A Comprehensive Study on Energy Efficiency and Performance of Flash-based SSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seon-Yeon; Kim, Youngjae; Urgaonkar, Bhuvan
2011-01-01
Use of flash memory as a storage medium is becoming popular in diverse computing environments. However, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL (flash translation layer). Although the FTL enables flash memory storages to replace conventional hard disks, it induces significant computational and space overhead. Despite the low power consumption of flash memory, this overhead leads to significant power consumption in an overall storage system. In this paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power consumption and energy efficiency by using various methodologies. First, we utilize simulation tomore » investigate the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the performance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics.« less
DPM — efficient storage in diverse environments
NASA Astrophysics Data System (ADS)
Hellmich, Martin; Furano, Fabrizio; Smith, David; Brito da Rocha, Ricardo; Álvarez Ayllón, Alejandro; Manzi, Andrea; Keeble, Oliver; Calvet, Ivan; Regala, Miguel Antonio
2014-06-01
Recent developments, including low power devices, cluster file systems and cloud storage, represent an explosion in the possibilities for deploying and managing grid storage. In this paper we present how different technologies can be leveraged to build a storage service with differing cost, power, performance, scalability and reliability profiles, using the popular storage solution Disk Pool Manager (DPM/dmlite) as the enabling technology. The storage manager DPM is designed for these new environments, allowing users to scale up and down as they need it, and optimizing their computing centers energy efficiency and costs. DPM runs on high-performance machines, profiting from multi-core and multi-CPU setups. It supports separating the database from the metadata server, the head node, largely reducing its hard disk requirements. Since version 1.8.6, DPM is released in EPEL and Fedora, simplifying distribution and maintenance, but also supporting the ARM architecture beside i386 and x86_64, allowing it to run the smallest low-power machines such as the Raspberry Pi or the CuBox. This usage is facilitated by the possibility to scale horizontally using a main database and a distributed memcached-powered namespace cache. Additionally, DPM supports a variety of storage pools in the backend, most importantly HDFS, S3-enabled storage, and cluster file systems, allowing users to fit their DPM installation exactly to their needs. In this paper, we investigate the power-efficiency and total cost of ownership of various DPM configurations. We develop metrics to evaluate the expected performance of a setup both in terms of namespace and disk access considering the overall cost including equipment, power consumptions, or data/storage fees. The setups tested range from the lowest scale using Raspberry Pis with only 700MHz single cores and a 100Mbps network connections, over conventional multi-core servers to typical virtual machine instances in cloud settings. We evaluate the combinations of different name server setups, for example load-balanced clusters, with different storage setups, from using a classic local configuration to private and public clouds.
Efficient micromagnetics for magnetic storage devices
NASA Astrophysics Data System (ADS)
Escobar Acevedo, Marco Antonio
Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.
Study of Solid State Drives performance in PROOF distributed analysis system
NASA Astrophysics Data System (ADS)
Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.
2010-04-01
Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.
NASA Astrophysics Data System (ADS)
Vajda, Istvan; Kohari, Zalan; Porjesz, Tamas; Benko, Laszlo; Meerovich, V.; Sokolovsky; Gawalek, W.
2002-08-01
Technical and economical feasibilities of short-term energy storage flywheels with high temperature superconducting (HTS) bearing are widely investigated. It is essential to reduce the ac losses caused by magnetic field variations in HTS bulk disks/rings (levitators) used in the magnetic bearings of flywheels. For the HTS bearings the calculation and measurement of the magnetic field distribution were performed. Effects like eccentricity, tilting were measured. Time dependency of the levitation force following a jumpwise movement of the permanent magnet was measured. The results were used to setup an engineering design algorithm for energy storage HTS flywheels. This algorithm was applied to an experimental HTS flywheel model with a disk type permanent magnet motor/generator unit designed and constructed by the authors. A conceptual design of the disk-type motor/generator with radial flux is shown.
RAMA: A file system for massively parallel computers
NASA Technical Reports Server (NTRS)
Miller, Ethan L.; Katz, Randy H.
1993-01-01
This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.
Using Solid State Disk Array as a Cache for LHC ATLAS Data Analysis
NASA Astrophysics Data System (ADS)
Yang, W.; Hanushevsky, A. B.; Mount, R. P.; Atlas Collaboration
2014-06-01
User data analysis in high energy physics presents a challenge to spinning-disk based storage systems. The analysis is data intense, yet reads are small, sparse and cover a large volume of data files. It is also unpredictable due to users' response to storage performance. We describe here a system with an array of Solid State Disk as a non-conventional, standalone file level cache in front of the spinning disk storage to help improve the performance of LHC ATLAS user analysis at SLAC. The system uses several days of data access records to make caching decisions. It can also use information from other sources such as a work-flow management system. We evaluate the performance of the system both in terms of caching and its impact on user analysis jobs. The system currently uses Xrootd technology, but the technique can be applied to any storage system.
Set processing in a network environment. [data bases and magnetic disks and tapes
NASA Technical Reports Server (NTRS)
Hardgrave, W. T.
1975-01-01
A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.
Inverted Signature Trees and Text Searching on CD-ROMs.
ERIC Educational Resources Information Center
Cooper, Lorraine K. D.; Tharp, Alan L.
1989-01-01
Explores the new storage technology of optical data disks and introduces a data structure, the inverted signature tree, for storing data on optical data disks for efficient text searching. The inverted signature tree approach is compared to the use of text signatures and the B+ tree. (22 references) (Author/CLB)
Multi-Level Bitmap Indexes for Flash Memory Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Madduri, Kamesh; Canon, Shane
2010-07-23
Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less
Flexible matrix composite laminated disk/ring flywheel
NASA Technical Reports Server (NTRS)
Gupta, B. P.; Hannibal, A. J.
1984-01-01
An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved.
Online performance evaluation of RAID 5 using CPU utilization
NASA Astrophysics Data System (ADS)
Jin, Hai; Yang, Hua; Zhang, Jiangling
1998-09-01
Redundant arrays of independent disks (RAID) technology is the efficient way to solve the bottleneck problem between CPU processing ability and I/O subsystem. For the system point of view, the most important metric of on line performance is the utilization of CPU. This paper first employs the way to calculate the CPU utilization of system connected with RAID level 5 using statistic average method. From the simulation results of CPU utilization of system connected with RAID level 5 subsystem can we see that using multiple disks as an array to access data in parallel is the efficient way to enhance the on-line performance of disk storage system. USing high-end disk drivers to compose the disk array is the key to enhance the on-line performance of system.
Battery voltage-balancing applications of disk-type radial mode Pb(Zr • Ti)O3 ceramic resonator
NASA Astrophysics Data System (ADS)
Thenathayalan, Daniel; Lee, Chun-gu; Park, Joung-hu
2017-10-01
In this paper, we propose a novel technique to build a charge-balancing circuit for series-connected battery strings using various kinds of disk-type ceramic Pb(Zr • Ti)O3 piezoelectric resonators (PRs). The use of PRs replaces the whole external battery voltage-balancer circuit, which consists mainly of a bulky magnetic element. The proposed technique is validated using different ceramic PRs and the results are analyzed in terms of their physical properties. A series-connected battery string with a voltage rating of 61.5 V is set as a hardware prototype under test, then the power transfer efficiency of the system is measured at different imbalance voltages. The performance of the proposed battery voltage-balancer circuit employed with a PR is also validated through hardware implementation. Furthermore, the temperature distribution image of the PR is obtained to compare power transfer efficiency and thermal stress under different operating conditions. The test results show that the battery voltage-balancer circuit can be successfully implemented using PRs with the maximum power conversion efficiency of over 96% for energy storage systems.
High speed superconducting flywheel system for energy storage
NASA Astrophysics Data System (ADS)
Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.
1994-12-01
A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.
Enhancement of high-speed flywheel energy storage via carbon-fiber composite reinforcement
NASA Astrophysics Data System (ADS)
Conteh, Michael Abu
This study on the enhancement of high-speed flywheel energy storage is to investigate composite materials that are suitable for high-speed, high-energy density for energy storage and/or energy recovery. The main motivation of the study is to explore the application of the flywheel in the aviation industry for recovering some of the energy that is currently being lost at the wheel brakes of an aircraft due to the high temperature developed in the brake stack as a result of landing, frequent brake applications during taxiing in or out of heavy traffic airports and rejected take-off. Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Design and optimum stress analysis were used to determine the shape factor, maximum stress and energy density for a flywheel with a constant stress disk and a constant thickness rim. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that the use of hybrid composite material with higher strength (based on first ply failure strength) and lower density and lower elastic moduli for the disk than the rim material will yield high-speed and high-energy density. The materials designed based on the results from this study show outperformance compared to previous published results of standard flywheel material combinations. The safe rotational velocity and energy density were found to be 166,000 RPM and 2.73 MJ/kg respectively. Therefore, results from this study will contribute to aiding further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology. Further study on flywheel energy recovery from aircraft brakes revealed that more than half of the energy dissipated at the wheel brake as heat could be recovered and converted to some useful form. In this way, the operating life of the brakes can be prolonged. The total additional weight to the aircraft was found to be less than 0.2% of the maximum take-off weight. This additional weight can be offset by reducing the design payload while ensuring that the structural efficiency of the aircraft is not altered. It was also found that, applying this method of flywheel energy recovery to active commercial Boeing-777 aircraft will result in savings equivalent to the annual carbon emission of a 6 MW fossil fuel power plant. This will also contribute to the aviation industry climate change mitigation.
Can Disks Produce Companions by Gravitational Fragmentation?
NASA Astrophysics Data System (ADS)
Durisen, Richard H.
The nonlinear outcome of gravitational instabilities in disks depends critically on the thermal physics of the gas. Under conditions where thermal energy is lost efficiently, disks disrupt into dense arms, arclets, and clumps. However, the evidence about whether clumps can ever become permanent bound objects is currently inconclusive. Under conditions where cooling is less efficient or where a balance between heating and cooling is achieved, the amplitudes reached by gravitational instabilities are relatively modest. The result is disk heating and transport of mass and angular momentum rather than condensation of bound companions. Future numerical simulations need to resolve the disk vertical structure and include more realistic equations of state and energy transport.
Storage Media for Microcomputers.
ERIC Educational Resources Information Center
Trautman, Rodes
1983-01-01
Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…
Operating characteristics of a 0.87 kW-hr flywheel energy storage module
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Scibbe, H. W.; Parker, R. D.; Zaretsky, E. V.
1985-01-01
Discussion is given of the design and loss characteristics of 0.87 kW-hr (peak) flywheel energy storage module suitable for aerospace and automotive applications. The maraging steel flywheel rotor, a 46-cm- (18-in-) diameter, 58-kg (128-lb) tapered disk, delivers 0.65 kW-hr of usable energy between operating speeds of 10,000 and 20,000 rpm. The rotor is supported by 20- and 25-mm bore diameter, deep-groove ball bearings, lubricated by a self-replenishing wick type lubrication system. To reduce aerodynamic losses, the rotor housing was evacuated to vacuum levels from 40 to 200 millitorr. Dynamic rotor instabilities uncovered during testing necessitated the use of an elastometric-bearing damper to limit shaft excursions. Spindown losses from bearing, seal, and aerodynamic drag at 50 millitorr typically ranged from 64 to 193 W at 10,000 and 20,000 rpm, respectively. Discharge efficiency of the flywheel system exceeded 96 percent at torque levels greater than 21 percent of rated torque.
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R
2013-01-09
Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.
Multi-terabyte EIDE disk arrays running Linux RAID5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, D.A.; Cremaldi, L.M.; Eschenburg, V.
2004-11-01
High-energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. Grid Computing is one method; however, the data must be cached at the various Grid nodes. We examine some storage techniques that exploit recent developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5) include both parity and striping. The striping improves access speed. The parity protects data in the event of a single disk failure, but not in the case ofmore » multiple disk failures. We report on tests of dual-processor Linux Software RAID-5 arrays and Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with 250 and 300 GB disks, for use in offline high-energy physics data analysis. The price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be scaled to sizes affordable to small institutions and used when fast random access at low cost is important.« less
Accretion of magnetized matter into a black hole.
NASA Astrophysics Data System (ADS)
Bisnovatyj-Kogan, G. S.
1999-12-01
Accretion is the main source of energy in binary X-ray sources inside the Galaxy, and most probably in active galactic nuclei, where numerous observational data for the existence of supermassive black holes have been obtained. Standard accretion disk theory is formulated which is based on local heat balance. The whole energy produced by turbulent viscous heating is supposed to be emitted to the sides of the disk. Sources of turbulence in the accretion disk are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic field. In standard theory there are two branches of solution, optically thick, anti-optically thin, which are individually self-consistent. The choice between these solutions should be done on the basis of a stability analysis. Advection in the accretion disks is described by differential equations, which makes the theory nonlocal. The low-luminosity optically thin accretion disk model with advection under some conditions may become advectively dominated, carrying almost all the energy inside the black hole. A proper account for magnetic field in the process of accretion limits the energy advected into a black hole, and does not allow the radiative efficiency of accretion to become lower than about 1/4 of the standard accretion disk model efficiency.
Proof of cipher text ownership based on convergence encryption
NASA Astrophysics Data System (ADS)
Zhong, Weiwei; Liu, Zhusong
2017-08-01
Cloud storage systems save disk space and bandwidth through deduplication technology, but with the use of this technology has been targeted security attacks: the attacker can get the original file just use hash value to deceive the server to obtain the file ownership. In order to solve the above security problems and the different security requirements of cloud storage system files, an efficient information theory security proof of ownership scheme is proposed. This scheme protects the data through the convergence encryption method, and uses the improved block-level proof of ownership scheme, and can carry out block-level client deduplication to achieve efficient and secure cloud storage deduplication scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp
By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less
Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems
NASA Astrophysics Data System (ADS)
Qian, Qian; Fendt, Christian; Vourellis, Christos
2018-05-01
We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
NASA Astrophysics Data System (ADS)
Ginsburg, B. R.
The design and testing of a new twin-disk composite flywheel is described. It is the first flywheel to store 2 kW-hr of energy and the first to successfully combine the advantages of composite materials with metal hubs, thus providing a system-ready flywheel with high energy storage and high torque capabilities. The use of flywheels in space for energy storage in satellites and space stations is examined. The convertibility of the present flywheel to provide the next generation Annular Momentum Control Device or Annular Suspension and Pointing System is discussed.
Archive Storage Media Alternatives.
ERIC Educational Resources Information Center
Ranade, Sanjay
1990-01-01
Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…
Hybrid Hydro Renewable Energy Storage Model
NASA Astrophysics Data System (ADS)
Dey, Asit Kr
2018-01-01
This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.
A composite-flywheel burst-containment study
NASA Astrophysics Data System (ADS)
Sapowith, A. D.; Handy, W. E.
1982-01-01
A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.
Hybrid RAID With Dual Control Architecture for SSD Reliability
NASA Astrophysics Data System (ADS)
Chatterjee, Santanu
2010-10-01
The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.
Efficient proof of ownership for cloud storage systems
NASA Astrophysics Data System (ADS)
Zhong, Weiwei; Liu, Zhusong
2017-08-01
Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.
In-Storage Embedded Accelerator for Sparse Pattern Processing
2016-08-13
performance of RAM disk. Since this configuration offloads most of processing onto the FPGA, the host software consists of only two threads for...more. Fig. 13. Document Processed vs CPU Threads Note that BlueDBM efficiency comes from our in-store processing paradigm that uses the FPGA...In-Storage Embedded Accelerator for Sparse Pattern Processing Sang-Woo Jun*, Huy T. Nguyen#, Vijay Gadepally#*, and Arvind* #MIT Lincoln Laboratory
The raw disk i/o performance of compaq storage works RAID arrays under tru64 unix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uselton, A C
2000-10-19
We report on the raw disk i/o performance of a set of Compaq StorageWorks RAID arrays connected to our cluster of Compaq ES40 computers via Fibre Channel. The best cumulative peak sustained data rate is l17MB/s per node for reads and 77MB/s per node for writes. This value occurs for a configuration in which a node has two Fibre Channel interfaces to a switch, which in turn has two connections to each of two Compaq StorageWorks RAID arrays. Each RAID array has two HSG80 RAID controllers controlling (together) two 5+p RAID chains. A 10% more space efficient arrangement using amore » single 1l+p RAID chain in place of the two 5+P chains is 25% slower for reads and 40% slower for writes.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai
2017-10-01
Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.
Thin disk lasers: history and prospects
NASA Astrophysics Data System (ADS)
Speiser, Jochen
2016-04-01
During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.
Architecture and method for a burst buffer using flash technology
Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung
2016-03-15
A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.
Choy, D S; Altman, P A; Case, R B; Trokel, S L
1991-06-01
The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.
High-energy ultra-short pulse thin-disk lasers: new developments and applications
NASA Astrophysics Data System (ADS)
Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas
2016-03-01
We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.
Evaluation of the Huawei UDS cloud storage system for CERN specific data
NASA Astrophysics Data System (ADS)
Zotes Resines, M.; Heikkila, S. S.; Duellmann, D.; Adde, G.; Toebbicke, R.; Hughes, J.; Wang, L.
2014-06-01
Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.
GLIDES â Efficient Energy Storage from ORNL
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla
2018-06-25
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNLâs Laboratory Directorâs Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.
GLIDES – Efficient Energy Storage from ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale
2016-03-01
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less
NASA Technical Reports Server (NTRS)
Le, Diana; Cooper, David M. (Technical Monitor)
1994-01-01
Just imagine a mass storage system that consists of a machine with 2 CPUs, 1 Gigabyte (GB) of memory, 400 GB of disk space, 16800 cartridge tapes in the automated tape silos, 88,000 tapes located in the vault, and the software to manage the system. This system is designed to be a data repository; it will always have disk space to store all the incoming data. Currently 9.14 GB of new data per day enters the system with this rate doubling each year. To assure there is always disk space available for new data, the system. has to move data reside from the expensive disk to a much less expensive medium such as the 3480 cartridge tapes. Once the data is archived to tape, it should be able to move back to disk when someone wants to access it and the data movement should be transparent to the user. Now imagine all the tasks that a system administrator must perform to keep this system running 24 hour a day, 7 days a week. Since the filesystem maintains the illusion of unlimited disk space, data that comes to the system must get moved to tapes in an efficient manner. This paper will describe the mass storage system running at the Numerical Aerodynamic Simulation (NAS) at NASA Ames Research Center in both software and hardware aspects, then it will describe all of the tasks the system administrator has to perform on this system.
[Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].
Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian
2011-07-01
A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.
Accretion Discs Around Black Holes: Developement of Theory
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.
Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed ˜ 1/4 of the standard accretion disk model efficiency.
Optical Digital Disk Storage: An Application for News Libraries.
ERIC Educational Resources Information Center
Crowley, Mary Jo
1988-01-01
Describes the technology, equipment, and procedures necessary for converting a historical newspaper clipping collection to optical disk storage. Alternative storage systems--microforms, laser scanners, optical storage--are also retrieved, and the advantages and disadvantages of optical storage are considered. (MES)
Large temporal scale and capacity subsurface bulk energy storage with CO2
NASA Astrophysics Data System (ADS)
Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.
2017-12-01
Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.
Planning for optical disk technology with digital cartography.
Light, D.L.
1986-01-01
A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author
Disk space and load time requirements for eye movement biometric databases
NASA Astrophysics Data System (ADS)
Kasprowski, Pawel; Harezlak, Katarzyna
2016-06-01
Biometric identification is a very popular area of interest nowadays. Problems with the so-called physiological methods like fingerprints or iris recognition resulted in increased attention paid to methods measuring behavioral patterns. Eye movement based biometric (EMB) identification is one of the interesting behavioral methods and due to the intensive development of eye tracking devices it has become possible to define new methods for the eye movement signal processing. Such method should be supported by an efficient storage used to collect eye movement data and provide it for further analysis. The aim of the research was to check various setups enabling such a storage choice. There were various aspects taken into consideration, like disk space usage, time required for loading and saving whole data set or its chosen parts.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
Basics of Videodisc and Optical Disk Technology.
ERIC Educational Resources Information Center
Paris, Judith
1983-01-01
Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…
Mean PB To Failure - Initial results from a long-term study of disk storage patterns at the RACF
NASA Astrophysics Data System (ADS)
Caramarcu, C.; Hollowell, C.; Rao, T.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, S. A.
2015-12-01
The RACF (RHIC-ATLAS Computing Facility) has operated a large, multi-purpose dedicated computing facility since the mid-1990’s, serving a worldwide, geographically diverse scientific community that is a major contributor to various HEPN projects. A central component of the RACF is the Linux-based worker node cluster that is used for both computing and data storage purposes. It currently has nearly 50,000 computing cores and over 23 PB of storage capacity distributed over 12,000+ (non-SSD) disk drives. The majority of the 12,000+ disk drives provide a cost-effective solution for dCache/XRootD-managed storage, and a key concern is the reliability of this solution over the lifetime of the hardware, particularly as the number of disk drives and the storage capacity of individual drives grow. We report initial results of a long-term study to measure lifetime PB read/written to disk drives in the worker node cluster. We discuss the historical disk drive mortality rate, disk drive manufacturers' published MPTF (Mean PB to Failure) data and how they are correlated to our results. The results help the RACF understand the productivity and reliability of its storage solutions and have implications for other highly-available storage systems (NFS, GPFS, CVMFS, etc) with large I/O requirements.
Libraries and Desktop Storage Options: Results of a Web-Based Survey.
ERIC Educational Resources Information Center
Hendricks, Arthur; Wang, Jian
2002-01-01
Reports the results of a Web-based survey that investigated what plans, if any, librarians have for dealing with the expected obsolescence of the floppy disk and still retain effective library service. Highlights include data storage options, including compact disks, zip disks, and networked storage products; and a copy of the Web survey.…
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
Effective energy storage from a triboelectric nanogenerator.
Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin
2016-03-11
To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.
Effective energy storage from a triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin
2016-03-01
To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.
NASA Astrophysics Data System (ADS)
Bao, Dechun; Luo, Lichuan; Zhang, Zhaohua; Ren, Tianling
2017-09-01
Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 k {{Ω }} are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.
Effects of higher order aberrations on beam shape in an optical recording system
NASA Technical Reports Server (NTRS)
Wang, Mark S.; Milster, Tom D.
1992-01-01
An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.
Federated data storage and management infrastructure
NASA Astrophysics Data System (ADS)
Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.
2016-10-01
The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.
NASA Astrophysics Data System (ADS)
Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.
1999-11-01
The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.
LOD-based clustering techniques for efficient large-scale terrain storage and visualization
NASA Astrophysics Data System (ADS)
Bao, Xiaohong; Pajarola, Renato
2003-05-01
Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.
ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANDI, J.T.; PLIVELICH, R.F.
2006-04-30
Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.
NASA Astrophysics Data System (ADS)
Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.
2013-11-01
We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.
Design and evaluation of a hybrid storage system in HEP environment
NASA Astrophysics Data System (ADS)
Xu, Qi; Cheng, Yaodong; Chen, Gang
2017-10-01
Nowadays, the High Energy Physics experiments produce a large amount of data. These data are stored in mass storage systems which need to balance the cost, performance and manageability. In this paper, a hybrid storage system including SSDs (Solid-state Drive) and HDDs (Hard Disk Drive) is designed to accelerate data analysis and maintain a low cost. The performance of accessing files is a decisive factor for the HEP computing system. A new deployment model of Hybrid Storage System in High Energy Physics is proposed which is proved to have higher I/O performance. The detailed evaluation methods and the evaluations about SSD/HDD ratio, and the size of the logic block are also given. In all evaluations, sequential-read, sequential-write, random-read and random-write are all tested to get the comprehensive results. The results show the Hybrid Storage System has good performance in some fields such as accessing big files in HEP.
ERIC Educational Resources Information Center
Cerva, John R.; And Others
1986-01-01
Eight papers cover: optical storage technology; cross-cultural videodisc design; optical disk technology use at the Library of Congress Research Service and National Library of Medicine; Internal Revenue Service image storage and retrieval system; solving business problems with CD-ROM; a laser disk operating system; and an optical disk for…
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
Fast disk array for image storage
NASA Astrophysics Data System (ADS)
Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling
1997-01-01
A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.
PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.
Light, Donald L.
1984-01-01
Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.
Energy Efficient Digital Logic Using Nanoscale Magnetic Devices
NASA Astrophysics Data System (ADS)
Lambson, Brian James
Increasing demand for information processing in the last 50 years has been largely satisfied by the steadily declining price and improving performance of microelectronic devices. Much of this progress has been made by aggressively scaling the size of semiconductor transistors and metal interconnects that microprocessors are built from. As devices shrink to the size regime in which quantum effects pose significant challenges, new physics may be required in order to continue historical scaling trends. A variety of new devices and physics are currently under investigation throughout the scientific and engineering community to meet these challenges. One of the more drastic proposals on the table is to replace the electronic components of information processors with magnetic components. Magnetic components are already commonplace in computers for their information storage capability. Unlike most electronic devices, magnetic materials can store data in the absence of a power supply. Today's magnetic hard disk drives can routinely hold billions of bits of information and are in widespread commercial use. Their ability to function without a constant power source hints at an intrinsic energy efficiency. The question we investigate in this dissertation is whether or not this advantage can be extended from information storage to the notoriously energy intensive task of information processing. Several proof-of-concept magnetic logic devices were proposed and tested in the past decade. In this dissertation, we build on the prior work by answering fundamental questions about how magnetic devices achieve such high energy efficiency and how they can best function in digital logic applications. The results of this analysis are used to suggest and test improvements to nanomagnetic computing devices. Two of our results are seen as especially important to the field of nanomagnetic computing: (1) we show that it is possible to operate nanomagnetic computers at the fundamental thermodyanimic limits of computation and (2) we develop a nanomagnet with a unique shape that is engineered to significantly improve the reliability of nanomagnetic logic.
The impact of image storage organization on the effectiveness of PACS.
Hindel, R
1990-11-01
Picture archiving communication system (PACS) requires efficient handling of large amounts of data. Mass storage systems are cost effective but slow, while very fast systems, like frame buffers and parallel transfer disks, are expensive. The image traffic can be divided into inbound traffic generated by diagnostic modalities and outbound traffic into workstations. At the contact points with medical professionals, the responses must be fast. Archiving, on the other hand, can employ slower but less expensive storage systems, provided that the primary activities are not impeded. This article illustrates a segmentation architecture meeting these requirements based on a clearly defined PACS concept.
An efficient, modular and simple tape archiving solution for LHC Run-3
NASA Astrophysics Data System (ADS)
Murray, S.; Bahyl, V.; Cancio, G.; Cano, E.; Kotlyar, V.; Kruse, D. F.; Leduc, J.
2017-10-01
The IT Storage group at CERN develops the software responsible for archiving to tape the custodial copy of the physics data generated by the LHC experiments. Physics run 3 will start in 2021 and will introduce two major challenges for which the tape archive software must be evolved. Firstly the software will need to make more efficient use of tape drives in order to sustain the predicted data rate of 150 petabytes per year as opposed to the current 50 petabytes per year. Secondly the software will need to be seamlessly integrated with EOS, which has become the de facto disk storage system provided by the IT Storage group for physics data. The tape storage software for LHC physics run 3 is code named CTA (the CERN Tape Archive). This paper describes how CTA will introduce a pre-emptive drive scheduler to use tape drives more efficiently, will encapsulate all tape software into a single module that will sit behind one or more EOS systems, and will be simpler by dropping support for obsolete backwards compatibility.
Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gibson, Garth Alan
1990-01-01
During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
NASA Astrophysics Data System (ADS)
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.
Functionalization of graphene for efficient energy conversion and storage.
Dai, Liming
2013-01-15
As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.
NASA Astrophysics Data System (ADS)
Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.
2017-10-01
The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.
Optical Disk for Digital Storage and Retrieval Systems.
ERIC Educational Resources Information Center
Rose, Denis A.
1983-01-01
Availability of low-cost digital optical disks will revolutionize storage and retrieval systems over next decade. Three major factors will effect this change: availability of disks and controllers at low-cost and in plentiful supply; availability of low-cost and better output means for system users; and more flexible, less expensive communication…
Concentrating Solar Power Projects - Crescent Dunes Solar Energy Project |
: None Thermal Storage Storage Type: 2-tank direct Storage Capacity: 10 hours Thermal Storage Description : Thermal energy storage achieved by raising salt temperature from 550 to 1050 F. Thermal storage efficiency
NASA Astrophysics Data System (ADS)
Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo
2013-11-01
This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.
A high-speed, large-capacity, 'jukebox' optical disk system
NASA Technical Reports Server (NTRS)
Ammon, G. J.; Calabria, J. A.; Thomas, D. T.
1985-01-01
Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.
The performance of disk arrays in shared-memory database machines
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Hong, Wei
1993-01-01
In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.
Manufacturing and testing of a magnetically suspended composite flywheel energy storage system
NASA Technical Reports Server (NTRS)
Wells, Stephen; Pang, Da-Chen
1994-01-01
This paper presents the work performed to develop a multiring composite material flywheel and improvements of a magnetically suspended energy storage system. The flywheel is constructed of filament would graphite/epoxy and is interference assembled for better stress distribution to obtain higher speeds. The stationary stack in the center of the disk supports the flywheel with two magnetic bearings and provides power transfer to the flywheel with a motor/generator. The system operates under a 10(exp -4) torr environment and has been demonstrated to 20,000 rpm with a total stored energy of 15.9 Wh. When this flywheel cycles between its design speeds (45,000 to 90,000 rpm), it will deliver 242 Wh and have a usable specific energy density of 42.6 Wh/kg.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluating the effect of online data compression on the disk cache of a mass storage system
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Yesha, Yelena
1994-01-01
A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz
Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less
Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.
ERIC Educational Resources Information Center
Urrows, Henry; Urrows, Elizabeth
1988-01-01
Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)
NASA Astrophysics Data System (ADS)
Gao, Hong-Yue; Liu, Pan; Zeng, Chao; Yao, Qiu-Xiang; Zheng, Zhiqiang; Liu, Jicheng; Zheng, Huadong; Yu, Ying-Jie; Zeng, Zhen-Xiang; Sun, Tao
2016-09-01
We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474194, 11004037, and 61101176) and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1415500).
Disk storage management for LHCb based on Data Popularity estimator
NASA Astrophysics Data System (ADS)
Hushchyn, Mikhail; Charpentier, Philippe; Ustyuzhanin, Andrey
2015-12-01
This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data.
Recording and reading of information on optical disks
NASA Astrophysics Data System (ADS)
Bouwhuis, G.; Braat, J. J. M.
In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.
Electrospinning of Nanofibers for Energy Applications
Sun, Guiru; Sun, Liqun; Xie, Haiming; Liu, Jia
2016-01-01
With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage. PMID:28335256
Cost-effective data storage/archival subsystem for functional PACS
NASA Astrophysics Data System (ADS)
Chen, Y. P.; Kim, Yongmin
1993-09-01
Not the least of the requirements of a workable PACS is the ability to store and archive vast amounts of information. A medium-size hospital will generate between 1 and 2 TBytes of data annually on a fully functional PACS. A high-speed image transmission network coupled with a comparably high-speed central data storage unit can make local memory and magnetic disks in the PACS workstations less critical and, in an extreme case, unnecessary. Under these circumstances, the capacity and performance of the central data storage subsystem and database is critical in determining the response time at the workstations, thus significantly affecting clinical acceptability. The central data storage subsystem not only needs to provide sufficient capacity to store about ten days worth of images (five days worth of new studies, and on the average, about one comparison study for each new study), but also supplies images to the requesting workstation in a timely fashion. The database must provide fast retrieval responses upon users' requests for images. This paper analyzes both advantages and disadvantages of multiple parallel transfer disks versus RAID disks for short-term central data storage subsystem, as well as optical disk jukebox versus digital recorder tape subsystem for long-term archive. Furthermore, an example high-performance cost-effective storage subsystem which integrates both the RAID disks and high-speed digital tape subsystem as a cost-effective PACS data storage/archival unit are presented.
NASA Astrophysics Data System (ADS)
Wang, Andrew; Gyenge, Előd L.
2017-08-01
The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.
Saying goodbye to optical storage technology.
McLendon, Kelly; Babbitt, Cliff
2002-08-01
The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.
Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua
2015-11-21
Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.
Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.
Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song
2016-10-10
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.
1992-01-01
The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.
Software Engineering Principles 3-14 August 1981,
1981-08-01
small disk used (but rot that of the extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the...extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the disk was 1/10000 for access); and...programed and tested - must be correct and fast D. Choice of right synchronization operations: Design problem 1. Several mentioned in literature 9-22
NASA Technical Reports Server (NTRS)
Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.
1994-01-01
A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.
Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín
2016-11-15
It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms.
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Reaction wheels for kinetic energy storage
NASA Astrophysics Data System (ADS)
Studer, P. A.
1984-11-01
In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.
Reaction wheels for kinetic energy storage
NASA Technical Reports Server (NTRS)
Studer, P. A.
1984-01-01
In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.
Potential active materials for photo-supercapacitor: A review
NASA Astrophysics Data System (ADS)
Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.
2015-11-01
The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.
Design of a high temperature subsurface thermal energy storage system
NASA Astrophysics Data System (ADS)
Zheng, Qi
Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Energy Storage for the Power Grid
Imhoff, Carl; Vaishnav, Dave; Wang, Wei
2018-05-30
The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.
Research on the Orientation and Application of Distributed Energy Storage in Energy Internet
NASA Astrophysics Data System (ADS)
Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe
2018-01-01
Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org
2011-12-10
The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less
Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.
Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy
2006-11-16
The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.
Two-stage energy storage equalization system for lithium-ion battery pack
NASA Astrophysics Data System (ADS)
Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.
2017-11-01
How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.
Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong
2013-11-01
Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.« less
Research progress about chemical energy storage of solar energy
NASA Astrophysics Data System (ADS)
Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun
2018-01-01
In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.
Bar quenching in gas-rich galaxies
NASA Astrophysics Data System (ADS)
Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.
2018-01-01
Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.
Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale.
Groß, Axel
2018-04-23
There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on first-principles electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
A scalable and flexible hybrid energy storage system design and implementation
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Koh, Jason; Xie, Qing; Wang, Yanzhi; Chang, Naehyuck; Pedram, Massoud
2014-06-01
Energy storage systems (ESS) are becoming one of the most important components that noticeably change overall system performance in various applications, ranging from the power grid infrastructure to electric vehicles (EV) and portable electronics. However, a homogeneous ESS is subject to limited characteristics in terms of cost, efficiency, lifetime, etc., by the energy storage technology that comprises the ESS. On the other hand, hybrid ESS (HESS) are a viable solution for a practical ESS with currently available technologies as they have potential to overcome such limitations by exploiting only advantages of heterogeneous energy storage technologies while hiding their drawbacks. However, the HESS concept basically mandates sophisticated design and control to actually make the benefits happen. The HESS architecture should be able to provide controllability of many parts, which are often fixed in homogeneous ESS, and novel management policies should be able to utilize the control features. This paper introduces a complete design practice of a HESS prototype to demonstrate scalability, flexibility, and energy efficiency. It is composed of three heterogenous energy storage elements: lead-acid batteries, lithium-ion batteries, and supercapacitors. We demonstrate a novel system control methodology and enhanced energy efficiency through this design practice.
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.
Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi
2012-01-01
New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.
NASA Astrophysics Data System (ADS)
Bednarek, W.
2016-12-01
We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.
Development of Structural Energy Storage for Aeronautics Applications
NASA Technical Reports Server (NTRS)
Santiago-Dejesus, Diana; Loyselle, Patricia L.; Demattia, Brianne; Bednarcyk, Brett; Olson, Erik; Smith, Russell; Hare, David
2017-01-01
The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength.
Status of emerging standards for removable computer storage media and related contributions of NIST
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1992-01-01
Standards for removable computer storage media are needed so that users may reliably interchange data both within and among various computer installations. Furthermore, media interchange standards support competition in industry and prevent sole-source lock-in. NIST participates in magnetic tape and optical disk standards development through Technical Committees X3B5, Digital Magnetic Tapes, X3B11, Optical Digital Data Disk, and the Joint Technical Commission on Data Permanence. NIST also participates in other relevant national and international standards committees for removable computer storage media. Industry standards for digital magnetic tapes require the use of Standard Reference Materials (SRM's) developed and maintained by NIST. In addition, NIST has been studying care and handling procedures required for digital magnetic tapes. NIST has developed a methodology for determining the life expectancy of optical disks. NIST is developing care and handling procedures for optical digital data disks and is involved in a program to investigate error reporting capabilities of optical disk drives. This presentation reflects the status of emerging magnetic tape and optical disk standards, as well as NIST's contributions in support of these standards.
An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Kim, Stacy
2011-01-01
Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.
Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer
NASA Astrophysics Data System (ADS)
Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel
2017-04-01
Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.
ERIC Educational Resources Information Center
Gallenberger, John; Batterton, John
1989-01-01
Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…
Jefferson Lab Mass Storage and File Replication Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian Bird; Ying Chen; Bryan Hess
Jefferson Lab has implemented a scalable, distributed, high performance mass storage system - JASMine. The system is entirely implemented in Java, provides access to robotic tape storage and includes disk cache and stage manager components. The disk manager subsystem may be used independently to manage stand-alone disk pools. The system includes a scheduler to provide policy-based access to the storage systems. Security is provided by pluggable authentication modules and is implemented at the network socket level. The tape and disk cache systems have well defined interfaces in order to provide integration with grid-based services. The system is in production andmore » being used to archive 1 TB per day from the experiments, and currently moves over 2 TB per day total. This paper will describe the architecture of JASMine; discuss the rationale for building the system, and present a transparent 3rd party file replication service to move data to collaborating institutes using JASMine, XM L, and servlet technology interfacing to grid-based file transfer mechanisms.« less
Electron trapping data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.
ENERGY STAR Certified Data Center Storage
Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage
Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo
2018-01-10
The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.
Graphene Based Ultra-Capacitors for Safer, More Efficient Energy Storage
NASA Technical Reports Server (NTRS)
Roberson, Luke B.; Mackey, Paul J.; Zide, Carson J.
2016-01-01
Current power storage methods must be continuously improved in order to keep up with the increasingly competitive electronics industry. This technological advancement is also essential for the continuation of deep space exploration. Today's energy storage industry relies heavily on the use of dangerous and corrosive chemicals such as lithium and phosphoric acid. These chemicals can prove hazardous to the user if the device is ruptured. Similarly they can damage the environment if they are disposed of improperly. A safer, more efficient alternative is needed across a wide range of NASA missions. One solution would a solid-state carbon based energy storage device. Carbon is a safer, less environmentally hazardous alternative to current energy storage materials. Using the amorphous carbon nanostructure, graphene, this idea of a safer portable energy is possible. Graphene was electrochemically produced in the lab and several coin cell devices were built this summer to create a working prototype of a solid-state graphene battery.
He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.
He, Qing; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742
NASA Astrophysics Data System (ADS)
Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.
2011-06-01
The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up to a maximum value being permitted by the wireless temperature data transmission system. As we are controlling a significantly non-linear process the controller parameters need to be optimized for all temperatures relevant for the PCR thermocycling process. Such we get a dynamic system for both, the heating and the cooling process. Heating rates up to 5 K/s with our IR heater (100 W electrical power) could be achieved. Cooling rates of instantly 1.3 K/s at 20 Hz rotation frequency could be even further increased by higher rotation frequencies, faster air circulation, optimization of the controller parameters or an active air cooling unit.
Matt Rogers on AES Energy Storage
Rogers, Matt
2017-12-29
The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.
Matt Rogers on AES Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Matt
2010-08-02
The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.
Constraints on the Efficiency of Radial Migration in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2015-01-01
A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].
PIMS: Memristor-Based Processing-in-Memory-and-Storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeanine
Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less
A low-cost iron-cadmium redox flow battery for large-scale energy storage
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.
2016-10-01
The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.
Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics.
Sun, Zheng; Li, Lingxia; Yu, Shihui; Kang, Xinyu; Chen, Siliang
2017-10-24
Lead-free Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 (BSZT) ceramics were synthesized by a solid state reaction route. The microstructure, dielectric relaxor behavior and energy storage properties of BSZT ceramics were studied. The growth of grain size was suppressed with the increase of Sm addition and kept in the submicrometer scale. Successive substitution of Sm 3+ for Ba 2+ disrupted the long-range dipole and promoted the increase of polar nano-region (PNR) size, resulting in the enhanced degree of relaxor behavior. The increasing PNR size also lead to the slimmer hysteresis loops and improved the energy storage efficiency. Furthermore, high saturated polarization (P max ) and low remnant polarization (P r ) were obtained due to the formation of defect dipoles, which facilitated the switch of PNRs and contributed to the enhancement of energy storage density. The x = 0.003 sample was found to exhibit a higher energy storage density of 1.15 J cm -3 and an energy storage efficiency of 92%. The result revealed that the BSZT ceramics may be a good candidate for energy storage application.
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria
2017-01-01
Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. PMID:28644559
Compression molded energy storage flywheels
NASA Astrophysics Data System (ADS)
Burdick, P. A.
Materials choices, manufacturing processes, and benefits of flywheels as an effective energy storage device are discussed. Tests at the LL Laboratories have indicated that compressing molding of plies of structural sheet molding compound (SMC) filled with randomly oriented fibers produces a laminated disk with transversely isotropic properties. Good performance has been realized with a carbon/epoxy system, which displays satisfactory stiffness and strength in flywheel applications. A core profile has been selected, consisting of a uniform 1 in cross sectional thickness and a 21 in diam. Test configurations using three different resin paste formulations were compared after being mounted elastomerically on aluminum hubs. Further development was found necessary on accurate balancing and hub bonding. It was concluded that the SMC flywheels display the low-cost, sufficient energy densities, suitable dynamic stability characteristics, and acceptably benign failure modes for automotive applications.
NASA Astrophysics Data System (ADS)
Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech
2017-11-01
We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.
Ma, Z.; Mehos, M.; Glatzmaier, G.; ...
2015-05-01
Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less
NASA Astrophysics Data System (ADS)
Mo, Yibo
In situ X-ray absorption (XAS), surface enhanced Raman spectroscopy (SERS) and rotating ring disk electrode techniques have been employed for the characterization of materials of relevance to electrochemical energy storage and electrocatalysis. In particular, analysis of in situ Ir LIII-edge extended X-ray absorption fine structure (EXAFS) of IrO2 films electrodeposited on Au substrates yielded Ir-O bond lengths decreasing in the sequence 2.02, 1.97 and 1.93 A, for Ir3+, Ir4+ and Ir5+ sites, respectively. Although features consistent with the presence of crystalline IrO2 in the highly hydrated films were found from in situ SERS, the lack of intense shells in the FT of the EXAFS function beyond the nearest oxygen neighbors indicates that the films by and large do not display long range order. In similar studies, the Fourier transform of the k3-weighted Ru K-edge EXAFS of electrodeposited RuO2 films recorded in situ were characterized by two shells attributed to Ru-O and Ru-Ru interactions at 1.94(1) and 3.12(2) A, in agreement with results obtained ex situ for Ru4+ in hydrous RuO2, whereas films in the reduced state yielded a single Ru-O interaction shell at 2.02(1) A. Extensions of these in situ XAS to the study of electrocatalysts for the nitrite reduction made it possible to identify and characterize the electronic and structural properties of a nitrosyl iron porphyrin adduct adsorbed on an electrode surface via the analysis of Fe K-edge XAS data. The effects of Se and S ad-atoms on the electrocatalytic activity of Pt electrodes have been examined using RRDE techniques. In acid, within a rather narrow range of coverages, both S- and Se-modified Pt surfaces promote the 2-electron reduction of dioxygen to hydrogen peroxide at ca. 100% faradaic efficiency over a wide potential region. Also developed were methods for immobilizing unsupported dispersed high area Pt particles a glassy carbon (GC) disk of a rotating Pt(ring)/GC(disk) electrode assembly allowing electrochemical measurements to be performed under forced convection with only minimal losses of Pt from the surface.
A Simulation Model Of A Picture Archival And Communication System
NASA Astrophysics Data System (ADS)
D'Silva, Vijay; Perros, Harry; Stockbridge, Chris
1988-06-01
A PACS architecture was simulated to quantify its performance. The model consisted of reading stations, acquisition nodes, communication links, a database management system, and a storage system consisting of magnetic and optical disks. Two levels of storage were simulated, a high-speed magnetic disk system for short term storage, and optical disk jukeboxes for long term storage. The communications link was a single bus via which image data were requested and delivered. Real input data to the simulation model were obtained from surveys of radiology procedures (Bowman Gray School of Medicine). From these the following inputs were calculated: - the size of short term storage necessary - the amount of long term storage required - the frequency of access of each store, and - the distribution of the number of films requested per diagnosis. The performance measures obtained were - the mean retrieval time for an image, - mean queue lengths, and - the utilization of each device. Parametric analysis was done for - the bus speed, - the packet size for the communications link, - the record size on the magnetic disk, - compression ratio, - influx of new images, - DBMS time, and - diagnosis think times. Plots give the optimum values for those values of input speed and device performance which are sufficient to achieve subsecond image retrieval times
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Astrophysics Data System (ADS)
Dreißigacker, Volker
2018-04-01
The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.
Efficient numerical simulation of heat storage in subsurface georeservoirs
NASA Astrophysics Data System (ADS)
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and the cycle time. The temperature distribution is most sensitive to thermal conductivity of both borehole grouting and storage formation while storage efficiency is mainly controlled by the thermal conductivity of the storage formation.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun
2014-12-24
The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...
2014-12-24
The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less
Attaching IBM-compatible 3380 disks to Cray X-MP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engert, D.E.; Midlock, J.L.
1989-01-01
A method of attaching IBM-compatible 3380 disks directly to a Cray X-MP via the XIOP with a BMC is described. The IBM 3380 disks appear to the UNICOS operating system as DD-29 disks with UNICOS file systems. IBM 3380 disks provide cheap, reliable large capacity disk storage. Combined with a small number of high-speed Cray disks, the IBM disks provide for the bulk of the storage for small files and infrequently used files. Cray Research designed the BMC and its supporting software in the XIOP to allow IBM tapes and other devices to be attached to the X-MP. No hardwaremore » changes were necessary, and we added less than 2000 lines of code to the XIOP to accomplish this project. This system has been in operation for over eight months. Future enhancements such as the use of a cache controller and attachment to a Y-MP are also described. 1 tab.« less
Integration of Decentralized Thermal Storages Within District Heating (DH) Networks
NASA Astrophysics Data System (ADS)
Schuchardt, Georg K.
2016-12-01
Thermal Storages and Thermal Accumulators are an important component within District Heating (DH) systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized) and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.
Modeling and optimization of a concentrated solar supercritical CO2 power plant
NASA Astrophysics Data System (ADS)
Osorio, Julian D.
Renewable energy sources are fundamental alternatives to supply the rising energy demand in the world and to reduce or replace fossil fuel technologies. In order to make renewable-based technologies suitable for commercial and industrial applications, two main challenges need to be solved: the design and manufacture of highly efficient devices and reliable systems to operate under intermittent energy supply conditions. In particular, power generation technologies based on solar energy are one of the most promising alternatives to supply the world energy demand and reduce the dependence on fossil fuel technologies. In this dissertation, the dynamic behavior of a Concentrated Solar Power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. The effects of operating and design parameters on the system performance are analyzed. Some of these parameters are the mass flow rate, intermediate pressures, number of compression-expansion stages, heat exchangers' effectiveness, multi-tank thermal energy storage, overall heat transfer coefficient between the solar receiver and the environment and the effective area of the recuperator. Energy and exergy models for each component of the system are developed to optimize operating parameters in order to lead to maximum efficiency. From the exergy analysis, the components with high contribution to exergy destruction were identified. These components, which represent an important potential of improvement, are the recuperator, the hot thermal energy storage tank and the solar receiver. Two complementary alternatives to improve the efficiency of concentrated solar thermal systems are proposed in this dissertation: the optimization of the system's operating parameters and optimization of less efficient components. The parametric optimization is developed for a 1MW reference CSP system with CO2 as the working fluid. The component optimization, focused on the less efficient components, comprises some design modifications to the traditional component configuration for the recuperator, the hot thermal energy storage tank and the solar receiver. The proposed optimization alternatives include the heat exchanger's effectiveness enhancement by optimizing fins shapes, multi-tank thermal energy storage configurations for the hot thermal energy storage tank and the incorporation of a transparent insulation material into the solar receiver. Some of the optimizations are conducted in a generalized way, using dimensionless models to be applicable no only to the CSP but also to other thermal systems. This project is therefore an effort to improve the efficiency of power generation systems based on solar energy in order to make them competitive with conventional fossil fuel power generation devices. The results show that the parametric optimization leads the system to an efficiency of about 21% and a maximum power output close to 1.5 MW. The process efficiencies obtained in this work, of more than 21%, are relatively good for a solar-thermal conversion system and are also comparable with efficiencies of conversion of high performance PV panels. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines' and compressors' inlets. Additional improvements in the overall system efficiency are possible by optimizing the less efficient components. In particular, the fin's effectiveness can be improved in more than 5% after its shape is optimized, increments in the efficiency of the thermal energy storage of about 5.7% are possible when the mass is divided into four tanks, and solar receiver efficiencies up to 70% can be maintained for high operating temperatures (~ 1200°C) when a transparent insulation material is incorporated to the receiver. The results obtained in this dissertation indicate that concentrated solar systems using supercritical CO2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.
NASA Astrophysics Data System (ADS)
Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan
2017-12-01
Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.
Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio
2018-03-01
The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang
2017-05-01
After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.
Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauche, C W; Liedahl, D A; Mathiesen, B F
By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux ofmore » the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.« less
NASA Technical Reports Server (NTRS)
Studer, P. A.; Evans, H. E. (Inventor)
1978-01-01
A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.
A Layered Solution for Supercomputing Storage
Grider, Gary
2018-06-13
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storageâbased on inexpensive, failure-prone disk drivesâbetween disk drives and tape archives.
Can accretion disk properties observationally distinguish black holes from naked singularities?
NASA Astrophysics Data System (ADS)
Kovács, Z.; Harko, T.
2010-12-01
Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.
Method and apparatus for bistable optical information storage for erasable optical disks
Land, Cecil E.; McKinney, Ira D.
1990-01-01
A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.
Method and apparatus for bistable optical information storage for erasable optical disks
Land, C.E.; McKinney, I.D.
1988-05-31
A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in a lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, M.; Uematsu, S.; Abe, J., E-mail: yokosawa@mx.ibaraki.ac.j
The standard massive accretion disk with Keplerian angular momentum (standard accretion disk) producing gamma-ray bursts (GRBs) is investigated on the bases of the microphysics of neutrinos and general relativity. Since the accretion disk gradually heated by viscosity is efficiently cooled by antielectron neutrinos, the accreting flow maintains a relatively low temperature, T {approx} 3 x 10{sup 10} K, over a long range of accreting radius that produces very high dense matter around a rotating black hole, {rho} {>=} 10{sup 13} g cm{sup -3}. Thus, the massively accreting matter is in the domain of heavy nuclei all over the accreting flowmore » onto a central black hole where the fraction of evaporated free neutrons is large, Y{sub n} {approx} 0.8, and that of protons is infinitesimal, Y{sub p} {approx} 10{sup -4}. The electron neutrinos in the disk are almost absorbed by rich neutrons while the antielectron neutrinos are little absorbed by rarefied protons. The mean energy of antielectron neutrinos ejected from the disk is extraordinarily high, because the antielectron neutrinos are degenerated in the high dense disk. The huge antielectron neutrinos with high mean energy and large luminosity, are ejected from the massive accretion disk. The antielectron neutrinos are possibly the sources of the relativistic jets producing GRBs.« less
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
Rapid charging of thermal energy storage materials through plasmonic heating.
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-09-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.
Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-01-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717
Economics of internal and external energy storage in solar power plant operation
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1977-01-01
A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.
Disk Memories: What You Should Know before You Buy Them.
ERIC Educational Resources Information Center
Bursky, Dave
1981-01-01
Explains the basic features of floppy disk and hard disk computer storage systems and the purchasing decisions which must be made, particularly in relation to certain popular microcomputers. A disk vendors directory is included. Journal availability: Hayden Publishing Company, 50 Essex Street, Rochelle Park, NJ 07662. (SJL)
A novel iron-lead redox flow battery for large-scale energy storage
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.
2017-04-01
The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper
2017-08-10
Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Storage and Disposal of Toxic and Hazardous... Secretary of Energy; (6) The storage of materials that constitute military resources intended to be used...
Laser beam modeling in optical storage systems
NASA Technical Reports Server (NTRS)
Treptau, J. P.; Milster, T. D.; Flagello, D. G.
1991-01-01
A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.
NASA Astrophysics Data System (ADS)
Bainbridge, Ross C.
1984-09-01
The Institute for Computer Sciences and Technology at the National Bureau of Standards is pleased to cooperate with the International Society for Optical Engineering and to join with the other distinguished organizations in cosponsoring this conference on applications of optical digital data disk storage systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... DEPARTMENT OF ENERGY Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Systems Integration group of...
Some Aspects of PDC Electrolysis
NASA Astrophysics Data System (ADS)
Poláčik, Ján; Pospíšil, Jiří
2016-10-01
In this paper, aspects of pulsed direct current (PDC) water splitting are described. Electrolysis is a simple and well-known method to produce hydrogen. The efficiency is relatively low in normal conditions using conventional DC. PDC in electrolysis brings about many advantages. It increases efficiency of hydrogen production, and performance of the electrolyser may be smoothly controlled without compromising efficiency of the process. In our approach, ultra-short pulses are applied. This method enhances efficiency of electrical energy in the process of decomposition of water into hydrogen and oxygen. Efficiency depends on frequency, shape and width of the electrical pulses. Experiments proved that efficiency was increased by 2 to 8 per cent. One of the prospects of PDC electrolysis producing hydrogen is in increase of efficiency of energy storage efficiency in the hydrogen. There are strong efforts to make the electrical grid more efficient and balanced in terms of production by installing electricity storage units. Using hydrogen as a fuel decreases air pollution and amount of carbon dioxide emissions in the air. In addition to energy storage, hydrogen is also important in transportation and chemical industry.
Advanced materials for energy storage.
Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming
2010-02-23
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
Electrochemical Energy Storage for an Orbiting Space Station
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.
Entropy, pumped-storage and energy system finance
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios
2015-04-01
Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk
We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less
Bioinspired fractal electrodes for solar energy storages.
Thekkekara, Litty V; Gu, Min
2017-03-31
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3 Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1 Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Bioinspired fractal electrodes for solar energy storages
Thekkekara, Litty V.; Gu, Min
2017-01-01
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
Incorporating Oracle on-line space management with long-term archival technology
NASA Technical Reports Server (NTRS)
Moran, Steven M.; Zak, Victor J.
1996-01-01
The storage requirements of today's organizations are exploding. As computers continue to escalate in processing power, applications grow in complexity and data files grow in size and in number. As a result, organizations are forced to procure more and more megabytes of storage space. This paper focuses on how to expand the storage capacity of a Very Large Database (VLDB) cost-effectively within a Oracle7 data warehouse system by integrating long term archival storage sub-systems with traditional magnetic media. The Oracle architecture described in this paper was based on an actual proof of concept for a customer looking to store archived data on optical disks yet still have access to this data without user intervention. The customer had a requirement to maintain 10 years worth of data on-line. Data less than a year old still had the potential to be updated thus will reside on conventional magnetic disks. Data older than a year will be considered archived and will be placed on optical disks. The ability to archive data to optical disk and still have access to that data provides the system a means to retain large amounts of data that is readily accessible yet significantly reduces the cost of total system storage. Therefore, the cost benefits of archival storage devices can be incorporated into the Oracle storage medium and I/O subsystem without loosing any of the functionality of transaction processing, yet at the same time providing an organization access to all their data.
Telemetry data storage systems technology for the Space Station Freedom era
NASA Technical Reports Server (NTRS)
Dalton, John T.
1989-01-01
This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.
Implementing Journaling in a Linux Shared Disk File System
NASA Technical Reports Server (NTRS)
Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew;
2000-01-01
In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.
2017-12-01
We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.
Short-term storage allocation in a filmless hospital
NASA Astrophysics Data System (ADS)
Strickland, Nicola H.; Deshaies, Marc J.; Reynolds, R. Anthony; Turner, Jonathan E.; Allison, David J.
1997-05-01
Optimizing limited short term storage (STS) resources requires gradual, systematic changes, monitored and modified within an operational PACS environment. Optimization of the centralized storage requires a balance of exam numbers and types in STS to minimize lengthy retrievals from long term archive. Changes to STS parameters and work procedures were made while monitoring the effects on resource allocation by analyzing disk space temporally. Proportions of disk space allocated to each patient category on STS were measured to approach the desired proportions in a controlled manner. Key factors for STS management were: (1) sophisticated exam prefetching algorithms: HIS/RIS-triggered, body part-related and historically-selected, and (2) a 'storage onion' design allocating various exam categories to layers with differential deletion protection. Hospitals planning for STS space should consider the needs of radiology, wards, outpatient clinics and clinicoradiological conferences for new and historical exams; desired on-line time; and potential increase in image throughput and changing resources, such as an increase in short term storage disk space.
Integrating new Storage Technologies into EOS
NASA Astrophysics Data System (ADS)
Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul
2015-12-01
The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.
Distributed Coordination of Energy Storage with Distributed Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Stoorvogel, Antonie A.
2016-07-18
With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal coordination problem considering constraints at both system and device levels, including power balance constraint, generator output limits, storage energy and power capacity and charging/discharging efficiencies. An algorithm is then proposed to dynamically and automatically coordinate DERs in a distributed manner. With the proposed algorithm, the agent at each DER only maintains a local incremental cost and updates it through information exchange with a fewmore » neighbors, without relying on any central decision maker. Simulation results are used to illustrate and validate the proposed algorithm.« less
Metallic phase change material thermal storage for Dish Stirling
Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; ...
2015-06-05
Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less
Overview of a flywheel stack energy storage system
NASA Technical Reports Server (NTRS)
Kirk, James A.; Anand, Davinder K.
1988-01-01
The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.
ERIC Educational Resources Information Center
Gale, John C.; And Others
1985-01-01
This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…
Inertial energy storage for advanced space station applications
NASA Technical Reports Server (NTRS)
Van Tassel, K. E.; Simon, W. E.
1985-01-01
Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.
Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway
NASA Astrophysics Data System (ADS)
Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.
High-energy redox-flow batteries with hybrid metal foam electrodes.
Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun
2014-07-09
A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.
Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2017-07-12
Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.
A two-stage heating scheme for heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David
2014-05-01
Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.
Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage
2011-11-30
mV[19]. In 2008, Katagiri et al ’ obtained an efficiency of 6.7% by Physical vapor methods[20]. In 2010, Mitzi et al reported an efficiency of 9.6...Films 517 (2009) 2455. [21] T.K. Todorov, K.B. Reuter, D.B. Mitzi , Adv Mater 22 (2010) El 56. 3. Energy Storage: Ultracapacitors - Professor Rastogi
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
An Effective Cache Algorithm for Heterogeneous Storage Systems
Li, Yong; Feng, Dan
2013-01-01
Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890
NASA Astrophysics Data System (ADS)
Albrecht, Kevin J.
Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the results indicate that degrees of reduction corresponding to only oxygen partial pressures of 10-2 bar are attained. Numerical investigation into perovskite thermochemical energy storage indicates that achieving high levels of reduction through sweep gas or vacuum pumping to lower gas phase oxygen partial pressure below 10-2 bar display issues with parasitic energy consumption and gas phase management. Therefore, focus on material development should place a premium on thermal reduction and reduction by shifting oxygen partial pressure between ambient and 10-2 bar. Such a material would enable the development of a system with high solar-to-electric efficiencies and degrees of reduction which are attainable in realistic component geometries.
High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application
NASA Astrophysics Data System (ADS)
Chao, Mingming; Liu, Jingsong; Zeng, Mengshi; Wang, Debin; Yu, Hongtao; Yuan, Ying; Zhang, Shuren
2018-05-01
We report herein on the energy storage and discharge properties of the relaxor ferroelectric ceramic Sr0.8Pb0.1Bi0.1TiO3 (SPBT). This material has a slanted hysteresis loop, and all samples show low remnant polarization and low coercive field, which leads to a high discharge efficiency. The maximum polarization is 10.1 μC/cm2, the minimum coercive field is 0.229 kV/cm, and the maximum efficiency is 94.2%. The discharge current waveforms are sinusoidal, the first discharge period is 140 ns, and the power density is approximately 4.2 × 107 W/kg. The high discharge speed and high discharge power density indicate that SPBT ceramics are very promising materials for energy storage applications.
Novel bamboo structured TiO2 nanotubes for energy storage/production applications
NASA Astrophysics Data System (ADS)
Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.
2018-04-01
Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...
2018-01-11
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
Field testing of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Allen, R. D.
1984-03-01
Results of field and laboratory studies of aquifer thermal energy storage (ATES) indicate both the problems and promise of the concept. Geohydrothermal modeling and field testing demonstrated the ability to recover substantial quantities of aquifer stored energy. However, the local hydrologic conditions play an important role in determining the recovery temperature and storage efficiency. Geochemistry is also an important factor, particularly for higher temperature ATES systems.
The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis)
Hayashi, Marika; Feilich, Kara L.; Ellerby, David J.
2009-01-01
Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg−1) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2±0.4 ms (mean ±SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51±0.26%, mean ±SEM, n=13). The mean seed launch angle (17.4±5.2, mean ±SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms. PMID:19321647
The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis).
Hayashi, Marika; Feilich, Kara L; Ellerby, David J
2009-01-01
Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg(-1)) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2+/-0.4 ms (mean +/-SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51+/-0.26%, mean +/-SEM, n=13). The mean seed launch angle (17.4+/-5.2, mean +/-SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-07-21
Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Efficiency and Low Cost Thermal Energy Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton
BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Comparedmore » to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less
NASA Astrophysics Data System (ADS)
Olszewski, M.; Steele, R. S.
1983-02-01
Electric utility side meter storage options were assessed for the daily 2 h peaking spike application. The storage options considered included compressed air, batteries, and flywheels. The potential role for flywheels in this application was assessed and research and development (R and D) priorities were established for fixed base flywheel systems. Results of the worth cost analysis indicate that where geologic conditions are favorable, compressed air energy storage (CAES) is a strong competitor against combustion turbines. Existing battery and flywheel systems rated about equal, both being, at best, marginally uncompetitive with turbines. Advanced batteries, if existing cost and performance goals are met, could be competitive with CAES. A three task R and D effort for flywheel development appears warranted. The first task, directed at reducing fabrication coss and increasing performance of a chopped fiber, F-glass, solid disk concept, could produce a competitive flywheel system.
Technical advantages of disk laser technology in short and ultrashort pulse processes
NASA Astrophysics Data System (ADS)
Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.
2011-03-01
This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
An Improved B+ Tree for Flash File Systems
NASA Astrophysics Data System (ADS)
Havasi, Ferenc
Nowadays mobile devices such as mobile phones, mp3 players and PDAs are becoming evermore common. Most of them use flash chips as storage. To store data efficiently on flash, it is necessary to adapt ordinary file systems because they are designed for use on hard disks. Most of the file systems use some kind of search tree to store index information, which is very important from a performance aspect. Here we improved the B+ search tree algorithm so as to make flash devices more efficient. Our implementation of this solution saves 98%-99% of the flash operations, and is now the part of the Linux kernel.
Attention Novices: Friendly Intro to Shiny Disks.
ERIC Educational Resources Information Center
Bardes, D'Ellen
1986-01-01
Provides an overview of how optical storage technologies--videodisk, Write-Once disks, and CD-ROM CD-I disks are built into and controlled via DEC, Apple, Atari, Amiga, and IBM PC compatible microcomputers. Several available products are noted and a list of producers is included. (EM)
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells
NASA Astrophysics Data System (ADS)
Pilar, Kartik
Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX
NASA Astrophysics Data System (ADS)
Hospodor, Andy
For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.
d'Entremont, A.; Corgnale, C.; Sulic, M.; ...
2017-08-31
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, A.; Corgnale, C.; Sulic, M.
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen
2015-01-01
In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier’s law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs’ thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity. PMID:26443206
Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen
2015-10-07
In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier's law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs' thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity.
Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao
2018-06-11
Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki
Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
A media maniac's guide to removable mass storage media
NASA Technical Reports Server (NTRS)
Kempster, Linda S.
1996-01-01
This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced.
Laser Optical Disk: The Coming Revolution in On-Line Storage.
ERIC Educational Resources Information Center
Fujitani, Larry
1984-01-01
Review of similarities and differences between magnetic-based and optical disk drives includes a discussion of the electronics necessary for their operation; describes benefits, possible applications, and future trends in development of laser-based drives; and lists manufacturers of laser optical disk drives. (MBR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrhart, Brian David; Gill, David Dennis
The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is amore » fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.« less
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy
NASA Astrophysics Data System (ADS)
Branz, Howard M.
2015-04-01
Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.
Energy storage arbitrage under day-ahead and real-time price uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, Dheepak; Uckun, Canan; Zhou, Zhi
Electricity markets must match real-time supply and demand of electricity. With increasing penetration of renewable resources, it is important that this balancing is done effectively, considering the high uncertainty of wind and solar energy. Storing electrical energy can make the grid more reliable and efficient and energy storage is proposed as a complement to highly variable renewable energy sources. However, for investments in energy storage to increase, participating in the market must become economically viable for owners. This paper proposes a stochastic formulation of a storage owner’s arbitrage profit maximization problem under uncertainty in day-ahead (DA) and real-time (RT) marketmore » prices. The proposed model helps storage owners in market bidding and operational decisions and in estimation of the economic viability of energy storage. Finally, case study results on realistic market price data show that the novel stochastic bidding approach does significantly better than the deterministic benchmark.« less
Energy storage arbitrage under day-ahead and real-time price uncertainty
Krishnamurthy, Dheepak; Uckun, Canan; Zhou, Zhi; ...
2017-04-04
Electricity markets must match real-time supply and demand of electricity. With increasing penetration of renewable resources, it is important that this balancing is done effectively, considering the high uncertainty of wind and solar energy. Storing electrical energy can make the grid more reliable and efficient and energy storage is proposed as a complement to highly variable renewable energy sources. However, for investments in energy storage to increase, participating in the market must become economically viable for owners. This paper proposes a stochastic formulation of a storage owner’s arbitrage profit maximization problem under uncertainty in day-ahead (DA) and real-time (RT) marketmore » prices. The proposed model helps storage owners in market bidding and operational decisions and in estimation of the economic viability of energy storage. Finally, case study results on realistic market price data show that the novel stochastic bidding approach does significantly better than the deterministic benchmark.« less
Motivation and Design of the Sirocco Storage System Version 1.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Matthew Leon; Ward, H. Lee; Danielson, Geoffrey Charles
Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updatesmore » within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .« less
Design Considerations of a Solid State Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz
2016-11-01
With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).
Storage-ring Electron Cooler for Relativistic Ion Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less
Striped tertiary storage arrays
NASA Technical Reports Server (NTRS)
Drapeau, Ann L.
1993-01-01
Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.
NASA Astrophysics Data System (ADS)
Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.
2015-02-01
The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.
Searching for debris disks around seven radio pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhongxiang; Wang, Xuebing; Ng, C.-Y.
2014-10-01
We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources that were carefully selected as targets on the basis of our deep K{sub s} -band imaging survey. The K{sub s} images obtained with the 6.5 m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the Spitzer/IRAC images at 4.5 and 8.0 μm and the WISE images at 3.4, 4.6, 12, and 22 μm. No infrared counterparts of these pulsars are found, with flux upper limits of ∼μJy at near-infrared (λ < 10 μm) and ∼10-1000 μJy at mid-infrared wavelengthsmore » (λ > 10 μm). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with a comparison made of the two magnetars 4U 0142+61 and 1E 2259+586, which are suggested to harbor a debris disk.« less
SeqCompress: an algorithm for biological sequence compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan
2014-10-01
The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
SIMWEST - A simulation model for wind energy storage systems
NASA Technical Reports Server (NTRS)
Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.
1978-01-01
This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.
Advanced optical disk storage technology
NASA Technical Reports Server (NTRS)
Haritatos, Fred N.
1996-01-01
There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.
Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2011-03-01
An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.
Miller, Bo E; Takashima, Yuzuru
2016-12-26
Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.
Hiramatsu, Reiji; Matsumoto, Masakado; Sakae, Kenji; Miyazaki, Yutaka
2005-01-01
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35°C for 24 h in paper disks. At an inoculum level of 107 CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 103 to 104 CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 102 CFU/disk). After 22 to 24 months of subsequent storage at 4°C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (103 to 104 CFU/disk). In contrast to the case for storage at 4°C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25°C and 35°C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70°C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25°C. PMID:16269694
NASA Technical Reports Server (NTRS)
Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)
1991-01-01
The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui
2014-02-15
To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... reasonably designed to produce test results which measure energy efficiency, energy use * * * or estimated... with at least one of the compartments designed for the refrigerated storage of food and designed to be... with at least one of the compartments designed for the freezing and storage of food at temperatures...
Identification of transitional disks in Chamaeleon with Herschel
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Bouy, H.; Alves de Oliveira, C.; Ardila, D. R.; Puga, E.; Kóspál, Á.; Spezzi, L.; Cox, N. L. J.; Prusti, T.; Pilbratt, G. L.; André, Ph.; Matrà, L.; Vavrek, R.
2013-04-01
Context. Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. Aims: The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. Methods: We propose a new method for transitional disk classification based on the WISE 12 μm - PACS 70 μm color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. Results: The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find six transitional disks, all previously known, and identify five objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. Conclusions: We show the Herschel 70 μm band to be a robust and efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be either a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
What is Driving the H I Velocity Dispersion?
NASA Astrophysics Data System (ADS)
Tamburro, D.; Rix, H.-W.; Leroy, A. K.; Mac Low, M.-M.; Walter, F.; Kennicutt, R. C.; Brinks, E.; de Blok, W. J. G.
2009-05-01
We explore what dominant physical mechanism sets the kinetic energy contained in neutral, atomic (H I) gas. Both supernova (SN) explosions and magnetorotational instability (MRI) have been proposed to drive turbulence in gas disks and we compare the H I line widths predicted from turbulence driven by these mechanisms to direct observations in 11 disk galaxies. We use high-quality maps of the H I mass surface density and line width, obtained by The H I Nearby Galaxy Survey. We show that all sample galaxies exhibit a systematic radial decline in the H I line width, which appears to be a generic property of H I disks and also implies a radial decline in kinetic energy density of H I. At a galactocentric radius of r 25—often comparable to the extent of significant star formation—there is a characteristic value of the H I velocity dispersion of 10 ± 2 km s-1. Inside this radius, galaxies show H I line widths well above the thermal value (corresponding to ~8 km s-1) expected from a warm H I component, implying that turbulence drivers must be responsible for maintaining this line width. Therefore, we compare maps of H I kinetic energy to maps of the star formation rate (SFR)—a proxy for the SN rate—and to predictions for energy generated by MRI. We find a positive correlation between kinetic energy of H I and SFR; this correlation also holds at fixed Σ_{H I}, as expected if SNe were driving turbulence. For a given turbulence dissipation timescale, we can estimate the energy input required to maintain the observed kinetic energy. The SN rate implied by the observed recent SFR is sufficient to maintain the observed velocity dispersion, if the SN feedback efficiency is at least epsilonSN sime 0.1 × (107 yr/τ D ), assuming τ D sime 107 yr for the turbulence dissipation timescale. Beyond r 25, this efficiency would have to increase to unrealistic values, epsilon gsim 1, suggesting that mechanical energy input from young stellar populations does not supply most kinetic energy in outer disks. On the other hand, both thermal broadening and turbulence driven by MRI can plausibly produce the velocity dispersions and kinetic energies that we observe in this regime (gsimr 25).
Full wave dc-to-dc converter using energy storage transformers
NASA Technical Reports Server (NTRS)
Moore, E. T.; Wilson, T. G.
1969-01-01
Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.
Efficient Energy-Storage Concept
NASA Technical Reports Server (NTRS)
Brantley, L. W. J.; Rupp, C.
1982-01-01
Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.
Status of international optical disk standards
NASA Astrophysics Data System (ADS)
Chen, Di; Neumann, John
1999-11-01
Optical technology for data storage offers media removability with unsurpassed reliability. As the media are removable, data interchange between the media and drives from different sources is a major concern. The optical recording community realized, at the inception of this new storage technology development, that international standards for all optical recording disk/cartridge must be established to insure the healthy growth of this industry and for the benefit of the users. Many standards organizations took up the challenge and numerous international standards were established which are now being used world-wide. This paper provides a brief summary of the current status of the international optical disk standards.
Magnetic Recording Media Technology for the Tb/in2 Era"
Bertero, Gerardo [Western Digital
2017-12-09
Magnetic recording has been the technology of choice of massive storage of information. The hard-disk drive industry has recently undergone a major technological transition from longitudinal magnetic recording (LMR) to perpendicular magnetic recording (PMR). However, convention perpendicular recording can only support a few new product generations before facing insurmountable physical limits. In order to support sustained recording areal density growth, new technological paradigms, such as energy-assisted recording and bit-patterined media recording are being contemplated and planned. In this talk, we will briefly discuss the LMR-to-PMR transition, the extendibility of current PMR recording, and the nature and merits of new enabling technologies. We will also discuss a technology roadmap toward recording densities approaching 10 Tv/in2, approximately 40 times higher than in current disk drives.
Thermal energy storage. [by means of chemical reactions
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1975-01-01
The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.
Rawson, Ashish; Koidis, Anastasios; Rai, Dilip K; Tuohy, Maria; Brunton, Nigel
2010-07-14
The effect of blanching (95 +/- 3 degrees C) followed by sous vide (SV) processing (90 degrees C for 10 min) on levels of two polyacetylenes in parsnip disks immediately after processing and during chill storage was studied and compared with the effect of water immersion (WI) processing (70 degrees C for 2 min.). Blanching had the greatest influence on the retention of polyacetylenes in sous vide processed parsnip disks resulting in significant decreases of 24.5 and 24% of falcarinol (1) and falcarindiol (2) respectively (p < 0.05). Subsequent SV processing did not result in additional significant losses in polyacetylenes compared to blanched samples. Subsequent anaerobic storage of SV processed samples resulted in a significant decrease in 1 levels (p < 0.05) although no change in 2 levels was observed (p > 0.05). 1 levels in WI processed samples were significantly higher than in SV samples (p
NASA Astrophysics Data System (ADS)
Alvarez, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble, Oliver; Rocha, Ricardo
2012-12-01
The Disk Pool Manager (DPM) is a lightweight solution for grid enabled disk storage management. Operated at more than 240 sites it has the widest distribution of all grid storage solutions in the WLCG infrastructure. It provides an easy way to manage and configure disk pools, and exposes multiple interfaces for data access (rfio, xroot, nfs, gridftp and http/dav) and control (srm). During the last year we have been working on providing stable, high performant data access to our storage system using standard protocols, while extending the storage management functionality and adapting both configuration and deployment procedures to reuse commonly used building blocks. In this contribution we cover in detail the extensive evaluation we have performed of our new HTTP/WebDAV and NFS 4.1 frontends, in terms of functionality and performance. We summarize the issues we faced and the solutions we developed to turn them into valid alternatives to the existing grid protocols - namely the additional work required to provide multi-stream transfers for high performance wide area access, support for third party copies, credential delegation or the required changes in the experiment and fabric management frameworks and tools. We describe new functionality that has been added to ease system administration, such as different filesystem weights and a faster disk drain, and new configuration and monitoring solutions based on the industry standards Puppet and Nagios. Finally, we explain some of the internal changes we had to do in the DPM architecture to better handle the additional load from the analysis use cases.
NASA Astrophysics Data System (ADS)
Portnov, G. G.; Bakis, Ch. E.
2000-01-01
Fiber reinforced elastomeric matrix composites (EMCs) offer several potential advantages for construction of rotors for flywheel energy storage systems. One potential advantage, for safety considerations, is the existence of maximum stresses near the outside radius of thick circumferentially wound EMC disks, which could lead to a desirable self-arresting failure mode at ultimate speeds. Certain unidirectionally reinforced EMCs, however, have been noted to creep readily under the influence of stress transverse to the fibers. In this paper, stress redistribution in a spinning thick disk made of a circumferentially filament wound EMC material on a small rigid hub has been analyzed with the assumption of total radial stress relaxation due to radial creep. It is shown that, following complete relaxation, the circumferential strains and stresses are maximized at the outside radius of the disk. Importantly, the radial tensile strains are three times greater than the circumferential strains at any given radius. Therefore, a unidirectional EMC material system that can safely endure transverse tensile creep strains of at least three times the elastic longitudinal strain capacity of the same material is likely to maintain the theoretically safe failure mode despite complete radial stress relaxation.
Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters
Bajaj, Chandrajit
2009-01-01
Tomographic imaging and computer simulations are increasingly yielding massive datasets. Interactive and exploratory visualizations have rapidly become indispensable tools to study large volumetric imaging and simulation data. Our scalable isosurface visualization framework on commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data access to the final display. Interactive browsing of extracted isosurfaces is made possible by using parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval trees to minimize the number of I/O operations of loading large data from disk. We also describe an isosurface compression scheme that is efficient for progress extraction, transmission and storage of isosurfaces. PMID:19756231
[PACS: storage and retrieval of digital radiological image data].
Wirth, S; Treitl, M; Villain, S; Lucke, A; Nissen-Meyer, S; Mittermaier, I; Pfeifer, K-J; Reiser, M
2005-08-01
Efficient handling of both picture archiving and retrieval is a crucial factor when new PACS installations as well as technical upgrades are planned. For a large PACS installation for 200 actual studies, the number, modality,and body region of available priors were evaluated. In addition, image access time of 100 CT studies from hard disk (RAID), magneto-optic disk (MOD), and tape archives (TAPE) were accessed. For current examinations priors existed in 61.1% with an averaged quantity of 7.7 studies. Thereof 56.3% were within 0-3 months, 84.9% within 12 months, 91.7% within 24 months, and 96.2% within 36 months. On average, access to images from the hard disk cache was more than 100 times faster then from MOD or TAPE. Since only PACS RAID provides online image access, at least current imaging of the past 12 months should be available from cache. An accurate prefetching mechanism facilitates effective use of the expensive online cache area. For that, however, close interaction of PACS, RIS, and KIS is an indispensable prerequisite.
Optical storage media data integrity studies
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1994-01-01
Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.
Distributed energy storage systems on the basis of electric-vehicle fleets
NASA Astrophysics Data System (ADS)
Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.
2015-01-01
Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).
Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; ...
2016-04-21
Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less
W. Zhu; Junyong Zhu; Roland Gleisner; X.J. Pan
2010-01-01
This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite...
Solar optics-based active panel for solar energy storage and disinfection of greywater.
Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P
2016-09-01
Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.
Solar optics-based active panel for solar energy storage and disinfection of greywater
Lee, W.; Song, J.; Son, J. H.; Gutierrez, M. P.; Kang, T.; Kim, D.; Lee, L. P.
2016-01-01
Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems. PMID:27822328
Managing Wind-based Electricity Generation and Storage
NASA Astrophysics Data System (ADS)
Zhou, Yangfang
Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not have any apparent structure, and that using overly simple policies can be considerably suboptimal. I thus develop and analyze a triple-threshold policy that I show to be near-optimal. Using a financial engineering price model and calibrating it to data from the New York Independent System Operator, I show that storage can substantially increase the monetary value of a wind farm: If transmission capacity is tight, the majority of this value arises from reducing curtailment and time-shifting generation; if transmission capacity is abundant this value stems primarily from time-shifting generation and arbitrage. In addition, I find that while more storage capacity always increases the average energy sold to the market, it may actually decrease the average wind energy sold when transmission capacity is abundant. In Chapter 3, I examine how electricity storage can be used to help match electricity supply and demand. Conventional wisdom suggests that when supply exceeds demand, any electricity surpluses should be stored for future resale. However, because electricity prices can be negative, another potential strategy of dealing with surpluses is to destroy them. Using real data, I find that for a merchant who trades electricity in a market, the strategy of destroying surpluses is potentially more valuable than the conventional strategy of storing surpluses. In Chapter 4, I study how the operation and valuation of electricity storage facilities can be affected by their physical characteristics and operating dynamics. Examples are the degradation of energy capacity over time and the variation of round-trip efficiency at different charging/discharging rates. These dynamics are often ignored in the literature, thus it has not been established whether it is important to model these characteristics. Specifically, it remains an open question whether modeling these dynamics might materially change the prescribed operating policy and the resulting valuation of a storage facility. I answer this question using a representative setting, in which a battery is utilized to trade electricity in an energy arbitrage market. Using engineering models, I capture energy capacity degradation and efficiency variation explicitly, evaluating three types of batteries: lead acid, lithium-ion, and Aqueous Hybrid Ion---a new commercial battery technology. I calibrate the model for each battery to manufacturers' data and value these batteries using the same calibrated financial engineering price model as in Chapter 2. My analysis shows that: (a) it is quite suboptimal to operate each battery as if it did not degrade, particularly for lead acid and lithium-ion; (b) reducing degradation and efficiency variation have a complimentary effect: the value of reducing both together is greater than the sum of the value of reducing one individually; and (c) decreasing degradation may have a bigger effect than decreasing efficiency variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod
2017-05-05
High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly butmore » important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.« less
Redundant Disk Arrays in Transaction Processing Systems. Ph.D. Thesis, 1993
NASA Technical Reports Server (NTRS)
Mourad, Antoine Nagib
1994-01-01
We address various issues dealing with the use of disk arrays in transaction processing environments. We look at the problem of transaction undo recovery and propose a scheme for using the redundancy in disk arrays to support undo recovery. The scheme uses twin page storage for the parity information in the array. It speeds up transaction processing by eliminating the need for undo logging for most transactions. The use of redundant arrays of distributed disks to provide recovery from disasters as well as temporary site failures and disk crashes is also studied. We investigate the problem of assigning the sites of a distributed storage system to redundant arrays in such a way that a cost of maintaining the redundant parity information is minimized. Heuristic algorithms for solving the site partitioning problem are proposed and their performance is evaluated using simulation. We also develop a heuristic for which an upper bound on the deviation from the optimal solution can be established.
Joining the petabyte club with direct attached storage
NASA Astrophysics Data System (ADS)
Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan
2011-12-01
Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and - due to the possibility to make use of the latest technology early - density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.
Energy Efficient Storage and Transfer of Cryogens
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2013-01-01
Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
High speed reaction wheels for satellite attitude control and energy storage
NASA Technical Reports Server (NTRS)
Studer, P.; Rodriguez, E.
1985-01-01
The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Craig
Opportunities for combining energy efficiency, demand response, and energy storage with PV are often missed, because the required knowledge and expertise for these different technologies exist in separate organizations or individuals. Furthermore, there is a lack of quantitative tools to optimize energy efficiency, demand response and energy storage with PV, especially for existing buildings. Our goal is to develop a modeling tool, BEopt-CA (Ex), with capabilities to facilitate identification and implementation of a balanced integration of energy efficiency (EE), demand response (DR), and energy storage (ES) with photovoltaics (PV) within the residential retrofit market. To achieve this goal, we willmore » adapt and extend an existing tool -- BEopt -- that is designed to identify optimal combinations of efficiency and PV in new home designs. In addition, we will develop multifamily residential modeling capabilities for use in California, to facilitate integration of distributed solar power into the grid in order to maximize its value to California ratepayers. The project is follow-on research that leverages previous California Solar Initiative RD&D investment in the BEopt software. BEopt facilitates finding the least cost combination of energy efficiency and renewables to support integrated DSM (iDSM) and Zero Net Energy (ZNE) in California residential buildings. However, BEopt is currently focused on modeling single-family houses and does not include satisfactory capabilities for modeling multifamily homes. The project brings BEopt's existing modeling and optimization capabilities to multifamily buildings, including duplexes, triplexes, townhouses, flats, and low-rise apartment buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.
2013-09-20
Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less
Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.
Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang
2015-02-14
Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
NASA Astrophysics Data System (ADS)
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
SAM-FS: LSC's New Solaris-Based Storage Management Product
NASA Technical Reports Server (NTRS)
Angell, Kent
1996-01-01
SAM-FS is a full featured hierarchical storage management (HSM) device that operates as a file system on Solaris-based machines. The SAM-FS file system provides the user with all of the standard UNIX system utilities and calls, and adds some new commands, i.e. archive, release, stage, sls, sfind, and a family of maintenance commands. The system also offers enhancements such as high performance virtual disk read and write, control of the disk through an extent array, and the ability to dynamically allocate block size. SAM-FS provides 'archive sets' which are groupings of data to be copied to secondary storage. In practice, as soon as a file is written to disk, SAM-FS will make copies onto secondary media. SAM-FS is a scalable storage management system. The system can manage millions of files per system, though this is limited today by the speed of UNIX and its utilities. In the future, a new search algorithm will be implemented that will remove logical and performance restrictions on the number of files managed.
Solar-powered unmanned aerial vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.
1996-12-31
An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY... Secretary of Energy; (6) The storage of materials that constitute military resources intended to be used...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY... Secretary of Energy; (6) The storage of materials that constitute military resources intended to be used...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY... nonnuclear classified materials in accordance with an agreement with the Secretary of Energy. (7) The storage...
Energy Storage | Transportation Research | NREL
, and safe energy storage systems to power the next generation of electric-drive vehicles (EDVs). While lasting, safe, and operate at maximum efficiency in a wide range of driving conditions and climates. The Consumers, Industry, and the Environment As manufacturers develop new electric-drive vehicles, NREL acts as
Plasma and Shock Generation by Indirect Laser Pulse Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasperczuk, A.; Borodziuk, S.; Pisarczyk, T.
2006-01-15
In the paper the results of our experiment with flyer disks, accelerated to high velocities by the PALS iodine laser and subsequently creating craters when hitting massive targets , are presented. We have carried out experiments with the double targets consisted of a disk placed in front of a massive target part at distances of either 200 or 500 {mu}m. Both elements of the targets were made of Al. The following disk irradiation conditions were used: laser energy of 130 J, laser wavelength of 1.315 {mu}m, pulse duration of 0.4 ns, and laser spot diameter of 250 {mu}m. To measuremore » some plasma parameters and accelerated disk velocity a three frame interferometric system was used. Efficiency of crater creation by a disk impact was determined from the crater parameters, which were obtained by means of a crater replica technique. The experimental results concern two main stages: (a) ablative plasma generation and disk acceleration and (b) disk impact and crater creation. Spatial density distributions at different moments of plasma generation and expansion are shown. Discussion of the experimental results on the basis of a 2-D theoretical model of the laser -- solid target interaction is carried out.« less
Design of State-of-the-art Flow Cells for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping
The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energymore » is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br 2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br 2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.« less
Towards greener and more sustainable batteries for electrical energy storage
NASA Astrophysics Data System (ADS)
Larcher, D.; Tarascon, J.-M.
2015-01-01
Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
NASA Astrophysics Data System (ADS)
Utaka, Yoshio; Saito, Akio; Nakata, Naoki
The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.
Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid
NASA Astrophysics Data System (ADS)
Dixon, William Jesse J.
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand. The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions. One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-05-04
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.
Electron trapping optical data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
NASA Astrophysics Data System (ADS)
Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.
2017-10-01
We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.
Symmetric Electrodes for Electrochemical Energy-Storage Devices.
Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo
2016-12-01
Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.
RALPH: An online computer program for acquisition and reduction of pulse height data
NASA Technical Reports Server (NTRS)
Davies, R. C.; Clark, R. S.; Keith, J. E.
1973-01-01
A background/foreground data acquisition and analysis system incorporating a high level control language was developed for acquiring both singles and dual parameter coincidence data from scintillation detectors at the Radiation Counting Laboratory at the NASA Manned Spacecraft Center in Houston, Texas. The system supports acquisition of gamma ray spectra in a 256 x 256 coincidence matrix (utilizing disk storage) and simultaneous operation of any of several background support and data analysis functions. In addition to special instruments and interfaces, the hardware consists of a PDP-9 with 24K core memory, 256K words of disk storage, and Dectape and Magtape bulk storage.
The Photorefractive Effect and its Application in Optical Computing
NASA Astrophysics Data System (ADS)
Li, Guo
This Ph.D dissertation includes the fanning effect and the temperature dependence of the diffraction efficiency and response time using different addressing configurations, and evaluation of the limitations and capacity of a holographic storage in BaTiO_3 crystals. Also, we designed a digital holographic optical disk and made an associate memory. The beam fanning effect in a BaTiO_3 crystal was investigated in detail. The effect depends on the crystal faces illuminated. In particular, for the +c face of illumination we found that the fanning effect strongly depends on angle of incidence, polarization and wavelength of the incident light, crystal temperature, laser beam profile, but only weakly depends on input laser power. In the case of the -c face and a-face illumination dependence of the ring angle on wavelength and input power was observed. We found that the intensity of the reflected beam in NDFWM, the intensity of self phase conjugate beam and the response time of the fanning effect decrease with temperature exponentially and there being a major change around 60 ^circ-80^circ C. A random bistability and oscillation of the SPPC occur around 80^circC. We also present a theoretical analysis for the dependence of the photorefractive effect on temperature. We experimentally evaluate the capacity and limitation of optical storage in BaTiO_3 crystals using self-pumped phase conjugation (SPPC) and two-wave mixing. The storage capacity is different with different face of illumination, polarization, beam profile and input power. We demonstrate that using two wave mixing, three dimensional volume holograms can be stored. The information -bearing beam diameter for storage and recall can be about 0.25mm or less. By these techniques we demonstrate that at least 10^5 holograms can be stored in a 3.5 inch photorefractive disk. We evaluate an optimal optical architecture for exploiting the photorefractive effect for digital holographic disk storage. An image with many pixels was used for this experimental evaluation. By using a raytracing program, we traced a beam with a Gaussian profile through our optical system. We also estimated the Seidel aberration of our optical system in order to determine the quality of the stored digital data.
Gain and energy storage in holmium YLF
NASA Technical Reports Server (NTRS)
Storm, Mark E.; Deyst, John P.
1991-01-01
It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
The discontinuous temperament of the solar power forces to consider about the energy storage. This work is to analyze the tank, amount of energy stored and its storage time. The thermal and flow analysis has been done by ANSYS with different set temperature values. The experimentation is done for various encapsulating materials with different phase change material (PCM). Findings: The results obtained from experimental work are compared with ANSYS output. The competence of the TES is calculated and further improvements are made to enhance its performance. During charging process the temperature distribution from heat transfer fluid (HTF) to PCM is maximum in copper encapsulations followed by aluminium encapsulations and brass encapsulations. The comparison shows only when the electrical power as an input source. The efficient way of captivating solar energy could be a better replacement for electrical input.
Kaliman, Ilya A; Krylov, Anna I
2017-04-30
A new hardware-agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand-alone open-source code libxm. This code is also integrated with general tensor library libtensor and with the Q-Chem quantum-chemistry package. An overview of the algorithm, its implementation, and benchmarks are presented. Similarly to other tensor software, the algorithm exploits efficient matrix multiplication libraries and assumes that tensors are stored in a block-tensor form. The distinguishing features of the algorithm are: (i) efficient repackaging of the individual blocks into large matrices and back, which affords efficient graphics processing unit (GPU)-enabled calculations without modifications of higher-level codes; (ii) fully asynchronous data transfer between disk storage and fast memory. The algorithm enables canonical all-electron coupled-cluster and equation-of-motion coupled-cluster calculations with single and double substitutions (CCSD and EOM-CCSD) with over 1000 basis functions on a single quad-GPU machine. We show that the algorithm exhibits predicted theoretical scaling for canonical CCSD calculations, O(N 6 ), irrespective of the data size on disk. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.
2017-06-01
Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.
NASA Astrophysics Data System (ADS)
Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.
A 'two-tank' seasonal storage concept for solar space heating of buildings
NASA Astrophysics Data System (ADS)
Cha, B. K.; Connor, D. W.; Mueller, R. O.
This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.
Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne
2018-03-01
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sawmill: A Logging File System for a High-Performance RAID Disk Array
1995-01-01
from limiting disk performance, new controller architectures connect the disks directly to the network so that data movement bypasses the file server...These developments raise two questions for file systems: how to get the best performance from a RAID, and how to use such a controller architecture ...the RAID-II storage system; this architecture provides a fast data path that moves data rapidly among the disks, high-speed controller memory, and the
Performance of redundant disk array organizations in transaction processing environments
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1993-01-01
A performance evaluation is conducted for two redundant disk-array organizations in a transaction-processing environment, relative to the performance of both mirrored disk organizations and organizations using neither striping nor redundancy. The proposed parity-striping alternative to striping with rotated parity is shown to furnish rapid recovery from failure at the same low storage cost without interleaving the data over multiple disks. Both noncached systems and systems using a nonvolatile cache as the controller are considered.
Automotive dual-mode hydrogen generation system
NASA Astrophysics Data System (ADS)
Kelly, D. A.
The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.
Black Hole Disk Accretion in Supernovae
NASA Astrophysics Data System (ADS)
Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.
Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.
Full open-framework batteries for stationary energy storage
NASA Astrophysics Data System (ADS)
Pasta, Mauro; Wessells, Colin D.; Liu, Nian; Nelson, Johanna; McDowell, Matthew T.; Huggins, Robert A.; Toney, Michael F.; Cui, Yi
2014-01-01
New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.
Full open-framework batteries for stationary energy storage.
Pasta, Mauro; Wessells, Colin D; Liu, Nian; Nelson, Johanna; McDowell, Matthew T; Huggins, Robert A; Toney, Michael F; Cui, Yi
2014-01-01
New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.
THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto
2012-04-10
Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transitionmore » disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.« less
PCM-Based Durable Write Cache for Fast Disk I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhuo; Wang, Bin; Carpenter, Patrick
2012-01-01
Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop amore » novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apyan, A.; Badillo, J.; Cruz, J. Diaz
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Optical Disk Technology and Information.
ERIC Educational Resources Information Center
Goldstein, Charles M.
1982-01-01
Provides basic information on videodisks and potential applications, including inexpensive online storage, random access graphics to complement online information systems, hybrid network architectures, office automation systems, and archival storage. (JN)
More Efficient Solar Thermal-Energy Receiver
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1987-01-01
Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.
TransAtlasDB: an integrated database connecting expression data, metadata and variants
Adetunji, Modupeore O; Lamont, Susan J; Schmidt, Carl J
2018-01-01
Abstract High-throughput transcriptome sequencing (RNAseq) is the universally applied method for target-free transcript identification and gene expression quantification, generating huge amounts of data. The constraint of accessing such data and interpreting results can be a major impediment in postulating suitable hypothesis, thus an innovative storage solution that addresses these limitations, such as hard disk storage requirements, efficiency and reproducibility are paramount. By offering a uniform data storage and retrieval mechanism, various data can be compared and easily investigated. We present a sophisticated system, TransAtlasDB, which incorporates a hybrid architecture of both relational and NoSQL databases for fast and efficient data storage, processing and querying of large datasets from transcript expression analysis with corresponding metadata, as well as gene-associated variants (such as SNPs) and their predicted gene effects. TransAtlasDB provides the data model of accurate storage of the large amount of data derived from RNAseq analysis and also methods of interacting with the database, either via the command-line data management workflows, written in Perl, with useful functionalities that simplifies the complexity of data storage and possibly manipulation of the massive amounts of data generated from RNAseq analysis or through the web interface. The database application is currently modeled to handle analyses data from agricultural species, and will be expanded to include more species groups. Overall TransAtlasDB aims to serve as an accessible repository for the large complex results data files derived from RNAseq gene expression profiling and variant analysis. Database URL: https://modupeore.github.io/TransAtlasDB/ PMID:29688361
Integrated IMA (Information Mission Areas) IC (Information Center) Guide
1989-06-01
COMPUTER AIDED DESIGN / COMPUTER AIDED MANUFACTURE 8-8 8.3.7 LIQUID CRYSTAL DISPLAY PANELS 8-8 8.3.8 ARTIFICIAL INTELLIGENCE APPLIED TO VI 8-9 8.4...2 10.3.1 DESKTOP PUBLISHING 10-3 10.3.2 INTELLIGENT COPIERS 10-5 10.3.3 ELECTRONIC ALTERNATIVES TO PRINTED DOCUMENTS 10-5 10.3.4 ELECTRONIC FORMS...Optical Disk LCD Units Storage Image Scanners Graphics Forms Output Generation Copiers Devices Software Optical Disk Intelligent Storage Copiers Work Group
A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.
Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng
2017-11-20
Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
NASA Astrophysics Data System (ADS)
Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.
2018-04-01
Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.
Design and implementation of scalable tape archiver
NASA Technical Reports Server (NTRS)
Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio
1996-01-01
In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.
Electrochemical Studies of Redox Systems for Energy Storage
NASA Technical Reports Server (NTRS)
Wu, C. D.; Calvo, E. J.; Yeager, E.
1983-01-01
Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied.
Optimized efficiency of all-electric ships by dc hybrid power systems
NASA Astrophysics Data System (ADS)
Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.
2014-06-01
Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.
Designing lead-free antiferroelectrics for energy storage
Xu, Bin; Íñiguez, Jorge; Bellaiche, L.
2017-01-01
Dielectric capacitors, although presenting faster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited in applications due to their low energy density. Antiferroelectric (AFE) compounds, however, show great promise due to their atypical polarization-versus-electric field curves. Here we report our first-principles-based theoretical predictions that Bi1−xRxFeO3 systems (R being a lanthanide, Nd in this work) can potentially allow high energy densities (100–150 J cm−3) and efficiencies (80–88%) for electric fields that may be within the range of feasibility upon experimental advances (2–3 MV cm−1). In addition, a simple model is derived to describe the energy density and efficiency of a general AFE material, providing a framework to assess the effect on the storage properties of variations in doping, electric field magnitude and direction, epitaxial strain, temperature and so on, which can facilitate future search of AFE materials for energy storage. PMID:28555655
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin
2016-08-24
Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui
2013-08-14
Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.
Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik
2016-01-08
As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large Format Multifunction 2-Terabyte Optical Disk Storage System
NASA Technical Reports Server (NTRS)
Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.
1996-01-01
The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
Performance assessment of the PNM Prosperity electricity storage project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv
2014-05-01
The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shiftingmore » system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.« less
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J; Grant, Patrick S
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices
NASA Astrophysics Data System (ADS)
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
Thermal analysis elements of liquefied gas storage tanks
NASA Astrophysics Data System (ADS)
Yanvarev, I. A.; Krupnikov, A. V.
2017-08-01
Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.
Seasonal energy storage system based on hydrogen for self sufficient living
NASA Astrophysics Data System (ADS)
Bielmann, M.; Vogt, U. F.; Zimmermann, M.; Züttel, A.
SELF is a resource independent living and working environment. By on-board renewable electricity generation and storage, it accounts for all aspects of living, such as space heating and cooking as well as providing a purified rainwater supply and wastewater treatment, excluding food supply. Uninterrupted, on-demand energy and water supply are the key challenges. Off-grid renewable power supply fluctuations on daily and seasonal time scales impose production gaps that have to be served by local storage, a function normally fulfilled by the grid. While daily variations only obligate a small storage capacity, requirements for seasonal storage are substantial. The energy supply for SELF is reviewed based on real meteorological data and demand patterns for Zurich, Switzerland. A battery system with propane for cooking serves as a reference for battery-only and hybrid battery/hydrogen systems. In the latter, hydrogen is used for cooking and electricity generation. The analysis shows that hydrogen is ideal for long term bulk energy storage on a seasonal timescale, while batteries are best suited for short term energy storage. Although the efficiency penalty from hydrogen generation is substantial, in off-grid systems, this parameter is tolerable since the harvesting ratio of photovoltaic energy is limited by storage capacity.
NASA Astrophysics Data System (ADS)
Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce
2013-04-01
Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regenerative power lapse and so on, have been important issues in DC railway feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. Electric double-layer capacitors (EDLC) can be charged and discharged rapidly in a short time with large power. On the other hand, a battery has a high energy density so that it is proper to be charged and discharged for a long time. Therefore, from a viewpoint of load pattern for electric railway, hybrid energy storage system combining both energy storage media may be effective. This paper introduces two methods for hybrid energy system theoretically, and describes the results of the fundamental tests.
Not Too Hot, Not Too Cold - Continuum Magazine | NREL
management technologies increase vehicle energy efficiency and performance while reducing costs. Mythological automobiles. Issues with thermal management cause some of these limitations. A photo of a white disk submerged sector petroleum consumption. Manufacturers and operators alike are looking to new thermal management
Storage of H.sub.2 by absorption and/or mixture within a fluid medium
Berry, Gene David; Aceves, Salvador Martin
2007-03-20
For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
The strain capacitor: A novel energy storage device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu
2014-12-15
A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential formore » long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.« less
High to ultra-high power electrical energy storage.
Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok
2011-12-14
High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. Administrative..., statements, and other required documents. Electronic media means: (1) Electronic storage material on which...) and any removable/transportable digital memory medium, such as magnetic tape or disk, optical disk, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. Administrative..., statements, and other required documents. Electronic media means: (1) Electronic storage material on which...) and any removable/transportable digital memory medium, such as magnetic tape or disk, optical disk, or...
NSSDC activities with 12-inch optical disk drives
NASA Technical Reports Server (NTRS)
Lowrey, Barbara E.; Lopez-Swafford, Brian
1986-01-01
The development status of optical-disk data transfer and storage technology at the National Space Science Data Center (NSSDC) is surveyed. The aim of the R&D program is to facilitate the exchange of large volumes of data. Current efforts focus on a 12-inch 1-Gbyte write-once/read-many disk and a disk drive which interfaces with VAX/VMS computer systems. The history of disk development at NSSDC is traced; the results of integration and performance tests are summarized; the operating principles of the 12-inch system are explained and illustrated with diagrams; and the need for greater standardization is indicated.
System and method for single-phase, single-stage grid-interactive inverter
Liu, Liming; Li, Hui
2015-09-01
The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.
Performance characteristics of solar-photovoltaic flywheel-storage systems
NASA Astrophysics Data System (ADS)
Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.
A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.
Optical Digital Image Storage System
1991-03-18
figures courtesy of Sony Corporation x LIST OF TABLES Indexing Workstation - Ease of Learning ................................... 99 Indexing Workstation...retaining a master negative copy of the microfilm. 121 The Sony Corporation, the supplier of the optical disk media used in the ODISS projeLt, claims...disk." During the ODISS project, several CMSR files-stored on the Sony optical disks were read several thousand times with no -loss of information
High Efficiency End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra N.; Petros, Mulugeta; Axenson, Theresa J.; Barnes, Norman P.
1999-01-01
Space based coherent lidar for global wind measurement requires an all solid state laser system with high energy, high efficiency and narrow linewidth that operates in the eye safe region. A Q-switched, diode pumped Ho:Tm:YLF 2 micrometer laser with output energy of as much as 125 mJ at 6 Hz with an optical-to-optical efficiency of 3% has been reported. Single frequency operation of the laser was achieved by injection seeding. The design of this laser is being incorporated into NASA's SPARCLE (SPAce Readiness Coherent Lidar Experiment) wind lidar mission. Laser output energy ranging from 500 mJ to 2 J is required for an operational space coherent lidar. We previously developed a high energy Ho:Tm:YLF master oscillator and side pumped power amplifier system and demonstrated a 600-mJ single frequency pulse at a repetition rate of 10 Hz. Although the output energy is high, the optical-to-optical efficiency is only about 2%. Designing a high energy, highly efficient, conductively cooled 2-micrometer laser remains a challenge. In this paper, the preliminary result of an end-pumped amplifier that has a potential to provide a factor 3 of improvement in the system efficiency is reported.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Storage and Disposal of Toxic and Hazardous...
Evolution of magnetic disk subsystems
NASA Astrophysics Data System (ADS)
Kaneko, Satoru
1994-06-01
The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.
Flexible operation of thermal plants with integrated energy storage technologies
NASA Astrophysics Data System (ADS)
Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil
2017-08-01
The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.
Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances.
Yao, Zhonghua; Song, Zhe; Hao, Hua; Yu, Zhiyong; Cao, Minghe; Zhang, Shujun; Lanagan, Michael T; Liu, Hanxing
2017-05-01
The demand for dielectric capacitors with higher energy-storage capability is increasing for power electronic devices due to the rapid development of electronic industry. Existing dielectrics for high-energy-storage capacitors and potential new capacitor technologies are reviewed toward realizing these goals. Various dielectric materials with desirable permittivity and dielectric breakdown strength potentially meeting the device requirements are discussed. However, some significant limitations for current dielectrics can be ascribed to their low permittivity, low breakdown strength, and high hysteresis loss, which will decrease their energy density and efficiency. Thus, the implementation of dielectric materials for high-energy-density applications requires the comprehensive understanding of both the materials design and processing. The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Earth Battery: An Approach for Reducing the Carbon and Water Intensity of Energy
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Bielicki, J. M.; Randolph, J.
2016-12-01
Mitigating climate change requires a range of measures, including increased use of renewable and low-carbon energy and reducing the CO2 intensity of fossil energy use. Our approach, called the Earth Battery, uses the storage of supercritical CO2, N2, or pressurized air to enable utility-scale energy storage needed for increased use of variable renewable energy and low-carbon baseload power. When deployed with CO2, the Earth Battery is designed to address the major deployment barriers to CO2 capture, utilization, and storage (CCUS) by managing overpressure and creating a business case for CO2 storage. We use the huge fluid and thermal storage capacity of the earth, together with overpressure driven by CO2, N2, or pressurized air storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, fossil) thermal resources, as well as excess energy from electric grids. The storage of CO2, N2, or air enables the earth to function as a low-carbon energy-system hub. Stored CO2, N2, or air plays three key roles: (1) as a supplemental fluid that creates pressure to efficiently recirculate working fluids that store and recover energy, (2) as a working fluid for efficient, low-water-intensity electricity conversion, and (3) as a shock absorber to allow diurnal and seasonal recharge/discharge cycles with minimal pressure oscillations, providing large pressure-storage capacity, with reduced risk of induced seismicity or leakage of stored CO2. To keep reservoir pressures in a safe range, a portion of the produced brine is diverted to generate water. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, N2/air, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and heated when power supply exceeds demand and depressurized when demand exceeds supply. The Earth Battery is designed for locations where a permeable geologic formation is overlain by an impermeable formation that constrains migration of buoyant CO2, N2/air, and heated brine. Such geologic conditions exist over half of the contiguous United States. This work was performed under the auspices of the USDOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Donelick, R. A.; Donelick, M. B.
2016-12-01
We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.
48 CFR 223.7103 - Contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Storage and Disposal of Toxic and Hazardous...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bednarek, W., E-mail: bednar@uni.lodz.pl
We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such amore » hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.« less
Evaluation of Optical Disk Jukebox Software.
ERIC Educational Resources Information Center
Ranade, Sanjay; Yee, Fonald
1989-01-01
Discusses software that is used to drive and access optical disk jukeboxes, which are used for data storage. Categories of the software are described, user categories are explained, the design of implementation approaches is discussed, and representative software products are reviewed. (eight references) (LRW)
Start It up: Flywheel Energy Storage Efficiency
ERIC Educational Resources Information Center
Dunn, Michelle
2011-01-01
The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…
NASA Astrophysics Data System (ADS)
Safaei Mohamadabadi, Hossein
Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost-effectively decarbonize the grid. The prospects of A-CAES seem to be stronger compared to other BES systems due to its low energy-specific capital cost.
Wang, Liwei; Huang, Xingyi; Zhu, Yingke; Jiang, Pingkai
2018-02-14
Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO 3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.
Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua
2016-08-01
The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Tanaka, Masaomi; Morokuma, Tomoki; Ohsuga, Ken
2017-07-01
We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit-cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kinetic energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1c, where c is the speed of light, the ejecta kinetic energy is expected to be ≃1052 erg when ≃1 M ⊙ is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (˜1044 erg s-1) and timescales (˜100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit-cycle oscillations, they become bright again in coming years or decades.
40 CFR 94.509 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 94.509 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 94.509 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 94.509 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...
Repetitive switching for an electromagnetic rail gun
NASA Astrophysics Data System (ADS)
Gruden, J. M.
1983-12-01
Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.
PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters
Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...
2015-08-25
As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less
Use of Computer Statistical Packages to Generate Quality Control Reports on Training
1980-01-01
Quality Control Statistical Analysis 126. Th~rAcr ivowhis. sim oeva.e ebb VI .eseem mu 111160#0 by block nuaber; OU6btaining timely and efficient...DISSAI.SFIEC 4 31 EXTRE.,AELY SATISFIED 4 32 8. HUW MAN-Y MEN IN YOU 1QNIT hA:,T TO DO A GOCO JOB IN 5. 2 TRAIING -?5- ə> F01 UF THEM ɚ> SCME CF THEM...permanent disk storage space within the coma- puteor account.* The user may not wish to run the "Audit" program in the s a batch flow as the 6th.: three
Overview of the H.264/AVC video coding standard
NASA Astrophysics Data System (ADS)
Luthra, Ajay; Topiwala, Pankaj N.
2003-11-01
H.264/MPEG-4 AVC is the latest coding standard jointly developed by the Video Coding Experts Group (VCEG) of ITU-T and Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state of the art coding tools and provides enhanced coding efficiency for a wide range of applications including video telephony, video conferencing, TV, storage (DVD and/or hard disk based), streaming video, digital video creation, digital cinema and others. In this paper an overview of this standard is provided. Some comparisons with the existing standards, MPEG-2 and MPEG-4 Part 2, are also provided.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Storage and Disposal of Toxic and Hazardous Materials 223.7100...
Zhang, Xi; Jiang, Hongrui
2015-03-09
Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.
Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.
Zhang, Y-H Percival; Huang, Wei-Dong
2012-06-01
In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Towards more stable operation of the Tokyo Tier2 center
NASA Astrophysics Data System (ADS)
Nakamura, T.; Mashimo, T.; Matsui, N.; Sakamoto, H.; Ueda, I.
2014-06-01
The Tokyo Tier2 center, which is located at the International Center for Elementary Particle Physics (ICEPP) in the University of Tokyo, was established as a regional analysis center in Japan for the ATLAS experiment. The official operation with WLCG was started in 2007 after the several years development since 2002. In December 2012, we have replaced almost all hardware as the third system upgrade to deal with analysis for further growing data of the ATLAS experiment. The number of CPU cores are increased by factor of two (9984 cores in total), and the performance of individual CPU core is improved by 20% according to the HEPSPEC06 benchmark test at 32bit compile mode. The score is estimated as 18.03 (SL6) per core by using Intel Xeon E5-2680 2.70 GHz. Since all worker nodes are made by 16 CPU cores configuration, we deployed 624 blade servers in total. They are connected to 6.7 PB of disk storage system with non-blocking 10 Gbps internal network backbone by using two center network switches (NetIron MLXe-32). The disk storage is made by 102 of RAID6 disk arrays (Infortrend DS S24F-G2840-4C16DO0) and served by equivalent number of 1U file servers with 8G-FC connection to maximize the file transfer throughput per storage capacity. As of February 2013, 2560 CPU cores and 2.00 PB of disk storage have already been deployed for WLCG. Currently, the remaining non-grid resources for both CPUs and disk storage are used as dedicated resources for the data analysis by the ATLAS Japan collaborators. Since all hardware in the non-grid resources are made by same architecture with Tier2 resource, they will be able to be migrated as the Tier2 extra resource on demand of the ATLAS experiment in the future. In addition to the upgrade of computing resources, we expect the improvement of connectivity on the wide area network. Thanks to the Japanese NREN (NII), another 10 Gbps trans-Pacific line from Japan to Washington will be available additionally with existing two 10 Gbps lines (Tokyo to New York and Tokyo to Los Angeles). The new line will be connected to LHCONE for the more improvement of the connectivity. In this circumstance, we are working for the further stable operation. For instance, we have newly introduced GPFS (IBM) for the non-grid disk storage, while Disk Pool Manager (DPM) are continued to be used as Tier2 disk storage from the previous system. Since the number of files stored in a DPM pool will be increased with increasing the total amount of data, the development of stable database configuration is one of the crucial issues as well as scalability. We have started some studies on the performance of asynchronous database replication so that we can take daily full backup. In this report, we would like to introduce several improvements in terms of the performances and stability of our new system and possibility of the further improvement of local I/O performance in the multi-core worker node. We also present the status of the wide area network connectivity from Japan to US and/or EU with LHCONE.
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Miller, James F.
Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.
VMOMS — A computer code for finding moment solutions to the Grad-Shafranov equation
NASA Astrophysics Data System (ADS)
Lao, L. L.; Wieland, R. M.; Houlberg, W. A.; Hirshman, S. P.
1982-08-01
Title of program: VMOMS Catalogue number: ABSH Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (See application form in this issue) Computer: PDP-10/KL10; Installation: ORNL Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA Operating system: TOPS 10 Programming language used: FORTRAN High speed storage required: 9000 words No. of bits in a word: 36 Overlay structure: none Peripherals used: line printer, disk drive No. of cards in combined program and test deck: 2839 Card punching code: ASCII
Biotechnological storage and utilization of entrapped solar energy.
Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K
2005-03-01
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
Energy and operation management of a microgrid using particle swarm optimization
NASA Astrophysics Data System (ADS)
Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan
2016-05-01
This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-01-01
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885
Carbon nanomaterials for advanced energy conversion and storage.
Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen
2012-04-23
It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
Software for Optical Archive and Retrieval (SOAR) user's guide, version 4.2
NASA Technical Reports Server (NTRS)
Davis, Charles
1991-01-01
The optical disk is an emerging technology. Because it is not a magnetic medium, it offers a number of distinct advantages over the established form of storage, advantages that make it extremely attractive. They are as follows: (1) the ability to store much more data within the same space; (2) the random access characteristics of the Write Once Read Many optical disk; (3) a much longer life than that of traditional storage media; and (4) much greater data access rate. Software for Optical Archive and Retrieval (SOAR) user's guide is presented.
Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan
2013-02-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
Free Factories: Unified Infrastructure for Data Intensive Web Services
Zaranek, Alexander Wait; Clegg, Tom; Vandewege, Ward; Church, George M.
2010-01-01
We introduce the Free Factory, a platform for deploying data-intensive web services using small clusters of commodity hardware and free software. Independently administered virtual machines called Freegols give application developers the flexibility of a general purpose web server, along with access to distributed batch processing, cache and storage services. Each cluster exploits idle RAM and disk space for cache, and reserves disks in each node for high bandwidth storage. The batch processing service uses a variation of the MapReduce model. Virtualization allows every CPU in the cluster to participate in batch jobs. Each 48-node cluster can achieve 4-8 gigabytes per second of disk I/O. Our intent is to use multiple clusters to process hundreds of simultaneous requests on multi-hundred terabyte data sets. Currently, our applications achieve 1 gigabyte per second of I/O with 123 disks by scheduling batch jobs on two clusters, one of which is located in a remote data center. PMID:20514356
Wide-area-distributed storage system for a multimedia database
NASA Astrophysics Data System (ADS)
Ueno, Masahiro; Kinoshita, Shigechika; Kuriki, Makato; Murata, Setsuko; Iwatsu, Shigetaro
1998-12-01
We have developed a wide-area-distribution storage system for multimedia databases, which minimizes the possibility of simultaneous failure of multiple disks in the event of a major disaster. It features a RAID system, whose member disks are spatially distributed over a wide area. Each node has a device, which includes the controller of the RAID and the controller of the member disks controlled by other nodes. The devices in the node are connected to a computer, using fiber optic cables and communicate using fiber-channel technology. Any computer at a node can utilize multiple devices connected by optical fibers as a single 'virtual disk.' The advantage of this system structure is that devices and fiber optic cables are shared by the computers. In this report, we first described our proposed system, and a prototype was used for testing. We then discussed its performance; i.e., how to read and write throughputs are affected by data-access delay, the RAID level, and queuing.
NASA Astrophysics Data System (ADS)
Angelhed, Jan-Erik; Carlsson, Goeran; Gustavsson, Staffan; Karlsson, Anders; Larsson, Lars E. G.; Svensson, Sune; Tylen, Ulf
1998-07-01
An Image Management And Communication (IMAC) system adapted to the X-ray department at Sahlgrenska University Hospital has been developed using standard components. Two user demands have been considered primary: Rapid access to (display of) images and an efficient worklist management. To fulfil these demands a connection between the IMAC system and the existing Radiological Information System (RIS) has been implemented. The functional modules are: check of information consistency in data exported from image sources, a (logically) central storage of image data, viewing facility for high speed-, large volume-, clinical work, and an efficient interface to the RIS. Also, an image related database extension has been made to the RIS. The IMAC system has a strictly modular design with a simple structure. The image archive and short term storage are logically the same and acts as a huge disk. Through NFS all image data is available to all the connected workstations. All patient selection for viewing is through worklists, which are created by selection criteria in the RIS, by the use of barcodes, or, in singular cases, by entering the patient ID by hand.
10 CFR 431.110 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy conservation standards and their effective dates. 431.110 Section 431.110 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Hot Water Storage Tanks Energy Conservation Standards § 431.110 Energy conservation standards and...
10 CFR 431.110 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Energy conservation standards and their effective dates. 431.110 Section 431.110 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Hot Water Storage Tanks Energy Conservation Standards § 431.110 Energy conservation standards and...
10 CFR 431.110 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy conservation standards and their effective dates. 431.110 Section 431.110 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Hot Water Storage Tanks Energy Conservation Standards § 431.110 Energy conservation standards and...
Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
NASA Astrophysics Data System (ADS)
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-08-01
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.
Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-05-05
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less
NASA Astrophysics Data System (ADS)
Wendel, C. H.; Kazempoor, P.; Braun, R. J.
2015-02-01
Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
Numerical analysis of magnetic field in superconducting magnetic energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamaru, Y.; Amemiya, Y.
1991-09-01
This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES formore » reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.« less
Towards sustainable and renewable systems for electrochemical energy storage.
Tarascon, Jean-Marie
2008-01-01
Renewable energy sources and electric automotive transportation are popular topics in our belated energy-conscious society, placing electrochemical energy management as one of the major technological developments for this new century. Besides efficiency, any new storage technologies will have to provide advantages in terms of cost and environmental footprint and thus rely on sustainable materials that can be processed at low temperature. To meet such challenges future devices will require inspiration from living organisms and rely on either bio-inspired or biomimetic approaches.
Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen
2018-05-08
Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.
Redox Active Colloids as Discrete Energy Storage Carriers.
Montoto, Elena C; Nagarjuna, Gavvalapalli; Hui, Jingshu; Burgess, Mark; Sekerak, Nina M; Hernández-Burgos, Kenneth; Wei, Teng-Sing; Kneer, Marissa; Grolman, Joshua; Cheng, Kevin J; Lewis, Jennifer A; Moore, Jeffrey S; Rodríguez-López, Joaquín
2016-10-12
Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.
Design and implementation of reliability evaluation of SAS hard disk based on RAID card
NASA Astrophysics Data System (ADS)
Ren, Shaohua; Han, Sen
2015-10-01
Because of the huge advantage of RAID technology in storage, it has been widely used. However, the question associated with this technology is that the hard disk based on the RAID card can not be queried by Operating System. Therefore how to read the self-information and log data of hard disk has been a problem, while this data is necessary for reliability test of hard disk. In traditional way, this information can be read just suitable for SATA hard disk, but not for SAS hard disk. In this paper, we provide a method by using LSI RAID card's Application Program Interface, communicating with RAID card and analyzing the feedback data to solve the problem. Then we will get the necessary information to assess the SAS hard disk.
Optical system storage design with diffractive optical elements
NASA Technical Reports Server (NTRS)
Kostuk, Raymond K.; Haggans, Charles W.
1993-01-01
Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingarapu, Sreeram; Singh, Dileep; Timofeeva, Elena V.
2015-08-01
Concentrated Solar Power (CSP) is considered as a viable large-scale renewable energy source to produce electricity. However, current costs to produce electricity from CSP are not cost competitive as compared to the traditional energy generation technologies based on fossil fuels and nuclear. It is envisioned that development of high efficiency and high heat capacity thermal storage fluids will increase system efficiency, reduce structural storage volume, and hence, contribute to reducing costs. Particularly, with respect to CSP, current high temperature energy storage fluids, such as molten salts, are relatively limited in terms of their thermal energy storage capacity and thermal conductivity.more » The current work explores possibility of boosting the thermal storage capacity of molten salts through latent heat of added phase change materials. We studied the advantage Of adding coated Zn micron-sized particles to alkali chloride salt eutectic for enhanced thermal energy storage. Zinc particles (0.6 mu m and 5 mu m) obtained from commercial source were coated with an organo-phosphorus shell to improve chemical stability and to prevent individual particles from coalescing with one another during melt/freeze cycles. Thermal cycling tests (200 melt/freeze cycles) showed that coated Zn particles have good thermal stability and are chemically inert to alkali chloride salt eutectic in both N-2 and in air atmospheres. Elemental mapping of the cross-sectional view of coated Zn particles from the composite after thermal cycles showed no signs of oxidation, agglomeration or other type of particle degradation. The measured enhancement in volumetric thermal storage capacity of the composite with just similar to 10 vol% of coated Zn particles over the base chloride salt eutectic varies from 15% to 34% depending on cycling temperature range (Delta T = 50 degrees C -100 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.« less
Hollow optical fiber induced solar cells with optical energy storage and conversion.
Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei
2017-11-09
Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.
Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics
NASA Astrophysics Data System (ADS)
Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong
2017-12-01
In this study, (1-x)SrTiO3-x(Bi0.48La0.02Na0.48Li0.02Ti0.98Zr0.02O3) [(1-x)ST-xBLNLTZ] lead-free ceramics with x = 0-0.4 were designed and fabricated using the tape casting process and the subsequent conventional solid-state sintering method. The (1-x)ST-xBLNLTZ ceramics are characterized by the excellent frequency stability of the dielectric constant, large maximum polarization (Pmax), low remnant polarization (Pr), and slim polarization-electric field (P-E) loops. For the composition of x = 0.4, Pmax is increased to 30.35 μC/cm2, 3.82 times higher than that of pure SrTiO3 (7.95 μC/cm2). The breakdown strength is larger than 200 kV/cm for all the samples. The sample with x = 0.1 exhibits a high recoverable energy storage density (Wrec) of 2.59 J/cm3 and a high energy storage efficiency (η) of 85% simultaneously. The results demonstrate that the (1-x)ST-xBLNLTZ ceramics are promising lead-free materials for high energy storage applications.
Applications of superconductor technologies to transportation
NASA Astrophysics Data System (ADS)
Rote, D. M.; Herring, J. S.; Sheahen, T. P.
1989-06-01
This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.
Pooling the resources of the CMS Tier-1 sites
Apyan, A.; Badillo, J.; Cruz, J. Diaz; ...
2015-12-23
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Pooling the resources of the CMS Tier-1 sites
NASA Astrophysics Data System (ADS)
Apyan, A.; Badillo, J.; Diaz Cruz, J.; Gadrat, S.; Gutsche, O.; Holzman, B.; Lahiff, A.; Magini, N.; Mason, D.; Perez, A.; Stober, F.; Taneja, S.; Taze, M.; Wissing, C.
2015-12-01
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community. The long shutdown of the LHC in 2013-2014 was an opportunity to revisit this mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems. With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Finally, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape. In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.
DNA MemoChip: Long-Term and High Capacity Information Storage and Select Retrieval.
Stefano, George B; Wang, Fuzhou; Kream, Richard M
2018-02-26
Over the course of history, human beings have never stopped seeking effective methods for information storage. From rocks to paper, and through the past several decades of using computer disks, USB sticks, and on to the thin silicon "chips" and "cloud" storage of today, it would seem that we have reached an era of efficiency for managing innumerable and ever-expanding data. Astonishingly, when tracing this technological path, one realizes that our ancient methods of informational storage far outlast paper (10,000 vs. 1,000 years, respectively), let alone the computer-based memory devices that only last, on average, 5 to 25 years. During this time of fast-paced information generation, it becomes increasingly difficult for current storage methods to retain such massive amounts of data, and to maintain appropriate speeds with which to retrieve it, especially when in demand by a large number of users. Others have proposed that DNA-based information storage provides a way forward for information retention as a result of its temporal stability. It is now evident that DNA represents a potentially economical and sustainable mechanism for storing information, as demonstrated by its decoding from a 700,000 year-old horse genome. The fact that the human genome is present in a cell, containing also the varied mitochondrial genome, indicates DNA's great potential for large data storage in a 'smaller' space.
DNA MemoChip: Long-Term and High Capacity Information Storage and Select Retrieval
Wang, Fuzhou; Kream, Richard M.
2018-01-01
Over the course of history, human beings have never stopped seeking effective methods for information storage. From rocks to paper, and through the past several decades of using computer disks, USB sticks, and on to the thin silicon “chips” and “cloud” storage of today, it would seem that we have reached an era of efficiency for managing innumerable and ever-expanding data. Astonishingly, when tracing this technological path, one realizes that our ancient methods of informational storage far outlast paper (10,000 vs. 1,000 years, respectively), let alone the computer-based memory devices that only last, on average, 5 to 25 years. During this time of fast-paced information generation, it becomes increasingly difficult for current storage methods to retain such massive amounts of data, and to maintain appropriate speeds with which to retrieve it, especially when in demand by a large number of users. Others have proposed that DNA-based information storage provides a way forward for information retention as a result of its temporal stability. It is now evident that DNA represents a potentially economical and sustainable mechanism for storing information, as demonstrated by its decoding from a 700,000 year-old horse genome. The fact that the human genome is present in a cell, containing also the varied mitochondrial genome, indicates DNA’s great potential for large data storage in a ‘smaller’ space. PMID:29481548
Data Management, the Victorian era child of the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farber, Rob
2007-03-30
Do you remember when a gigabyte disk drive was “a lot” of storage in that by-gone age of the 20th century? Still in our first decade of the 21st century, major supercomputer sites now speak of storage in terms of petabytes, 1015 bytes, or six orders of magnitude increase in capacity over a gigabyte! Unlike our archaic “big” disk drive where all the data was in one place, HPC storage is now distributed across many machines and even across the Internet. Collaborative research engages many scientists who need to find and use each others data, preferably in an automated fashion,more » which complicates an already muddled problem.« less
Cyclic high temperature heat storage using borehole heat exchangers
NASA Astrophysics Data System (ADS)
Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian
2016-04-01
The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for varying storage cycle times, operating conditions and storage set-ups. A sensitivity analysis shows that storage efficiency strongly depends on the number of BHEs composing the storage site and the cycle time. Using a half-yearly cycle of heat injection and extraction with the maximum possible rates shows that the fraction of recovered heat increases with the number of storage cycles used, as initial losses due to heat conduction become smaller. Also, overall recovery rates of 70 to 80% are possible in the set-ups investigated. Temperature distribution in the geological heat storage site is most sensitive to the thermal conductivity of both borehole grouting and storage formation, while storage efficiency is dominated by the thermal conductivity of the storage formation. For the large cycle times of 6 months each used, heat capacity is less sensitive than the heat conductivity. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
Records Management with Optical Disk Technology: Now Is the Time.
ERIC Educational Resources Information Center
Retherford, April; Williams, W. Wes
1991-01-01
The University of Kansas record management system using optical disk storage in a network environment and the selection process used to meet existing hardware and budgeting requirements are described. Viability of the technology, document legality, and difficulties encountered during implementation are discussed. (Author/MSE)
NASA Astrophysics Data System (ADS)
Wang, Qingze; Chen, Xingying; Ji, Li; Liao, Yingchen; Yu, Kun
2017-05-01
The air-conditioning system of office building is a large power consumption terminal equipment, whose unreasonable operation mode leads to low energy efficiency. Realizing the optimization of the air-conditioning system has become one of the important research contents of the electric power demand response. In this paper, in order to save electricity cost and improve energy efficiency, bi-level optimization method of air-conditioning system based on TOU price is put forward by using the energy storage characteristics of the office building itself. In the upper level, the operation mode of the air-conditioning system is optimized in order to minimize the uses’ electricity cost in the premise of ensuring user’ comfort according to the information of outdoor temperature and TOU price, and the cooling load of the air-conditioning is output to the lower level; In the lower level, the distribution mode of cooling load among the multi chillers is optimized in order to maximize the energy efficiency according to the characteristics of each chiller. Finally, the experimental results under different modes demonstrate that the strategy can improve the energy efficiency of chillers and save the electricity cost for users.
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan
2015-05-01
This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
Design and performance of energy efficient propellers for Mach 0.8 cruise
NASA Technical Reports Server (NTRS)
Mikkelson, D. C.; Blaha, B. J.; Mitchell, G. A.; Wikete, J. E.
1977-01-01
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integrated propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.
Design and performance of energy efficient propellers for Mach 0. 8 cruise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelson, D.C.; Blaha, B.J.; Mitchell, G.A.
1977-01-01
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integratedmore » propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.« less
Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.
Li, Feng; Zhou, Zhen
2018-02-01
High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity
Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; ...
2014-12-31
We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less
Performance analysis of phase-change material storage unit for both heating and cooling of buildings
NASA Astrophysics Data System (ADS)
Waqas, Adeel; Ali, Majid; Ud Din, Zia
2017-04-01
Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.
Schimpe, Michael; Naumann, Maik; Truong, Nam; ...
2017-11-08
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimpe, Michael; Naumann, Maik; Truong, Nam
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... Sequestration--Geothermal Energy--Science Joint Workshop AGENCY: Office of Energy Efficiency and Renewable Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Carbon Storage and Geothermal Energy, June 15-16, 2010. Experts from industry, academia, national labs...
A report on the ST ScI optical disk workstation
NASA Technical Reports Server (NTRS)
1985-01-01
The STScI optical disk project was designed to explore the options, opportunities and problems presented by the optical disk technology, and to see if optical disks are a viable, and inexpensive, means of storing the large amount of data which are found in astronomical digital imagery. A separate workstation was purchased on which the development can be done and serves as an astronomical image processing computer, incorporating the optical disks into the solution of standard image processing tasks. It is indicated that small workstations can be powerful tools for image processing, and that astronomical image processing may be more conveniently and cost-effectively performed on microcomputers than on the mainframe and super-minicomputers. The optical disks provide unique capabilities in data storage.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.
Sánchez, Joan-Pau; McInnes, Colin R
2015-01-01
Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point
Sánchez, Joan-Pau; McInnes, Colin R.
2015-01-01
Within the context of anthropogenic climate change, but also considering the Earth’s natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth’s radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth’s climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes. PMID:26309047
LIQHYSMES - spectral power distributions of imbalances and implications for the SMES
NASA Astrophysics Data System (ADS)
Sander, M.; Gehring, R.; Neumann, H.
2014-05-01
LIQHYSMES, the recently proposed hybrid energy storage concept for variable renewable energies, combines the storage of LIQuid HYdrogen (LH2) with Superconducting Magnetic Energy Storage (SMES). LH2 as the bulk energy carrier is used for the large scale stationary longer-term energy storage, and the SMES cooled by the LH2 bath, provides highest power over shorter periods and at superior efficiencies. Both together contribute to the balancing of electric load or supply fluctuations from seconds to several hours, days or even weeks. Here different spectral power distributions of such imbalances between electricity supply and load reflecting different sources of fluctuations in the range between 1 sec and 15 minutes are considered. Some related implications for MgB2-based 100 MW-SMES operated at maximum fields of 2 T and 4 T, are considered for these buffering scenarios. Requirements as regards the storage capacity and correspondingly the minimum size of the LH2 storage tank are derived. The related loss contributions with a particular focus on the ramping losses are analysed.
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 90.704 - Maintenance of records; submission of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 90.704 - Maintenance of records; submission of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 90.704 - Maintenance of records; submission of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 90.704 - Maintenance of records; submission of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
A new class of solid oxide metal-air redox batteries for advanced stationary energy storage
NASA Astrophysics Data System (ADS)
Zhao, Xuan
Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this study, the constituted battery of which is termed solid oxide iron-air redox battery (or SOFeARB). The first objective of this PhD work is aimed at demonstrating the proof-of-concept. By combining a commercial anode-supported tubular RSOFC and Fe-based redox couple, the first generation SOFeARB operated at 800°C has been demonstrated to produce an energy capacity of 348Wh/kg-Fe and round-trip efficiency of 91.5% over twenty stable charge/discharge cycles. Further system optimization leads to an 800°C-SOFeARB comprised of a commercial electrolyte-supported planar RSOFC and Fe-based redox couple; this configuration has become a standard testing system for later studies. The 800°C planar SOFeARBs have been investigated under various current densities and cycle durations. The results show that metal utilization plays a determining role in balancing the energy capacity and round-trip efficiency. Increasing metal utilization increases the energy capacity, but at the expense of lowered round-trip efficiency. The second objective of this work is to lower the operating temperature of SOMARBs to intermediate temperature (IT) range (e.g. 550-650°C). Two changes were made in order to enable operation at IT range: introduction of optimized Sr- and Mg- doped LaGaO3 (LSGM) based RSOFC by tape-casting and infiltration techniques, and optimization of morphology of ESU through innovative synthesis methods. The optimized battery can reach a round-trip efficiency as high as 82.5% and specific energy 91% of the theoretical value in the IT range. The third objective of this work is to improve the cyclic durability and stability of IT-SOFeARBs. The results show that the performance, reversibility and stability of a 550°C-SOFeARB can be significantly improved by nanostructuring energy storage materials synthesized from a low-cost carbothermic reaction. The 100-cycle test explicitly shows an improvement of 12.5%, 27.8% and 214% in specific energy, round-trip efficiency and stability, respectively, over the baseline battery. The fourth objective of this work is to explore metal-air chemistries other than Fe-air. The two new metal-air chemistries of choice are W-air and Mo-air. The selection of W and Mo as the redox metals is based on their faster kinetic rate and higher specific densities per oxygen than the Fe-based counterparts. Each battery was electrochemically compared with the baseline SOFeARB at a specific temperature. The results show that these heavy metals based SOMARBs can indeed produce higher energy density (capacity per unit volume) than the baseline battery SOFeARB by allowing more mass loading and higher oxygen storage capacity. The better kinetic rates also lead to a higher cycle efficiency and cycle stability. In summary, this dissertation work demonstrates a new energy storage mechanism that has great potential for stationary applications. The new storage battery has been studied in the perspectives of theoretical assessment, materials development, parametric optimization, and test methodology. According to these systematic investigations, a set of standard testing and characterization protocols has been configured for future testing of larger systems. Thermodynamics and kinetics have constantly been employed to guide materials selection and electrochemical testing. The experimental results are often found consistent with the theoretical predictions.
Flywheel Energy Storage Technology Being Developed
NASA Technical Reports Server (NTRS)
Wolff, Frederick J.
2001-01-01
A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).
The energetic implications of curtailing versus storing wind- and solar-generated electricity
NASA Astrophysics Data System (ADS)
Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.
2013-12-01
Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10,000--18,000 (2-20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will also further improve the energetic performance of batteries. While this paper focuses on only one benefit of energy storage, the value of not curtailing electricity generation during periods of excess production, similar analyses could be used to draw conclusions about other benefits as well.
Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.
Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao
2017-11-14
Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in
With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{submore » 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.« less
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
Emerging Network Storage Management Standards for Intelligent Data Storage Subsystems
NASA Technical Reports Server (NTRS)
Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don
1998-01-01
This paper discusses the need for intelligent storage devices and subsystems that can provide data integrity metadata, the content of the existing data integrity standard for optical disks and techniques and metadata to verify stored data on optical tapes developed by the Association for Information and Image Management (AIIM) Optical Tape Committee.
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...
2017-05-04
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
Asymmetric and Stochastic Behavior in Magnetic Vortices Studied by Soft X-ray Microscopy
NASA Astrophysics Data System (ADS)
Im, Mi-Young
Asymmetry and stochasticity in spin processes are not only long-standing fundamental issues but also highly relevant to technological applications of nanomagnetic structures to memory and storage nanodevices. Those nontrivial phenomena have been studied by direct imaging of spin structures in magnetic vortices utilizing magnetic transmission soft x-ray microscopy (BL6.1.2 at ALS). Magnetic vortices have attracted enormous scientific interests due to their fascinating spin structures consisting of circularity rotating clockwise (c = + 1) or counter-clockwise (c = -1) and polarity pointing either up (p = + 1) or down (p = -1). We observed a symmetry breaking in the formation process of vortex structures in circular permalloy (Ni80Fe20) disks. The generation rates of two different vortex groups with the signature of cp = + 1 and cp =-1 are completely asymmetric. The asymmetric nature was interpreted to be triggered by ``intrinsic'' Dzyaloshinskii-Moriya interaction (DMI) arising from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface and ``extrinsic'' factors such as roughness and defects. We also investigated the stochastic behavior of vortex creation in the arrays of asymmetric disks. The stochasticity was found to be very sensitive to the geometry of disk arrays, particularly interdisk distance. The experimentally observed phenomenon couldn't be explained by thermal fluctuation effect, which has been considered as a main reason for the stochastic behavior in spin processes. We demonstrated for the first time that the ultrafast dynamics at the early stage of vortex creation, which has a character of classical chaos significantly affects the stochastic nature observed at the steady state in asymmetric disks. This work provided the new perspective of dynamics as a critical factor contributing to the stochasticity in spin processes and also the possibility for the control of the intrinsic stochastic nature by optimizing the design of asymmetric disk arrays. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by Leading Foreign Research Institute Recruitment Program through the NRF.
The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2
NASA Astrophysics Data System (ADS)
Ivanova, P.; Linkevics, O.; Cers, A.
2015-12-01
The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.
Buscheck, Thomas A.; Bielicki, Jeffrey M.; Edmunds, Thomas A.; ...
2016-05-05
We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic carbon dioxide (CO 2) storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as excess energy on electric grids. Captured CO 2 is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide a supplemental working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells create a hydraulic mound to store pressure, CO 2, and thermal energy. This energy storage canmore » take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded and thus enable higher penetration of variable renewable energy technologies (e.g., wind, solar). CO 2 stored in the subsurface functions as a cushion gas to provide enormous pressure-storage capacity and displace large quantities of brine, some of which can be treated for a variety of beneficial uses. Geothermal power and energy-storage applications may generate enough revenues to compensate for CO 2 capture costs. While our approach can use nitrogen (N 2), in addition to CO 2, as a supplemental fluid, and store thermal energy, this study focuses using CO 2 for geothermal energy production and grid-scale energy storage. We conduct a techno-economic assessment to determine the levelized cost of electricity of using this approach to generate geothermal power. We present a reservoir pressure-management strategy that diverts a small portion of the produced brine for beneficial consumptive use to reduce the pumping cost of fluid recirculation, while reducing the risk of seismicity, caprock fracture, and CO 2 leakage.« less
Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won
2015-12-09
We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, Takashi J.; Tanaka, Masaomi; Ohsuga, Ken
We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit–cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kineticmore » energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1 c , where c is the speed of light, the ejecta kinetic energy is expected to be ≃10{sup 52} erg when ≃1 M {sub ⊙} is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (∼10{sup 44} erg s{sup −1}) and timescales (∼100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit–cycle oscillations, they become bright again in coming years or decades.« less
Reference System of DNA and Protein Sequences on CD-ROM
NASA Astrophysics Data System (ADS)
Nasu, Hisanori; Ito, Toshiaki
DNASIS-DBREF31 is a database for DNA and Protein sequences in the form of optical Compact Disk (CD) ROM, developed and commercialized by Hitachi Software Engineering Co., Ltd. Both nucleic acid base sequences and protein amino acid sequences can be retrieved from a single CD-ROM. Existing database is offered in the form of on-line service, floppy disks, or magnetic tape, all of which have some problems or other, such as usability or storage capacity. DNASIS-DBREF31 newly adopt a CD-ROM as a database device to realize a mass storage and personal use of the database.
Alkali metal/halide thermal energy storage systems performance evaluation
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Stearns, J. W.
1986-01-01
A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Design of State-of-the-art Flow Cells for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping
The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is storedmore » in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.« less
Proposal for a multilayer read-only-memory optical disk structure.
Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi
2006-03-10
Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 microm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of < or = 7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes.
NASA Astrophysics Data System (ADS)
Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan
2015-10-01
In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.
Project acceleration : making the leap from pilot to commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borneo, Daniel R.
2010-05-01
Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.
Optimal Chunking of Large Multidimensional Arrays for Data Warehousing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otoo, Ekow J; Otoo, Ekow J.; Rotem, Doron
2008-02-15
Very large multidimensional arrays are commonly used in data intensive scientific computations as well as on-line analytical processingapplications referred to as MOLAP. The storage organization of such arrays on disks is done by partitioning the large global array into fixed size sub-arrays called chunks or tiles that form the units of data transfer between disk and memory. Typical queries involve the retrieval of sub-arrays in a manner that access all chunks that overlap the query results. An important metric of the storage efficiency is the expected number of chunks retrieved over all such queries. The question that immediately arises is"whatmore » shapes of array chunks give the minimum expected number of chunks over a query workload?" The problem of optimal chunking was first introduced by Sarawagi and Stonebraker who gave an approximate solution. In this paper we develop exact mathematical models of the problem and provide exact solutions using steepest descent and geometric programming methods. Experimental results, using synthetic and real life workloads, show that our solutions are consistently within than 2.0percent of the true number of chunks retrieved for any number of dimensions. In contrast, the approximate solution of Sarawagi and Stonebraker can deviate considerably from the true result with increasing number of dimensions and also may lead to suboptimal chunk shapes.« less
Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei
2015-03-01
A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
Next generation molten NaI batteries for grid scale energy storage
NASA Astrophysics Data System (ADS)
Small, Leo J.; Eccleston, Alexis; Lamb, Joshua; Read, Andrew C.; Robins, Matthew; Meaders, Thomas; Ingersoll, David; Clem, Paul G.; Bhavaraju, Sai; Spoerke, Erik D.
2017-08-01
Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3-xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120-180 °C) and boasts an energy density of >150 Wh kg-1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.
NASA Astrophysics Data System (ADS)
Peterson, Brian Andrew
Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
HEP Data Grid Applications in Korea
NASA Astrophysics Data System (ADS)
Cho, Kihyeon; Oh, Youngdo; Son, Dongchul; Kim, Bockjoo; Lee, Sangsan
2003-04-01
We will introduce the national HEP Data Grid applications in Korea. Through a five-year HEP Data Grid project (2002-2006) for CMS, AMS, CDF, PHENIX, K2K and Belle experiments in Korea, the Center for High Energy Physics, Kyungpook National University in Korea will construct the 1,000 PC cluster and related storage system such as 1,200 TByte Raid disk system. This project includes one of the master plan to construct Asia Regional Data Center by 2006 for the CMS and AMS Experiments and DCAF(DeCentralized Analysis Farm) for the CDF Experiments. During the first year of the project, we have constructed a cluster of around 200 CPU's with a 50 TBytes of a storage system. We will present our first year's experience of the software and hardware applications for HEP Data Grid of EDG and SAM Grid testbeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, WC; Zhuang, ZB; Gao, MR
2015-01-08
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less
Hybrid Geo-Energy Systems for Energy Storage and Dispatchable Renewable and Low-Carbon Electricity
NASA Astrophysics Data System (ADS)
Buscheck, Thomas; Bielicki, Jeffrey; Ogland-Hand, Jonathan; Hao, Yue; Sun, Yunwei; Randolph, Jimmy; Saar, Martin
2015-04-01
Three primary challenges for energy systems are to (1) reduce the amount of carbon dioxide (CO2) being emitted to the atmosphere, (2) increase the penetration of renewable energy technologies, and (3) reduce the water intensity of energy production. Integrating variable renewable energy sources (wind, sunlight) into electric grids requires advances in energy storage approaches, which are currently expensive, and tend to have limited capacity and/or geographic deployment potential. Our approach uses CO2, that would otherwise be emitted to the atmosphere, to generate electricity from geothermal resources, to store excess energy from variable (wind, solar photovoltaic) and thermal (nuclear, fossil, concentrated solar power) sources, and to thus enable increased penetration of renewable energy technologies. We take advantage of the enormous fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy. Our approach uses permeable geologic formations that are vertically bounded by impermeable layers to constrain pressure and the migration of buoyant CO2 and heated brine. Supercritical CO2 captured from fossil power plants is injected into these formations as a cushion gas to store pressure (bulk energy), provide an heat efficient extraction fluid for efficient power conversion in Brayton Cycle turbines, and generate artesian flow of brine -- which can be used to cool power plants and/or pre-heated (thermal storage) prior to re-injection. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, and thermal energy. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Time-shifting the parasitic loads from pressurizing and injecting brine and CO2 provides bulk energy storage over days to months, whereas time-shifting thermal-energy supply provides dispatchable power and addresses seasonal mismatches between supply and demand. These conditions enable efficient fluid recirculation, heat extraction, power conversion, and add operational flexibility to dispatch electricity. Overall, the system can (a) levelize concentrating solar power, (b) mitigate variability of wind and solar power, (c) reduce water and carbon intensity of energy systems, (d) avoid wasting or curtailing high-capital cost, low-carbon energy resources and (e) allow low-carbon, base-load power to operate at full capacity. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been funded by the U.S. National Science Foundation Sustainable Energy Pathways Program (1230691) and the U.S. Department of Energy Geothermal Technologies Office (DE-FOA-0000336).
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
NASA Astrophysics Data System (ADS)
Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.
2016-05-01
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.
Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator
NASA Astrophysics Data System (ADS)
Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo
2017-03-01
A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.
Evolution of Archival Storage (from Tape to Memory)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2015-01-01
Over the last three decades, there has been a significant evolution in storage technologies supporting archival of remote sensing data. This section provides a brief survey of how these technologies have evolved. Three main technologies are considered - tape, hard disk and solid state disk. Their historical evolution is traced, summarizing how reductions in cost have helped being able to store larger volumes of data on faster media. The cost per GB of media is only one of the considerations in determining the best approach to archival storage. Active archives generally require faster response to user requests for data than permanent archives. The archive costs have to consider facilities and other capital costs, operations costs, software licenses, utilities costs, etc. For meeting requirements in any organization, typically a mix of technologies is needed.
Chance-constrained economic dispatch with renewable energy and storage
Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.; ...
2018-04-19
Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less
Chance-constrained economic dispatch with renewable energy and storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.
Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less
Weather Driven Renewable Energy Analysis, Modeling New Technologies
NASA Astrophysics Data System (ADS)
Paine, J.; Clack, C.; Picciano, P.; Terry, L.
2015-12-01
Carbon emission reduction is essential to hampering anthropogenic climate change. While there are several methods to broach carbon reductions, the National Energy with Weather System (NEWS) model focuses on limiting electrical generation emissions by way of a national high-voltage direct-current transmission that takes advantage of the strengths of different regions in terms of variable sources of energy. Specifically, we focus upon modeling concentrating solar power (CSP) as another source to contribute to the electric grid. Power tower solar fields are optimized taking into account high spatial and temporal resolution, 13km and hourly, numerical weather prediction model data gathered by NOAA from the years of 2006-2008. Importantly, the optimization of these CSP power plants takes into consideration factors that decrease the optical efficiency of the heliostats reflecting solar irradiance. For example, cosine efficiency, atmospheric attenuation, and shadowing are shown here; however, it should be noted that they are not the only limiting factors. While solar photovoltaic plants can be combined for similar efficiency to the power tower and currently at a lower cost, they do not have a cost-effective capability to provide electricity when there are interruptions in solar irradiance. Power towers rely on a heat transfer fluid, which can be used for thermal storage changing the cost efficiency of this energy source. Thermal storage increases the electric stability that many other renewable energy sources lack, and thus, the ability to choose between direct electric conversion and thermal storage is discussed. The figure shown is a test model of a CSP plant made up of heliostats. The colors show the optical efficiency of each heliostat at a single time of the day.
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Cassen, Patrick; Durisen, Richard H.; Link, Robert
2000-02-01
In this paper, the effects of thermal energetics on the evolution of gravitationally unstable protostellar disks are investigated by means of three-dimensional hydrodynamic calculations. The initial states for the simulations correspond to stars with equilibrium, self-gravitating disks that are formed early in the collapse of a uniformly rotating, singular isothermal sphere. In a previous paper (Pickett et al.), it was shown that the nonlinear development of locally isentropic disturbances can be radically different than that of locally isothermal disturbances, even though growth in the linear regime may be similar. When multiple low-order modes grew rapidly in the star and inner disk region and saturated at moderate nonlinear levels in the isentropic evolution, the same modes in the isothermal evolution led to shredding of the disk into dense arclets and ejection of material. In this paper, we (1) examine the fate of the shredded disk with calculations at higher spatial resolution than the previous simulations had and (2) follow the evolution of the same initial state using an internal energy equation rather than the assumption of locally isentropic or locally isothermal conditions. Despite the complex structure of the nonlinear features that developed in the violently unstable isothermal disk referred to above, our previous calculation produced no gravitationally independent, long-lived stellar or planetary companions. The higher resolution calculations presented here confirm this result. When the disk of this model is cooled further, prompting even more violent instabilities, the end result is qualitatively the same--a shredded disk. At least for the disks studied here, it is difficult to produce condensations of material that do not shear away into fragmented spirals. It is argued that the ultimate fate of such fragments depends on how readily local internal energy is lost. On the other hand, if a dynamically unstable disk is to survive for very long times without shredding, then some mechanism must mitigate and control any violent phenomena that do occur. The prior simulations demonstrated a marked difference in final outcome, depending upon the efficiency of disk cooling under two different, idealized thermal conditions. We have here incorporated an internal energy equation that allows for arbitrary heating and cooling. Simulations are presented for adiabatic models with and without artificial viscosity. The artificial viscosity accounts for dissipation and heating due to shocks in the code physics. The expected nonaxisymmetric instabilities occur and grow as before in these energy equation evolutions. When artificial viscosity is not present, the model protostar displays behavior between the locally isentropic and locally isothermal cases of the last paper; a strong two-armed spiral grows to nonlinear amplitudes and saturates at a level higher than in the locally isentropic case. Since the amplitude of the spiral disturbance is large, it is expected that continued transport of material and angular momentum will occur well after the end of the calculation at nearly four outer rotation periods. The spiral is not strong enough, however, to disrupt the disk as in the locally isothermal case. When artificial viscosity is present, the same disturbances reach moderate nonlinear amplitude, then heat the gas, which in turn greatly reduces their strength and effects on the disk. Additional heating in the low-density regions of the disk also leads to a gentle flow of material vertically off the computational grid. The energy equation and high-resolution isothermal calculations are used to discuss the importance and relevance of the different thermal regimes so far examined, with particular attention to applications to star and planet formation.
Anti-Ferroelectric Ceramics for High Energy Density Capacitors.
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R
2015-11-25
With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.
NASA Astrophysics Data System (ADS)
Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat
2017-04-01
The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.
Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.
2015-01-01
With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694
Energy Conscious Design: Educational Facilities. [Brief No.] 1.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
An energy task group of the American Institute of Architects discusses design features and options that educational facility designers can use to create an energy efficient school building. Design elements cover the building envelope, energy storage system, hydronic heating/cooling systems, solar energy collection, building orientation and shape,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... efficiency; (7) optimization of generation and energy storage ranging from a 4 unit, 500 megawatts (MW) (4... brief comments up to 6,000 characters, without prior registration, using the eComment system at http...
How to Use Removable Mass Storage Memory Devices
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2004-01-01
Mass storage refers to the variety of ways to keep large amounts of information that are used on a computer. Over the years, the removable storage devices have grown smaller, increased in capacity, and transferred the information to the computer faster. The 8" floppy disk of the 1960s stored 100 kilobytes, or about 60 typewritten, double-spaced…
Facing the Limitations of Electronic Document Handling.
ERIC Educational Resources Information Center
Moralee, Dennis
1985-01-01
This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)
Data storage for managing the health enterprise and achieving business continuity.
Hinegardner, Sam
2003-01-01
As organizations move away from a silo mentality to a vision of enterprise-level information, more healthcare IT departments are rejecting the idea of information storage as an isolated, system-by-system solution. IT executives want storage solutions that act as a strategic element of an IT infrastructure, centralizing storage management activities to effectively reduce operational overhead and costs. This article focuses on three areas of enterprise storage: tape, disk, and disaster avoidance.
Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong
2017-09-06
A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO 3 ·H 2 O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm 2 C -1 ). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm 2 ) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.
Storing Renewable Energy in the Hydrogen Cycle.
Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas
2015-01-01
An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory
Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use ofmore » electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.« less
Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.
Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun
2015-06-24
Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.
Maintaining cultures of wood-rotting fungi.
E.E. Nelson; H.A. Fay
1985-01-01
Phellinus weirii cultures were stored successfully for 10 years in small alder (Alnus rubra Bong.) disks at 2 °C. The six isolates tested appeared morphologically identical and after 10 years varied little in growth rate from those stored on malt agar slants. Long-term storage on alder disks reduces the time required for...
Holographic Compact Disk Read-Only Memories
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi
1996-01-01
Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.
An Optical Disk-Based Information Retrieval System.
ERIC Educational Resources Information Center
Bender, Avi
1988-01-01
Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…
Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II
NASA Astrophysics Data System (ADS)
Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.
2017-07-01
Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (<100 AU) disk is detected around HD 142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (≳5 AU). There is no evidence supporting the evolution from Group I to Group II. Conclusions: Group II disks are not evolved versions of the Group I disks. Within the Group II disks, very different geometries exist (both self-shadowed and compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).
NASA Astrophysics Data System (ADS)
Ginsburg, B. R.
The design criteria, materials, and initial test results of composite flywheels produced under DOE/Sandia contract are reported. The flywheels were required to store from 1-5 kWh with a total energy density of 80 W-h/kg at the maximum operational speed. The maximum diameter was set at 0.6 m, coupled to a maximum thickness of 0.2 m. A maximum running time at full speed of 1000 hr, in addition to a 10,000 cycle lifetime was mandated, together with a radial overlap in the material. The unit selected was a circumferentially wound composite rim made of graphite/epoxy mounted on an aluminum mandrel ring connected to an aluminum hub consisting of two constant stress disks. A tangentially wound graphite/epoxy overlap covered the rings. All conditions, i.e., rotation at 22,000 rpm and a measured storage of 1.94 kWh were verified in the first test series, although a second flywheel failed in subsequent tests when the temperature was inadvertantly allowed to rise from 15 F to over 200 F. Retest of the first flywheel again satisfied design goals. The units are considered as ideal for coupling with solar energy and wind turbine systems.