the surface of rock platforms formed by the movement of traction-load clasts by waves. They have been observed on a variety of platform lithologies, including limestone, granite and basalt. Despite previous reporting of these features, the abrasion styles and geomorphic work done by boulder transport has not been quantified. We present the first quantitative measurement of shore platform erosion by boulder transport during extreme storms that occurred in the winter of 2015-2016. Following two storm events in 2016 we mapped and measured 33 individual BATs on a sandstone platform on the west coast of Ireland. The total (minimum) abraded surface area was 10m2. The total (minimum) volume of material abraded was 0.2m3. In order to test the efficacy of this process during non-storm conditions we conducted field experiments on the same platform. We identified two sites on the platform that were similar, but differed in their intertidal roughness. We installed an RBR solo wave pressure transducer (PT) at 0m OD at both locations to record wave data. We measured platform roughness, determined as the fractal dimension of the platform profiles at both sites. We deployed an array of boulders of known dimensions and mass, parallel to the shoreline at 0.5m intervals from the PTs. The experiments were conducted 1. during relatively calm conditions and 2. during higher energy conditions. Data was collected for one tidal cycle. Any boulder displacement distance and direction was measured and geomorphic effects were documented. We find that BATs are formed under a range of wave energy conditions. Our observations indicate that along the North Atlantic coastline, BATs can occur at a high frequency, only limited by sediment supply. Our data show that abrasion by boulder transport is a potentially significant geomorphological process acting to abrade platforms under contemporary climate conditions. In addition, our preliminary findings suggest that platform roughness exerts a strong influence on wave energy and potential boulder transport. We find that abrasion of the platform surface is a fundamentally important process which contributes to lowering of the platform surface over time.
Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.
Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C
1999-12-01
A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K
2013-05-01
Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Aranha, A. F.; Veiga, J. P.
2013-12-01
Saltzman (1957) starting Lorenz Cycle (1955) derived a set of equations that show the energy contained in the basic state and the disturbed atmosphere, decomposing in various fields disturbance wave type, so as to quantify and analyze the energy of these disorders according to their number or wavelength. Based on the methodology Saltzman, this paper aims a comparative study between the energy of the disturbed state between the NCEP reanalysis-II for the current weather conditions and model ECHAM5 scenarios for future conditions of increased concentration of greenhouse gases (RCP26, RCP45 and RCP85), considering the terms of the generation of available potential energy to nth wave due to diabatic heating, represented by (Gn), the potential energy of nth wave (Pn) and kinetic energy of nth wave (Kn), as well as the conversion of energy between kinetic energy and potential energy nth wave of nth wave, given by (Cn). Two data sets were used in the calculation of the aforementioned terms. For the data set of NCEP and ECHAM5 were used variables, temperature (T), orthogonal wind components (u, v, w) and geopotential height (L), considering daily shared values on a regular grid with spatial resolutions of 2,5 x 2.5 and 1.875 x 1.875 graus, distributed on 12 and 15 levels of pressure (1000.0, 925.0, 850.0, 700.0, 600.0, 500.0, 400.0, 300.0, 250.0, 200.0, 150.0, 100.0 hPa), (1000.0, 850.0, 700.0, 500.0, 250.0, 150.0, 100.0, 70.0, 50.0, 30.0, 10.0, 3.0, 1.0, 0.3, 0.1 hPa) for the period of 1979-1999 and 2090-2100, respectively. The results show that most of the kinetic energy of disturbance to nth waves is concentrated in the first 15 wave numbers, both for the weather-NCEP II as to ECHAM5, having more significant increase in the profile and having a RCP85 energy cascade. This increase in kinetic energy was expected due to the increased energy in the system. For Pn, increasing the potential energy is also expected in view of the increased diabatic heating, but the energy jump is large spectrum in the range of 1 a 5, growth or accumulation of energy is visible in the figure wave, almost double the energy accumulated by the wave number 2, a derivative obeying the strong energy in the wave spectrum. We can conclude that the energy contained in a nonlinear way on the biggest waves are not shared aplenty. According to the results, the term conversion in Kn Pn, represented by Cn, reveals important characteristics in the energy spectrum. This we note that Pn feeds both the planetary waves and intermediate waves as synoptic scale. However, the production of Kn from Pn is added to the first wave specifically. It is also observed that Cn does not show large variations along the spectral profile. It is noteworthy that the energy conversions of RCP's are much smaller than the energy conversions NCEP-II, indicating that when there are increased concentrations of greenhouse gases is increasing Gen. therefore increased Pn and fall in Cn. Negative values of Cn are likely to occur, which would represent the conversion of kinetic energy into potential energy of the waves of the basic state.
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
NASA Technical Reports Server (NTRS)
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
NASA Technical Reports Server (NTRS)
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.
Assessing the Wave Energy Potential of Jamaica, a Greater Antilles Island, through Dynamic Modelling
NASA Astrophysics Data System (ADS)
Daley, A. P., Jr.; Dorville, J. F. M.; Taylor, M. A.
2017-12-01
Globally wave energy has been on the rise as a result of the impacts of climate change and continuous fluctuation in oil prices. The water's inertia provides waves with greater stability than that of other renewable energy sources such as solar and wind. Jamaica is part of the Greater Antilles Arc and has over 1000 km of coast line with an abundance of shallow water approximately 80% within a 50km band. This configuration provides a wealth of sites for wave exploitation even in minimal wave energy conditions. Aside from harnessing the oceans waves converters can be viewed as a tool for protection of coastal areas against natural marine occurrences. Jamica has done extensive studies where solar, hydro and wind resouces are concerned. However, there has been no studies done to date on the country's wave energy resources.The aim of this study is to bridge this gap by characterizing Jamaica's wave energy resources generating in a half-closed Caribbean Sea using data available from: buoys, altimetric satellite, and numerical model. Available data has been used to assess the available resource on the coastal area for the last 12 years. Statistical analysis of the available energy is determined using the sea state (Hs, Tp and Dir) and the atmospheric forcing (10m-wind, atmospheric pressure, sea-air temperature) relating to the season.The chain of dynamical model is presented (WW3-SWAN-SWASH), allowing for the tracking of the propagation of the wave energy from an offshore region to nearshore zone along with their interaction with areas of shallow depth. This will provide a better assessment of the energy and the quality of the waves closer to the electrical grid.Climate prediction is used to estimate the sea state and wave energy exploitable up to 2100. An analysis of the possible usage of the available coastal resource up to 2100. The main results present small but exploitable resources with seasonal variability in the energy available but not wave direction.
Wave spectral energy variability in the northeast Pacific
Bromirski, P.D.; Cayan, D.R.; Flick, R.E.
2005-01-01
The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.
Energy behaviour of extraordinary waves in magnetized quantum plasmas
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-05-01
We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.
Quantifying the Benefits of Combining Offshore Wind and Wave Energy
NASA Astrophysics Data System (ADS)
Stoutenburg, E.; Jacobson, M. Z.
2009-12-01
For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.
California State Waters map series—Offshore of Scott Creek, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-11-16
Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
California State Waters Map Series: offshore of Bolinas, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Manson, Michael W.; Sliter, Ray W.; Endris, Charles A.; Watt, Janet T.; Ross, Stephanie L.; Kvitek, Rikk G.; Phillips, Eleyne L.; Bruns, Terry R.; Chin, John L.; Cochrane, Guy R.; Cochran, Susan A.
2015-08-05
Seafloor habitats in the Offshore of Bolinas map area, which lies within the Shelf (continental shelf) megahabitat, range from, in the nearshore, sandy seafloor in the southeast and significant rocky outcrops that support kelp-forest communities in the northwest to, in deeper water, rocky-reef communities. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock in the northeast supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of greenling and rockfish.
NASA Astrophysics Data System (ADS)
Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco
2017-07-01
In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.
Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-03-01
The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy propagation by transverse waves in multiple flux tube systems using filling factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less
NASA Astrophysics Data System (ADS)
Saprykina, Yana; Divinskii, Boris
2013-04-01
An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are no clear total dependences of energy of infrragravity waves from energy of wind waves and mean period of infragravity waves from mean period of wind waves. But significant wave height of infragravity waves depends on relative water depth (wave height of wind waves divided on water depth). There are different types of this dependence for breaking and non-breaking waves. The influence of peak period, significant wave height and directional spreading of initial wave spectrum on these dependences are discussed. The peculiarities of spectra of infragravity waves for non-breaking, breaking and multibreaking wind waves are shown. This work is supported by the RFBR, project 12-05-00965. References: Longuet-Higgins, M. S., R. W. Stewart, 1962. Radiation stress and mass transport in gravity waves, with an application to surf beats. J. Fluid Mech., 13, pp. 481-504. Symonds G., D.A. Huntley, A.J. Bowen, 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. of Geoph. Res., 87(C), pp.492-498. Madsen P.A., Sorensen O.R., Shaffer H.A. 1997. Surf zone dynamics simulated by a Boussinesq type model. Coastal Engineering, 32, p. 255-287.
On the interaction of small-scale linear waves with nonlinear solitary waves
NASA Astrophysics Data System (ADS)
Xu, Chengzhu; Stastna, Marek
2017-04-01
In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow interaction in a fully nonlinear framework.
Energy-flux characterization of conical and space-time coupled wave packets
NASA Astrophysics Data System (ADS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-02-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Spin-1 Kitaev model in one dimension
NASA Astrophysics Data System (ADS)
Sen, Diptiman; Shankar, R.; Dhar, Deepak; Ramola, Kabir
2010-11-01
We study a one-dimensional version of the Kitaev model on a ring of size N , in which there is a spin S>1/2 on each site and the Hamiltonian is J∑nSnxSn+1y . The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z2 -valued conserved quantity Wn for each bond (n,n+1) of the system. For integer S , the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as dN , where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1 , d=(5+1)/2 . We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term λ∑nWn , and show that this has gapless excitations in the range λ1c≤λ≤λ2c . We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points λ1c and λ2c .
Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA
Priest, George R.; Stimely, Laura; Wood, Nathan J.; Madin, Ian; Watzig, Rudie
2016-01-01
Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), nor does it effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arrival times, and produces a map of minimum pedestrian travel speeds to reach safety, termed a “beat-the-wave” (BTW) evacuation analysis. We demonstrate the improved approach by evaluating difficulty of pedestrian evacuation of Seaside, Oregon, for a local tsunami generated by a Cascadia subduction zone earthquake. We establish evacuation paths by calculating the least cost distance (LCD) to safety for every grid cell in a tsunami-hazard zone using geospatial, anisotropic path distance algorithms. Minimum BTW speed to safety on LCD paths is calculated for every grid cell by dividing surface distance from that cell to safety by the tsunami arrival time at safety. We evaluated three scenarios of evacuation difficulty: (1) all bridges are intact with a 5-minute evacuation delay from the start of earthquake, (2) only retrofitted bridges are considered intact with a 5-minute delay, and (3) only retrofitted bridges are considered intact with a 10-minute delay. BTW maps also take into account critical evacuation points along complex shorelines (e.g., peninsulas, bridges over shore-parallel estuaries) where evacuees could be caught by tsunami waves. The BTW map is able to communicate multiple pedestrian travel speeds, which are typically visualized by multiple maps with current LCD-based mapping practices. Results demonstrate that evacuation of Seaside is problematic seaward of the shore-parallel waterways for those with any limitations on mobility. Tsunami vertical-evacuation refuges or additional pedestrian bridges may be effective ways of reducing loss of life seaward of these waterways.
Magin, Richard L
2016-01-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model who took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields. PMID:27579850
NASA Astrophysics Data System (ADS)
Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.
2016-09-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
Schwartz, Benjamin L; Yin, Ziying; Magin, Richard L
2016-09-21
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
NASA Astrophysics Data System (ADS)
Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello
2016-06-01
We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.
Lower hybrid accessibility in a large, hot reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziubek, R.A.
1995-02-01
Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14291-000] Green Wave Mendocino Wave Park; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments... (FPA), proposing to study the feasibility of the Green Wave Mendocino Wave Park (Mendocino Wave Project...
Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P.
2005-01-01
Coastal landscapes evolve over wide-ranging spatial and temporal scales in response to physical and biological pro-cesses that interact with a wide range of variables. To develop better predictive models for these dynamic areas, we must understand the influence of these variables on coastal morphologies and ultimately how they influence coastal processes. This study defines the influence of geologic framework variability on a classic mixed-energy coastline, and establishes four categorical scales of spatial and temporal influence on the coastal system. The near-surface, geologic framework was delineated using high-resolution seismic profiles, shallow vibracores, detailed geomorphic maps, historical shorelines, aerial photographs, and existing studies, and compared to the long- and short-term development of two coastal compartments near Charleston, South Carolina. Although it is clear that the imprint of a mixed-energy tidal and wave signal (basin-scale) dictates formation of drumstick barriers and that immediate responses to wave climate are dramatic, island size, position, and longer-term dynamics are influenced by a series of inherent, complex near-surface stratigraphic geometries. Major near-surface Tertiary geometries influence inlet placement and drainage development (island-scale) through multiple interglacial cycles and overall channel morphology (local-scale). During the modern marine transgression, the halo of ebb-tidal deltas greatly influence inlet region dynamics, while truncated beach ridges and exposed, differentially erodable Cenozoic deposits in the active system influence historical shoreline dynamics and active shoreface morphologies (blockscale). This study concludes that the mixed-energy imprint of wave and tide theories dominates general coastal morphology, but that underlying stratigraphic influences on the coast provide site-specific, long-standing imprints on coastal evolution.
Seismic properties of the crust and uppermost mantle of North America
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.
1983-01-01
Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.
Yi-Hsiang Yu's expertise is in marine energy system design and performance analysis, hydrodynamics , a wave-to-wire numerical model for design and analysis of wave energy conversion systems, wave tank the design load for wave energy systems. Yi-Hsiang is currently serving as the associate editor of the
On the design of wave digital filters with low sensitivity properties.
NASA Technical Reports Server (NTRS)
Renner, K.; Gupta, S. C.
1973-01-01
The wave digital filter patterned after doubly terminated maximum available power (MAP) networks by means of the Richard's transformation has been shown to have low-coefficient-sensitivity properties. This paper examines the exact nature of the relationship between the wave-digital-filter structure and the MAP networks and how the sensitivity property arises, which permits implementation of the digital structure with a lower coefficient word length than that possible with the conventional structures. The proper design procedure is specified and the nature of the unique complementary outputs is discussed. Finally, an example is considered which illustrates the design, the conversion techniques, and the low sensitivity properties.
Wave energy: a Pacific perspective.
Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen
2012-01-28
This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.
Urban Heat Wave Hazard Assessment
NASA Astrophysics Data System (ADS)
Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.
2016-12-01
Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban regions who do not have the means to provide air conditioning or take other means to stay cool. The heat wave risk product is conveyed to users via a website that describes current and historical heat wave information and is updated in real time as needed. These risk maps can be used for better monitoring of public health risk from extreme heat events in urban areas.
Ruta, J; Strumiłło, P
2001-01-01
T-wave alternans (TWA) at microvolt level is considered as an important non-invasive risk factor for sudden death. Several methods are used to measure such repolarization variations, but each of them has some limitations. The purpose of our study is to assess the usefulness of Poincaré maps, a method based on nonlinear dynamics theory, in detection of repolarization abnormalities. In 30 postinfarction patients presence of TWA in precordial ECG leads was assessed by the spectral method (SM) and by the Poincaré maps (PM). Quantitative measures of both methods: alternans voltage (AV) and alternans distance (AD) were compared using linear regression. Significant correlation between both measures (r = 0.92, p < 0.01) was found. The value of AD > or = 10 microV was accepted as significant for the presence of T-wave alternans. Poincaré mapping seems to be a useful and simple method for detection of TWA. The alternans distance equal or greater than 10 microV can be considered as a level determinative for the presence of TWA.
Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites
NASA Astrophysics Data System (ADS)
Dallman, A.; Neary, V. S.
2016-02-01
The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
Grossman, E.E.; Barnhardt, W.A.; Hart, P.; Richmond, B.M.; Field, M.E.
2006-01-01
Paired analyses of drill cores and high-resolution seismic reflection data show that development of Holocene framework reefs on the Oahu (Hawaii) shelf is limited to settings of low wave energy and to the period 8000 to 3000 yr BP. A prominent bounding surface that is mapped across much of the Oahu shelf is an erosion surface cut into Marine Isotope Stages 5 and 7 limestones that show extensive loss of primary porosity, aragonite, and MgCO3 owing to meteoric and vadose-zone diagenesis. This acoustic reflector is found exposed at the surface where wave energy is high or in the shallow subsurface below Holocene reef and sand sheet deposits where energy is low. Ship-towed video along 30 km of the shelf reveals a steady decrease in limestone accumulation from offshore of Honolulu southeast to Koko Head where the seafloor is characterized by volcanic pavement and/or thin sand deposits. This may reflect the build-up of late Pleistocene volcanics associated with the Hanauma Bay eruption (30,000-7000 yr BP) that now comprise the substrate in depths shallow enough to limit reef accretion. The absence of significant Holocene reef build-up on the south Oahu shelf is consistent with observations from north-facing coasts that lack Holocene reefs, indicating that Holocene reef formation in Hawaii is complex and patchy.
Selvarani, C; Balachandran, V; Vishwanathan, K
2014-11-11
Quantum mechanical calculations of energies, geometries and vibrational wave numbers of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine have been performed by DFT level of theory using B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p) as basis sets. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the FT-IR and FT-Raman spectra of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine were also reported. Molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. Information about the size, shape, charge density distribution, and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Thermodynamic properties (heat capacity, entropy and enthalpy and Gibb's free energy) of the title compounds at different temperatures were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
On Wave Processes in the Solar Atmosphere
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1998-01-01
This grant was awarded by NASA/MSFC to The University of Alabama in Huntsville (UAH) to investigate the physical processes responsible for heating and wind acceleration in the solar atmosphere, and to construct theoretical, self-consistent and time-dependent solar wind models based on the momentum deposition by finite amplitude and nonlinear Alfven waves. In summary, there are three main goals of the proposed research: (1) Calculate the wave energy spectra and wave energy fluxes carried by magnetic non- magnetic waves. (2) Find out which mechanism dominates in supplying the wave energy to different parts of the solar atmosphere. (3) Use the results obtained in (1) and (2) to construct theoretical, self-consistent and time- dependent models of the solar wind. We have completed the first goal by calculating the amount of non-radiative energy generated in the solar convection zone as acoustic waves and as magnetic tube waves. To calculate the amount of wave energy carried by acoustic waves, we have used the Lighthill-Stein theory for sound generation modified by Musielak, Rosner, Stein & Ulmschneider (1994). The acoustic wave energy fluxes for stars located in different regions of the Hertzsprung-Russell (H-R) diagram have also been computed. The wave energy fluxes carried by longitudinal and transverse waves along magnetic flux tubes have been calculated by using both analytical and numerical methods. Our analytical approach is based a theory developed by Musielak, Rosner & Ulmschnelder and Musielak, Rosner, Gall & Ulmschneider, which allows computing the wave energy fluxes for linear tube waves. A numerical approach has been developed by Huang, Musielak & Ulmschneider and Ulmschneider & Musielak to compute the energy fluxes for nonlinear tube waves. Both methods have been used to calculate the wave energy fluxes for stars located in different regions of the HR diagram (Musielak, Rosner & Ulmschneider 1998; Ulmschneider, Musielak & Fawzy 1998). Having obtained the wave energy fluxes for acoustic and magnetic tube waves, we have investigated the behavior of these waves in the solar and stellar atmospheres. The results of our extensive studies have been published in many papers and presented at numerous scientific meetings. In these studies we have investigated different aspects of propagation of acoustic and magnetic waves, the efficiency of energy transfer along magnetic structures in the solar atmosphere, and behavior of Alfven waves in stgeady and expanding solar and stellar atmospheres. Recently, we have used some of these results to construct first purely theoretical, two component and time-dependent models of solar and stellar chromospheres. Finally, to address the third goal, we have constructed first fully theoretical, self-consistent and time dependent wind models based on the momentum deposition by non-linear Alfven waves. The full set of single-fluid MHD equations with the background flow has been solved by using a modified version of the ZEUS MHD code. The constructed wind models are radially symmetric with the magnetic field decreasing radially and the initial outflow is described by the standard Parker wind solution. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; the models thus naturally account for the backreaction of the wind on the waves as well as for the nonlinear interaction between different types of MHD waves. The models have been used to explain the origin of fast speed streams in solar coronal holes. The obtained results clearly demonstrate that the momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast stream components of the solar wind. The range of wave amplitudes required to obtain the desired results seems to be in good agreement with recent observations.
NASA Astrophysics Data System (ADS)
Meza Conde, Eustorgio
The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.
Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
NASA Technical Reports Server (NTRS)
Egbert, G. D.; Ray, R. D.
2000-01-01
How and where the ocean tides dissipate their energy are longstanding questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(exp 12) watts-that is, 1 TW, representing 25-30% of the total dissipation-occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.
NASA Astrophysics Data System (ADS)
Zhang, Hua-guo; Yang, Kang; Lou, Xiu-lin; Li, Dong-ling; Shi, Ai-qin; Fu, Bin
2015-01-01
Submarine sand waves are visible in optical sun glitter remote sensing images and multiangle observations can provide valuable information. We present a method for bathymetric mapping of submarine sand waves using multiangle sun glitter information from Advanced Spaceborne Thermal Emission and Reflection Radiometer stereo imagery. Based on a multiangle image geometry model and a sun glitter radiance transfer model, sea surface roughness is derived using multiangle sun glitter images. These results are then used for water depth inversions based on the Alpers-Hennings model, supported by a few true depth data points (sounding data). Case study results show that the inversion and true depths match well, with high-correlation coefficients and root-mean-square errors from 1.45 to 2.46 m, and relative errors from 5.48% to 8.12%. The proposed method has some advantages over previous methods in that it requires fewer true depth data points, it does not require environmental parameters or knowledge of sand-wave morphology, and it is relatively simple to operate. On this basis, we conclude that this method is effective in mapping submarine sand waves and we anticipate that it will also be applicable to other similar topography types.
Wave energy transmission apparatus for high-temperature environments
NASA Technical Reports Server (NTRS)
Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)
2010-01-01
A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.
New perspectives on self-similarity for shallow thrust earthquakes
NASA Astrophysics Data System (ADS)
Denolle, Marine A.; Shearer, Peter M.
2016-09-01
Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effects (geometrical spreading, attenuation, and free surface effects). The conventional spectral model of a single-corner frequency and high-frequency falloff rate does not explain our data, and we instead introduce a double-corner-frequency model, modified from the Haskell propagating source model, with an intermediate falloff of f-1. The first corner frequency f1 relates closely to the source duration T1, its scaling follows M0∝T13 for Mw<7.5, and changes to M0∝T12 for larger earthquakes. An elliptical rupture geometry better explains the observed scaling than circular crack models. The second time scale T2 varies more weakly with moment, M0∝T25, varies weakly with depth, and can be interpreted either as expressions of starting and stopping phases, as a pulse-like rupture, or a dynamic weakening process. Estimated stress drops and scaled energy (ratio of radiated energy over seismic moment) are both invariant with seismic moment. However, the observed earthquakes are not self-similar because their source geometry and spectral shapes vary with earthquake size. We find and map global variations of these source parameters.
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhenhua; Yu, Lingyu
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
Infrasound and the avian navigational map
Hagstrum, J.T.
2001-01-01
Birds can accurately navigate over hundreds to thousands of kilometres, and use celestial and magnetic compass senses to orient their flight. How birds determine their location in order to select the correct homeward bearing (map sense) remains controversial, and has been attributed to their olfactory or magnetic senses. Pigeons can hear infrasound down to 0??05 Hz, and an acoustic avian map is proposed consisting of infrasonic cues radiated from steep-sided topographic features. The source of these infrasonic signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting the infrasonic map cues can explain perplexing experimental results from pigeon releases. Moreover, four recent disrupted pigeon races in Europe and the north-eastern USA intersected infrasonic shock waves from the Concorde supersonic transport. Having an acoustic map might also allow clock-shifted birds to test their homeward progress and select between their magnetic and solar compasses.
NASA Technical Reports Server (NTRS)
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.Electromagnetic wave method for mapping subterranean earth formations
Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.
1977-01-01
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
Colliding impulsive gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.; Halil, M.
1977-11-28
We formulate the problem of colliding plane gravitational waves with two polarizations as the harmonic mappings of Riemannian manifolds and construct an exact solution of the vacuum Einstein field equations describing the interaction of colliding impulsive gravitational waves which in the limit of collinear polarization reduces to the solution of Khan and Penrose.
A scattering approach to sea wave diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it
This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.
Ocean floor mounting of wave energy converters
Siegel, Stefan G
2015-01-20
A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.
Investigation on the possibility of extracting wave energy from the Texas coast
NASA Astrophysics Data System (ADS)
Haces-Fernandez, Francisco
Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.
Halabi, Gh; Bulanova, N; Aleksandrova, S; Ivanov, G; Aleksandrova, M
2018-05-01
Objective - to access seasonal variation of microvolt T-wave alternans of ECG dispersion mapping in patients with cardiovascular disease and healthy subjects. ECG data of the three groups of healthy subjects have been compared: inhabitants of Beirut, Lebanon (n=51), inhabitants of Moscow, Russia (n=94) and ECG data of healthy subjects (n=44) from the testing ECG database of the PTB - The National Metrology Institute of Germany as well as a group of patients with cardiovascular disease (n=138), inhabitants of Beirut, Lebanon. Microvolt T-wave alternans of ECG dispersion mapping was evaluated in three points - Tbeginning, Tmaximum, Tend. In healthy subjects, the seasonal variation of ECG dispersion mapping microvolt T-wave alternans was nonexistent. Myocardial lesion is characterized by an increase in Tbeg, Tmax, Tend in relation to the healthy individuals. Tbeg values are minimal in winter and summer and increase in spring and autumn. Tend values were reversed - they were maximal in winter and summer, decreasing in spring-autumn period. Seasonal variation of Tmax - Tbeg, and Tmax -Tend was detected: Tmax - Tbeg increased in the winter-summer period and decreased in spring and autumn, Tmax-Tend - increased in the spring-autumn period in relation to the winter-summer period. In patients with cardiovascular disease, in contrast to the healthy, there is a seasonal variation in microvolt T-wave alternans of ECG dispersion mapping, with the maximum differences in the winter and spring seasons, which should be taken into account when applying the method in clinical practice.
Optimized Latching Control of Floating Point Absorber Wave Energy Converter
NASA Astrophysics Data System (ADS)
Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om
2018-03-01
There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.
Middle Atmosphere Program. Handbook for MAP, volume 4
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
Topics include winter in the Northern Hemisphere, temperature measurement, geopotential heights, wind measurement, atmospheric motions, photochemical reactions, solar spectral irradiance, trace constituents, tides, gravity waves, and turbulence. Highlights from the Map Steering Committee and a Map Open Meeting including organizational structure are also given.
NASA Astrophysics Data System (ADS)
Moschos, Evangelos; Manou, Georgia; Georganta, Xristina; Dimitriadis, Panayiotis; Iliopoulou, Theano; Tyralis, Hristos; Koutsoyiannis, Demetris; Tsoukala, Vicky
2017-04-01
The large energy potential of ocean dynamics is not yet being efficiently harvested mostly due to several technological and financial drawbacks. Nevertheless, modern renewable energy systems include wave and tidal energy in cases of nearshore locations. Although the variability of tidal waves can be adequately predictable, wind-generated waves entail a much larger uncertainty due to their dependence to the wind process. Recent research has shown, through estimation of the wave energy potential in coastal areas of the Aegean Sea, that installation of wave energy converters in nearshore locations could be an applicable scenario, assisting the electrical network of Greek islands. In this context, we analyze numerous of observations and we investigate the long-term behaviour of wave height and wave period processes. Additionally, we examine the case of a remote island in the Aegean sea, by estimating the local wave climate through past analysis data and numerical methods, and subsequently applying a parsimonious stochastic model to a theoretical scenario of wave energy production. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Nonlinear hyperbolic theory of thermal waves in metals
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Choi, S. H.
1975-01-01
A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.
Regulations Publications WEC3: Wave Energy Converter Code Comparison Project Turbine Control of a Tidal and Surge Wave Energy Converter Performance Characterization of a Cross-Flow Hydrokinetic Turbine in Sheared Inflow More publications News News More News New Wave Energy Converter Design Inspired by Wind Energy
Surface wave energy absorption by a partially submerged bio-inspired canopy.
Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B
2018-03-27
Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Yu, Yi-Hsiang; van Rij, Jennifer A
2017-08-14
Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designingmore » wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.« less
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1992-01-01
In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
NASA Astrophysics Data System (ADS)
Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.
2006-06-01
Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.
What can wave energy learn from offshore oil and gas?
Jefferys, E R
2012-01-28
This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.
1983-01-01
Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.
2017-12-01
The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.
Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence
NASA Astrophysics Data System (ADS)
Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian
2018-01-01
We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.
Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.
1991-01-01
Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.
NASA Astrophysics Data System (ADS)
Yoshizawa, K.; Hamada, K.
2017-12-01
A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on anisotropic properties in the continental lithosphere.
Communicating Wave Energy: An Active Learning Experience for Students
ERIC Educational Resources Information Center
Huynh, Trongnghia; Hou, Gene; Wang, Jin
2016-01-01
We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12749-002] Oregon Wave...) of the Federal Power Act, proposing to study the feasibility of the Coos Bay OPT Wave Park Project... Comments, Motions To Intervene, and Competing Applications April 16, 2010. On March 2, 2010, Oregon Wave...
Arnold, Mobius; Ives, Robert Lawrence
2006-09-05
A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.
NASA Astrophysics Data System (ADS)
Onuki, Y.; Hibiya, T.
2016-02-01
The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected to contribute to clarify the global distribution of the dissipation rates of baroclinic tidal energy.
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1994-01-01
This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Shapes, spectra and new methods in nonlinear spatial optics
NASA Astrophysics Data System (ADS)
Sun, Can
For a myriad of optical applications, the quality of the light source is poor and the beam is inherently spatially partially-coherent. For this broad class of systems, wave dynamics depends not only on the wave intensity, but also on its distribution of spatial frequencies. Unfortunately, this entire spectrum of problems has often been overlooked - for reasons of theoretical ease or experimental difficulties. Here, we remedy this by demonstrating a novel experimental setup which, for the first time, allows arbitrarily modulation of the spatial spectra of light to obtain any distribution of interest. Using modulation instability as an example, we isolate the effect of different spectral shapes and observe distinct beam dynamics. Next, we turn to a thermodynamic description of the long-term evolution of statistical fields. For quantum systems, a major consequence is Bose-Einstein Condensation. However, recent theoretical studies have suggested that quantum mechanics is not necessary for the condensation process: classical waves with random phases can also self-organize into a coherent state. Starting from a random ensemble, nonlinear interactions can lead to a turbulent energy cascade towards longer spatial scales. In complete analogy with the kinetics of a gas system, there is a statistical dynamics of waves in which particle velocities map to wavepacket k-vectors while collisions are mimicked by four-wave mixing. As with collisions, each wave interaction is formally reversible, yet entropy principles mandate that the ensemble evolves towards an equilibrium state of maximum disorder. The result is an equipartition of energy, in the form of a Rayleigh-Jeans spectrum, with information about the condensation process recorded in small-scale fluctuations. Here, we give the first experimental observation of the condensation of classical waves in any media. Using classical light in a self-defocusing photorefractive, we observe all aspects of the condensation process, including the population of a coherent state, spectral redistribution towards the Rayleigh-Jeans spectrum, and formal reversibility of the interactions. The latter is proved experimentally by introducing a digital "Maxwell's Demon" to reverse (phase-conjugate) the momentum of each wavepacket and recover the original "thermal cloud". The results integrate digital and physical methods of nonlinear processing, confirm fundamental ideas in wave turbulence, and greatly extend the range of Bose-Einstein theory.
WindWaveFloat (WWF): Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alla Weinstein; Roddier, Dominique; Banister, Kevin
2012-03-30
Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided thatmore » the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.« less
NASA Astrophysics Data System (ADS)
Feist, B. E.; Fuller, E.; Plummer, M. L.
2016-12-01
Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs and providing spatially explicit site prioritization.
Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J
2010-11-01
In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.
Saturn's Internal Structure: A View through its Natural Seismograph
NASA Astrophysics Data System (ADS)
Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor
2017-10-01
Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.
Wave induced supersonic rotation in mirrors
NASA Astrophysics Data System (ADS)
Fetterman, Abraham
2010-11-01
Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).
Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds
NASA Astrophysics Data System (ADS)
Lassas, Matti; Uhlmann, Gunther; Wang, Yiran
2018-06-01
We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.
NASA Astrophysics Data System (ADS)
Gallagher, Sarah; Tiron, Roxana; Dias, Frédéric
2014-08-01
The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.
Stakeholder requirements for commercially successful wave energy converter farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babarit, Aurélien; Bull, Diana; Dykes, Katherine
2017-12-01
In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance levelmore » metric will accelerate wave energy conversion technology convergence.« less
Monitoring Coastal Processes at Local and Regional Geographic Scales with UAS
NASA Astrophysics Data System (ADS)
Starek, M. J.; Bridges, D.; Prouty, D.; Berryhill, J.; Williams, D.; Jeffress, G.
2014-12-01
Unmanned Aerial Systems (UAS) provide a powerful tool for coastal mapping due to attractive features such as low cost data acquisition, flexibility in data capture and resolution, rapid response, and autonomous flight. We investigate two different scales of UAS platforms for monitoring coastal processes along the central Texas Gulf coast. Firstly, the eBee is a small-scale UAS weighing ~0.7 kg designed for localized mapping. The imaging payload consists of a hand held RGB digital camera and NIR digital camera, both with 16.1 megapixel resolutions. The system can map up to 10 square kilometers on a single flight and is capable of acquiring imagery down to 1.5 cm ground sample distance. The eBee is configured with a GPS receiver, altitude sensor, gyroscope and a radio transmitter enabling autonomous flight. The system has a certificate of authorization (COA) from the FAA to fly over the Ward Island campus of Texas A&M University-Corpus Christi (TAMUCC). The campus has an engineered beach, called University Beach, located along Corpus Christi Bay. A set of groins and detached breakwaters were built in an effort to protect the beach from erosive wave action. The eBee is being applied to periodically survey the beach (Figure 1A). Through Structure from Motion (SfM) techniques, eBee-derived image sequences are post-processed to extract 3D topography and measure volumetric change. Additionally, when water clarity suffices, this approach enables the extraction of shallow-water bathymetry. Results on the utilization of the eBee to monitor beach morphodynamics will be presented including a comparison of derived estimates to RTK GPS and airborne lidar. Secondly, the RS-16 UAS has a 4 m wingspan and 11 kg sensor payload. The system is remotely piloted and has a flight endurance of 12 to 16 hours making it suitable for regional scale coastal mapping. The imaging payload consists of a multispectral sensor suite measuring in the visible, thermal IR, and ultraviolet ranges of the spectrum. The RS-16 is being used to conduct surveys along the shoreline of North Padre Island, which is a high wind energy and wave-dominated barrier island system (Figure 1B). Results on the utilization of the RS-16 to study alongshore variability in shoreline dynamics and surf zone processes, such as wave runup, will be presented.
NASA Astrophysics Data System (ADS)
Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li
2018-07-01
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
Controller for a wave energy converter
Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.
2015-09-22
A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.
Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F
2018-02-01
Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.
Effect of gravity waves on the North Atlantic circulation
NASA Astrophysics Data System (ADS)
Eden, Carsten
2017-04-01
The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin
2017-09-01
An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2013-12-01
As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.
A double-correlation tremor-location method
NASA Astrophysics Data System (ADS)
Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur
2017-02-01
A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface wave velocity, we can constrain the source location even if the surface wave component does not dominate. The method can also in principle be used with body waves in 3-D, although this requires more data and seismographs placed near the source for depth resolution.
Extinction of quasiparticle interference in underdoped cuprates with coexisting order
NASA Astrophysics Data System (ADS)
Andersen, Brian M.; Hirschfeld, P. J.
2009-04-01
Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].
S-wave refraction survey of alluvial aggregate
Ellefsen, Karl J.; Tuttle, Gary J.; Williams, Jackie M.; Lucius, Jeffrey E.
2005-01-01
An S-wave refraction survey was conducted in the Yampa River valley near Steamboat Springs, Colo., to determine how well this method could map alluvium, a major source of construction aggregate. At the field site, about 1 m of soil overlaid 8 m of alluvium that, in turn, overlaid sedimentary bedrock. The traveltimes of the direct and refracted S-waves were used to construct velocity cross sections whose various regions were directly related to the soil, alluvium, and bed-rock. The cross sections were constrained to match geologic logs that were developed from drill-hole data. This constraint minimized the ambiguity in estimates of the thickness and the velocity of the alluvium, an ambiguity that is inherent to the S-wave refraction method. In the cross sections, the estimated S-wave velocity of the alluvium changed in the horizontal direction, and these changes were attributed to changes in composition of the alluvium. The estimated S-wave velocity of the alluvium was practically constant in the vertical direc-tion, indicating that the fine layering observed in the geologic logs could not be detected. The S-wave refraction survey, in conjunction with independent information such as geologic logs, was found to be suitable for mapping the thickness of the alluvium.
Li, Xing; Gao, Yaru; Jiang, Shuna; Ma, Li; Liu, Chunxiang; Cheng, Chuanfu
2015-02-09
Using an L-shaped metal nanoslit to generate waves of the pure photonic and plasmonic modes simultaneously, we perform an experimental solution for the scattered imaging of the interference of the two waves. From the fringe data of interference, the amplitudes and the wavevector components of the two waves are obtained. The initial phases of the two waves are obtained from the phase map reconstructed with the interference of the scattered image and the reference wave in the interferometer. The difference in the wavevector components gives rise to an additional phase delay. We introduce the scattering theory under Kirchhoff's approximation to metal slit regime and explain the wavevector difference reasonably. The solution of the quantities is a comprehensive reflection of excitation, scattering and interference of the two waves. By decomposing the polarized incident field with respect to the slit element, the scattered image produced by slit of arbitrary shape can be solved with the nanoscale Huygens-Fresnel principle. This is demonstrated by the experimental intensity pattern and phase map produced by a ring-slit and its consistency with the calculated results.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
Wave Energy from the North Sea: Experiences from the Lysekil Research Site
NASA Astrophysics Data System (ADS)
Leijon, Mats; Boström, Cecilia; Danielsson, Oskar; Gustafsson, Stefan; Haikonen, Kalle; Langhamer, Olivia; Strömstedt, Erland; Stålberg, Magnus; Sundberg, Jan; Svensson, Olle; Tyrberg, Simon; Waters, Rafael
2008-05-01
This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala University. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave Rider™ buoy for wave measurements, 25 buoys for studies on environmental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e. it has no gearbox or other mechanical or hydraulic conversion system. This results in a simple and robust mechanical system, but also in a somewhat more complicated electrical system.
A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments
NASA Astrophysics Data System (ADS)
Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.
2016-12-01
The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.
Middle atmosphere thermal structure during MAP/WINE
NASA Technical Reports Server (NTRS)
Offermann, D.
1989-01-01
Middle atmosphere temperatures were measured during the MAP/WINE campaign by various ground-based techniques, by rocket instruments, and by satellites. Respective data were analyzed for atmospheric thermal mean state as well as for long and short period variations. A brief survey of the results is given. Monthly mean temperatures agree well with the new CIRA model. Long period (planetary) waves frequently exhibit peculiar vertical amplitude and phase structures, resembling those of standing waves. Short period oscillations tend to begin breaking well below the stratosphere.
Spaceborne imaging radar - Geologic and oceanographic applications
NASA Technical Reports Server (NTRS)
Elachi, C.
1980-01-01
Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao
2003-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen
2001-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
NASA Astrophysics Data System (ADS)
Yang, Yufeng; Guan, Wei; Hu, Hengshan; Xu, Minqiang
2017-05-01
Large-amplitude collar wave covering formation signals is still a tough problem in acoustic logging-while-drilling (LWD) measurements. In this study, we investigate the propagation and energy radiation characteristics of the monopole collar wave and the effects of grooves on reducing the interference to formation waves by finite-difference calculations. We found that the collar wave radiates significant energy into the formation by comparing the waveforms between a collar within an infinite fluid, and the acoustic LWD in different formations with either an intact or a truncated collar. The collar wave recorded on the outer surface of the collar consists of the outward-radiated energy direct from the collar (direct collar wave) and that reflected back from the borehole wall (reflected collar wave). All these indicate that the significant effects of the borehole-formation structure on collar wave were underestimated in previous studies. From the simulations of acoustic LWD with a grooved collar, we found that grooves broaden the frequency region of low collar-wave excitation and attenuate most of the energy of the interference waves by multireflections. However, grooves extend the duration of the collar wave and convert part of the collar-wave energy originally kept in the collar into long-duration Stoneley wave. Interior grooves are preferable to exterior ones because both the low-frequency and the high-frequency parts of the collar wave can be reduced and the converted inner Stoneley wave is relatively difficult to be recorded on the outer surface of the collar. Deeper grooves weaken the collar wave more greatly, but they result in larger converted Stoneley wave especially for the exterior ones. The interference waves, not only the direct collar wave but also the reflected collar wave and the converted Stoneley waves, should be overall considered for tool design.
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1993-01-01
This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.
The role of coral reef rugosity in dissipating wave energy and coastal protection
NASA Astrophysics Data System (ADS)
Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa
2016-04-01
Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological assemblage changes produces the most accurate assessment of wave energy dissipation across the reef flat. However, the modelled results of bed roughness (e.g. 0.01 for the fore-reef slope) were different to the directly measured rugosity values (0.05 for the fore-reef slope) from three dimension structure-from-motion surveys. In spite of this, the modelled and directly measured values of roughness are similar considering the difficulties outlined in previous research when relating the coral reef structural complexity to a single value of hydrodynamic roughness. Bed roughness was shown to be a secondary factor behind wave breaking in dissipating wave energy. However, without bed friction waves could be an order of magnitude higher in the back-reef environment. Bed friction is also increasingly important in wave dissipation at higher sea levels as wave energy dissipation due to wave breaking is reduced at greater depths. This shows that maintaining a structurally diverse and healthy reef is crucial under future sea level rise scenarios in order to maintain the protection of coastal environments. These results also indicate that significant geomorphic change in coastal environments will occur due to reduced wave dissipation at higher sea levels unless reefs are capable of keeping up with forecasted sea level rise.
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
NASA Astrophysics Data System (ADS)
Drost, Edwin J. F.; Lowe, Ryan J.; Ivey, Greg N.; Jones, Nicole L.; Péquignet, Christine A.
2017-05-01
The numerical wave model SWAN (Simulating WAves Nearshore) and historical wave buoy observations were used to investigate the response of surface wave fields to tropical cyclone (TC) wind forcing on the Australian North West Shelf (NWS). Analysis of historical wave data during TC events at a key location on the NWS showed that an average of 1.7 large TCs impacted the region each year, albeit with high variability in TC track, intensity and size, and also in the surface wave field response. An accurately modeled TC wind field resulted in a good prediction of the observed extreme wave conditions by SWAN. Results showed that the presence of strong background winds during a TC and a long TC lifetime (with large variations in translation speed) can provide additional energy input. This potentially enhances the generated swell waves and increases the spatial extent of the TC generated surface wave fields. For the TC translation speeds in this study, a positive relationship between TC translation speed and the resulting maximum significant wave height and wave field asymmetry was observed. Bottom friction across the wide NWS limited the amount of wave energy reaching the coastal region; consistently reducing wave energy in depths below 50 m, and in the case of the most extreme conditions, in depths up to 100 m that comprise much of the shelf. Nevertheless, whitecapping was still the dominant dissipation mechanism on the broader shelf region. Shelf-scale refraction had little effect on the amount of wave energy reaching the nearshore zone; however, refraction locally enhanced or reduced wave energy depending on the orientation of the isobaths with respect to the dominant wave direction during the TC.
McGarr, A.; Fletcher, Joe B.
2001-01-01
McGarr and Fletcher (2000) introduced a technique for estimating apparent stress and seismic energy radiation associated with small patches of a larger fault plane and then applied this method to the slip model of the Northridge earthquake (Wald et al., 1996). These results must be revised because we did not take account of the difference between the seismic energy near the fault and that in the farfield. The fraction f(VR) of the near-field energy that propagates into the far-field is a monotonic function that ranges from 0.11 to 0.40 as rupture velocity VR increases from 0.6?? to 0.95??, where ?? is the shear wave speed. The revised equation for apparent stress for subfault ij is taij = f(VR) ????/ 2 Dij??? D(t)ij2dt, where ?? is density, D(t)ij is the time-dependent slip, and Dij is the final slip. The corresponding seismic energy is Eaij = ADijtaij, where A is the subfault area. Our corrected distributions of apparent stress and radiated energy over the Northridge earthquake fault zone are about 35% of those published before.
Measuring sea surface height with a GNSS-Wave Glider
NASA Astrophysics Data System (ADS)
Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.
2017-04-01
A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information about dynamic topography and sea state. GNSS-Wave Glider data will next be validated against concurrent and co-located satellite altimetry data from the Jason-1, Jason-2, CryoSat-2 and AltiKa missions.
Momentum and energy transport by waves in the solar atmosphere and solar wind
NASA Technical Reports Server (NTRS)
Jacques, S. A.
1977-01-01
The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.
Infrasound and the avian navigational map.
Hagstrum, J T
2000-04-01
Birds can navigate accurately over hundreds to thousands of kilometres, and this ability of homing pigeons is the basis for a worldwide sport. Compass senses orient avian flight, but how birds determine their location in order to select the correct homeward bearing (map sense) remains a mystery. Also mysterious are rare disruptions of pigeon races in which most birds are substantially delayed and large numbers are lost. Here, it is shown that in four recent pigeon races in Europe and the northeastern USA the birds encountered infrasonic (low-frequency acoustic) shock waves from the Concorde supersonic transport. An acoustic avian map is proposed that consists of infrasonic cues radiated from steep-sided topographic features; the source of these signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting these infrasonic map cues can explain perplexing experimental results from pigeon releases.
Linear time-to-space mapping system using double electrooptic beam deflectors.
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2008-12-22
We propose and demonstrate a linear time-to-space mapping system, which is based on two times electrooptic sinusoidal beam deflection. The direction of each deflection is set to be mutually orthogonal with the relative deflection phase of pi/2 rad so that the circular optical beam trajectory can be achieved. The beam spot at the observation plane moves with an uniform velocity and as a result linear time-to-space mapping (an uniform temporal resolution through the mapping) can be realized. The proof-of-concept experiment are carried out and the temporal resolution of 5 ps has been demonstrated using traveling-wave type quasi-velosity-matched electrooptic beam deflectors. The developed system is expected to be applied to characterization of ultrafast optical signal or optical arbitrary waveform shaping for modulated microwave/millimeter-wave generation.
Stress wave propagation on standing trees. Part 2, Formation of 3D stress wave contour maps.
Juan Su; Houjiang Zhang; Xiping Wang
2009-01-01
Nondestructive evaluation (NDE) of wood quality in standing trees is an important procedure in the forest operational value chain worldwide. The goal of this paper is to investigate how a stress wave travel in a tree stem as it is introduced into the tree through a mechanical impact. Experimental stress wave data was obtained on freshly cut red pine logs in the...
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Nearshore Current Model Workshop Summary.
1983-09-01
dissipation , and wave-current interaction. b. Incorporation into models of wave-breaking. c. Parameterization of turbulence in models. d. Incorporation...into models of surf zone energy dissipation . e. Methods to specify waves and currents on the boundaries of the grid. f. Incorporation into models of...also recommended. Improvements should include nonlinear and irregular wave effects and improved models of wave-breaking and wave energy dissipation in
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Toigo, Anthony D.
2016-06-01
Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.
Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R; Weber, Jochem W; Jenne, Dale S
The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width tomore » the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.« less
Gravitational waves, energy and Feynman’s “sticky bead”
NASA Astrophysics Data System (ADS)
Cooperstock, F. I.
2015-07-01
It is noted that in the broader sense, gravitational waves viewed as spacetime curvature which necessarily accompanies electromagnetic waves at the speed of light, are the routine perception of our everyday experience. We focus on the energy issue and Feynman’s “sticky bead” argument which has been regarded as central in supporting the conclusion that gravitational waves carry energy through the vacuum in general relativity. We discuss the essential neglected aspects of his approach which leads to the conclusion that gravitational waves would not cause Feynman’s bead to heat the stick on which it would supposedly rub. This opens the way to an examination of the entire issue of energy in general relativity. We briefly discuss our naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. When the cosmological term is included in the field equations, our energy expression includes the vacuum energy as required.
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
NASA Astrophysics Data System (ADS)
Wu, Xianyun; Wu, Ru-Shan
A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.
Climate change impact on wave energy in the Persian Gulf
NASA Astrophysics Data System (ADS)
Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas
2015-06-01
Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.
NASA Astrophysics Data System (ADS)
Stephens, H. S.; Stapleton, C. A.
Topics discussed include wave power device interactions, the mathematical modeling of tidal power, and wave power with air turbines. Particular attention is given to the hydrodynamic characteristics of the Bristol Cylinder, the Strangford Lough tidal energy project, and the Foilpropeller for wave power propulsion. Consideration is also given to a submerged oscillating water column device, models of wave energy transformation near a coast, and the environmental implications of tidal power.
Wave Energy Prize - 1/20th Testing - M3 Wave
Wesley Scharmen
2016-08-12
Data from the 1/20th scale testing data completed on the Wave Energy Prize for the M3 Wave team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.
Wave Energy Prize - 1/20th Testing - RTI Wave Power
Scharmen, Wesley
2016-09-30
Data from the 1/20th scale testing data completed on the Wave Energy Prize for the RTI Wave Power team, including the 1/20th Test Plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.
NASA Astrophysics Data System (ADS)
Lebedev, Sergei; Adam, Joanne; Meier, Thomas
2013-04-01
Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the first-step results used as reference. We illustrate this strategy with an application to data from the Kaapvaal Craton. Prior information on crustal and mantle structure reduces the trade-offs and thus enables resolving the Moho depth with noisier data; such information should be sought and used whenever available (as has been done, explicitly or implicitly, in many previous studies). Joint analysis or inversion of surface-wave and other data (receiver functions, topography, gravity) can reduce uncertainties further and facilitate Moho mapping. Alone or as a part of multi-disciplinary datasets, surface-wave data offer unique sensitivity to the crustal and upper-mantle structure and are becoming increasingly important in the seismic imaging of the crust and the Moho. Reference Lebedev, S., J. Adam, T. Meier. Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, "Moho" special issue, 10.1016/j.tecto.2012.12.030, 2013.
Pressure waves in a supersaturated bubbly magma
Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.
2011-01-01
We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.
Barrett, D M W; Bartlewski, P M; Duggavathi, R; Davies, K L; Huchkowsky, S L; Epp, T; Rawlings, N C
2008-04-15
Fertility is often lower in anestrous compared to cyclic ewes, after conventional estrus synchronization. We hypothesized that synchronization of ovarian follicular waves and ovulation could improve fertility at controlled breeding in anestrous ewes. Estradiol-17beta synchronizes follicular waves in cattle. The objectives of the present experiments were to study the effect of an estradiol injection, with or without a 12-d medroxyprogesterone acetate (MAP) sponge treatment, on synchronization of follicular waves and ovulation in anestrous ewes. Twenty ewes received sesame oil (n=8) or estradiol-17beta (350 microg; n=12). Eleven ewes received MAP sponges for 12d and were treated with oil (n=5) or estradiol-17beta (n=6) 6d before sponge removal. Saline (n=6) or eCG (n=6) was subsequently given to separate groups of ewes at sponge removal in the MAP/estradiol-17beta protocol. Estradiol treatment alone produced a peak in serum FSH concentrations (4.73+/-0.53 vs. 2.36+/-0.39 ng/mL for treatment vs. control; mean+/-S.E.M.) after a short-lived (6 h) suppression. Six of twelve ewes given estradiol missed a follicular wave around the time of estradiol injection. Medroxyprogesterone acetate-treated ewes given estradiol had more prolonged suppression of serum FSH concentrations (6-18 h) and a delay in the induced FSH peak (32.3+/-3.3 vs. 17.5+/-0.5 h). Wave emergence was delayed (5.7+/-0.3 vs. 1.4+/-0.7d from the time of estradiol injection), synchronized, and occurred at a predictable time (5-7 vs. 0-4d) compared to ewes given MAP alone. All ewes given eCG ovulated 3-4d after injection; this predictable time of ovulation may be efficacious for AI and embryo transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less
Zhang, Y; Huang, S L; Wang, S; Zhao, W
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.
Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.
2017-12-01
Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Kichigin, Gennadiy
2015-03-01
The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).
Equilibrium shoreline response of a high wave energy beach
Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.
2011-01-01
Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
NASA Astrophysics Data System (ADS)
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-08-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-01-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat
Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew
2014-01-01
Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.
Tunnel effect wave energy detection
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2017-10-01
The energy theorem of electrodynamics is extended so as to apply to the plasmonic waves on single-walled carbon nanotubes which propagate parallel to the axial direction of the system and are periodic waves in the azimuthal direction. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. General expressions of energy and power flow associated with surface waves are obtained by solving Maxwell and hydrodynamic equations with appropriate boundary conditions. Numerical results for the transverse magnetic mode show that energy, power flow, and energy transport velocity of the plasmonic waves strongly depend on the nanotube radius in the long-wavelength region.
Automated Processing Workflow for Ambient Seismic Recordings
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J.
2017-12-01
Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data
Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Espindola, Rafael Luz; Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
NASA Astrophysics Data System (ADS)
Seiffert, Betsy R.; Ducrozet, Guillaume
2018-01-01
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.
Electrostatic Steepening of Whistler Waves
NASA Astrophysics Data System (ADS)
Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Bonnell, J. W.; Artemyev, A. V.; Krasnoselskikh, V. V.; Tong, Y.
2018-05-01
We present surprising observations by the NASA Van Allen Probes spacecraft of whistler waves with substantial electric field power at harmonics of the whistler wave fundamental frequency. The wave power at harmonics is due to a nonlinearly steepened whistler electrostatic field that becomes possible in the two-temperature electron plasma due to the whistler wave coupling to the electron-acoustic mode. The simulation and analytical estimates show that the steepening takes a few tens of milliseconds. The hydrodynamic energy cascade to higher frequencies facilitates efficient energy transfer from cyclotron resonant electrons, driving the whistler waves, to lower energy electrons.
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.
Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao
2017-06-09
The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
Improving particle beam acceleration in plasmas
NASA Astrophysics Data System (ADS)
C. de Sousa, M.; L. Caldas, I.
2018-04-01
The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.
Symmetry-breaking inelastic wave-mixing atomic magnetometry.
Zhou, Feng; Zhu, Chengjie J; Hagley, Edward W; Deng, Lu
2017-12-01
The nonlinear magneto-optical rotation (NMOR) effect has prolific applications ranging from precision mapping of Earth's magnetic field to biomagnetic sensing. Studies on collisional spin relaxation effects have led to ultrahigh magnetic field sensitivities using a single-beam Λ scheme with state-of-the-art magnetic shielding/compensation techniques. However, the NMOR effect in this widely used single-beam Λ scheme is peculiarly small, requiring complex radio-frequency phase-locking protocols. We show the presence of a previously unknown energy symmetry-based nonlinear propagation blockade and demonstrate an optical inelastic wave-mixing NMOR technique that breaks this NMOR blockade, resulting in an NMOR optical signal-to-noise ratio (SNR) enhancement of more than two orders of magnitude never before seen with the single-beam Λ scheme. The large SNR enhancement was achieved simultaneously with a nearly two orders of magnitude reduction in laser power while preserving the magnetic resonance linewidth. This new method may open a myriad of applications ranging from biomagnetic imaging to precision measurement of the magnetic properties of subatomic particles.
Imaging the wave functions of adsorbed molecules
Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter
2014-01-01
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
Symmetry-breaking inelastic wave-mixing atomic magnetometry
Zhou, Feng; Zhu, Chengjie J.; Hagley, Edward W.; Deng, Lu
2017-01-01
The nonlinear magneto-optical rotation (NMOR) effect has prolific applications ranging from precision mapping of Earth’s magnetic field to biomagnetic sensing. Studies on collisional spin relaxation effects have led to ultrahigh magnetic field sensitivities using a single-beam Λ scheme with state-of-the-art magnetic shielding/compensation techniques. However, the NMOR effect in this widely used single-beam Λ scheme is peculiarly small, requiring complex radio-frequency phase-locking protocols. We show the presence of a previously unknown energy symmetry–based nonlinear propagation blockade and demonstrate an optical inelastic wave-mixing NMOR technique that breaks this NMOR blockade, resulting in an NMOR optical signal-to-noise ratio (SNR) enhancement of more than two orders of magnitude never before seen with the single-beam Λ scheme. The large SNR enhancement was achieved simultaneously with a nearly two orders of magnitude reduction in laser power while preserving the magnetic resonance linewidth. This new method may open a myriad of applications ranging from biomagnetic imaging to precision measurement of the magnetic properties of subatomic particles. PMID:29214217
NASA Technical Reports Server (NTRS)
Pinter, S.; Dryer, M.
1985-01-01
The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.
Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin
2016-08-24
Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.
The Future Potential of Wave Power in the US
NASA Astrophysics Data System (ADS)
Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.
2012-12-01
The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.
A wave model test bed study for wave energy resource characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less
Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.
The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less
Calculations of the heights, periods, profile parameters, and energy spectra of wind waves
NASA Technical Reports Server (NTRS)
Korneva, L. A.
1975-01-01
Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.
A generalized semikinetic (GSK) model for mesoscale auroral plasma transport
NASA Astrophysics Data System (ADS)
Brown, David Gillespie
1993-12-01
The auroral region of the Earth's ionosphere-magnetosphere system is a complex and active part of the Earth's environment. In order to study the transport of ionospheric plasma in this region, we have developed a generalized semikinetic (GSK) model which combines the tracking of ionospheric ion gyrocenters (between stochastic impulses from waves), with a generalized fluid treatment of ionospheric electrons and Liouville mapping of magnetospheric plasma components. This model has been used to simulate the effects of 'self-consistent' heating ('self consistent' in the sense that heating occurs only where the modelled plasma is unstable) due to the current-driven ion cyclotron instability in the return current regions. Our results include generation of 'conics' whose wings are drawn in towards the upsilon(parallel)-axis at higher energies (such distributions were subsequently found in recent studies of DE-1 data for this region) and an alternative formation mechanism for toroidal (or 'ring'-shaped) ion velocity-space distributions. We also present results illustrating the effects of combining large scale electric fields (generated by anisotropic magnetospheric plasma distributions) with wave heating by a presumed distribution of wave spectra. In the presence of an upwards electric field the addition of wave heating increases the density of the O(sup +) 'beam' ('ion feeder' effect), while a downwards hot plasma-induced electric field increases the time which ions spend within the heating region ('pressure cooker' effect), resulting in greater ion energization.
Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity
NASA Astrophysics Data System (ADS)
Zhao, Zhongxiang
2017-12-01
The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.
False Paradoxes of Superposition in Electric and Acoustic Waves.
ERIC Educational Resources Information Center
Levine, Richard C.
1980-01-01
Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jie; Zong, Q. G.; Miyoshi, Y.
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...
2017-08-30
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
Soil amplification maps for estimating earthquake ground motions in the Central US
Bauer, R.A.; Kiefer, J.; Hester, N.
2001-01-01
The State Geologists of the Central United States Earthquake Consortium (CUSEC) are developing maps to assist State and local emergency managers and community officials in evaluating the earthquake hazards for the CUSEC region. The state geological surveys have worked together to produce a series of maps that show seismic shaking potential for eleven 1 X 2 degree (scale 1:250 000 or 1 in. ??? 3.9 miles) quadrangles that cover the high-risk area of the New Madrid Seismic Zone in eight states. Shear wave velocity values for the surficial materials were gathered and used to classify the soils according to their potential to amplify earthquake ground motions. Geologic base maps of surficial materials or 3-D material maps, either existing or produced for this project, were used in conjunction with shear wave velocities to classify the soils for the upper 15-30 m. These maps are available in an electronic form suitable for inclusion in the federal emergency management agency's earthquake loss estimation program (HAZUS). ?? 2001 Elsevier Science B.V. All rights reserved.
Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho
2004-01-01
Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.
Wave Power Demonstration Project at Reedsport, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Downie, Bruce
2013-10-21
Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less
The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares
NASA Technical Reports Server (NTRS)
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Baroclinic stationary waves in aquaplanet models
NASA Astrophysics Data System (ADS)
Lucarini, V.; Zappa, G.
2012-04-01
An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
The slider crank is a proven mechanical linkage system with a long history of successful applications, and the slider-crank ocean wave energy converter (WEC) is a type of WEC that converts linear motion into rotation. This paper presents a control algorithm for a slider-crank WEC. In this study, a time-domain hydrodynamic analysis is adopted, and an AC synchronous machine is used in the power take-off system to achieve relatively high system performance. Also, a rule-based phase control strategy is applied to maximize energy extraction, making the system suitable for not only regular sinusoidal waves but also irregular waves. Simulations aremore » carried out under regular sinusoidal wave and synthetically produced irregular wave conditions; performance validations are also presented with high-precision, real ocean wave surface elevation data. The influences of significant wave height, and peak period upon energy extraction of the system are studied. Energy extraction results using the proposed method are compared to those of the passive loading and complex conjugate control strategies; results show that the level of energy extraction is between those of the passive loading and complex conjugate control strategies, and the suboptimal nature of this control strategy is verified.« less
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.
2017-12-01
Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.
Buchanan-Banks, Jane M.; Collins, Donley S.
1994-01-01
The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.
2007-01-01
It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times
NASA Astrophysics Data System (ADS)
Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.
2018-06-01
Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.
NASA Astrophysics Data System (ADS)
Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.
2008-12-01
Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils. Finally, we present laboratory and field results where the GPR measurements are compared to ground-truth gravimetric and time domain reflectometry data. An example of high resolution surface soil moisture map is presented and discussed. The proposed method appears to be an appropriate solution in any applications where soil surface water content must be known at the field scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, F. T.; Iglesias, G.; Santos, P. R.
Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
Internal Waves in the East Australian Current
NASA Astrophysics Data System (ADS)
Alford, Matthew H.; Sloyan, Bernadette M.; Simmons, Harper L.
2017-12-01
Internal waves, which drive most ocean turbulence and add "noise" to lower-frequency records, interact with low-frequency current systems and topography in yet poorly known ways. Taking advantage of a heavily instrumented, 14 month mooring array, internal waves in the East Australian Current (EAC) are examined for the first time. Internal wave horizontal kinetic energy (HKE) is within a factor of 2 of the Garrett-Munk (1976) spectrum. Continuum internal waves, near-inertial waves, and internal tides together constitute a significant percentage of the total velocity variance. Mode-1 internal tide energy fluxes are southward and much smaller than energy times group velocity, consistent with reflection at the continental slope of incident waves generated from near New Caledonia and the Solomon Islands. Internal tide HKE is highly phase variable, consistent with refraction by the variable EAC. Mode-1 near-inertial wave energy fluxes are of comparable magnitude and are equatorward and episodic, consistent with generation by storms farther poleward. These processes are considered together in the complex environment of the EAC.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
Conceptual Models of Frontal Cyclones.
ERIC Educational Resources Information Center
Eagleman, Joe R.
1981-01-01
This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)
NASA Technical Reports Server (NTRS)
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-02-01
We present a derivation of the dispersion relation for electrostatic waves propagating at the interface of semi-bounded quantum plasma in which degenerate electrons are governed by the Wigner-Poisson system, while non-degenerate ions follow the classical fluid equations. We consider parameters for metallic plasmas in terms of the ratio of plasmon energy to Fermi energy. The dispersion relation is solved numerically and analyzed for various plasmon energies. The result shows that two-mode of waves can be possible: high- and low-mode. We have found that the degeneracy for high-mode wave would be broken when the plasmon energy is larger than the Fermi energy. We also discuss the characteristics of group velocities for high- and low-mode waves.
High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.
Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan
2016-05-15
A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.
Energy Harvesting from Surface River/Ocean Waves
NASA Astrophysics Data System (ADS)
Cai, Wenzheng
The renewable energy is an important subject especially today as the world is facing the results of the pollution and depletion of the conventional energy resources. Around 70% of the Earth's surface is covered by water where the energy of the waves/tides could be used as alternative source of energy that is sustainable and environmental friendly. Most of the research efforts are focused on the development of the large-scale technologies that can operate in the open Ocean. The potential of the low-frequency and small-amplitude wave condition in shallow rivers and lakes where most of the world wave energy exists has not been explored yet. The objective of the current study is to design and develop new concepts for wave energy extraction, which depend on oscillatory wave motion and have the ability to convert the small and medium waves. The proposed devices are self-generating without any external sources, which makes them lightweight and naturally floating on the surface of the water. Feasibility studies of both designs were performed using numerical modeling and field experiments. The final prototypes achieved power output of 5.0+/-0.6mW and 0.25+/-0.01mW, respectively. Array systems implementing both concepts were also introduced to improve the performance of the devices.
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
Maps of the Magellanic clouds from combined South Pole Telescope and Planck data
Crawford, T. M.; Chown, R.; Holder, G. P.; ...
2016-12-09
Here, we present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. Both instruments are designed to make measurements of the cosmic microwave background but are sensitive to any source of millimeter-wave (mm-wave) emission. The Planck satellite observes in nine mm-wave bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera. The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data in these bands ranges from 5 tomore » 10 arcmin, while the SPT resolution in these bands ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver high signal-to-noise and robust brightness measurements on scales from the size of the maps down to ~1 arcmin. In each of the three bands, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam, or point-spread function, to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. Furthermore, we create maps assuming a range of underlying emission spectra (for the color correction) and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in the maps. Finally, we compare the maps of the Large Magellanic Cloud (LMC) from this work to maps from the Herschel HERITAGE survey, finding general consistency between the datasets. Furthermore, the broad wavelength coverage provides evidence of different emission mechanisms at work in different environments in the LMC.« less
NASA Astrophysics Data System (ADS)
Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.
2017-12-01
Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.
Numerical and experimental results on the spectral wave transfer in finite depth
NASA Astrophysics Data System (ADS)
Benassai, Guido
2016-04-01
Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.
Wave power potential in Malaysian territorial waters
NASA Astrophysics Data System (ADS)
Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul
2016-06-01
Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.
Laboratory modelling of resonant wave-current interaction in the vicinity wind farm masts
NASA Astrophysics Data System (ADS)
Gunnoo, Hans; Abcha, Nizar; Garcia-Hermosa, Maria-Isabel; Ezersky, Alexander
2015-04-01
In the nearest future, by 2020, about 4% of electricity in Europe will be supplied by sea stations operating from renewable sources: ocean thermal energy, wave and tidal energy, wind farms. By now the wind stations located in the coastal zone, provide the most part of electricity in different European countries. Meanwhile, effects of wind farms on the environment are not sufficiently studied. We report results of laboratory simulations aimed at investigation of hydrodynamic fields arising in the vicinity of wind farm masts under the action of currents and surface waves. The main attention is paid to modeling the resonance effects when the amplitude of velocity pulsations in the vicinity of the masts under the joint action of currents and harmonic waves demonstrate significant growth. This resonance can lead to an increase in Reynolds stress on the bottom, intensification of sediment transport and sound generation. The experiments are performed in the 17 meters hydrodynamical channel of laboratory Morphodynamique Continentale et Côtière UMR CNRS 6143. Mast are modeled by vertical cylinder placed in a steady flow. Behind the cylinder turbulent Karman vortex street occurs. Results are obtained in interval of Reynolds numbers Re=103 - 104(Re=Ud/v, where U is the velocity of the flow, d is diameter of the cylinder, ν is cinematic viscosity). Harmonic surface waves of small amplitude propagating upstream are excited by computer controlled wave maker. In the absence of surface waves, turbulent Karman street with averaged frequency f is observed. It is revealed experimentally that harmonic surface waves with a frequencies closed to 2f can synchronize vortex shedding and increase the amplitude of velocity fluctuations in the wake of the cylinder. Map of regimes is found on the parameter plane amplitude of the surface wave - wave frequency. In order to distinguish the synchronization regimes, we defined phase of oscillations using the Hilbert transform technique. We investigate effect of hydrodynamic turbulence on synchronization of hydrodynamic wake by surface waves. To change the level of turbulence we used honeycombs. Measuring the velocity upstream the cylinder, we found that under our experimental conditions honeycombs can reduce the level of hydrodynamic turbulence in two times. It is found that intensity of turbulence determines the amplitude threshold of synchronization in the wake behind cylinder. The physical mechanisms of synchronization, its impact to the Reynolds stress and the possibility of such a resonance in the vicinity of masts located in the coastal zone are discussed. This work was supported by the OFELIA (Offshore Foundations Environmental Impact Assessments) project in the frame of the European cross-border cooperation programme INTERREG IV A France (Channel) - England, co-funded by the ERDF.
Wave Energy Prize - 1/20th Testing - CalWave Power Technologies
Scharmen, Wesley
2016-09-09
Data from the 1/20th scale testing data completed on the Wave Energy Prize for the CalWave Power Technologies team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.
Wave-function description of conductance mapping for a quantum Hall electron interferometer
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Szafran, B.
2014-04-01
Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013), 10.1038/srep01416].
Herlin, Antoine; Jacquemet, Vincent
2012-05-01
Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.
SPIDER: CMB Polarimetry from the Edge of Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualtieri, R.; et al.
SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrumentmore » in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.« less
On the electrophonic generation of audio frequency sound by meteors
NASA Astrophysics Data System (ADS)
Kelley, Michael C.; Price, Colin
2017-04-01
Recorded for centuries, people can hear and see meteors nearly concurrently. Electromagnetic energy clearly propagates at the speed of light and converts to sound (called electrophonics) when coupled to metals. An explanation for the electromagnetic energy source is suggested. Coma ions around the meteor head can easily travel across magnetic field lines up to 120 km. The electrons, however, are tied to magnetic field lines, since they must gyrate around the field above 75 km. A large ambipolar electric field must be generated to conserve charge neutrality. This localized electric field maps to the E region then drives a large Hall current that launches the electromagnetic wave. Using antenna theory and following, a power flux of over 10-8 W/m2 at the ground is found. Electrophonic conversion to sound efficiency then needs to be only 0.1% to explain why humans can hear and see meteors nearly concurrently.
NASA Astrophysics Data System (ADS)
Amorim, B.
2018-04-01
We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.
Clustering of cycloidal wave energy converters
Siegel, Stefan G.
2016-03-29
A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.
Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Huang, H.-J.; Vincent, D. G.
1984-01-01
Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.
Unusual energy properties of leaky backward Lamb waves in a submerged plate.
Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E
2017-05-01
It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media. Copyright © 2017 Elsevier B.V. All rights reserved.
X-ray absorption radiography for high pressure shock wave studies
NASA Astrophysics Data System (ADS)
Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.
2018-01-01
The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.
Improving wave forecasting by integrating ensemble modelling and machine learning
NASA Astrophysics Data System (ADS)
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinger, Geoffrey
This document presents results from tests to demonstrate underwater mapping capabilities of an underwater vehicle in conditions typically found in marine renewable energy arrays. These tests were performed with a tethered Seabotix vLBV300 underwater vehicle. The vehicle is equipped with an inertial navigation system (INS) based on a Gladiator Landmark 40 IMU and Teledyne Explorer Doppler Velocity Log, as well as a Gemini 720i scanning sonar acquired from Tritech. The results presented include both indoor pool and offshore deployments. The indoor pool deployments were performed on October 7, 2016 and February 3, 2017 in Corvallis, OR. The offshore deployment wasmore » performed on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. Data was recorded from both the INS and the sonar.« less
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
NASA Astrophysics Data System (ADS)
Cherviakov, M.; Spiryakhina, A.; Surkova, Y.; Kulkova, E.; Shishkina, E.
2017-12-01
This report describes Earth's energy budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M" No 1 of this project was put into orbit in 2009. The IKOR-M radiometer is a satellite instrument which can measure reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov University and installed on Russian meteorological satellites "Meteor-M" No 1 and No 2. IKOR-M designed for satellite monitoring of the outgoing short-wave radiation at top-of-atmosphere (TOA), which is one of the components of Earth's energy budget. Such measurements can be used to derive albedo and absorbed solar radiation at TOA. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation, albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. During the radiometer operation, there were two significant El Nino events. Spatial-temporal distribution of the albedo in the equatorial part of the Pacific Ocean was analyzed. Region with high albedo values of 35-40 % is formed in the region 180E in January-February 2010 during El Nino event. It is associated with the development of a powerful convective cloudiness caused by the increase SST, at certain points the values can reach 45 %. The Nino 4 region is the most representative for detecting El Nino events (Fig. 1). The reported study was funded by RFBR according to the research project No.16-35-00284 mol_a.
Chuang, Yao-Chi; Huang, Tung-Liang; Tyagi, Pradeep; Huang, Chao-Cheng
2016-08-01
We investigated the feasibility of using low energy shock waves for intravesical botulinum toxin A delivery. We also evaluated its efficacy for acetic acid induced bladder hyperactivity in rats. In study 1 magnetic resonance imaging with intravesical administration of Gd-DTPA (Gd-diethylenetriamine pentaacetic acid) contrast medium was performed to visualize increased bladder urothelial permeability after low energy shock waves. In study 2 saline (1 ml) or botulinum toxin A (20 U/1 ml saline) was administered in the bladder with or without low energy shock waves (300 pulses at 0.12 mJ/mm(2)) and retained for 1 hour on day 1. Continuous cystometrograms were performed on day 8 by filling the bladder with saline followed by 0.3% acetic acid. The bladder was harvested for histology, and SNAP-25, SNAP-23 and COX-2 expression by Western blot or immunostaining. Magnetic resonance imaging established bladder urothelial leakage of Gd-DTPA after low energy shock waves, which was not seen in controls. The intercontraction interval was decreased 71.9%, 72.6% and 70.6% after intravesical instillation of acetic acid in saline, saline plus low energy shock wave and botulinum toxin A pretreated rats, respectively. However, rats that received botulinum toxin A plus low energy shock waves showed a significantly reduced response (48.6% decreased intercontraction interval) to acetic acid instillation without compromising voiding function. Rats pretreated with botulinum toxin A plus low energy shock waves showed a decreased inflammatory reaction (p <0.05), and decreased expression of SNAP-23 (p <0.05), SNAP-25 (p = 0.061) and COX-2 (p <0.05) compared with the control group. Low energy shock waves increased urothelial permeability, facilitated intravesical botulinum toxin A delivery and blocked acetic acid induced hyperactive bladder. These results support low energy shock waves as a promising method to deliver botulinum toxin A without the need for injection. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
Csicsvari, Jozsef; Dupret, David
2014-02-05
Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.
2018-02-01
In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.
Power converter for raindrop energy harvesting application: Half-wave rectifier
NASA Astrophysics Data System (ADS)
Izrin, Izhab Muhammad; Dahari, Zuraini
2017-10-01
Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Energy and Momentum Transport in String Waves
ERIC Educational Resources Information Center
Juenker, D. W.
1976-01-01
Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)
High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Bautz, Marshall
2017-01-01
We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.
NASA Astrophysics Data System (ADS)
Cienfuegos, R.; Duarte, L.; Hernandez, E.
2008-12-01
Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.