Sample records for energy-oriented problems progress

  1. The Behavior of Matter under Nonequilibrium Conditions: Fundamental Aspects and Applications in Energy-oriented Problems: Progress Report for Period September 1984--November 1987

    DOE R&D Accomplishments Database

    Prigogine, I.

    1987-10-07

    This report briefly discusses progress on the following topics: state selection dynamics; polymerization under nonequilibrium conditions; inhomogeneous fluctuations in hydrodynamics and in completely mixed reactors; homoclinic bifurcations and mixed-mode oscillations; intrinsic randomness and spontaneous symmetry breaking in explosive systems; and microscopic means of irreversibility.

  2. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  3. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  4. Connecting Research on Retinitis Pigmentosa to the Practice of Orientation and Mobility.

    ERIC Educational Resources Information Center

    Geruschat, Duane R.; Turano, Kathleen A.

    2002-01-01

    Retinitis pigmentosa (RP) causes restriction of the visual field, progressive vision loss, and night blindness. This article presents an overview of the most common problems in orientation and mobility (O&M) for individuals with RP, appropriate interventions, vision science discoveries related to RP, and the impact of RP on functional visual…

  5. Handbook of International Research in Mathematics Education.

    ERIC Educational Resources Information Center

    English, Lyn D., Ed.

    This handbook brings together important mathematics education research that makes a difference in both theory and practice, research that anticipates problems and necessary knowledge before they become impediments to progress, interprets future-oriented problems into researchable issues, presents the implications of research and theory development…

  6. Using dreams to assess clinical change during treatment.

    PubMed

    Glucksman, Myron L; Kramer, Milton

    2004-01-01

    This article describes several studies that examine the relationship between the manifest content of selected dreams reported by patients and their clinical progress during psychoanalytic and psychodynamically oriented treatment. There are a number of elements that dreaming and psychotherapy have in common: affect regulation; conflict resolution; problem-solving; self-awareness; mastery and adaptation. Four different studies examined the relationship between the manifest content of selected dreams and clinical progress during treatment. In each study, the ratings of manifest content and clinical progress by independent observers were rank-ordered and compared. In three of the four studies there was a significant correlation between the rankings of manifest content and the rankings of clinical progress. This finding suggests that the manifest content of dreams can be used as an independent variable to assess clinical progress during psychoanalytic and psychodynamically oriented treatment.

  7. A Portfolio of Energy Ideas: Science.

    ERIC Educational Resources Information Center

    Clark, Richard C., Ed.

    Presented are 10 science energy education units designed to help students learn how to turn science questions and problems about energy into experiments. Each unit focuses on subject-matter knowledge and on the logic and strategy of scientific problem solving. These teacher-oriented materials include an overview of each unit, background…

  8. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  9. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    NASA Astrophysics Data System (ADS)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  10. Teaching the Societal Dimension of Chemistry Using a Socio-Critical and Problem-Oriented Lesson Plan Based on Bioethanol Usage

    ERIC Educational Resources Information Center

    Feierabend, Timo; Eilks, Ingo

    2011-01-01

    This paper discusses a chemistry lesson plan based on the use of ethanol as an alternative and renewable energy source. The lessons were developed by participatory action research and follow a socio-critical and problem-oriented approach to chemistry teaching. This approach specifically focuses on the handling of scientific and technological…

  11. Progression to problem drinking among Mexican American and White European first-year college students: a multiple group analysis.

    PubMed

    Schweizer, C Amanda; Doran, Neal; Roesch, Scott C; Myers, Mark G

    2011-11-01

    Problem drinking during college is a well-known phenomenon. However, predictors of progression to problematic drinking, particularly among ethnic minorities such as Mexican Americans, have received limited research attention. The current study compared the rates and predictors of problem drinking progression from the first to the second year of college among four groups: Mexican American men, Mexican American women, White European men, and White European women (N = 215). At baseline, participants were all first-year college students who scored as nonproblem drinkers on the Young Adult Alcohol Problems Screening Test (YAAPST). Participants were classified as progressors or stable nondrinkers/nonproblem drinkers based on YAAPST scores 12 months later. Hypothesized predictors of progression included behavioral undercontrol, negative emotionality, alcohol use expectancies, and cultural orientation (Mexican American sample only). Differences were anticipated between gender and ethnic groups in both progression rates and predictors of progression. Twenty-nine percent of the sample progressed to problematic drinking; however, no differences emerged by gender or ethnicity. For the full sample, higher behavioral undercontrol and higher negative emotionality significantly predicted progression. Differences in predictors were not found across gender and ethnic subgroups. The hypothesis that rates of progression to problem drinking would differ among the four gender and ethnic groups was not supported. Thus, although White European men are most often identified as at high risk for alcohol use problems, the present findings indicate that women and Mexican American students also should be targeted for prevention and/or intervention.

  12. Measuring Knowledge Integration Learning of Energy Topics: A Two-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Liu, Ou Lydia; Ryoo, Kihyun; Linn, Marcia C.; Sato, Elissa; Svihla, Vanessa

    2015-01-01

    Although researchers call for inquiry learning in science, science assessments rarely capture the impact of inquiry instruction. This paper reports on the development and validation of assessments designed to measure middle-school students' progress in gaining integrated understanding of energy while studying an inquiry-oriented curriculum. The…

  13. Energy-efficient fault tolerance in multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is investigated, where tasks' main copies are executed ASAP while backup copies ALAP to reduce the overlapped execution of main and backup copies of the same task and thus reduce energy consumption. All proposed techniques are evaluated through extensive simulations and compared with other state-of-the-art approaches. The simulation results confirm that the proposed schemes can preserve the system reliability while still achieving substantial energy savings. Finally, for both SS and POED based Energy-Efficient Fault-Tolerant (EEFT) schemes, a series of recovery strategies are designed when more than one (transient and permanent) faults need to be tolerated.

  14. Do Children with Multiple Patterns of Problem Behavior Improve? The Effectiveness of an Intensive Bio-Behaviorally Oriented School-Based Behavioral Health Program

    ERIC Educational Resources Information Center

    Cautilli, Joseph; Harrington, Nadine; Gillam, Emma Vila; Denning, Jamie; Helwig, Ileana; Ettingoff, Andrea; Valdes, Antonio; Angert, Ashley

    2004-01-01

    Over the last thirty years, children's behavioral health services in the school have witnessed drastic progress. Over this time, medications for mental health problems have improved. In addition, empirically validated treatments, most of which have come from behavioral psychology, have made their way into Best Practice guidelines for the treatment…

  15. A Programming Environment Evaluation Methodology for Object-Oriented Systems. Ph.D Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Moreau, Dennis R.

    1987-01-01

    The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems.

  16. Physics and Modern Warfare: The Awkward Silence.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1980-01-01

    Discusses the great dependence of the present arms race on a healthy physics enterprise and the pervasive connections between pure and applied science and military needs. This discussion is intended to orient college students about some problems directly related to progress made in science. (HM)

  17. TEXAS ADULT MIGRANT EDUCATION. PROGRESS REPORT.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    THE TEXAS OFFICE OF OPPORTUNITY HAS DEVISED A PROGRAM TO MEET THE EDUCATIONAL PROBLEMS OF THE MIGRANT LABORER. BASIC EDUCATION PROVIDES READING, WRITING, AND ENGLISH INSTRUCTION, CITIZENSHIP AND SAFETY EDUCATION, OCCUPATIONAL ORIENTATION, AND GUIDANCE AND COUNSELING PROGRAMS. HOMEMAKING EDUCATION INCLUDES NUTRITION, CHILD GUIDANCE AND DEVELOPMENT,…

  18. Energy Metrics for State Government Buildings

    NASA Astrophysics Data System (ADS)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation as budget enhancement is found to be a particularly useful approach in political environments that are not always receptive to climate change oriented efforts. For example, the NC Utility Savings Initiative claims to have saved over $400 million in avoided tax costs. The case studies reveal a wide range of individual successes as a result of energy conservation efforts. Despite the successes found, results indicate that most states have not obtained or completely measured progress towards their energy reduction goals.

  19. A Phenomena-Oriented Environment for Teaching Process Modeling: Novel Modeling Software and Its Use in Problem Solving.

    ERIC Educational Resources Information Center

    Foss, Alan S.; Geurts, Kevin R.; Goodeve, Peter J.; Dahm, Kevin D.; Stephanopoulos, George; Bieszczad, Jerry; Koulouris, Alexandros

    1999-01-01

    Discusses a program that offers students a phenomenon-oriented environment expressed in the fundamental concepts and language of chemical engineering such as mass and energy balancing, phase equilibria, reaction stoichiometry and rate, modes of heat, and species transport. (CCM)

  20. Management Review: Progress and Challenges at the Defense Logistics Agency.

    DTIC Science & Technology

    1986-04-01

    with safety and worklife problems (warehousing schemes, replacement or improvement of equipment, loading dock shelters, and employee orientation systems... balances . Accuracy of DCASR Contingent The contingent liability record is one of the more important records Liability Records maintained by DCASRs because...needed for making management decisions and for certifying to the accu- racy of ULO balances . Problems in Data Reported to Based on our interviews with

  1. A Comparison of the Chinese and Indian Education Systems.

    ERIC Educational Resources Information Center

    Arnove, Robert F.

    1984-01-01

    Despite remarkable progress in education, China and India still face problems of massive illiteracy; lack of universal access to education; a hierarchical, elitist, examination-oriented system unrelated to economic needs and productive labor; a large number of unemployed school leavers; and dependence on foreign models, particularly at the higher…

  2. Effects of Generative Video on Students' Scientific Problem Posing. Draft.

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; Petrosino, Anthony

    A central premise of the discovery-learning and progressive education movements was that the child's own questions are the most appropriate starting point for instruction. Recent advances present new opportunities for discovery-oriented learning. This project has been attempting to create a classroom environment which affords students the…

  3. The reform of energy subsidies for the enhancement of marine sustainability: An empirical analysis of energy subsidies worldwide and an in-depth case study of South Korea's energy subsidy policies

    NASA Astrophysics Data System (ADS)

    Shim, Jae Hyun

    This dissertation seeks to raise awareness about harmful effects of fossil fuel and nuclear energy subsidies that have blocked transition from conventional energy to a decarbonized, renewable energy system. Today, humans face daunting challenges in the form of global warming, which results mainly from the burning of fossil fuels. To avoid catastrophe, the transition to a renewable energy regime should be an urgent priority; however, the reality is that the progress of renewable energy is very slow due to the various political and economic factors when compared to conventional energy resources. A chief factor is that the energy subsidy for fossil fuel and nuclear energy obstructs the "level playing field" for renewable energy. Energy subsidies for conventional energy can be understood in the context of the commodification paradigm, which regards nature as an object of conquest and supports the principle of more is better. Although fossil fuel energy damages the environment, economy, and social equity, all countries subsidize such energy, no matter the country's state of development. This holds true as much in the U.S. and the EU as in China, India and South Korea. The oceans, which cover 71% of the earth, are threatened by the activities of conventional energy, which are underpinned by subsidies. These subsidies have contributed to the destruction of the marine ecosystem through increased GHG emissions like CO2 and NOx which cause a sea temperature increase and coral bleaching. Subsidies also significantly affect fishery overexploitation, oil pollution, and thermal pollution. In-depth empirical analysis of South Korea showed how fossil fuel and nuclear energy activities have threatened marine sustainability through thermal pollution, algae bloom (red tides), overexploitation, and oil-related marine pollution. Reforming subsidies of fossil fuel and nuclear energy should be a global priority because of imminent of global warming. As strategies for energy subsidy reforms, first of all, humans need a new energy paradigm to replace the hitherto dominant commodification paradigm. On an international level, creation of an international renewable energy agency and creation of renewable funds will spur on energy subsidy reforms of all nations, especially developing countries. On a national level, government's role should change from growth-oriented economic policy to sustainable development that includes environmentally friendly energy systems. In terms of social welfare, energy subsidies should be transformed to direct income policy, which is more effective for the welfare of the poor. The South Korean government should exchange its current supply-oriented fishery policy, which relies heavily on energy subsidies, to a Marine Reserves policy and direct income policy. For successful energy subsidy reforms, the government, NGOs, and private market should cooperate. Specifically, NGOs' role in monitoring and pushing government's energy subsidy reform is invaluable, considering the limits of modern bureaucracy and the profit-oriented market character. Most environmental problems, including global warming, have a close relation with fossil fuel and nuclear energy use. Historically, these energy systems have become entrenched deeply in society through energy subsidy policy. Energy subsidy reforms are a key to the environmental problem and accelerated transition to renewable energy.

  4. Students' meaning making in science: solving energy resource problems in virtual worlds combined with spreadsheets to develop graphs

    NASA Astrophysics Data System (ADS)

    Krange, Ingeborg; Arnseth, Hans Christian

    2012-09-01

    The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource consumption. The data were gathered in 1st grade upper-secondary science classes and they constitute the basis for the interaction analysis of students' meaning making with representations. Our analyses demonstrate the difficulties involved in developing students' orientation toward more conceptual orientations to representations of the knowledge domain. Virtual worlds do not in themselves represent a solution to this problem.

  5. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  6. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  7. Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy

    NASA Astrophysics Data System (ADS)

    Consonni, V.; Rey, G.; Roussel, H.; Bellet, D.

    2012-02-01

    Polycrystalline fluorine-doped SnO2 thin films have been grown by ultrasonic spray pyrolysis with a thickness varying in the range of 40 to 600 nm. A texture transition from ⟨110⟩ to ⟨100⟩ and ⟨301⟩ crystallographic orientations has experimentally been shown by x-ray diffraction measurements as film thickness is increased, showing that a process of abnormal grain growth has occurred. The texture effects are considered within a thermodynamic approach, in which the minimization of total free energy constitutes the driving force for grain growth. For very small film thickness, it is found that the ⟨110⟩ preferred orientation is due to surface energy minimization, as the (110) planes have the lowest surface energy in the rutile structure. In contrast, as film thickness is increased, the ⟨100⟩ and ⟨301⟩ crystallographic orientations are progressively predominant, owing to elastic strain energy minimization in which the anisotropic character is considered in the elastic biaxial modulus. A texture map is eventually determined, revealing the expected texture as a function of elastic strain and film thickness.

  8. Considerations of persistence and security in CHOICES, an object-oriented operating system

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Madany, Peter W.

    1990-01-01

    The current design of the CHOICES persistent object implementation is summarized, and research in progress is outlined. CHOICES is implemented as an object-oriented system, and persistent objects appear to simplify and unify many functions of the system. It is demonstrated that persistent data can be accessed through an object-oriented file system model as efficiently as by an existing optimized commercial file system. The object-oriented file system can be specialized to provide an object store for persistent objects. The problems that arise in building an efficient persistent object scheme in a 32-bit virtual address space that only uses paging are described. Despite its limitations, the solution presented allows quite large numbers of objects to be active simultaneously, and permits sharing and efficient method calls.

  9. Energize It! An Ecologically Integrated Approach to the Study of the Digestive System and Energy Acquisition.

    ERIC Educational Resources Information Center

    Derting, Terry L.

    1992-01-01

    Develops a research-oriented method of studying the digestive system that integrates species' ecology with the form and function of this system. Uses problem-posing, problem-probing, and peer persuasion. Presents information for mammalian systems. (27 references) (MKR)

  10. Sociological Perspectives on Energy and Rural Development: A Review of Major Frameworks for Research on Developing Countries.

    ERIC Educational Resources Information Center

    Koppel, Bruce; Schlegel, Charles

    The principal sociological frameworks used in energy research on developing countries can be appraised in terms of the view of the energy-rural development problem that each framework implies. "Socio-Technical Analysis," which is used most in industrial and organizational sociology and in ecological anthropology, is oriented to the decomposition…

  11. From OO to FPGA :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Stephen; Palsberg, Jens; Brooks, Jeffrey

    Consumer electronics today such as cell phones often have one or more low-power FPGAs to assist with energy-intensive operations in order to reduce overall energy consumption and increase battery life. However, current techniques for programming FPGAs require people to be specially trained to do so. Ideally, software engineers can more readily take advantage of the benefits FPGAs offer by being able to program them using their existing skills, a common one being object-oriented programming. However, traditional techniques for compiling object-oriented languages are at odds with todays FPGA tools, which support neither pointers nor complex data structures. Open until now ismore » the problem of compiling an object-oriented language to an FPGA in a way that harnesses this potential for huge energy savings. In this paper, we present a new compilation technique that feeds into an existing FPGA tool chain and produces FPGAs with up to almost an order of magnitude in energy savings compared to a low-power microprocessor while still retaining comparable performance and area usage.« less

  12. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  13. Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks.

    PubMed

    Zhang, Guomei; Sun, Hao

    2016-12-16

    We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor's reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.

  14. Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks

    PubMed Central

    Zhang, Guomei; Sun, Hao

    2016-01-01

    We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor’s reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured. PMID:27999282

  15. Photography activities for developing students’ spatial orientation and spatial visualization

    NASA Astrophysics Data System (ADS)

    Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.

    2017-12-01

    Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.

  16. Predicting helix orientation for coiled-coil dimers

    PubMed Central

    Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.

    2008-01-01

    The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation - parallel vs. antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to asses the ability of five energy functions to recognize the correct fold. We also developed and tested three sequenced-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing ∼81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored. PMID:18506779

  17. Spin reorientation of a nonsymmetric body with energy dissipation

    NASA Technical Reports Server (NTRS)

    Cenker, R. J.

    1973-01-01

    Stable rotating semi-rigid bodies were demonstrated analytically, and verified in flights such as Explorer 1 and ATS-5 satellites. The problem arises from the two potential orientations which the final spin vector can take after large angle reorientation from minor to major axis, i.e., along the positive or negative axis of the maximum inertia. Reorientation of a satellite initially spinning about the minor axis using an energy dissipation device may require that the final spin orientation be controlled. Examples of possible applications are the Apogee Motor Assembly with Paired Satellites (AMAPS) configuration, where proper orientation of the thruster is required; and reorientation of ATS-5, where the spin sensitive nature of the despin device (yo-yo mechanism) requires that the final spin vector point is a specified direction.

  18. International Cooperation in Environmental Management and Rational Use of Natural Resources

    NASA Astrophysics Data System (ADS)

    Fedulova, E. A.; Korchagina, I. V.; Vik, S. V.; Kalinina, O. I.; Martyanov, V. L.

    2017-01-01

    The progress in technologies is developing towards the unlimited growth of production and consumption, wasteful use of natural resources and biosphere. These problems require adequate response such as international cooperation and integration of the efforts of authorities, scientists, representatives of educational system. Such cooperation is important to ensure the transition to the sustainable, ecologically-oriented practices of natural resources rational use. This is impossible without establishing a new environmental management system based upon formation of ecological competence of all scientific and technological progress participants among which the higher school scholars must play a leading role.

  19. LANGUAGE LEARNING--THE INTERMEDIATE PHASE. REPORTS OF THE WORKING COMMITTEES OF THE NORTHEAST CONFERENCE ON THE TEACHING OF FOREIGN LANGUAGES, 1963.

    ERIC Educational Resources Information Center

    BOTTIGLIA, WILLIAM F.

    THESE REPORTS OF THE WORKING COMMITTEES OF THE 1963 NORTHEAST CONFERENCE ON THE TEACHING OF FOREIGN LANGUAGES ANALYZE PROBLEMS CONFRONTING LANGUAGE TEACHERS AS THEY PROGRESS FROM THE AUDIOLINGUAL ORIENTATION OF THE ELEMENTARY LEVELS TO THE INTERMEDIATE PHASE IN A CONTINUUM OF LANGUAGE STUDY. IN AN ATTEMPT TO DISCOVER WHETHER BILINGUALISM CAN BE…

  20. Proceedings of the DOE chemical/hydrogen energy contractor review systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Chemical/hydrogen energy system contracts were reviewed. The review served as an effective means to (1) give all contracts an insight into the background and objectives of thirty-nine hydrogen-related tasks, (2) show the status of the studies or technical effort, (3) relate any problems that had impeded the progress, and (4) state projected solutions for resolving the identified problems.

  1. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  2. Measuring Knowledge Integration Learning of Energy Topics: A two-year longitudinal study

    NASA Astrophysics Data System (ADS)

    Liu, Ou Lydia; Ryoo, Kihyun; Linn, Marcia C.; Sato, Elissa; Svihla, Vanessa

    2015-05-01

    Although researchers call for inquiry learning in science, science assessments rarely capture the impact of inquiry instruction. This paper reports on the development and validation of assessments designed to measure middle-school students' progress in gaining integrated understanding of energy while studying an inquiry-oriented curriculum. The assessment development was guided by the knowledge integration framework. Over 2 years of implementation, more than 4,000 students from 4 schools participated in the study, including a cross-sectional and a longitudinal cohort. Results from item response modeling analyses revealed that: (a) the assessments demonstrated satisfactory psychometric properties in terms of reliability and validity; (b) both the cross-sectional and longitudinal cohorts made progress on integrating their understanding energy concepts; and (c) among many factors (e.g. gender, grade, school, and home language) associated with students' science performance, unit implementation was the strongest predictor.

  3. Energy Supply and Development: A Major Concern.

    ERIC Educational Resources Information Center

    Avery, J. S.

    1978-01-01

    Reviews (1) problems created by United States dependence on foreign oil, (2) recent progress in oil and natural gas development in the U.S., and (3) alternative sources of energy such as the sun, coal, and uranium. (AV)

  4. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less

  5. Britain and Energy Policy: Problems of Interdependence

    ERIC Educational Resources Information Center

    Walsh, John

    1973-01-01

    Discusses Britain's energy policies and changing energy sources since World War II. North Sea natural gas and oil should prevent shortages in the near future. Planning is complicated by Britain's entry into the European Common Market, questionable progress in nuclear production, and the uncertain availability of Middle Eastern oil. (JR)

  6. Energy for the new millennium.

    PubMed

    Goldemberg, J; Johansson, T B; Reddy, A K; Williams, R H

    2001-09-01

    The evolution of thinking about energy is discussed. When the authors began collaborating 20 years ago, energy was typically considered from a growth-oriented, supply-side perspective, with a focus on consumption trends and how to expand supplies to meet rising demand. They were deeply troubled by the environmental, security and equity implications of that approach. For instance, about two billion people lack access to affordable modern energy, seriously limiting their opportunities for a better life. And energy is a significant contributor to environmental problems, including indoor air pollution, urban air pollution, acidification, and global warming. The authors saw the need to evolve a different perspective in which energy is provided in ways that help solve such serious problems. They argued that energy must become an instrument for advancing sustainable development--economically viable, need-oriented, self-reliant and environmentally sound development--and that the focus should be on the end uses of energy and the services that energy provides. Energy technological options that can help meet sustainable development goals are discussed. The necessity of developing and employing innovative technological solutions is stressed. The possibilities of technological leap-frogging that could enable developing countries to avoid repeating the mistakes of the industrialized countries is illustrated with a discussion of ethanol in Brazil. The role foreign direct investment might play in bringing advanced technologies to developing countries is highlighted. Near- and long-term strategies for rural energy are discussed. Finally, policy issues are considered for evolving the energy system so that it will be consistent with and supportive of sustainable development.

  7. How Should Energy Be Defined Throughout Schooling?

    NASA Astrophysics Data System (ADS)

    Bächtold, Manuel

    2017-02-01

    The question of how to teach energy has been renewed by recent studies focusing on the learning and teaching progressions for this concept. In this context, one question has been, for the most part, overlooked: how should energy be defined throughout schooling? This paper addresses this question in three steps. We first identify and discuss two main approaches in physics concerning the definition of energy, one claiming there is no satisfactory definition and taking conservation as a fundamental property, and the other based on Rankine's definition of energy as the capacity of a system to produce changes. We then present a study concerning how energy is actually defined throughout schooling in the case of France by analyzing national programs, physics textbooks, and the answers of teachers to a questionnaire. This study brings to light a consistency problem in the way energy is defined across school years: in primary school, an adapted version of Rankine's definition is introduced and conservation is ignored; in high school, conservation is introduced and Rankine's definition is ignored. Finally, we address this consistency problem by discussing possible teaching progressions. We argue in favor of the use of Rankine's definition throughout schooling: at primary school, it is a possible substitute to students' erroneous conceptions; at secondary school, it might help students become aware of the unifying role of energy and thereby overcome the compartmentalization problem.

  8. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  9. Future orientation, school contexts, and problem behaviors: a multilevel study.

    PubMed

    Chen, Pan; Vazsonyi, Alexander T

    2013-01-01

    The association between future orientation and problem behaviors has received extensive empirical attention; however, previous work has not considered school contextual influences on this link. Using a sample of N = 9,163 9th to 12th graders (51.0 % females) from N = 85 high schools of the National Longitudinal Study of Adolescent Health, the present study examined the independent and interactive effects of adolescent future orientation and school contexts (school size, school location, school SES, school future orientation climate) on problem behaviors. Results provided evidence that adolescent future orientation was associated independently and negatively with problem behaviors. In addition, adolescents from large-size schools reported higher levels of problem behaviors than their age mates from small-size schools, controlling for individual-level covariates. Furthermore, an interaction effect between adolescent future orientation and school future orientation climate was found, suggesting influences of school future orientation climate on the link between adolescent future orientation and problem behaviors as well as variations in effects of school future orientation climate across different levels of adolescent future orientation. Specifically, the negative association between adolescent future orientation and problem behaviors was stronger at schools with a more positive climate of future orientation, whereas school future orientation climate had a significant and unexpectedly positive relationship with problem behaviors for adolescents with low levels of future orientation. Findings implicate the importance of comparing how the future orientation-problem behaviors link varies across different ecological contexts and the need to understand influences of school climate on problem behaviors in light of differences in psychological processes among adolescents.

  10. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  11. Gamma-Radiation Background Onboard Russian Orbital Stations

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Krivov, S. V.; Moiseev, A. A.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.; Yurkin, Yn. T.

    Large manned space flight missions have several advantages for carrying out astrophysical and cosmic ray experiments, including the ability to install heavy instruments with large dimensions, increased electrical power and telemetry capacity, and the operation of fixed instruments by qualified personnel (astronauts). The main disadvantage in the use of heavy orbital stations for these experiments is the high level of background radiation generated by the interaction of station material with primary cosmic rays, high energy particles that exist in the magnetosphere of Earth, and albedo radiation from Earth. In some cases, additional radiation may originate from man-made radiation sources installed at the stations. For many years MEPhI have maintained experiments onboard manned Russian space flight missions to study primary gamma-rays at two energy intervals: 0.1 - 8 MeV and 30-600 MeV and electrons with energy more than 30 MeV. During these experiments significant time was spent investigating high energy background radiation onboard the stations. To measure 30-600 MeV gamma-rays, the gas-Cherenkov-scintillation telescope Elena was used. The angular view of this telescope was 10 deg, with a geometrical factor of 0.5 cm2sr. This telescope was operated onboard the orbital stations Salyut-6 and Salyut-7. Usually these stations were operated together with the space missions Soyuz and Progress. For background measurements, cosmonauts installed the telescope at various locations on Salyut, Soyuz and Progress, and oriented it in various directions respectively to the station's axes. During these experiments, the orbital stations were not oriented.

  12. Recent developments in the theory of protein folding: searching for the global energy minimum.

    PubMed

    Scheraga, H A

    1996-04-16

    Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.

  13. Methode unifiee de simulation et de conception des convertisseurs de puissance

    NASA Astrophysics Data System (ADS)

    Fortin Blanchette, Handy

    High frequency power converters are now master piece in emerging new renewable energy applications such as hybrid vehicules. These new technologies merge the power of electrical machine with the thermal motor power. The power converters used to control those electrical machines are embeded technologies with high efficiency conversion and a high reliability. More than ground vehicule applications, embeded power converters are now present in aeronautic and aerospace domains. In this sense, high reliability and high efficiency are now important characteristics that are not only suitable but needed. In spite of this progression, power converters development remains today a complex science. Even if advanced complex techniques are now available to increase the converter stability, there are no systemic rules to design the converter physical assembly. Very often, an artistic approach is used to place the components inside the converter in the more convenient places. This lack of rigor about EMI problems is not so surprising because this kind of analysis is costly and risky. In general, to solve this type of problems, one designs a second and a third printed circuit generation which is not necessarily a quick and systematic approach. To overcome these difficulties, the main goal of this thesis is to provide simple and improved tools for power converter circuit designers. The key point are to solve EMI and reliability problems at the earlier design stage and not during the prototyping phase. Many solutions are exposed in this text about the magnetic field orientation, leakage inductances identification, power semiconductors modeling and electromagnetic modeling of power converters. The exactness of these methods is proved by using it to develop a matrix converter. The printed circuits are designed to orient properly the magnetic field enabling to introduce low power sensing circuits directly inside the converter. This application is one of the numerous possibilities offered by the techniques presented in this document. Keywords: power converters, modeling, electromagnetic interferences.

  14. Correlation of Thermally Induced Pores with Microstructural Features Using High Energy X-rays

    NASA Astrophysics Data System (ADS)

    Menasche, David B.; Shade, Paul A.; Lind, Jonathan; Li, Shiu Fai; Bernier, Joel V.; Kenesei, Peter; Schuren, Jay C.; Suter, Robert M.

    2016-11-01

    Combined application of a near-field High Energy Diffraction Microscopy measurement of crystal lattice orientation fields and a tomographic measurement of pore distributions in a sintered nickel-based superalloy sample allows pore locations to be correlated with microstructural features. Measurements were carried out at the Advanced Photon Source beamline 1-ID using an X-ray energy of 65 keV for each of the measurement modes. The nickel superalloy sample was prepared in such a way as to generate significant thermally induced porosity. A three-dimensionally resolved orientation map is directly overlaid with the tomographically determined pore map through a careful registration procedure. The data are shown to reliably reproduce the expected correlations between specific microstructural features (triple lines and quadruple nodes) and pore positions. With the statistics afforded by the 3D data set, we conclude that within statistical limits, pore formation does not depend on the relative orientations of the grains. The experimental procedures and analysis tools illustrated are being applied to a variety of materials problems in which local heterogeneities can affect materials properties.

  15. Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.

  16. The martial arts and mental health: the challenge of managing energy.

    PubMed

    Seitz, F C; Olson, G D; Locke, B; Quam, R

    1990-04-01

    The effective management of energy is an important dimension in the martial arts as well as the mental health professions. The Oriental concept of Ki is described, noting its Indian, Chinese, and Japanese development. Ki and the transfer of energy is studied through the martial encounter, using concepts borrowed from Japanese swordsmanship. Ki is also discussed from a developmental context as youngsters progress in Tae Kwon Do training. In examining the disciplines of Aikido, Tae Kwon Do, and Karate, it becomes clear that more is involved than kicking, punching, and throwing bodies on the floor. These martial arts have some important statements to make in the area of mental health, particularly in terms of energy--within our bodies, psyches, interpersonal relationships, and the universe.

  17. Influence of electric field on the hydrogen bond network of water.

    PubMed

    Suresh, S J; Satish, A V; Choudhary, A

    2006-02-21

    Understanding the inherent response of water to an external electric (E)-field is useful towards decoupling the role of E-field and surface in several practically encountered situations, such as that near an ion, near a charged surface, or within a biological nanopore. While this problem has been studied in some detail through simulations in the past, it has not been very amenable for theoretical analysis owing to the complexities presented by the hydrogen (H) bond interactions in water. It is also difficult to perform experiments with water in externally imposed, high E-fields owing to dielectric breakdown problems; it is hence all the more important that theoretical progress in this area complements the progress achieved through simulations. In an attempt to fill this lacuna, we develop a theory based on relatively simple concepts of reaction equilibria and Boltzmann distribution. The results are discussed in three parts: one pertaining to a comparison of the key features of the theory vis a vis published simulation/experimental results; second pertaining to insights into the H-bond stoichiometry and molecular orientations at different field strengths and temperatures; and the third relating to a surprising but explainable finding that H-bonds can stabilize molecules whose dipoles are oriented perpendicular to the direction of field (in addition to the E-field and H-bonds both stabilizing molecules with dipoles aligned in the direction of the field).

  18. 21st century toolkit for optimizing population health through precision nutrition

    USDA-ARS?s Scientific Manuscript database

    Scientific, technological, and economic progress over the last 100 years all but eradicated problems of widespread food shortage and nutrient deficiency in developed nations. But now society is faced with a new set of nutrition problems related to energy imbalance and metabolic disease, which requir...

  19. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  20. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE PAGES

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    2018-04-27

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  1. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  2. Input-output oriented computation algorithms for the control of large flexible structures

    NASA Technical Reports Server (NTRS)

    Minto, K. D.

    1989-01-01

    An overview is given of work in progress aimed at developing computational algorithms addressing two important aspects in the control of large flexible space structures; namely, the selection and placement of sensors and actuators, and the resulting multivariable control law design problem. The issue of sensor/actuator set selection is particularly crucial to obtaining a satisfactory control design, as clearly a poor choice will inherently limit the degree to which good control can be achieved. With regard to control law design, the researchers are driven by concerns stemming from the practical issues associated with eventual implementation of multivariable control laws, such as reliability, limit protection, multimode operation, sampling rate selection, processor throughput, etc. Naturally, the burden imposed by dealing with these aspects of the problem can be reduced by ensuring that the complexity of the compensator is minimized. Our approach to these problems is based on extensions to input/output oriented techniques that have proven useful in the design of multivariable control systems for aircraft engines. In particular, researchers are exploring the use of relative gain analysis and the condition number as a means of quantifying the process of sensor/actuator selection and placement for shape control of a large space platform.

  3. Coorientational Accuracy during Regional Development of Energy Resources: Problems in Agency-Public Communication.

    ERIC Educational Resources Information Center

    Bowes, John E.; Stamm, Keith R.

    This paper presents a progress report from a research program aimed at elucidating communication problems which arise among citizens and government agencies during the development of regional environmental policy. The eventual objective of the program is to develop a paradigm for evaluative research in communication that will provide for the…

  4. From goal motivation to goal progress: the mediating role of coping in the Self-Concordance Model.

    PubMed

    Gaudreau, Patrick; Carraro, Natasha; Miranda, Dave

    2012-01-01

    The present studies examined the mediating role of self-regulatory mechanisms in the relationship between goal motivation and goal progress in the Self-Concordance Model. First, a systematic review, using meta-analytical path analysis, supported the mediating role of effort and action planning in the positive association between autonomous goal motivation and goal progress. Second, results from two additional empirical studies, using structural equation modeling, lent credence to the mediating role of coping in the relationship between goal motivation and goal progress of university students. Autonomous goal motivation was positively associated with task-oriented coping, which predicted greater goal progress during midterm exams (Study 1, N=702) and at the end of the semester in a different sample (Study 2, N=167). Controlled goal motivation was associated with greater disengagement-oriented coping (Study 1 and Study 2) and lesser use of task-oriented coping (Study 2), which reduced goal progress. These results held up after controlling for perceived stress (Study 2). Our findings highlight the importance of coping in the "inception-to-attainment" goal process because autonomous goal motivation indirectly rather than directly predicts goal progress of university students through their usage of task-oriented coping.

  5. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, wasmore » not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.« less

  6. Program director`s overview report for the Office of Health & Environmental Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, D.

    1994-02-01

    LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less

  7. FORTRAN 4 programs for the extraction of potential well parameters from the energy dependence of total elastic scattering cross sections

    NASA Technical Reports Server (NTRS)

    Labudde, R. A.

    1972-01-01

    An attempt has been made to keep the programs as subroutine oriented as possible. Usually only the main programs are directly concerned with the problem of total cross sections. In particular the subroutines POLFIT, BILINR, GASS59/MAXLIK, SYMOR, MATIN, STUDNT, DNTERP, DIFTAB, FORDIF, EPSALG, REGFAL and ADSIMP are completely general, and are concerned only with the problems of numerical analysis and statistics. Each subroutine is independently documented.

  8. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joe; Carpenter, Michael P.; Casten, Richard

    In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less

  9. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

    DOE PAGES

    Carlson, Joe; Carpenter, Michael P.; Casten, Richard; ...

    2017-01-04

    In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less

  10. Problem-Oriented Learning in Geography Education: Construction of Motivating Problems

    ERIC Educational Resources Information Center

    Weiss, Günther

    2017-01-01

    This article reports on the possibilities and challenges of starting problem-oriented learning in geography lessons. The article focuses on the features of motivating problems, because one of the essential functions of the problem to start with is to animate learners to solve it. The analysis of various introductions to problem-oriented learning…

  11. Future orientation, impulsivity, and problem behaviors: a longitudinal moderation model.

    PubMed

    Chen, Pan; Vazsonyi, Alexander T

    2011-11-01

    In the current study, based on a sample of 1,873 adolescents between 11.4 and 20.9 years of age from the first 3 waves of the National Longitudinal Study of Adolescent Health, we investigated the longitudinal effects of future orientation on levels of and developmental changes in problem behaviors, while controlling for the effects by impulsivity; we also tested the moderating effects by future orientation on the impulsivity-problem behaviors link over time. Additionally, we examined future orientation operationalized by items measuring education, marriage, and life domains. Findings based on growth curve analyses provided evidence of longitudinal effects by education and life future orientation on both levels of and developmental changes in problem behaviors; the effect of marriage future orientation was not significant for either test. In addition, only life future orientation moderated the effect by impulsivity on levels of problem behaviors over time. More specifically, impulsivity had a weaker effect on levels of problem behaviors over time for adolescents who reported higher levels of life future orientation.

  12. Control of solar energy systems

    NASA Astrophysics Data System (ADS)

    Sizov, Iu. M.; Zakhidov, R. A.; Baranov, V. G.

    Two approaches to the control of large solar energy systems, i.e., programmed control and control systems relying on the use of orientation transducers and feedback, are briefly reviewed, with particular attention given to problems associated with these control systems. A new control system for large solar power plants is then proposed which is based on a combination of these approaches. The general design of the control system is shown and its principle of operation described. The efficiency and cost effectiveness of the approach proposed here are demonstrated.

  13. Phase-shifting point diffraction interferometer mask designs

    DOEpatents

    Goldberg, Kenneth Alan

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  14. An investigation of quasi-inertial attitude control for a solar power satellite

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Wang, S. J.

    1982-01-01

    An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.

  15. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  16. Asymptotic Slavery in the Copper Oxide High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Phillips, Philip

    2004-05-01

    Vast progress in theoretical solid state physics has been made by constructing models which mimic the low-energy properties of solids. Essential to the success of this program is the separability of the high and low energy degrees of freedom. While it is hoped that a high energy reduction can be made to solve the problem of high temperature superconductivity in the copper oxide materials, I will show that no consistent theory is possible if the high energy scale is removed. At the heart of the problem is the mixing of all energy scales (that is, UV-IR mixing) in the copper-oxide materials. Optical experiments demonstrate that the number of low-energy degrees of freedom is derived from a high energy scale. The implications of the inseparability of the high and low energy degrees of freedom on the phase diagram of the cuprates is discussed.

  17. Summary Time Oriented Record (STOR)—A Progress Report

    PubMed Central

    Simborg, Donald W.; Whiting-O'Keefe, Quinn E.

    1981-01-01

    A Summary Time Oriented Medical Record System (STOR) has been designed as a potential replacement for the medical record for use in ambulatory care. As described at the Fourth Annual Symposium, this system has unique characteristics aimed specifically for management of patients with chronic diseases. It is hypothesized that this record design will improve information flow to practitioners at the time of decision-making in ambulatory care, while at the same time reducing manual recording requirements by the practitioner. This system has now been implemented in three specialty clinics at the University of California, San Francisco Medical Center. Rigorous evaluation techniques using prospective randomized control studies are being used in its evaluation. The clinical information includes patient problems, diagnoses, therapies, and ancillary test results. It is implemented on an IBM 4331 computer using the RAMIS data base management system.

  18. The VA Computerized Patient Record — A First Look

    PubMed Central

    Anderson, Curtis L.; Meldrum, Kevin C.

    1994-01-01

    In support of its in-house DHCP Physician Order Entry/Results Reporting application, the VA is developing the first edition of a Computerized Patient Record. The system will feature a physician-oriented interface with real time, expert system-based order checking, a controlled vocabulary, a longitudinal repository of patient data, HL7 messaging support, a clinical reminder and warning system, and full integration with existing VA applications including lab, pharmacy, A/D/T, radiology, dietetics, surgery, vitals, allergy tracking, discharge summary, problem list, progress notes, consults, and online physician order entry. PMID:7949886

  19. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    NASA Astrophysics Data System (ADS)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  20. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].

    PubMed

    Yang, Yonggang; Sun, Guoping; Xu, Meiying

    2010-07-01

    Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development.

  1. Strained Cyclophane Macrocycles: Impact of Progressive Ring Size Reduction on Synthesis and Structure

    PubMed Central

    Bogdan, Andrew R.; Jerome, Steven V.; Houk, K. N.; James, Keith

    2012-01-01

    The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring, and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology. PMID:22133103

  2. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    NASA Astrophysics Data System (ADS)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  3. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    PubMed Central

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel

    2017-01-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113

  4. Teacher Self-Efficacy Perceptions, Learning Oriented Motivation, Lifelong Learning Tendencies of Candidate Teachers: A Modeling Study

    ERIC Educational Resources Information Center

    Akyol, Bertan

    2016-01-01

    Problem Statement: While the concept of professional self-efficacy corresponds to the power and belief employees feel related to tasks they are performing, motivation can be defined as the internal energy which shapes work related behaviors of employees positively. Although there are many features that teachers and candidate teachers must have,…

  5. The Richard C. Schneider Lecture. New dimensions of neurosurgery in the realm of high technology: possibilities, practicalities, realities.

    PubMed

    Apuzzo, M L

    1996-04-01

    Fueled by a buoyant economy, popular attitudes and demands, and parallel progress in transferable technical and biological areas, neurosurgery has enjoyed a remarkable quarter of a century of progress. Developmental trends in the discipline have included the following: 1) a refinement of preoperative definition of the structural substrate, 2) miniaturization of operative corridors, 3) reduction of operative trauma, 4) increased effectiveness at the target site, and 5) incorporation of improved technical adjuvants and physical operative tools into treatment protocols. In particular, the computer has become a formidable ally in diagnostic and surgical events. Trends in technical development indicate that we are entering an exciting era of advanced surgery of the human cerebrum, which is heralded by the following: 1) current developments in areas of imaging, sensors, and visualization; 2) new devices for localization and navigation; 3) new capabilities for action at the target point; and 4) innovative concepts related to advanced operative venues. Imaging has provided structurally based surgical maps, which now are being given the new dimension of function in complex and integrated formats for preoperative planning and intraoperative tactical direction. Cerebral localization and navigation based on these advances promise to provide further refinement to the field of stereotactic neurosurgery, as linked systems are superseded by more flexible nonlinked methodologies in functionally defined volume-oriented navigational databases. Target point action now includes not only ablative capabilities through micro-operative methods and the use of stereotactically directed high-energy forms but also the emergence of restorative capabilities through applications of principles of genetic engineering in the areas of molecular and cellular neurosurgery. Complex, dedicated, and self-contained operative venues will be required to optimize the emergence and development of these computer-oriented micro/stereotactic capabilities, which appear to be unavoidably required as locales for the practice and development of virtual reality-based stations for operative rehearsal, simulation, training, and, ultimately, enhancement of operative events through robotic interfaces. Primary impetus for progress has relied upon new combinations of technologies, disciplines, and industries. Philosophical and practical problems include the spectrum of availability of these methods to the population at large, the training of individuals to properly administer these methods, defining the acceptable envelope of expertise, and maintaining suitable delivery and progress while containing spiraling costs. Advanced neurological surgery and the use and development of high-technology adjuvants require a robust economy that has a populace willing to invest in the luxury of such developments. The current socioeconomic situation is fragile from the standpoint of both economics and attitudes of the patients and health care providers, with diversion of economic resources, redistribution of funding bases, modification of patient referrals, practice styles, and service attitudes undermining progress. Economic pressures have brought high-technology methods under great scrutiny regarding their effectiveness and cost-effectiveness. Reform proposals have specifically targeted technology-oriented services, and the Office of Technology Assessment has recommended increasing the use of managed care providers who look to information on cost-effectiveness and clinical practice guidelines to establish efficient management strategies and issue "report cards." Although the premise is laudable and "gimmickry" needs to be identified, it might be argued that such scrutiny and control might be overbearing and overused, impeding appropriate delivery and progress.

  6. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  7. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.

    PubMed

    Lazaridis, Themis; Leveritt, John M; PeBenito, Leo

    2014-09-01

    The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The last century of symptom-oriented research in emergency presentations--have we made any progress?

    PubMed

    Bingisser, Roland; Nickel, Christian Hans

    2013-09-19

    This review is dedicated to the last century of symptom-oriented research, taking three symptom complexes as typical examples of medical progress, and focusing on emergency presentations. Landmark publications in each area are discussed, with an attempt to focus on the methods used to achieve major breakthroughs. In abdominal pain, progress was achieved over a century ago by correlating symptoms and surgical pathology. Most diagnoses were made by using the clinical tools elaborated with careful observation and clinical examination. Together with the later reported outcomes, surgeons had an early and powerful tool for symptom-oriented research. In dyspnoea, progress was achieved much later, as a universal definition had to be elaborated over decades by consolidating clinical research, predominantly symptom-pathology correlation, and experimental research, such as function testing and experiments with animals and humans. In nonspecific presentations in emergency situations, progress has been achieved only recently, most probably owing to the fact that elderly patients are presenting in steeply increasing numbers, and the hallmark of disease presentation in the elderly seems to be less specific symptoms and complaints. This may be caused by altered physiology, polymorbidity, polypharmacy and the multiple difficulties encountered when taking histories in the elderly. Taken together, symptom-oriented research has been an important contributor to medical progress in the last century. Though it may be challenged by image- and laboratory-oriented research, it will remain part of patient-centred research because the epidemiology of symptoms, their clinical outcomes and their diagnostic importance according to severity will be the basis for the diagnostic process.

  9. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  10. FY2017 Analysis Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    During fiscal year 2017, the U.S. Department of Energy Vehicle Technologies Office (VTO) funded analysis projects supportive of VTO’s goals to pursue early stage research in vehicle and mobility system technologies to reduce petroleum dependence, increase energy reliability and security, improve transportation affordability, and promote economic growth. VTO analysis projects result in a foundation of data, analytical models, and applied analyses that provide insights into critical transportation energy problems and assist in research investment prioritization and portfolio planning.

  11. 7 CFR 4280.182 - Servicing feasibility study grants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... performance report shall describe current progress and identify any problems, delays, or adverse conditions... 4280.182 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for...

  12. 7 CFR 4280.182 - Servicing feasibility study grants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... performance report shall describe current progress and identify any problems, delays, or adverse conditions... 4280.182 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for...

  13. 7 CFR 4280.182 - Servicing feasibility study grants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... performance report shall describe current progress and identify any problems, delays, or adverse conditions... 4280.182 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for...

  14. Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:

  15. Nursing students' changing orientation and attitudes towards nursing during education: A two year longitudinal study.

    PubMed

    Ten Hoeve, Yvonne; Castelein, Stynke; Jansen, Wiebren S; Jansen, Gerard J; Roodbol, Petrie F

    2017-01-01

    Previous studies have shown that nursing students' perceptions of nursing change over time. Little research has been undertaken in the Netherlands of students entering nursing programmes and of how they progress. The aims of this study were to explore whether nursing students' orientation and attitudes towards nursing changed over time, when these changes occurred, and what factors influenced the changes. We also aimed to identify the factors which prompted them to consider leaving their programmes, and what factors affected their motivation to stay. The study used a longitudinal quantitative design. Questionnaires were administered to all students enrolled in a Bachelor's of Nursing programme at four nursing universities of applied sciences in the Netherlands (n=1414). The data for this study were collected during the first two years of the programme, from September 2011 to June 2013. A total of 123 respondents completed the survey each year and this group was used to examine changes over time. At four time intervals respondents completed a survey consisting of 1) the Nursing Orientation Tool, 2) the Nursing Attitude Questionnaire and 3) background characteristics. Non-parametric tests were used to explore changes in factor scores over time. The results showed an improvement in the students' orientation and attitudes towards knowledge, skills and the professional roles of nurses, while empathic behaviour decreased over time. Although the changes showed non-linear patterns over time, the results showed clear effects between the different time points. The reasons for attrition (24%) proved to be related both to problems with the educational programme and to personal problems. An important motivator for students to stay in the course was their passionate desire to become nurses, suggesting that the positive aspects of a nursing career dominated the problems they encountered. Tutors and mentors should pay more attention to the individual perceptions and problems of first and second-year students, both in the classroom and during clinical placements. Knowledge of the students' perceptions from the very beginning could be vital to study success. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The macronutrients, appetite and energy intake

    PubMed Central

    Carreiro, Alicia L; Dhillon, Jaapna; Gordon, Susannah; Jacobs, Ashley G; Higgins, Kelly A; McArthur, Breanna M; Redan, Benjamin W; Rivera, Rebecca L; Schmidt, Leigh R; Mattes, Richard D

    2016-01-01

    Each of the macronutrients, carbohydrate, protein and fat, has a unique set of properties that influence health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, there has been a progression of thinking regarding the mechanisms by which each may contribute to energy balance. At the beginning of this time period, the emphasis was on metabolic signals that initiated eating events (i.e., determined eating frequency). This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain where the reward signals elicited by the macronutrients are viewed as potentially problematic (i.e., contribute to disordered eating). At this point the predictive power of the macronutrients for energy intake remains limited. PMID:27431364

  17. The Macronutrients, Appetite, and Energy Intake.

    PubMed

    Carreiro, Alicia L; Dhillon, Jaapna; Gordon, Susannah; Higgins, Kelly A; Jacobs, Ashley G; McArthur, Breanna M; Redan, Benjamin W; Rivera, Rebecca L; Schmidt, Leigh R; Mattes, Richard D

    2016-07-17

    Each of the macronutrients-carbohydrate, protein, and fat-has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.

  18. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1 The...

  19. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  20. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  1. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  2. Energy, food, and land-- the ecological traps of humankind.

    PubMed

    Haber, Wolfgang

    2007-09-01

    Humans' superiority over all other organisms on earth rests on five main foundations: command of fire requiring fuel; controlled production of food and other biotic substances; utilization of metals and other non-living materials for construction and appliances; technically determined, urban-oriented living standard; economically and culturally regulated societal organization. The young discipline of ecology has revealed that the progress of civilization and technology attained, and being further pursued by humankind, and generally taken for granted and permanent, is leading into ecological traps. This metaphor circumscribes ecological situations where finite resources are being exhausted or rendered non-utilizable without a realistic prospect of restitution. Energy, food and land are the principal, closely interrelated traps; but the absolutely decisive resource in question is land whose increasing scarcity is totally underrated. Land is needed for fulfilling growing food demands, for producing renewable energy in the post-fossil and post-nuclear era, for maintaining other ecosystem services, for urban-industrial uses, transport, material extraction, refuse deposition, but also for leisure, recreation, and nature conservation. All these needs compete for land, food and non-food biomass production moreover for good soils that are scarcer than ever. We are preoccupied with fighting climate change and loss of biodiversity; but these are minor problems we could adapt to, albeit painfully, and their solution will fail if we are caught in the interrelated traps of energy, food, and land scarcity. Land and soils, finite and irreproducible resources, are the key issues we have to devote our work to, based on careful ecological information, planning and design for proper uses and purposes. The article concludes with a short reflection on economy and competition as general driving forces, and on the role and reputation of today's ecology.

  3. jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.

    PubMed

    López-Camacho, Esteban; García Godoy, María Jesús; Nebro, Antonio J; Aldana-Montes, José F

    2014-02-01

    Molecular docking is a method for structure-based drug design and structural molecular biology, which attempts to predict the position and orientation of a small molecule (ligand) in relation to a protein (receptor) to produce a stable complex with a minimum binding energy. One of the most widely used software packages for this purpose is AutoDock, which incorporates three metaheuristic techniques. We propose the integration of AutoDock with jMetalCpp, an optimization framework, thereby providing both single- and multi-objective algorithms that can be used to effectively solve docking problems. The resulting combination of AutoDock + jMetalCpp allows users of the former to easily use the metaheuristics provided by the latter. In this way, biologists have at their disposal a richer set of optimization techniques than those already provided in AutoDock. Moreover, designers of metaheuristic techniques can use molecular docking for case studies, which can lead to more efficient algorithms oriented to solving the target problems.  jMetalCpp software adapted to AutoDock is freely available as a C++ source code at http://khaos.uma.es/AutodockjMetal/.

  4. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  5. Epos Working Group 10 Infrastructure for Georesources

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanisław; Kwiatek, Grzegorz

    2013-04-01

    Working Group 10 "Infrastructure for Georesources" deals primarily with induced seismicity (IS) infrastructure. Established during the EPOS Annual Meeting in Utrecht, November 2011, WG10 aims to integrate the research infrastructure in the area of seismicity induced by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. Until now the research in the area of IS has been organized around induced technologies rather than physical problems, common for these shallow seismic processes. This has hampered the integration of IS research community and the research progress. WG10 intends to work out a first step towards changing the IS research perspective from the present, technology-oriented, to physical problems-oriented without, however, losing touch with technological conditions of IS generation. This will be achieved by the integration of IS Research Infrastructure (ISRI) and the creation of Induced Seismicity Node within EPOS. The ISRI to be integrated has three components: data, software and reports. The IS data consists of seismic data and auxiliary data: geological, displacement, geomechanical, geodetic, etc, and last, but by no means least, technological data. A research in the field of IS cannot do without this last data class. The IS software comprises common software tools for data handling and visualisation, standard and advanced software for research and software based on newly proposed algorithms for tests and development. The IS reports are both peer reviewed and unreviewed as well as an internet forum. In addition to that the IS Node will play a significant role in integrating IS community and accelerating research, it will help to develop a synergy between research community and industrial partners. WG10 is working out the strategic solutions for integration and core services provided by future IS node for the European and other research groups, industrial partners, educational centers, central and local administration bodies. Measurable benefit of the integrated ISRI will be the intensification of studies on hazard and risk associated with anthropogenic seismicity and on methods of anthropogenic seismic risk mitigation. Best practices will be disseminated to industrial partners and relevant bodies of public administration. It is also planned to have an information node for the public use.

  6. The More Things Change the More They Stay the Same

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-01-01

    In what year would you guess that these statements appeared in this Journal? Students can be classified as problem oriented or answer oriented. The answer-oriented student ... does little or no reflective thinking. ...To simply work a problem for a student may not be educational at all. The student should be taught the process used in the solution. ...My experience indicates that an answer-oriented attitude can be changed. ...But one can't do much teaching of problem-solving techniques and at the same time get on with the day's lecture. ...Problem-solving technique is a tool of learning. ...To teach it well should be about the most rewarding academic activity. ...A year of stressing methods of problem solving would alter the orientation and motivation of many students we now call poor.

  7. Degeneracy in NLP and the development of results motivated by its presence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiacco, A.; Liu, J.

    We study notions of nondegeneracy and several levels of increasing degeneracy from the perspective of the local behavior of a local solution of a nonlinear program when problem parameters are slightly perturbed. This overview may be viewed as a structured survey of sensitivity and stability results: the focus is on progressive levels of degeneracy. We note connections of nondegeneracy with the convergence of algorithms and observe the striking parallel between the effects of nondegeneracy and degeneracy on optimality conditions, stability analysis and algorithmic convergence behavior. Although our orientation here is primarily interpretive and noncritical, we conclude that more effort ismore » needed to unify optimality, stability and convergence theory and more results are needed in all three areas for radically degenerate problems.« less

  8. Fear of cancer progression and cancer-related intrusive cognitions in breast cancer survivors.

    PubMed

    Mehnert, Anja; Berg, Petra; Henrich, Gerhard; Herschbach, Peter

    2009-12-01

    To assess the character and frequency of fear of progression (FoP) and to clarify its relationship with cancer-related intrusive cognitions in breast cancer survivors. A sample of 1083 patients was recruited in this cross-sectional study through a population-based Cancer Registry an average of 47 month following diagnosis (66% response rate). Participants completed self-report measures assessing fear of cancer progression (FoP-Q-SF), posttraumatic stress-disorder symptoms (PCL-C), coping strategies (DWI) and quality of life (QoL) (SF-8). In total, 23.6% of women were classified as having moderate to high FoP. Being nervous prior to doctors' appointments or examinations and being afraid of relying on strangers for activities of daily living were the most frequent fears. FoP was significantly associated with younger age, having children, disease progress, chemotherapy, perceived amount of impairments, physical and mental QoL, but not with time since initial diagnosis. Intrusive cognitions were screened in 37% of the sample. We found significant correlations between FoP and intrusive thoughts (r=0.63), avoidance (r=0.57), hyperarousal (r=0.54) and posttraumatic stress disorder diagnosis (r=0.42). Factors significantly associated with moderate and high FoP included a depressive coping style as well as an active problem-oriented coping style, intrusion, avoidance and hyperarousal symptoms (Nagelkerke's R(2)=0.44). Findings of this study give information regarding the frequency and the character of anxiety in breast cancer survivors and underline the relation of FoP to the reality of living with breast cancer. Results suggest that intrusive cognitions as well as avoidance and hyperarousal symptoms seem to be closely related to future-oriented fears of cancer recurrence.

  9. Application of microdynamics and lattice mechanics to problems in plastic flow and fracture. Final report, 1 April 1973--31 March 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, J C; Liu, J M

    Progress in an investigation of the application of microdynamics and lattice mechanics to the problems in plastic flow and fracture is described. The research program consisted of both theoretical formulations and experimental measurements of a number of intrinsic material parameters in bcc metals and alloys including surface energy, phonon-dispersion curves for dislocated solids, dislocation-point defect interaction energy, slip initiation and microplastic flow behavior. The study has resulted in an improved understanding in the relationship among the experimentally determined fracture surface energy, the intrinsic cohesive energy between atomic planes, and the plastic deformation associated with the initial stages of crack propagation.more » The values of intrinsic surface energy of tungsten, molybdenum, niobium and niobium-molybdenum alloys, deduced from the measurements, serve as a starting point from which fracture toughness of these materials in engineering service may be intelligently discussed.« less

  10. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  11. An Agricultural Expansion Strategy for Burundi

    DTIC Science & Technology

    1991-04-04

    starving and political instability. The effect of these problems has been seriously reduced access to both food and energy. The Republic of Burundi...to the effectiveness of transportation of persons and items. This orientation has led the Burundi government to set up strategies adapted 3 to rapid...30 percent of total tonnage of import and export. This one is more effective and liked by the charters. The situation could change because of

  12. Segmentation of images for gingival growth measurement

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Il; Wilson, Joseph N.

    1992-12-01

    The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.

  13. Exploring New Physics Frontiers Through Numerical Relativity.

    PubMed

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  14. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    NASA Astrophysics Data System (ADS)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.

  15. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation

    PubMed Central

    Erlikhman, Gennady; Kellman, Philip J.

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved by the visual system. PMID:27445886

  16. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Sohn, Youngku; Huang, Weixin; Taghipour, Fariborz

    2017-02-01

    The conversion of CO2 with H2O to valuable chemicals and fuels is a new solution to current environmental and energy problems, and the high energy barrier of these reactions can be overcome by the input of solar and electrical energy. However, the reduction efficiencies and selectivities of these reactions are insufficient for practical use, and significant effort and strategy are required to overcome the many obstacles preventing the large-scale application of photocatalytic CO2 reduction. This article reviews recent progress in CO2 reduction using titanium oxide-based materials and various strategic factors for increasing photocatalytic efficiency. This article also highlights non-titanium-oxide catalysts, the photoelectrocatalytic reduction of CO2, and other recent review articles concerning the recycling of CO2 to value-added carbon compounds.

  17. Environmental Response: Strawberry Hill Campus, Bar Harbor, Maine. The 21st Awards Program: A Year of Issues

    ERIC Educational Resources Information Center

    Progressive Architecture, 1974

    1974-01-01

    The Progressive Architecture Awards Jury gave citations to three projects grouped as "the response by architects to environmental problems." One citation was awarded to a college campus design utilizing solar energy, recycled materials, and wind power. (MF)

  18. A Focus on Problems of National Interest in the College General Chemistry Laboratory: The Effects of the Problem-Oriented Method Compared with Those of the Traditional Approach.

    ERIC Educational Resources Information Center

    Neman, Robert Lynn

    This study was designed to assess the effects of the problem-oriented method compared to those of the traditional approach in general chemistry at the college level. The problem-oriented course included topics such as air and water pollution, drug addiction and analysis, tetraethyl-lead additives, insecticides in the environment, and recycling of…

  19. Oral impacts on quality of life and problem-oriented attendance among South East London adults.

    PubMed

    Gaewkhiew, Piyada; Bernabé, Eduardo; Gallagher, Jennifer E; Klass, Charlotte; Delgado-Angulo, Elsa K

    2017-04-26

    Dental care seeking behaviour is often driven by symptoms. The value of oral health related quality of life (OHRQoL) measures to predict utilisation of dental services is unknown. This study aims to explore the association between OHRQoL and problem-oriented dental attendance among adults. We analysed cross-sectional data for 705 adults, aged 16 years and above, living in three boroughs of Inner South East London. Data were collected during structured interviews at home. The short form of the Oral Health Impact Profile (OHIP-14) was used to assess the frequency of oral impacts on daily life in the last year. Problem-oriented attendance was defined based on time elapsed since last visit (last 6 months) and reason for that visit (trouble with teeth). The association between OHIP-14 (total and domain) scores and problem-oriented attendance was tested in logistic regression models adjusting for participants' sociodemographic characteristics. Problem-oriented attenders had a higher OHIP-14 total score than regular attenders (6.73 and 3.73, respectively). In regression models, there was a positive association between OHIP-14 total score and problem-oriented attendance. The odds of visiting the dentist for trouble with teeth were 1.07 greater (95% Confidence Interval: 1.04-1.10) per unit increase in the OHIP-14 total score, after adjustment for participants' sociodemographic characteristics. In subsequent analysis by OHIP-14 domains, greater scores in all domains but handicap were significantly associated with problem-oriented attendance. This study shows that oral impacts on quality of life are associated with recent problem-oriented dental attendance among London adults. Six of the seven domains in the OHIP-14 questionnaire were also associated with dental visits for trouble with teeth.

  20. An analysis of 12th-grade students' reasoning styles and competencies when presented with an environmental problem in a social and scientific context

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying

    This study examined reasoning and problem solving by 182 12th grade students in Taiwan when considering a socio-scientific issue regarding the use of nuclear energy. Students' information preferences, background characteristics, and eleven everyday scientific thinking skills were scrutinized. It was found most participants displayed a willingness to take into account both scientific and social information in reasoning the merits of a proposed construction of a nuclear power plant. Students' reasoning scores obtained from the "information reasoning style" test ranged from -0.5 to 1.917. And, the distribution was approximately normal with mean and median at around 0.5. For the purpose of categorization, students whose scores were within one standard deviation from the mean were characterized as having a "equally disposed" reasoning style. One hundred and twenty-five subjects, about 69%, belonged to this category. Students with scores locating at the two tails of the distribution were assigned to either the "scientifically oriented" or the "socially oriented" reasoning category. Among 23 background characteristics investigated using questionnaire data and ANOVA statistical analysis, only students' science performance and knowledge about nuclear energy were statistically significantly related to their information reasoning styles (p < 0.05). The assessed background characteristics addressed dimensions such as gender, academic performances, class difference, future education, career expectation, commitment to study, assessment to educational enrichment, family conditions, epistemological views about science, religion, and the political party preference. For everyday scientific thinking skills, interview data showed that both "scientifically oriented" students and those who were categorized as "equally disposed to using scientific and social scientific sources of data" displayed higher frequencies than "socially oriented" ones in using these skills, except in the use of the "multidisciplinary thinking" skill. Among the 11 skills assessed, the "scientifically oriented" students outperformed the "equally disposed" ones only in the use of 3 thinking skills; namely, searching for or recalling scientific concepts/evidence, recognizing and evaluating alternatives, and making conclusions based on the scientific intuition.

  1. Testing Method of Degrading Heavy Oil Pollution by Microorganisms

    NASA Astrophysics Data System (ADS)

    Wu, Qi; Zhao, Lin; Ma, Aijin

    2018-01-01

    With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.

  2. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to identify grain dissection in natural microstructures.

  3. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting

    PubMed Central

    Wang, Wei; Xu, Xiaomin; Zhou, Wei

    2017-01-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777

  4. Brennstoffzellen

    NASA Astrophysics Data System (ADS)

    Vielstich, W.; Iwasita, T.

    1982-08-01

    Direct conversion of chemical energy into electrical energy is a problem which has received increasing attention during the last years. Fuel-cell power plants on the basis of natural gas are in the course of demonstration, hydrogen/air cells are discussed in the electric vehicle application. Future developments will depend on the progress in electrocatalysis (e.g. the direct anodic oxidation of methanol) and in material technology as in the case of molten-carbonate fuel cells for power generation.

  5. Case studies of energy efficiency financing in the original five pilot states, 1993-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhar, B C; Collins, N E; Walsh, R W

    1997-05-01

    The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.

  6. Alcohol Demand, Future Orientation, and Craving Mediate the Relation Between Depressive and Stress Symptoms and Alcohol Problems

    PubMed Central

    Soltis, Kathryn E.; McDevitt-Murphy, Meghan; Murphy, James G.

    2017-01-01

    Background Elevated depression and stress have been linked to greater levels of alcohol problems among young adults even after taking into account drinking level. The current study attempts to elucidate variables that might mediate the relation between symptoms of depression and stress and alcohol problems, including alcohol demand, future time orientation, and craving. Methods Participants were 393 undergraduates (60.8% female, 78.9% White/Caucasian) who reported at least 2 binge drinking episodes (4/5+ drinks for women/men, respectively) in the previous month. Participants completed self-report measures of stress and depression, alcohol demand, future time orientation, craving, and alcohol problems. Results In separate mediation models that accounted for gender, race, and weekly alcohol consumption, future orientation and craving significantly mediated the relation between depressive symptoms and alcohol problems. Alcohol demand, future orientation, and craving significantly mediated the relation between stress symptoms and alcohol problems. Conclusions Heavy drinking young adults who experience stress or depression are likely to experience alcohol problems and this is due in part to elevations in craving and alcohol demand, and less sensitivity to future outcomes. Interventions targeting alcohol misuse in young adults with elevated levels of depression and stress should attempt to increase future orientation and decrease craving and alcohol reward value. PMID:28401985

  7. Alcohol Demand, Future Orientation, and Craving Mediate the Relation Between Depressive and Stress Symptoms and Alcohol Problems.

    PubMed

    Soltis, Kathryn E; McDevitt-Murphy, Meghan E; Murphy, James G

    2017-06-01

    Elevated depression and stress have been linked to greater levels of alcohol problems among young adults even after taking into account drinking level. This study attempts to elucidate variables that might mediate the relation between symptoms of depression and stress and alcohol problems, including alcohol demand, future time orientation, and craving. Participants were 393 undergraduates (60.8% female, 78.9% White/Caucasian) who reported at least 2 binge-drinking episodes (4/5+ drinks for women/men, respectively) in the previous month. Participants completed self-report measures of stress and depression, alcohol demand, future time orientation, craving, and alcohol problems. In separate mediation models that accounted for gender, race, and weekly alcohol consumption, future orientation and craving significantly mediated the relation between depressive symptoms and alcohol problems. Alcohol demand, future orientation, and craving significantly mediated the relation between stress symptoms and alcohol problems. Heavy-drinking young adults who experience stress or depression are likely to experience alcohol problems, and this is due in part to elevations in craving and alcohol demand, and less sensitivity to future outcomes. Interventions targeting alcohol misuse in young adults with elevated levels of depression and stress should attempt to increase future orientation and decrease craving and alcohol reward value. Copyright © 2017 by the Research Society on Alcoholism.

  8. Mind body therapies in rehabilitation of patients with rheumatic diseases.

    PubMed

    Del Rosso, Angela; Maddali-Bongi, Susanna

    2016-02-01

    Mind body therapies (MBT) share a global approach involving both mental and physical dimensions, and focus on relationship between brain, mind, body and behavior and their effects on health and disease. MBT include concentration based therapies and movement based therapies, comprising traditional Oriental practices and somatic techniques. The greatest part of rheumatic diseases have a chronic course, leading to progressive damages at musculoskeletal system and causing physical problems, psychological and social concerns. Thus, rheumatic patients need to be treated with a multidisciplinary approach integrating pharmacological therapies and rehabilitation techniques, that not should only aim to reduce the progression of damages at musculoskeletal system. Thus, MBT, using an overall approach, could be useful in taking care of the overall health of the patients with chronic rheumatic diseases. This review will deal with different MBT and with their effects in the most common chronic rheumatic diseases (Rheumatoid Arthritis, Ankylosing Spondylitis, Fibromyalgia Syndrome). Copyright © 2015. Published by Elsevier Ltd.

  9. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  10. Links between alcohol and other drug problems and maltreatment among adolescent girls: Perceived discrimination, ethnic identity, and ethnic orientation as moderators

    PubMed Central

    Gray, Calonie M. K.; Montgomery, Marilyn J.

    2012-01-01

    Objectives This study examined the links between maltreatment, posttraumatic stress symptoms, ethnicity-specific factors (i.e., perceived discrimination, ethnic identity, and ethnic orientation), and alcohol and/or other drug (AOD) problems among adolescent girls. Methods These relations were examined using archived data from a community sample of 168 Black and Hispanic adolescent girls who participated in a school-based substance use intervention. Results The results revealed that maltreatment was linked to AOD problems, but only through its relation with posttraumatic stress symptoms; maltreatment was positively related to posttraumatic stress symptoms, which were positively related to AOD problems. Both perceived discrimination and ethnic orientation were significant moderators. Specifically, greater perceived discrimination was associated with an increased effect of maltreatment on posttraumatic stress symptoms. Ethnic orientation demonstrated protective properties in the relation between maltreatment and AOD problem severity, such that the effect of maltreatment on AOD problem severity was less for girls with average to high ethnic orientation compared to girls with low ethnic orientation. Conclusions The findings of this study underscore the importance of developing interventions for Black and Hispanic girls that target maltreatment and AOD use concurrently and address ethnicity-specific factors. PMID:22608406

  11. Determination of optimal self-drive tourism route using the orienteering problem method

    NASA Astrophysics Data System (ADS)

    Hashim, Zakiah; Ismail, Wan Rosmanira; Ahmad, Norfaieqah

    2013-04-01

    This paper was conducted to determine the optimal travel routes for self-drive tourism based on the allocation of time and expense by maximizing the amount of attraction scores assigned to each city involved. Self-drive tourism represents a type of tourism where tourists hire or travel by their own vehicle. It only involves a tourist destination which can be linked with a network of roads. Normally, the traveling salesman problem (TSP) and multiple traveling salesman problems (MTSP) method were used in the minimization problem such as determination the shortest time or distance traveled. This paper involved an alternative approach for maximization method which is maximize the attraction scores and tested on tourism data for ten cities in Kedah. A set of priority scores are used to set the attraction score at each city. The classical approach of the orienteering problem was used to determine the optimal travel route. This approach is extended to the team orienteering problem and the two methods were compared. These two models have been solved by using LINGO12.0 software. The results indicate that the model involving the team orienteering problem provides a more appropriate solution compared to the orienteering problem model.

  12. Computational Methods for Probabilistic Target Tracking Problems

    DTIC Science & Technology

    2007-09-01

    he is working with the Aegis Ballistic Missile Defense System (ABMD) in the Command and Decision (C&D) section. He has recently been selected from a...employed by Progress Energy as an Auxillary Operator at the Brunswick Nuclear Plant, in Southport NC. He is studying to qualify as an NRC licensed nuclear

  13. Optimizing sensor cover energy for directional sensors

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna

    2016-10-01

    The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.

  14. Orientation/Time Management Skill Training Lesson: Development and Evaluation

    DTIC Science & Technology

    1979-07-01

    instructional environment. This Orientation/ Time Management lesson provides students with appropriate role models for increasing acceptance of their...time savings can be obtained by a combination of this type of orientation and time management skill training with a computer-based progress targeting

  15. Face Verification across Age Progression using Discriminative Methods

    DTIC Science & Technology

    2008-01-01

    progression. The most related study to our work is [30], where the probabilistic eigenspace frame - work [22] is adapted for face identification across...solution has the same CAR and CRR, is frequently used to measure verification performance, B. Gradient Orientation and Gradient Orientation Pyramid Now we...proposed GOP representation. The other five approaches are different from our method in both representations and classification frame - works. For

  16. Theoretical approach to embed nanocrystallites into a bulk crystalline matrix and the embedding influence on the electronic band structure and optical properties of the resulting heterostructures

    NASA Astrophysics Data System (ADS)

    Balagan, Semyon A.; Nazarov, Vladimir U.; Shevlyagin, Alexander V.; Goroshko, Dmitrii L.; Galkin, Nikolay G.

    2018-06-01

    We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC’s orientation relative to the matrix at energies below 0.5 eV.

  17. Theoretical approach to embed nanocrystallites into a bulk crystalline matrix and the embedding influence on the electronic band structure and optical properties of the resulting heterostructures.

    PubMed

    Balagan, Semyon Anatolyevich; Nazarov, Vladimir U; Shevlyagin, Alexander Vladimirovich; Goroshko, Dmitrii L; Galkin, N G

    2018-05-03

    We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC's orientation relative to the matrix at energies below 0.5 eV. © 2018 IOP Publishing Ltd.

  18. Energy barrier analysis of Nd-Fe-B thin films

    NASA Astrophysics Data System (ADS)

    Goto, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.

    2015-05-01

    The magnetization reversal mechanism of a permanent magnet has long been a controversial issue, which is closely related to the so-called coercivity problem. It is well known that the energy barrier for magnetization reversal contains essential information on reversal process. In this study, we propose a method to analyze the energy barrier function for the magnetization reversal. Preferentially (001) oriented Nd-Fe-B films with and without a Nd overlayer are used as model magnets. By combining the magnetic viscosity and time dependent coercivity measurements, the barrier function has been successfully evaluated. As a result, although the Nd-Fe-B films with and without Nd overlayer exhibit different magnetic behaviors, the power indices for their energy barrier are almost the same, suggesting that the magnetization reversal proceeds in a similar mode.

  19. Promoting the energy structure optimization around Chinese Beijing-Tianjin area by developing biomass energy

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Sun, Du; Wang, Shi-Yu; Zhao, Feng-Qing

    2017-06-01

    In recent years, remarkable achievements in the utilization of biomass energy have been made in China. However, there are still some problems, such as irrational industry layout, immature existing market survival mechanism and lack of core competitiveness. On the basis of investigation and research, some recommendations and strategies are proposed for the development of biomass energy around Chinese Beijing-Tianjin area: scientific planning and precise laying out of biomass industry; rationalizing the relationship between government and enterprises and promoting the establishment of a market-oriented survival mechanism; combining ‘supply side’ with ‘demand side’ to optimize product structure; extending industrial chain to promote industry upgrading and sustainable development; and comprehensive co-ordinating various types of biomass resources and extending product chain to achieve better economic benefits.

  20. Image wavelet decomposition and applications

    NASA Technical Reports Server (NTRS)

    Treil, N.; Mallat, S.; Bajcsy, R.

    1989-01-01

    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  1. Sex differences in interpersonal problems: does sexual orientation moderate?

    PubMed

    Lee, Debbiesiu L; Harkless, Lynn E; Sheridan, Daniel J; Winakur, Emily; Fowers, Blaine J

    2013-01-01

    Sexual orientation was examined as a moderator in the relation between biological sex and interpersonal problems. Participants were 60 lesbians, 45 heterosexual women, 37 gay men, and 39 heterosexual men, who completed the Inventory of Interpersonal Problems-Circumplex. Sexual orientation was found to moderate one of the eight interpersonal problems under study. Heterosexual women scored significantly higher than lesbian women in Non-assertive. Although hypothesized, gay men did not differ from heterosexual men along the Dominant-Cold quadrant. Implications of these results are discussed.

  2. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.

    PubMed

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-12-21

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  3. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  4. Exploring the limits of EDS microanalysis: rare earth element analyses

    NASA Astrophysics Data System (ADS)

    Ritchie, N. W. M.; Newbury, D. E.; Lowers, H.; Mengason, M.

    2018-01-01

    It is a great time to be a microanalyst. After a few decades of incremental progress in energy-dispersive X-ray spectrometry (EDS), the last decade has seen the accuracy and precision surge forward. Today, the question is not whether EDS is generally useful but to identify the types of problems for which wavelength-dispersive X-ray spectrometry remains the better choice. The full extent of EDS’s capabilities has surprised many. Low Z, low energy, and trace element detection have been demonstrated even in the presence of extreme peak interferences. In this paper, we will summarise the state-of-the-art and investigate a challenging problem domain, the analysis of minerals bearing multiple rare-earth elements.

  5. Traffic accidents in Iran, a decade of progress but still challenges ahead.

    PubMed

    Lankarani, Kamran B; Sarikhani, Yaser; Heydari, Seyed Taghi; Joulaie, Hasan; Maharlouei, Najmeh; Peimani, Payam; Ahmadi, Seyed Mehdi; Khorasani-Zavareh, Davoud; Soori, Hamid; Davoudi-Kiakalayeh, Ali; Masoumi, Gholamreza

    2014-01-01

    Iran has had incremental incidence of traffic accident mortality since introduction of mechanization about a century ago. But the newest data from Iran show decrease in the absolute number of deaths, death per 10,000 vehicles and death per 100, 000 populations. Despite its huge impact on health and economy, research in the field of traffic crashes is still scant and there are still deficiencies in problem oriented research on traffic accidents. Actual cooperation of policy makers, executive bodies and academician could build platform for intersectoral discussion of different aspects of traffic accidents and could reduce burden of traffic accidents.

  6. Personality Traits, Sexual Problems, and Sexual Orientation: An Empirical Study.

    PubMed

    Peixoto, Maria Manuela; Nobre, Pedro

    2016-01-01

    Personality traits, namely neuroticism, have been suggested as vulnerability factors for the development and maintenance of sexual dysfunction in heterosexual samples. However, no evidence was found regarding homosexual samples. This study aimed to analyze the differences on personality traits between heterosexual and homosexual men and women with and without sexual problems. Participants were 285 individuals (142 men, 143 women) who completed a web-based survey. Participants answered the NEO Five-Factor Inventory, the Brief Symptomatology Inventory, and questions regarding sexual problems. The groups of men and women with and without sexual problems were matched for sociodemographic variables. A 2 (Group) × 2 (Sexual Orientation) multivariate analysis of covariance was conducted separately for each gender. Results indicated a significant main effect for group and for sexual orientation in male and female samples. Men with sexual problems scored higher on neuroticism, whereas women with sexual problems scored higher on neuroticism and lower on extraversion when compared with healthy controls, regardless of sexual orientation. In addition, gay men scored higher on neuroticism and lesbian women scored higher on conscientiousness compared with the heterosexual groups. The present findings emphasize the central role of neuroticism on sexual problems in both men and women regardless of sexual orientation.

  7. Links between alcohol and other drug problems and maltreatment among adolescent girls: perceived discrimination, ethnic identity, and ethnic orientation as moderators.

    PubMed

    Gray, Calonie M K; Montgomery, Marilyn J

    2012-05-01

    This study examined the links between maltreatment, posttraumatic stress symptoms, ethnicity-specific factors (i.e., perceived discrimination, ethnic identity, and ethnic orientation), and alcohol and/or other drug (AOD) problems among adolescent girls. These relations were examined using archived data from a community sample of 168 Black and Hispanic adolescent girls who participated in a school-based substance use intervention. The results revealed that maltreatment was linked to AOD problems, but only through its relation with posttraumatic stress symptoms; maltreatment was positively related to posttraumatic stress symptoms, which were positively related to AOD problems. Both perceived discrimination and ethnic orientation were significant moderators. Specifically, greater perceived discrimination was associated with an increased effect of maltreatment on posttraumatic stress symptoms. Ethnic orientation demonstrated protective properties in the relation between maltreatment and AOD problem severity, such that the effect of maltreatment on AOD problem severity was less for girls with average to high ethnic orientation compared to girls with low ethnic orientation. The findings of this study underscore the importance of developing interventions for Black and Hispanic girls that target maltreatment and AOD use concurrently and address ethnicity-specific factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The Case for Developing Professional Master's Degrees to Compete in the Business World

    NASA Astrophysics Data System (ADS)

    Bozler, Hans M.

    2002-04-01

    Graduate education in most physics programs is oriented towards preparing students for research careers even though the majority of the students do not actively pursue research after graduation. This research orientation causes physics graduate programs to lose potential students. In addition science-trained professionals are often underrepresented in corporate decision making. Meanwhile, many physics graduates at all levels supplement their skills by taking courses in professional schools (engineering, law, and business). A survey of our graduates shows that combinations of knowledge and skills from physics and applied disciplines including business often form the basis for successful careers. The objective of our new Professional Master's in Physics for Business Applications program is to streamline this education by combining disciplines so that physics graduates can rapidly move into decision making positions within business and industry. We combine a traditional physics curriculum with courses that add to problem solving and computational skills. Students take courses in our Business School and also do an internship. Our physics courses are kept at the same level as those taken by Ph.D. students. The business courses are selected from offerings by the Marshall School of Business to their own MBA students. The progress and problems associated with the development of curriculum, recruiting, and placement will be discussed.

  9. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  10. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.

    PubMed

    Rubinstein, Alexander; Sherman, Simon

    The dielectric properties of the polar solvent on the protein-solvent interface at small intercharge distances are still poorly explored. To deconvolute this problem and to evaluate the pair-wise electrostatic interaction (PEI) energies of the point charges located at the protein-solvent interface we used a nonlocal (NL) electrostatic approach along with a static NL dielectric response function of water. The influence of the aqueous solvent microstructure (determined by a strong nonelectrostatic correlation effect between water dipoles within the orientational Debye polarization mode) on electrostatic interactions at the interface was studied in our work. It was shown that the PEI energies can be significantly higher than the energies evaluated by the classical (local) consideration, treating water molecules as belonging to the bulk solvent with a high dielectric constant. Our analysis points to the existence of a rather extended, effective low-dielectric interfacial water shell on the protein surface. The main dielectric properties of this shell (effective thickness together with distance- and orientation-dependent dielectric permittivity function) were evaluated. The dramatic role of this shell was demonstrated when estimating the protein association rate constants.

  11. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    ERIC Educational Resources Information Center

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  12. General Mathematics; Part 1. Mathematics Curriculum Guide (Career Oriented).

    ERIC Educational Resources Information Center

    Nuschler, Alexandra; And Others

    The curriculum guide for secondary level, career-oriented General Mathematics Part 1, correlates performance objectives in basic mathematics with career-oriented concepts and activities. The material is designed to lead the student in a systematic development that provides for continuous progress. The guide is in outline format, providing a…

  13. Measuring Sexual Orientation: A Review and Critique of U.S. Data Collection Efforts and Implications for Health Policy.

    PubMed

    Wolff, Margaret; Wells, Brooke; Ventura-DiPersia, Christina; Renson, Audrey; Grov, Christian

    The U.S. Department of Health and Human Services' (HHS) Healthy People 2020 goals sought to improve health outcomes among sexual minorities; HHS acknowledged that a dearth of sexual orientation items in federal and state health surveys obscured a broad understanding of sexual minority-related health disparities. The HHS 2011 data progression plan aimed to advance sexual orientation data collection efforts at the national level. Sexual orientation is a complex, multidimensional construct often composed of sexual identity, sexual attraction, and sexual behavior, thus posing challenges to its quantitative and practical measurement and analysis. In this review, we (a) present existing sexual orientation constructs; (b) evaluate current HHS sexual orientation data collection efforts; (c) review post-2011 data progression plan research on sexual minority health disparities, drawing on HHS survey data; (d) highlight the importance of and (e) identify obstacles to multidimensional sexual orientation measurement and analysis; and (f) discuss methods for multidimensional sexual orientation analysis and propose a matrix for addressing discordance/branchedness within these analyses. Multidimensional sexual orientation data collection and analysis would elucidate sexual minority-related health disparities, guide related health policies, and enhance population-based estimates of sexual minority individuals to steer health care practices.

  14. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Problem Oriented Literacy Materials Preparation: A Case Study

    ERIC Educational Resources Information Center

    Tripathi, Virendra

    1975-01-01

    One of the recent innovations of significance in developing nations is the concept of linking literacy education to problems related to socio-economic development. The article describes the Problem Oriented Materials Preparation Project of Literacy House, Lucknow, India. (Author/BP)

  16. Effects of Process-Oriented and Product-Oriented Worked Examples and Prior Knowledge on Learner Problem Solving and Attitude: A Study in the Domain of Microeconomics

    ERIC Educational Resources Information Center

    Brooks, Christopher Darren

    2009-01-01

    The purpose of this study was to investigate the effectiveness of process-oriented and product-oriented worked example strategies and the mediating effect of prior knowledge (high versus low) on problem solving and learner attitude in the domain of microeconomics. In addition, the effect of these variables on learning efficiency as well as the…

  17. Racial Discrimination and Alcohol Use: The Moderating Role of Religious Orientation.

    PubMed

    Parenteau, Stacy C; Waters, Kristen; Cox, Brittany; Patterson, Tarsha; Carr, Richard

    2017-01-02

    An outgrowth of research has established a relationship between racial discrimination and alcohol use, as well as factors that moderate this association. The main objective of this study was to determine if religious orientation moderates the relationship between perceived racial discrimination and alcohol use. This study utilized a cross-sectional data collection strategy to examine the relationship among discrimination, religious orientation, and alcohol use among undergraduate students (N = 349) at a midsize southeastern university. Data was collected in 2014. Participants completed a demographic questionnaire, the General Ethnic Discrimination Scale, the Extrinsic/Intrinsic Religious Orientation Scale-Revised and the Drinking and Drug Habits Questionnaire. Analyses using hierarchical linear regression indicate a significant interaction effect (lifetime discrimination × extrinsic religious orientation) on problem drinking. Additional moderation analyses reveal a significant interaction effect between lifetime discrimination and the extrinsic-personal religious orientation on problem drinking. Results suggest that an extrinsic religious orientation, and particularly, an extrinsic-personal religious orientation, moderates the relationship between lifetime discrimination and problem drinking, suggesting that turning to religion for comfort and protection, rather than for the superficial purpose of seeing/making friends at church, may buffer against the deleterious effects of discrimination-specifically, engaging in problem drinking to cope with the stress of discrimination. Limitations, directions for future research, and clinical implications are discussed.

  18. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Buhl, W.F.

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less

  19. An Existential Perspective on Death Anxiety, Retirement, and Related Research Problems.

    PubMed

    Osborne, John W

    2017-06-01

    Aspects of existentialism relevant to existence and death anxiety (DA) are discussed. Included are the "thrownness" of existence, being-with-others, the motivational influence of inevitable death, the search for meaning, making the most of existence by taking responsibility for one's own life, and coping with existential isolation. The attempted separation of DA from object anxiety is a significant difficulty. The correlations among age, gender, and DA are variable. Personality and role-oriented problems in the transition to retirement are discussed along with Erikson's notion of "generativity" as an expression of the energy and purpose of mid-life. Furthermore, methodological and linguistic problems in DA research are considered. The article suggests qualitative methodologies as an interpersonal means of exploring DA within the contexts of psychotherapy and counselling.

  20. An iterated local search algorithm for the team orienteering problem with variable profits

    NASA Astrophysics Data System (ADS)

    Gunawan, Aldy; Ng, Kien Ming; Kendall, Graham; Lai, Junhan

    2018-07-01

    The orienteering problem (OP) is a routing problem that has numerous applications in various domains such as logistics and tourism. The objective is to determine a subset of vertices to visit for a vehicle so that the total collected score is maximized and a given time budget is not exceeded. The extensive application of the OP has led to many different variants, including the team orienteering problem (TOP) and the team orienteering problem with time windows. The TOP extends the OP by considering multiple vehicles. In this article, the team orienteering problem with variable profits (TOPVP) is studied. The main characteristic of the TOPVP is that the amount of score collected from a visited vertex depends on the duration of stay on that vertex. A mathematical programming model for the TOPVP is first presented and an algorithm based on iterated local search (ILS) that is able to solve modified benchmark instances is then proposed. It is concluded that ILS produces solutions which are comparable to those obtained by the commercial solver CPLEX for smaller instances. For the larger instances, ILS obtains good-quality solutions that have significantly better objective value than those found by CPLEX under reasonable computational times.

  1. The Problems of Translating Oriental Texts into Arabic

    ERIC Educational Resources Information Center

    Sakarna, Ahmad Khalaf; Ma'Abrah, Mohamdd Akash

    2013-01-01

    The purpose of this study is to investigate the problems and difficulties that face the students of Arabic Language at Mu'tah University when translating oriental texts from English into Arabic in the academic year 2011-2012. The difficulties facing Arabic students when translating oriental texts has never been studied, rising an urgent need to…

  2. Towards a Web-Based Handbook of Generic, Process-Oriented Learning Designs

    ERIC Educational Resources Information Center

    Marjanovic, Olivera

    2005-01-01

    Process-oriented learning designs are innovative learning activities that include a set of inter-related learning tasks and are generic (could be used across disciplines). An example includes a problem-solving process widely used in problem-based learning today. Most of the existing process-oriented learning designs are not documented, let alone…

  3. Promoting Scientific Literacy Using a Sociocritical and Problem-Oriented Approach to Chemistry Teaching: Concept, Examples, Experiences

    ERIC Educational Resources Information Center

    Marks, Ralf; Eilks, Ingo

    2009-01-01

    This paper revisits the discussion about the objectives of scientific literacy-oriented chemistry teaching, its connection to the German concept of "Allgemeinbildung", and the debate of "science through education" vs. "education through science". About 10 years ago the sociocritical and problem-oriented approach to…

  4. Sex and Age Differences in Achievement Goal Orientations in Turkish Adolescents

    ERIC Educational Resources Information Center

    Sahin, Ertugrul; Topkaya, Nursel; Kürkçü, Recep

    2016-01-01

    Culture plays an important role in the achievement goal orientations of students, which may vary as they progress through their lifespan. However, research examining achievement goal orientations in the Turkish cultural context is scarce. Based on contextual and developmental theories, the aim of this study was to examine sex and age differences…

  5. Inquiry in conversation: Exploring the multiple solution pathway (MSP) lesson structure as a means to progressive discourse in the science classroom

    NASA Astrophysics Data System (ADS)

    Criswell, Brett A.

    This exploratory, descriptive study examined the way five chemistry teachers from four different schools enacted their visions of an activity labeled as the multiple solution pathway (MSP) lesson structure -- one in which students were given a relevant problem to solve and the opportunity to propose and explore several solutions to the problem. A theoretical and analytical framework for characterizing what transpired within these enactments was developed mainly out of Bereiter's principle of progressive discourse and its accompanying commitments, but also by drawing on Peirce's fallibilist epistemology, Gal'perin's notion of the orienting basis of an action, and Davydov's distinction between empirical and theoretical generalizations. Data from utterance-level discourse analysis of the videotaped lessons, supplemented by pre- and post-lesson interviews with both students and teachers was used to answer the research question: What is the nature of the interactions that occur during Multiple Solution Pathway (MSP) lessons and how are those interactions related to the structure of activity and the way in which ideas are explored within those lessons? The data showed that there were two general structures of activity utilized by the five teachers and that these different structures impacted the extent to which two of the progressive discourse commitments (expansion and openness) were supported. It also indicated that the teachers likely operated off a 'teacher as evaluator' metaphor and a discrepant event vision of the way the lesson should unfold, both features of which limited the extent to which progressive discourse was maintained in these lessons. Pedagogical implications for more fully realizing the potential of the MSP structure are presented.

  6. Application-oriented offloading in heterogeneous networks for mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.

    2018-04-01

    Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.

  7. Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing

    2015-04-01

    Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.

  8. [Enclosed environments and health].

    PubMed

    Maroni, M; Barbieri, F

    1989-01-01

    Problems related to Indoor Air Quality are subject of study since about twenty years. New architectural criteria, new building materials and increasing demands of energy saving have progressively changed residences, offices and all non-industrial indoor environments. This paper present a review of the IAQ-related issues from sources characterization, to pollutant assessment and definition of effects on human health.

  9. Cosmic ray astroparticle physics: current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Donato, Fiorenza

    2017-02-01

    The data we are receiving from galactic cosmic rays are reaching an unprecedented precision, over very wide energy ranges. Nevertheless, many problems are still open, while new ones seem to appear when data happen to be redundant. We will discuss some paths to possible progress in the theoretical modeling and experimental exploration of the galactic cosmic radiation.

  10. Randomized Controlled Trial of a Brief Problem-Orientation Intervention for Suicidal Ideation

    ERIC Educational Resources Information Center

    Fitzpatrick, Kathleen Kara; Witte, Tracy K.; Schmidt, Norman B.

    2005-01-01

    Empirical evaluations suggest that problem orientation, the initial reaction to problems, differentiates suicidal youth from nonclinical controls and nonideating psychiatric controls. One promising area for intervention with suicidal youth relates to enhancing this specific coping skill. Nonclinical participants (N = 110) with active suicidal…

  11. The development of an acute care case manager orientation.

    PubMed

    Strzelecki, S; Brobst, R

    1997-01-01

    The authors describe the development of an inpatient acute care case manager orientation in a community hospital. Benner's application of the Dreyfus model of skill acquisition provides the basis for the orientation program. The candidates for the case manager position were expert clinicians. Because of the role change it was projected that they would function as advanced beginners. It was also predicted that, as the case managers progressed within the role, the educational process would need to be adapted to facilitate progression of skills to the proficient level. Feedback from participants reinforced that the model supported the case manager in the role transition. In addition, the model provided a predictive framework for ongoing educational activities.

  12. Integration of the brief behavioral activation treatment for depression (BATD) into a college orientation program: depression and alcohol outcomes.

    PubMed

    Reynolds, Elizabeth K; Macpherson, Laura; Tull, Matthew T; Baruch, David E; Lejuez, C W

    2011-10-01

    College freshmen face a variety of academic and social challenges as they adjust to college life that can place them at risk for a number of negative outcomes, including depression and alcohol-related problems. Orientation classes that focus on teaching incoming students how to better cope with college-oriented stress may provide an opportunity to prevent the development of these adjustment problems. This article outlines a program based on behavioral activation that can be integrated into college orientation programs to provide a more comprehensive orientation experience. Data are presented from an initial pilot study in which 71 first-semester freshman at the University of Maryland participated in a 15-week, 2 hr per week orientation class (n = 37 in the behavioral activation-enhanced orientation classes and n = 34 in the control orientation as usual classes). Students' depression and alcohol use were evaluated at the beginning, middle, and end of the course. Results indicated a Time × Group interaction such that problem drinking (but not consumption) was significantly reduced across assessments in the behavioral activation classes and largely unchanged in the standard classes. No difference was observed in depression scores; however, fairly low depression scores across the 3 time points may have limited the opportunity to observe any meaningful impact of the orientation classes on depression. The authors conclude with a discussion of the implications of their findings for preventing adjustment problems among incoming college students and future directions.

  13. SOLINS- SOLAR INSOLATION MODEL FOR COMPUTING AVAILABLE SOLAR ENERGY TO A SURFACE OF ARBITRARY ORIENTATION

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1994-01-01

    This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.

  14. Analysis of Multiple Cracks in an Infinite Functionally Graded Plate

    NASA Technical Reports Server (NTRS)

    Shbeeb, N. I.; Binienda, W. K.; Kreider, K. L.

    1999-01-01

    A general methodology was constructed to develop the fundamental solution for a crack embedded in an infinite non-homogeneous material in which the shear modulus varies exponentially with the y coordinate. The fundamental solution was used to generate a solution to fully interactive multiple crack problems for stress intensity factors and strain energy release rates. Parametric studies were conducted for two crack configurations. The model displayed sensitivity to crack distance, relative angular orientation, and to the coefficient of nonhomogeneity.

  15. Problems and Expectations of University Students Attending Higher Education in Turkey: Orientation Services

    ERIC Educational Resources Information Center

    Kutlu, Mustafa

    2005-01-01

    The objective of this research is to find out the problems and expectations of the students in Inonu University (in Malatya, a city in east Turkey) concerning the orientation services. An additional objective is to ascertain whether students' expectations with regard to orientation services differ according to their sex, their place of origin, and…

  16. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.

    PubMed

    Schueler-Furman, Ora; Wang, Chu; Baker, David

    2005-08-01

    RosettaDock uses real-space Monte Carlo minimization (MCM) on both rigid-body and side-chain degrees of freedom to identify the lowest free energy docked arrangement of 2 protein structures. An improved version of the method that uses gradient-based minimization for off-rotamer side-chain optimization and includes information from unbound structures was used to create predictions for Rounds 4 and 5 of CAPRI. First, large numbers of independent MCM trajectories were carried out and the lowest free energy docked configurations identified. Second, new trajectories were started from these lowest energy structures to thoroughly sample the surrounding conformation space, and the lowest energy configurations were submitted as predictions. For all cases in which there were no significant backbone conformational changes, a small number of very low-energy configurations were identified in the first, global search and subsequently found to be close to the center of the basin of attraction in the free energy landscape in the second, local search. Following the release of the experimental coordinates, it was found that the centers of these free energy minima were remarkably close to the native structures in not only the rigid-body orientation but also the detailed conformations of the side-chains. Out of 8 targets, the lowest energy models had interface root-mean-square deviations (RMSDs) less than 1.1 A from the correct structures for 6 targets, and interface RMSDs less than 0.4 A for 3 targets. The predictions were top submissions to CAPRI for Targets 11, 12, 14, 15, and 19. The close correspondence of the lowest free energy structures found in our searches to the experimental structures suggests that our free energy function is a reasonable representation of the physical chemistry, and that the real space search with full side-chain flexibility to some extent solves the protein-protein docking problem in the absence of significant backbone conformational changes. On the other hand, the approach fails when there are significant backbone conformational changes as the steric complementarity of the 2 proteins cannot be modeled without incorporating backbone flexibility, and this is the major goal of our current work.

  17. Non-US electrodynamic launchers research and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Batteh, J.H.; Greig, J.R.

    Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in somemore » technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.« less

  18. Progress in developing Poisson-Boltzmann equation solvers

    PubMed Central

    Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil

    2013-01-01

    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185

  19. Progressive Education for the 1990s: Transforming Practice.

    ERIC Educational Resources Information Center

    Jervis, Kathe, Ed.; Montag, Carol, Ed.

    In this collection, educators examine progressive education from both historical and practical standpoints, addressing the daily struggles confronting progressively oriented teachers as they create classrooms to support their values. After an introduction, "Class Values," by C. Montag, the following essays are presented: (1) "Large…

  20. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  1. Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading.

    PubMed

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.

  2. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE... ft. except for dwelling units in hotels/motels and multi-family high-rise residential buildings where...

  3. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  4. Computing arbitrary defect structures on arbitrary lattices on arbitrary geometries from arbitrary energies

    NASA Astrophysics Data System (ADS)

    Allen, Brian; Travesset, Alex

    2004-03-01

    Dislocations and disclinations play a fundamental role in the properties of two dimensional crystals. In this talk, it will be shown that a general computational framework can be developed by combining previous work of Seung and Nelson* and modern advances in objected oriented design. This allows separating the problem into independent classes such as: geometry (sphere, plane, torus..), lattice (triangular, square, etc..), type of defect (dislocation, disclinations, etc..), boundary conditions, type of order (crystalline, hexatic) or energy functional. As applications, the ground state of crystals in several geometries will be discussed. Experimental examples with colloidal particles will be shown. *S. Seung and D. Nelson, Phys. Rev. A 38, 1005 (1988)

  5. Optimizing the selection of small-town wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  6. Pan Am gets big savings at no cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanz, D.

    Pan American World Airways' contract with an energy management control systems distributor enabled the company's terminal and maintenance facilities at JFK airport in New York to shift from housekeeping to major savings without additional cost. Energy savings from a pneumatic control system were split almost equally between Pan Am and Thomas S. Brown Associates (TSBA) Inc., and further savings are expected from a planned computer-controlled system. A full-time energy manager, able to give top priority to energy-consumption problems, was considered crucial to the program's success. Early efforts in light-level reduction and equipment scheduling required extensive persuasion and policing, but successfulmore » energy savings allowed the manager to progress to the more-extensive plants with TSBA.« less

  7. Structure and dynamics of optically directed self-assembly of nanoparticles

    PubMed Central

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2016-01-01

    Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process. PMID:27006305

  8. A structural and electronic comparison of armchair and zigzag epitaxial graphene sidewall nanoribbons

    NASA Astrophysics Data System (ADS)

    Nevius, Meredith; Wang, F.; Palacio, I.; Celis, A.; Tejeda, A.; Taleb-Ibrahimi, A.; de Heer, W.; Berger, C.; Conrad, E.

    2014-03-01

    Graphene grown on sidewalls of trenches etched in SiC shows particular promise as a candidate for post-Si CMOS electronics because of its ballistic transport, exceptional mobilities, low intrinsic doping, and the opening of a large band gap. However, before definitive progress can be made toward epitaxial graphene-based transistors, we must fully understand the nuances of graphene ribbon growth on different SiC facets. We have now confirmed that sidewall ribbons grown in graphene's two primary crystallographic directions (``armchair'' and ``zigzag'') differ greatly in both structure and electronic band-structure. We present data from both geometries obtained using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), angle-resolved photoemission spectroscopy (ARPES), photoemission electron microscopy (PEEM), micro-ARPES and dark-field micro-ARPES. We demonstrate that while graphene grows on stable facets of trenches oriented for armchair edge growth, trenches oriented for zigzag edge growth prefer narrow ribbons of graphene on the (0001) surface near the trench edge. The structure of these zigzag edge graphene ribbons is complex and paramount to understanding their transport. This work was supported by the NSF under grants DMR-1005880 and DMR-0820382, the W. M. Keck Foundation and the Partner University Fund from the Embassy of France

  9. Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries.

    PubMed

    Zhang, Peng; Zhao, Yong; Zhang, Xinbo

    2018-04-23

    The lithium-O2 battery is one of most promising energy storage and conversion devices due to its ultrahigh theoretical energy density and hence has broad application potential in electrical vehicles and stationary power systems. However, the present Li-O2 battery suffers from a series of challenges for its practical application, such as its low capacity and rate capability, poor round-trip efficiency and short cycle life. These challenges mainly arise from the sluggish and unsustainable discharge and charge reactions at lithium and oxygen electrodes, which determine the performance and durability of a battery. In this review, we first provide insights on the present understanding of the discharge/charge mechanism of such a battery and follow up with establishing a correlation between the specific materials/structures of the battery modules and their functionality/stability within the recent progress in electrodes, electrolytes and redox mediators. Considerable emphasis is paid to the importance of functional orientation design and the synthesis of materials/structures towards accelerating and sustaining the electrode reactions of Li-O2 batteries. Moreover, the future directions and perspectives of rationally constructed material and surface/interface structures, as well as their optimal combinations are proposed for enhancement of the electrode reaction rate and sustainability, and consequently for a better performance and durability of such batteries.

  10. Data-Oriented Astrophysics at NOAO: The Science Archive & The Data Lab

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie; NOAO Data Lab, NOAO Science Archive

    2018-06-01

    As we keep progressing into an era of increasingly large astronomy datasets, NOAO’s data-oriented mission is growing in prominence. The NOAO Science Archive, which captures and processes the pixel data from mountaintops in Chile and Arizona, now contains holdings at Petabyte scales. Working at the intersection of astronomy and data science, the main goal of the NOAO Data Lab is to provide users with a suite of tools to work close to this data, the catalogs derived from them, as well as externally provided datasets, and thus optimize the scientific productivity of the astronomy community. These tools and services include databases, query tools, virtual storage space, workflows through our Jupyter Notebook server, and scripted analysis. We currently host datasets from NOAO facilities such as the Dark Energy Survey (DES), the DESI imaging Legacy Surveys (LS), the Dark Energy Camera Plane Survey (DECaPS), and the nearly all-sky NOAO Source Catalog (NSC). We are further preparing for large spectroscopy datasets such as DESI. After a brief overview of the Science Archive, the Data Lab and datasets, I will briefly showcase scientific applications showing use of our data holdings. Lastly, I will describe our vision for future developments as we tackle the next technical and scientific challenges.

  11. A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity

    NASA Astrophysics Data System (ADS)

    Fan, Tao; He, Qingsu; Nie, Erbao; Chen, Shaozhen

    2018-01-01

    The development of Energy-Internet is currently suffering from a series of issues, such as the conflicts among high capital requirement, low-cost, high efficiency, the spreading gap between capital demand and supply, as well as the lagged trading & valuation mechanism, any of which would hinder Energy-Internet's evolution. However, with the development of Blockchain and big-data technology, it is possible to work out solutions for these issues. Based on current situation of Energy-Internet and its requirements for future progress, this paper demonstrates the validity of employing blockchain technology to solve the problems encountered by Energy-Internet during its development. It proposes applying the blockchain and big-data technologies to pricing and trading energy products through Energy-Internet and to accomplish cyber-based energy or power's transformation from physic products to financial assets.

  12. Cooperative Resource Pricing in Service Overlay Networks for Mobile Agents

    NASA Astrophysics Data System (ADS)

    Nakano, Tadashi; Okaie, Yutaka

    The success of peer-to-peer overlay networks depends on cooperation among participating peers. In this paper, we investigate the degree of cooperation among individual peers required to induce globally favorable properties in an overlay network. Specifically, we consider a resource pricing problem in a market-oriented overlay network where participating peers sell own resources (e.g., CPU cycles) to earn energy which represents some money or rewards in the network. In the resource pricing model presented in this paper, each peer sets the price for own resource based on the degree of cooperation; non-cooperative peers attempt to maximize their own energy gains, while cooperative peers maximize the sum of own and neighbors' energy gains. Simulation results are presented to demonstrate that the network topology is an important factor influencing the minimum degree of cooperation required to increase the network-wide global energy gain.

  13. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    PubMed

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during themore » third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.« less

  15. Promoting Experimental Problem-Solving Ability in Sixth-Grade Students through Problem-Oriented Teaching of Ecology: Findings of an Intervention Study in a Complex Domain

    ERIC Educational Resources Information Center

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-01-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…

  16. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The Concept of Ecologically Oriented Progress and Natural Resource Preservation

    NASA Astrophysics Data System (ADS)

    Gasanov, M. A.; Kolotov, K. A.; Demidenko, K. A.; Podgornaya, E. A.; Kadnikova, O. V.

    2017-01-01

    The most important issue of scientific and technological progress is considering the environment challenges of industrial development. It means that the progress must be ecologically oriented and environmentally friendly. The most adequate concept for the approach to the issue of “man - society - nature” relations is the ontology of the noosphere - the idea of a common space for human beings and nature. It presents an ideal example of an optimistic attitude towards the coordination between accelerating the scientific and technological development and natural resource saving. However, to maintain the balance between human needs and environmental processes determined by this concept, it is essential to include the lean production training into technological development of society.

  18. [Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1993-12-31

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less

  19. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  20. Dealing with Insecurity in Problem Oriented Learning Approaches--The Importance of Problem Formulation

    ERIC Educational Resources Information Center

    Jensen, Annie Aarup; Lund, Birthe

    2016-01-01

    Introduction of a pedagogical concept, Kubus, in a problem oriented learning context--analysed within the framework of an activity system--indicates what might happen when offering tools tempting to influence and regulate students' learning approach and hereby neglecting the importance of existing habits and values. Introduction of this new…

  1. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  2. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  3. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  4. Determinants of a successful problem list to support the implementation of the problem-oriented medical record according to recent literature.

    PubMed

    Simons, Sereh M J; Cillessen, Felix H J M; Hazelzet, Jan A

    2016-08-02

    A problem-oriented approach is one of the possibilities to organize a medical record. The problem-oriented medical record (POMR) - a structured organization of patient information per presented medical problem- was introduced at the end of the sixties by Dr. Lawrence Weed to aid dealing with the multiplicity of patient problems. The problem list as a precondition is the centerpiece of the problem-oriented medical record (POMR) also called problem-oriented record (POR). Prior to the digital era, paper records presented a flat list of medical problems to the healthcare professional without the features that are possible with current technology. In modern EHRs a POMR based on a structured problem list can be used for clinical decision support, registries, order management, population health, and potentially other innovative functionality in the future, thereby providing a new incentive to the implementation and use of the POMR. On both 12 May 2014 and 1 June 2015 a systematic literature search was conducted. From the retrieved articles statements regarding the POMR and related to successful or non-successful implementation, were categorized. Generic determinants were extracted from these statements. In this research 38 articles were included. The literature analysis led to 12 generic determinants: clinical practice/reasoning, complete and accurate problem list, data structure/content, efficiency, functionality, interoperability, multi-disciplinary, overview of patient information, quality of care, system support, training of staff, and usability. Two main subjects can be distinguished in the determinants: the system that the problem list and POMR is integrated in and the organization using that system. The combination of the two requires a sociotechnical approach and both are equally important for successful implementation of a POMR. All the determinants have to be taken into account, but the weight given to each of the determinants depends on the organizationusing the problem list or POMR.

  5. Motivational Profiles of Gambling Behavior: Self-determination Theory, Gambling Motives, and Gambling Behavior.

    PubMed

    Rodriguez, Lindsey M; Neighbors, Clayton; Rinker, Dipali V; Tackett, Jennifer L

    2015-12-01

    Gambling among young adults occurs at a higher rate than in the general population and is associated with a host of negative consequences. Self-determination theory (SDT) posits that individuals develop general motivational orientations which predict a range of behavioral outcomes. An autonomy orientation portrays a choiceful perspective facilitating personal growth, whereas a controlled orientation represents a chronic proclivity toward external pressures and a general lack of choice. Further, an impersonal orientation is characterized by alack of intention and feeling despondent and ineffective. Controlled orientation has previously been associated with more frequent and problematic gambling. This research was designed to examine gambling motives as mediators of associations between motivational orientations and gambling behaviors. Undergraduates (N = 252) who met 2+ criteria on the South Oaks Gambling Screen participated in a laboratory survey assessing their motivational orientations, gambling motives, and gambling behavior (quantity, frequency, and problems). Mediation analyses suggested that autonomy was negatively associated with gambling problems through lower levels of chasing and escape motives. Further, controlled orientation was associated with more problems through higher levels of chasing and interest motives. Finally, impersonal orientation was negatively associated with amount won through escape motives. Overall, results support exploring gambling behavior and motives using a SDT framework.

  6. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  7. Preparing to understand and use science in the real world: interdisciplinary study concentrations at the Technical University of Darmstadt.

    PubMed

    Liebert, Wolfgang J

    2013-12-01

    In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.

  8. NiO: correlated band structure of a charge-transfer insulator.

    PubMed

    Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D

    2007-10-12

    The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.

  9. Examining Progress across Time with Practical Assessments in Ensemble Settings

    ERIC Educational Resources Information Center

    Crochet, Lorrie S.; Green, Susan K.

    2012-01-01

    This article provides the rationale for effective music assessment that tracks individual progress across time and offers examples to illustrate assessment of a range of music-learning goals. Gauging progress across time helps students become more mastery-oriented, while showing more effort and positive attitudes. As instruction and assessment…

  10. Sport-related achievement motivation and alcohol outcomes: an athlete-specific risk factor among intercollegiate athletes.

    PubMed

    Weaver, Cameron C; Martens, Matthew P; Cadigan, Jennifer M; Takamatsu, Stephanie K; Treloar, Hayley R; Pedersen, Eric R

    2013-12-01

    Intercollegiate athletes report greater alcohol consumption and more alcohol-related problems than their non-athlete peers. Although college athletes share many of the same problems faced by non-athletes, there are some consequences that are unique to athletes. Studies have demonstrated that alcohol negatively affects athletic performance including increased dehydration, impeded muscle recovery, and increased risk for injury. Beyond risk factors for alcohol misuse that may affect college students in general, research has begun to examine risk factors that are unique to collegiate athletes. For example, research has found that off-season status, the leadership role, and athlete-specific drinking motives are associated with increased alcohol use. Given these findings, it is possible that other athlete-specific variables influence alcohol misuse. One such variable may be sport achievement orientation. The purpose of the current study was to examine the relationship between sport achievement orientation and alcohol outcomes. Given previous research regarding seasonal status and gender, these variables were examined as moderators. Varsity athletes (n=263) completed the Sport Orientation Questionnaire, which assesses sport-related achievement orientation on three scales (Competitiveness, Win Orientation, and Goal Orientation). In addition, participants completed measures of alcohol use and alcohol-related problems. Results indicated that Competitiveness, Win Orientation, and Goal Orientation were all significantly associated with alcohol use, but not alcohol-related problems. Moreover, these relationships were moderated by seasonal status and gender. These interactions, clinical implications, and limitations are discussed. © 2013.

  11. Sport-Related Achievement Motivation and Alcohol Outcomes: An Athlete-Specific Risk Factor among Intercollegiate Athletes

    PubMed Central

    Weaver, Cameron C.; Martens, Matthew P.; Cadigan, Jennifer M.; Takamatsu, Stephanie K.; Treloar, Hayley R.; Pedersen, Eric R.

    2014-01-01

    Intercollegiate athletes report greater alcohol consumption and more alcohol-related problems than their non-athlete peers. Although college athletes share many of the same problems faced by non-athletes, there are some consequences that are unique to athletes. Studies have demonstrated that alcohol negatively affects athletic performance including increased dehydration, impeded muscle recovery, and increased risk for injury. Beyond risk factors for alcohol misuse that may affect college students in general, research has begun to examine risk factors that are unique to collegiate athletes. For example, research has found that off-season status, the leadership role, and athlete-specific drinking motives are associated with increased alcohol use. Given these findings, it is possible that other athlete-specific variables influence alcohol misuse. One such variable may be sport achievement orientation. The purpose of the current study was to examine the relationship between sport achievement orientation and alcohol outcomes. Given previous research regarding seasonal status and gender, these variables were examined as moderators. Varsity athletes (n = 263) completed the Sport Orientation Questionnaire, which assesses sport-related achievement orientation on three scales (Competitiveness, Win Orientation, and Goal Orientation). In addition, participants completed measures of alcohol use and alcohol-related problems. Results indicated that Competitiveness, Win Orientation, and Goal Orientation were all significantly associated with alcohol use, but not alcohol-related problems. Moreover, these relationships were moderated by seasonal status and gender. These interactions, clinical implications, and limitations are discussed. PMID:24064192

  12. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.

  13. Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1 +/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly. PMID:22479190

  14. American Security and the International Energy Situation. Volume 2. World Energy and the Security of Supply

    DTIC Science & Technology

    1975-04-15

    flue gas desulfurization technology seems to oe progressing so that by the late 1970s utilities may be able to burn high-sultur coal directly with...CObHqat ion•.V Conferva 1i on 0’ I , gas . and shale Coa I Lir.’I ronmcntal control Nuclear fission Nuclear fusion Other a. So I a r B...abandonment of all import controls , its findings on th: key problem of import dependence and security did not reflect a dear conviction that a

  15. A randomized controlled trial of problem-solving therapy compared to cognitive therapy for the treatment of insomnia in adults.

    PubMed

    Pech, Melissa; O'Kearney, Richard

    2013-05-01

    To compare the efficacy of problem-solving therapy (PST) combined with behavioral sleep strategies to standard cognitive therapy (CT) combined with behavioral sleep strategies in the treatment of insomnia. A six-week randomized controlled trial with one month follow-up. The Australian National University Psychology Clinic, Canberra, Australia. Forty-seven adults aged 18-60 years recruited from the community meeting the Research Diagnostic Criteria for insomnia. Participants received 6 weeks of treatment including one group session (sleep education and hygiene, stimulus control instructions and progressive muscle relaxation) followed by 5 weeks of individual treatment of PST or CT. Primary outcomes included sleep efficiency (SE) from sleep diaries, the Insomnia Severity Index (ISI), and the Pittsburgh Sleep Quality Index (PSQI). Secondary measures assessed dysfunctional sleep beliefs, problem-solving skills and orientations, and worry. Both treatments produced significant post therapy improvements in sleep which were maintained at 1 month follow-up (on SE Cohen d = 1.42, 95% CI 1.02-1.87 for PST; d = 1.26, 95% CI 0.81-1.65 for CT; on ISI d = 1.46, 95% CI 1.03-1.88 for PST; d = 1.95, 95% CI 0.52-2.38 for CT; for PSQI d = 0.97, 95% CI 0.55-1.40 for PST and d = 1.34, 95% CI 0.90-1.79 for the CT). There were no differences in PST and CT in the size or rate of improvement in sleep although CT produced a significant faster rate of decline in negative beliefs about sleep than PST and there was a trend (P = 0.08) for PST to produce a faster rate of improvement in negative problem orientation than CT. The results provide preliminary support for problem solving treatment as an equally efficacious alternative component to cognitive therapy in psychological interventions for insomnia.

  16. Moving Forward with Export Oriented Shipbuilding Industries in Bangladesh

    NASA Astrophysics Data System (ADS)

    Zakaria, N. M. G.

    2012-10-01

    In the recent time, shipbuilding has been considered as a thrust sector in the economy of Bangladesh. But, there exist various problems that obstruct the development of this sector especially for export oriented shipbuilding. In this paper, the general shipbuilding related problems along with its nature have been identified. The prospects of export oriented shipbuilding in context of global and international demand have been highlighted. Also, the present initiatives towards export oriented shipbuilding has been focused. Finally some recommendations have been put forward in this paper in order to hold a firm position in world shipbuilding market by export oriented shipbuilding industry in Bangladesh.

  17. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  18. Socio-Demographic and Practice-Oriented Factors Related to Proficiency in Problem Solving: A Lifelong Learning Perspective

    ERIC Educational Resources Information Center

    Desjardins, Richard; Ederer, Peer

    2015-01-01

    This article explores the relative importance of different socio-demographic and practice-oriented factors that are related to proficiency in problem solving in technology-rich environments (PSTREs) and by extension may be related to complex problem solving (CPS). The empirical analysis focuses on the proficiency measurements of PSTRE made…

  19. Abnormal grain growth in iron-silicon

    NASA Astrophysics Data System (ADS)

    Bennett, Tricia A.

    Abnormal grain growth (AGG) was studied in an Fe-1%Si alloy using automated Electron Backscattered Diffraction (EBSD) to determine the driving force for this phenomenon. Experiments were performed with the knowledge that there are several possible driving forces and, the intent to determine the true driving force by elimination of the other potential candidates. These potential candidates include surface energy anisotropy, anisotropic grain boundary properties and the stored energy of deformation. In this work, surface energy and grain boundary anisotropies as well as the stored energy of deformation were investigated as the possible driving forces for AGG. Accordingly, industrially processed samples that were temper rolled to 1.5% and 8% were annealed in air for various times followed by quenching in water. The results obtained were compared to those from heat treatments performed in wet 15%H2-85%N2 at a US Steel facility. In addition, for a more complete study of the effect of surface energy anisotropies on AGG, the 1.5% temper-rolled material was heat-treated in other atmospheres such as 5%H2-95%Ar, 98%H2-2%He, 98%H2-2%H 2S, and 98%H2-2%N2 for 1 hour followed by quenching in water. The character of the grain boundaries in the materials was also examined for each set of experiments conducted, while the influence of stored energy was evaluated by examining intragranular orientation gradients. AGG occurred regardless of annealing atmosphere though the most rapid progression was observed in samples annealed in air. In general, grains of varying orientations grew abnormally. One consistently observed trend in all the detailed studies was that the matrix grains remained essentially static and either did not grow or only grew very slowly. On the other hand, the abnormally large grains (ALG), on average, were approximately 10 times the size of the matrix. Analysis of the grain boundary character of the interfaces between abnormal grains and the matrix showed no significant variation from the overall population of boundaries. This suggested that grain boundary character was not a factor in controlling AGG. When the effect of stored energy differences was considered, it was observed that grains that experienced AGG had low orientation gradients. Based on these results and cross comparison of all classes of experiments performed, it was determined that stored energy differences were the main driving force for AGG in this Fe-1%Si alloy.

  20. Text-line extraction in handwritten Chinese documents based on an energy minimization framework.

    PubMed

    Koo, Hyung Il; Cho, Nam Ik

    2012-03-01

    Text-line extraction in unconstrained handwritten documents remains a challenging problem due to nonuniform character scale, spatially varying text orientation, and the interference between text lines. In order to address these problems, we propose a new cost function that considers the interactions between text lines and the curvilinearity of each text line. Precisely, we achieve this goal by introducing normalized measures for them, which are based on an estimated line spacing. We also present an optimization method that exploits the properties of our cost function. Experimental results on a database consisting of 853 handwritten Chinese document images have shown that our method achieves a detection rate of 99.52% and an error rate of 0.32%, which outperforms conventional methods.

  1. Annual review of energy. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollander, J.M.; Simmons, M.K.; Wood, D.O.

    1980-01-01

    The many continuing efforts around the world to deal with the issues of energy supply, demand, and environmental impact are reviewed. This volume carries reviews of recent developments in solar-photovoltaic technology and inertial-confinement fusion as long-term options. Progress in some important nearer-term energy-supply areas is reviewed by contributions in the fields of battery energy storage and coal clean-up technology. In the area of energy sociology, the interesting and poorly understood topic of public opinion about energy is reviewed. The subject of energy economics is represented by a review of the role of governmental incentives in energy production. Topics related tomore » the environmental aspects of energy technologies include coastal flooding from atmospheric carbon dioxide warming, risks of liquefied natural gas and petroleum gas, and the environmental impacts of renewable energy sources. Continuing the practice of earlier volumes to review the energy perspective of a particular region or country, Volume 5 carries a review of emerging energy technologies in island environments, typified by the case of Hawaii. Finally, the energy problem from the perspective of developing countries is reviewed by two papers, the first on renewable energy resources for developing countries, and the second on the problem of energy for the people of Asia and the Pacific. A separate abstract was prepared for each of the 12 reviews for the Energy Data Base (EDB); all will appear in Energy Abstracts for Policy Analysis (EAPA) and three in Energy Research Abstracts (ERA).« less

  2. High-performance Sonitopia (Sonic Utopia): Hyper intelligent Material-based Architectural Systems for Acoustic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Heidari, F.; Mahdavinejad, M.

    2017-08-01

    The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy resources, 2- recognition of transductor and other similar mechanisms, 3- developing an integrated, hyper intelligent and material-based system, 4- examining the productivity, performance and efficiency of proposed systems in commercial buildings and office departments of Tehran as case study. The results of the research show that high-performance Sonitopia concept might be helpful for adoption in contemporary architecture of developing countries such as Iran in order to better energy efficiency. It is intelligent energy systems (IES) enjoy electromechanical energy converters based on performance-oriented design in over-crowded architectural spaces. The results indicated significance of concentrating on smart, intelligent and recombinant materials in order to achieve higher performance and productivity.

  3. Organizing Community-Based Data Standards: Lessons from Developing a Successful Open Standard in Systems Biology

    NASA Astrophysics Data System (ADS)

    Hucka, M.

    2015-09-01

    In common with many fields, including astronomy, a vast number of software tools for computational modeling and simulation are available today in systems biology. This wealth of resources is a boon to researchers, but it also presents interoperability problems. Despite working with different software tools, researchers want to disseminate their work widely as well as reuse and extend the models of other researchers. This situation led in the year 2000 to an effort to create a tool-independent, machine-readable file format for representing models: SBML, the Systems Biology Markup Language. SBML has since become the de facto standard for its purpose. Its success and general approach has inspired and influenced other community-oriented standardization efforts in systems biology. Open standards are essential for the progress of science in all fields, but it is often difficult for academic researchers to organize successful community-based standards. I draw on personal experiences from the development of SBML and summarize some of the lessons learned, in the hope that this may be useful to other groups seeking to develop open standards in a community-oriented fashion.

  4. Preceptors' perceptions of the elements of a successful and an unsuccessful orientation period for newly graduated nurses.

    PubMed

    Lindfors, Kirsi; Meretoja, Riitta; Kaunonen, Marja; Paavilainen, Eija

    2018-04-01

    To identify existing orientation patterns and to find elements that may enhance or impede successful orientation of newly graduated nurses. Preceptors have first-hand information concerning orientation and their opinions should not be forgotten when organisations develop their orientation processes. An open-ended questionnaire was undertaken to collect data from preceptors (n = 172) about the current orientation patterns. Data were analysed by using deductive content analysis and by quantifying the phrases. Communal commitment to the orientation process, strong professional orientation know-how and supportive leadership were the enhancing elements of successful orientation. Complex interpersonal relationship problems during orientation, inadequate orientation resources and the organisation's structural and functional problems were the impeding elements of successful orientation. With the elements of successful orientation we ensure a supportive transition to practice for newly graduate nurses and possibilities to focus on good orientation practices for preceptors. Nurse leaders play an important part in ensuring newly graduated nurses have a safe nursing career starting point and, for preceptors, opportunities to provide orientation that is as good as possible. Supportive leadership, sufficient resources and good interpersonal relationships should be the leading principles during newly graduated nurses' orientation period. © 2017 John Wiley & Sons Ltd.

  5. A Problem-Oriented Record System for Counselors.

    ERIC Educational Resources Information Center

    Law, Joseph; And Others

    1981-01-01

    Recommends the adoption of Weed's Problem Oriented Records System by practitioners and supervisors. Also discusses the purposes of recordkeeping in counseling and establishes criteria for adopting documentation systems. Case examples illustrate the applicability of Weed's approach in counseling and practicum supervision. (Author)

  6. 76 FR 37805 - Progress Energy Carolinas; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2206-030] Progress Energy Carolinas; Notice of Meeting On May 31, 2011, Progress Energy Carolinas (Progress Energy), licensee for the... National Marine Fisheries Service (NMFS) and staff to discuss what is needed to complete formal...

  7. [Action-oriented versus state-oriented reactions to experimenter-induced failures].

    PubMed

    Brunstein, J C

    1989-01-01

    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  8. Quantum mechanical/molecular mechanical modeling finds Diels-Alder reactions are accelerated less on the surface of water than in water.

    PubMed

    Thomas, Laura L; Tirado-Rives, Julian; Jorgensen, William L

    2010-03-10

    Quantum and molecular mechanics calculations for the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the vacuum-water interface and in the gas phase. In conjunction with previous studies of these cycloadditions in dilute solution, a more complete picture of aqueous environmental effects emerges with implications for the origin of observed rate accelerations using heterogeneous aqueous suspensions, "on water" conditions. The pure TIP4P water slab maintains the bulk density and hydrogen-bonding properties in central water layers. The bulk region merges to vacuum over a ca. 5 A band with progressive diminution of the density and hydrogen bonding. The relative free energies of activation and transition structures for the reactions at the interface are found to be intermediate between those calculated in the gas phase and in bulk water; i.e., for the reaction with 1,4-naphthoquinone, the DeltaDeltaG(++) values relative to the gas phase are -3.6 and -7.3 kcal/mol at the interface and in bulk water, respectively. Thus, the results do not support the notion that a water surface is more effective than bulk water for catalysis of such pericyclic reactions. The trend is in qualitative agreement with expectations based on density considerations and estimates of experimental rate constants for the gas phase, a heterogeneous aqueous suspension, and a dilute aqueous solution for the reaction of cyclopentadiene with methyl vinyl ketone. Computed energy pair distributions reveal a uniform loss of 0.5-1.0 hydrogen bond for the reactants and transition states in progressing from bulk water to the vacuum-water interface. Orientational effects are apparent at the surface; e.g., the carbonyl group in the methyl vinyl ketone transition structure is preferentially oriented into the surface. Also, the transition structure for the 1,4-naphthoquinone case is buried more in the surface, and the free energy of activation for this reaction is most similar to the result in bulk water.

  9. Research progress and harnessing method of soil and water loss in Pisha Sandstone region

    NASA Astrophysics Data System (ADS)

    Xiao, P. Q.; Yang, C. X.; Jing, C. R.

    2018-05-01

    Pisha Sandstone region is the most vulnerable and the most dramatic area of soil erosion, severe soil erosion on the ecological bases of China’s energy security constitutes a serious challenge. Research progress of soil erosion in pisha Sandstone region was reviewed based on the need of soil and water ecological construction in Pisha Sandstone region and harnessing the yellow river including soil erosion mechanism, soil erosion dynamic monitoring and soil erosion simulation assessments. Meanwhile, the latest progress of soil and water conservation measures was analyzed, and the existing problems and future harnessing measures of soil and water loss were discussed. This study is to explore the comprehensive management method and provide scientific theory for constructing soil and water conservation project in Pisha Sandstone region.

  10. The Implementation and Evaluation of a Project-Oriented Problem-Based Learning Module in a First Year Engineering Programme

    ERIC Educational Resources Information Center

    McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.

    2016-01-01

    This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…

  11. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  12. Reconstructing the public in old and new governance: a Korean case of nuclear energy policy.

    PubMed

    Kim, Hyomin

    2014-04-01

    Korean nuclear energy regulatory policies started to change from earlier exclusively technocratic policies into open dialogues after several anti-nuclear protests in the 1990s. However, technocratic policies still coexist with the new regulatory orientation towards openness, participation and institutional accountability. This paper analyzes Korean nuclear regulatory policies since approximately 2005 as a blend of old and new governance. The aim of the paper is not to decide whether new nuclear governance is deliberative or not by completely reviewing Korean nuclear policies after the 2000s. Instead, it provides an empirical account of how seemingly more participatory processes in decision-making entail new problems while they work with and reproduce social assumptions of different groups of the public.

  13. Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.

    2018-04-01

    We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.

  14. USSR Report, International Affairs

    DTIC Science & Technology

    1986-01-23

    in which 59 French firms parScipated? More than 6,000 Soviet specialists in franch ministries departments, foreign trade’associations were able to...with food , which has mastered nuclear energy, which has penetrated space, which has strength- ened the links between individual regions, peoples and...the consequences of the drought and to solve the food problem? Answer: I must say that considerable progress has already been made. Es- sentially

  15. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    NASA Astrophysics Data System (ADS)

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  16. Social Orientation: Problem Behavior and Motivations Toward Interpersonal Problem Solving Among High Risk Adolescents

    PubMed Central

    Kuperminc, Gabriel P.; Allen, Joseph P.

    2006-01-01

    A model of problematic adolescent behavior that expands current theories of social skill deficits in delinquent behavior to consider both social skills and orientation toward the use of adaptive skills was examined in an ethnically and socioeconomically diverse sample of 113 male and female adolescents. Adolescents were selected on the basis of moderate to serious risk for difficulties in social adaptation in order to focus on the population of youth most likely to be targeted by prevention efforts. Structural equation modeling was used to examine cross-sectional data using multiple informants (adolescents, peers, and parents) and multiple methods (performance test and self-report). Adolescent social orientation, as reflected in perceived problem solving effectiveness, identification with adult prosocial values, and self-efficacy expectations, exhibited a direct association to delinquent behavior and an indirect association to drug involvement mediated by demonstrated success in using problem solving skills. Results suggest that the utility of social skill theories of adolescent problem behaviors for informing preventive and remedial interventions can be enhanced by expanding them to consider adolescents’ orientation toward using the skills they may already possess. PMID:16929380

  17. Object-Oriented Programming When Developing Software in Geology and Geophysics

    NASA Astrophysics Data System (ADS)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  18. A Canadian paradox: Tommy Douglas and eugenics.

    PubMed

    Shevell, Michael

    2012-01-01

    Tommy Douglas is an icon of Canadian 20th Century political history and is considered by many as the "Father" of Medicare, a key component of our national identity. Throughout his career, he was associated at both the provincial and federal levels with progressive causes concerning disadvantaged populations. In his sociology Master's thesis written in the early 1930's, Douglas endorsed eugenic oriented solutions such as segregation and sterilization to address what was perceived to be an endemic and biologically determined problem. At first glance, this endorsement of eugenics appears to be paradoxical, but careful analysis revealed that this paradox has multiple roots in religion, political belief, historical exposure and our own desire to view our collective history in a favourable light.

  19. Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation

    NASA Astrophysics Data System (ADS)

    Satoh, Hideki

    An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.

  20. Engineering education as a complex system

    NASA Astrophysics Data System (ADS)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  1. Perspective: Whither the problem list? Organ-based documentation and deficient synthesis by medical trainees.

    PubMed

    Kaplan, Daniel M

    2010-10-01

    The author argues that the well-formulated problem list is essential for both organizing and evaluating diagnostic thinking. He considers evidence of deficiencies in problem lists in the medical record. He observes a trend among medical trainees toward organizing notes in the medical record according to lists of organ systems or medical subspecialties and hypothesizes that system-based documentation may undermine the art of problem formulation and diagnostic synthesis. Citing research linking more sophisticated problem representation with diagnostic success, he suggests that documentation style and clinical reasoning are closely connected and that organ-based documentation may predispose trainees to several varieties of cognitive diagnostic error and deficient synthesis. These include framing error, premature or absent closure, failure to integrate related findings, and failure to recognize the level of diagnostic resolution attained for a given problem. He acknowledges the pitfalls of higher-order diagnostic resolution, including the application of labels unsupported by firm evidence, while maintaining that diagnostic resolution as far as evidence permits is essential to both rational care of patients and rigorous education of learners. He proposes further research, including comparison of diagnostic efficiency between organ- and problem-oriented thinkers. He hypothesizes that the subspecialty-based structure of academic medical services helps perpetuate organ-system-based thinking, and calls on clinical educators to renew their emphasis on the formulation and documentation of complete and precise problem lists and progressively refined diagnoses by trainees.

  2. Energy distribution in disordered elastic networks

    NASA Astrophysics Data System (ADS)

    Plaza, Gustavo R.

    2010-09-01

    Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed.

  3. Refining a learning progression of energy

    NASA Astrophysics Data System (ADS)

    Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut

    2017-11-01

    This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies - key ideas about energy and levels of conceptual development. To assess students understanding with respect to the revised learning progression, we created a specific instrument, the Energy Concept Progression Assessment (ECPA) based on previous work on assessing students' understanding of energy. After iteratively refining the instrument in two pilot studies, the ECPA was administered to a total of 4550 students (Grades 8-12) from schools in two districts in a major city in Mainland China. Rasch analysis was used to examine the validity of the revised learning progression and explore factors explaining different progressions. Our results confirm the validity of the four conceptual development levels. In addition, we found that although following a similar progression pattern, students' progression rate was significantly influenced by environmental factors such as school type. In the discussion of our findings, we address the non-linear and complex nature of students' progression in understanding energy. We conclude with illuminating our research's implication for curriculum design and energy teaching.

  4. Context Oriented Information Integration

    NASA Astrophysics Data System (ADS)

    Mohania, Mukesh; Bhide, Manish; Roy, Prasan; Chakaravarthy, Venkatesan T.; Gupta, Himanshu

    Faced with growing knowledge management needs, enterprises are increasingly realizing the importance of seamlessly integrating critical business information distributed across both structured and unstructured data sources. Academicians have focused on this problem but there still remain a lot of obstacles for its widespread use in practice. One of the key problems is the absence of schema in unstructured text. In this paper we present a new paradigm for integrating information which overcomes this problem - that of Context Oriented Information Integration. The goal is to integrate unstructured data with the structured data present in the enterprise and use the extracted information to generate actionable insights for the enterprise. We present two techniques which enable context oriented information integration and show how they can be used for solving real world problems.

  5. Anisotropic norm-oriented mesh adaptation for a Poisson problem

    NASA Astrophysics Data System (ADS)

    Brèthes, Gautier; Dervieux, Alain

    2016-10-01

    We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.

  6. 75 FR 77904 - Office of Community Oriented Policing Services; Agency Information Collection Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF JUSTICE [OMB Number 1103-0102] Office of Community Oriented Policing Services; Agency Information Collection Activities: Extension of a Previously Approved Collection; Comments Requested ACTION: 60-Day Notice of Information Collection Under Review: COPS Non Hiring Progress Report. The...

  7. Improving Thermal Performance of a Residential Building, Related to Its Orientations - A Case Study

    NASA Astrophysics Data System (ADS)

    Akshaya, S.; Harish, S.; Arthy, R.; Muthu, D.; Venkatasubramanian, C.

    2017-07-01

    Urban planners and stakeholders require knowledge about the effectiveness of city-scale climate adaptation measures in order to develop climate resilient cities and to push forward the political process for the implementation of climate adaptation strategies. This study examines the impact of modifications in orientation of buildings with respect to heat load. Heat load calculation is a mathematical process to determine the best capacity, application and style of HVAC system. The purpose is to ensure energy efficiency while also maximizing comfort inside the building. This study of load calculation is essential for a building because it helps to pick the best orientation and focuses to find an orientation that will reduce energy due to direct solar radiation. One of the factors affecting this assessment is the latitude of the location. The heat gain is effective through walls and fenestration. Improper management through ineffective orientation of the building’s natural heat gain leads to excessive consumption of energy in the form of CL. The total heat gain for the above factors is calculated with the equations and assumptions as per ASHRAE code. After the calculation of heat load for different orientations, the best suited orientation of the building is found. By altering the building to suitable orientation, the dependence on electrical equipment can be minimized and thereby helps in energy conservation.

  8. The Ebb and Flow of Tidal Science, and the Impact of Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2006-01-01

    In the years immediately preceding the launches of Geosat and Topex/Poseidon, tidal science had lapsed into a period of uncertainty and discouragement, brought about by the failure of once-exciting new ideas that eventually proved overly optimistic. A long list of outstanding problems presented themselves, but progress had reached a "low water mark". What was lacking was a high-quality global dataset of tidal measurements, which satellite altimetry -- and especially Topex/Poseidon -- provided. With these data in hand, a "flood tide" of marked progress resulted. In this paper we review some of that progress. An important area of progress, with potentially important implications for other areas of physical oceanography, falls under the topic of "energy dissipation." With precise global constraints provided by altimetry -- combined with precise laser tracking of the altimeter, other geodetic satellites like Lageos, as well as the moon -- the planetary energy budgets of both Earth and ocean tides are now well determined. Moreover, the local energy balances, and thus local estimates of tidal dissipation, have now been mapped, although somewhat coarsely, throughout the ocean. This work has pointed to internal-tide generation in the deep ocean as the once missing sink of tidal energy, and has led to a plethora of new observational and theoretical studies of internal tides, and their role in vertical mixing of the deep ocean. The discovery that internal tides, or some part of them, can be directly mapped with an altimeter opens new lines of research on this topic. Low-mode internal tides have been found, at least in some regions, to propagate several thousand kilometers across open ocean. The study of such waves with altimetry gives us a global view heretofore unattainable, allowing strong observational constraints to be placed on possible ocean mixing processes, such as subharmonic instabilities.

  9. Development of an Implicit, Charge and Energy Conserving 2D Electromagnetic PIC Code on Advanced Architectures

    NASA Astrophysics Data System (ADS)

    Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel

    2012-10-01

    In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.

  10. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  11. The contrasting climate response to tropical and extratropical energy perturbations

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matt; Haywood, Jim M.; Collins, Mat; Jones, Andy

    2018-01-01

    The link between cross-equatorial energy transport, the double-intertropical convergence zone (DI) problem and biases in tropical and extratropical albedo and energy budgets in climate models have been investigated in multiple studies, though DI biases persist in many models. Here, a coupled climate model, HadGEM2-ES, is used to investigate the response to idealised energy perturbations in the tropics and extratropics, in both the northern and southern hemispheres, through the imposition of stratospheric aerosols that reflect incoming radiation. The impact on the tropical climate of high and low latitude forcing strongly contrasts, with large changes in tropical precipitation and modulation of the DI bias when the tropics are cooled as precipitation moves away from the cooled hemisphere. These responses are muted when the extratropics are cooled, as the meridional energy transport anomalies that are excited by these energy budget anomalies are partitioned between the atmosphere and ocean. The results here highlight the persistence of the DI bias in HadGEM2-ES, indicating why little progress has been made in rectifying these problems through many generations of climate models. A highly linear relationship between cross-equatorial atmospheric energy transport, tropical precipitation asymmetry and tropical sea surface temperature biases is also demonstrated, giving some suggestion as to where improvements in these large scale, persistent biases may be achieved.

  12. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    NASA Astrophysics Data System (ADS)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  13. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  14. A Problem-Oriented Group Approach to Reduce Children's Fears and Concerns about the Secondary School Transition

    ERIC Educational Resources Information Center

    Vassilopoulos, Stephanos P.; Diakogiorgi, Kleopatra; Brouzos, Andreas; Moberly, Nicholas J.

    2018-01-01

    To facilitate students' transition into secondary school, a short, problem-oriented group program was designed that included interpretation retraining, problem solving, and social-skills training. Pre- and posttest data from two groups conducted over the course of 5 weeks were combined for a total of 35 6th-grade students waiting to undergo school…

  15. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  16. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)

    PubMed Central

    van de Streek, Jacco; Neumann, Marcus A.

    2014-01-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom. PMID:25449625

  17. An Orientation & Leadership Training Handbook for International Students.

    ERIC Educational Resources Information Center

    Hansen, M. Eileen

    This handbook provides guidance for implementing orientation activities for international students at Middlesex County College (MCC), in New Jersey. An introduction describes the development of MCC's orientation plan, indicating that, in response to problems faced by international students, the college developed an overnight orientation and…

  18. Software framework for automatic learning of telescope operation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Molgó, Jordi; Guerra, Dailos

    2016-07-01

    The "Gran Telescopio de Canarias" (GTC) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC Control System (GCS) is a distributed object and component oriented system based on RT-CORBA and it is responsible for the operation of the telescope, including its instrumentation. The current development state of GCS is mature and fully operational. On the one hand telescope users as PI's implement the sequences of observing modes of future scientific instruments that will be installed in the telescope and operators, in turn, design their own sequences for maintenance. On the other hand engineers develop new components that provide new functionality required by the system. This great work effort is possible to minimize so that costs are reduced, especially if one considers that software maintenance is the most expensive phase of the software life cycle. Could we design a system that allows the progressive assimilation of sequences of operation and maintenance of the telescope, through an automatic self-programming system, so that it can evolve from one Component oriented organization to a Service oriented organization? One possible way to achieve this is to use mechanisms of learning and knowledge consolidation to reduce to the minimum expression the effort to transform the specifications of the different telescope users to the operational deployments. This article proposes a framework for solving this problem based on the combination of the following tools: data mining, self-Adaptive software, code generation, refactoring based on metrics, Hierarchical Agglomerative Clustering and Service Oriented Architectures.

  19. On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles

    NASA Astrophysics Data System (ADS)

    Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2017-12-01

    The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.

  20. A Randomized Controlled Trial of Problem-Solving Therapy Compared to Cognitive Therapy for the Treatment of Insomnia in Adults

    PubMed Central

    Pech, Melissa; O'Kearney, Richard

    2013-01-01

    Study Objectives: To compare the efficacy of problem-solving therapy (PST) combined with behavioral sleep strategies to standard cognitive therapy (CT) combined with behavioral sleep strategies in the treatment of insomnia. Design: A six-week randomized controlled trial with one month follow-up. Setting: The Australian National University Psychology Clinic, Canberra, Australia. Participants: Forty-seven adults aged 18-60 years recruited from the community meeting the Research Diagnostic Criteria for insomnia. Interventions: Participants received 6 weeks of treatment including one group session (sleep education and hygiene, stimulus control instructions and progressive muscle relaxation) followed by 5 weeks of individual treatment of PST or CT. Measurements and Results: Primary outcomes included sleep efficiency (SE) from sleep diaries, the Insomnia Severity Index (ISI), and the Pittsburgh Sleep Quality Index (PSQI). Secondary measures assessed dysfunctional sleep beliefs, problem-solving skills and orientations, and worry. Both treatments produced significant post therapy improvements in sleep which were maintained at 1 month follow-up (on SE Cohen d = 1.42, 95% CI 1.02-1.87 for PST; d = 1.26, 95% CI 0.81-1.65 for CT; on ISI d = 1.46, 95% CI 1.03-1.88 for PST; d = 1.95, 95% CI 0.52-2.38 for CT; for PSQI d = 0.97, 95% CI 0.55-1.40 for PST and d = 1.34, 95% CI 0.90-1.79 for the CT). There were no differences in PST and CT in the size or rate of improvement in sleep although CT produced a significant faster rate of decline in negative beliefs about sleep than PST and there was a trend (P = 0.08) for PST to produce a faster rate of improvement in negative problem orientation than CT. Conclusions: The results provide preliminary support for problem solving treatment as an equally efficacious alternative component to cognitive therapy in psychological interventions for insomnia. Citation: Pech M; O'Kearney R. A randomized controlled trial of problem-solving therapy compared to cognitive therapy for the treatment of insomnia in adults. SLEEP 2013;36(5):739-749. PMID:23633757

  1. A "Carbon Reduction Challenge" as tool for undergraduate engagement on climate change

    NASA Astrophysics Data System (ADS)

    Cobb, K. M.; Toktay, B.

    2017-12-01

    Institutions of higher education must meet the challenges of educating the generation that must make significant progress towards stabilizing atmospheric greenhouse gases. However, the interdisciplinary nature of the climate change problem, and the fact that solutions will necessarily involve manipulating natural systems, advancing energy technologies, and developing innovative policy instruments means that traditional disciplinary tracks are not well-suited for the task. Furthermore, institutions must not only equip students with fundamental knowledge about climate and energy, but they must empower a generation of students to become part of the climate change solution. Here we present the cumulative results of the `Carbon Reduction Challenge' - a team-based competition to reduce CO2 that is conducted in an interdisciplinary undergraduate class called "Energy, the Environment, and Society" at Georgia Institute of Technology. Working with 30 undergraduate students from all years and all majors, we demonstrate how student teams move through a highly-structured timeline of deliverables towards achieving their team's end-of-semester goals. We discuss the importance of student creativity, ingenuity, initiative, and perseverance in achieving project outcomes, which in 2017 topped 5 million pounds of CO2 reductions - the all-time record for the class. Student-driven reductions on a year-to-year basis track an exponential growth curve through time. Based on the success of a pilot Carbon Reduction Challenge conducted in the summer of 2017, we present evidence that student-led partnerships with large corporations represents the area of largest potential for student success. Such partnerships deliver significant value added to students (professional conduct, on-the-job training, networking), the corporate partner (cost savings, talent recruitment, and public relations), and to the higher education institution (corporate relations contacts). In summary, the Carbon Reduction Challenge represents a solutions-oriented, hands-on, project-based learning tool that has achieved significant pedagogical benefits while delivering real-world carbon reductions and cost savings to community stakeholders.

  2. Task-oriented aerobic exercise in chronic hemiparetic stroke: training protocols and treatment effects.

    PubMed

    Macko, R F; Ivey, F M; Forrester, L W

    2005-01-01

    Stroke is the leading cause of disability in older Americans. Each year 750,000 Americans suffer a stroke, two thirds of whom are left with neurological deficits that persistently impair function. Principal among them is hemiparetic gait that limits mobility and increases fall risk, promoting a sedentary lifestyle. These events propagate disability by physical deconditioning and "learned non-use," with further functional declines accelerated by the sarcopenia and fitness decrements of advancing age. Conventional rehabilitation care typically provides little or no structured therapeutic exercise beyond the subacute stroke recovery period, based on natural history studies showing little or no further functional motor recovery beyond 6 months after stroke. Emerging evidence suggests that new models of task-oriented exercise have the potential to improve motor function even years after stroke. This article presents treadmill as a task-oriented training paradigm to optimize locomotor relearning while eliciting cardiovascular conditioning in chronic stroke patients. Protocols for exercise testing and longitudinal aerobic training progression are presented that provide fundamental formulas that safely approach the complex task of customizing aerobic training to gait deficit severity in the high CVD risk stroke population. The beneficial effects of 6 months task-oriented treadmill exercise on cardiovascular-metabolic fitness, energy cost of hemiparetic gait, ADL mobility task performance, and leg strength are discussed with respect to the central and peripheral neuromuscular adaptations targeted by the training. Collectively, these findings constitute one initial experience in a much broader neuroscience and exercise rehabilitation development of task-oriented training paradigms that offer a multisystems approach to improving both neurological and cardiovascular health outcomes in the chronic stroke population.

  3. Family-School Socialization: Problems and Prospects.

    ERIC Educational Resources Information Center

    Case Western Reserve Univ., Cleveland, OH. Inst. on the Family and the Bureaucratic Society.

    This document includes the proposal and implementation of a study focusing on the family's expectations, orientations, and cultural practices with regard to the educational system and the system's expectations, orientations and practices concerning the child and his family. The basic problem in this exploratory study is to describe analytically…

  4. High Frequency Supercapacitors for Piezo-based Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard

    2013-03-01

    Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.

  5. Web Based Profession Orientation in Elementary Education

    ERIC Educational Resources Information Center

    Bulbul, Halil Ibrahim; Sahin, Yasar Guneri; Yildiz, Turker Turan; Ercan, Tuncay

    2007-01-01

    In Turkey, the profession orientation programs for elementary education students have a critical importance. In the aspect of profession orientation application, the least dealt population is unfortunately the elementary school students. In this study, the problems caused by insufficient orientation and guidance of profession for those students…

  6. Environmental Sciences Division annual progress report for period ending September 30, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less

  7. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  8. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  9. Describing the Sequence of Cognitive Decline in Alzheimer's Disease Patients: Results from an Observational Study.

    PubMed

    Henneges, Carsten; Reed, Catherine; Chen, Yun-Fei; Dell'Agnello, Grazia; Lebrec, Jeremie

    2016-01-01

    Improved understanding of the pattern of cognitive decline in Alzheimer's disease (AD) would be useful to assist primary care physicians in explaining AD progression to patients and caregivers. To identify the sequence in which cognitive abilities decline in community-dwelling patients with AD. Baseline data were analyzed from 1,495 patients diagnosed with probable AD and a Mini-Mental State Examination (MMSE) score ≤ 26 enrolled in the 18-month observational GERAS study. Proportional odds logistic regression models were applied to model MMSE subscores (orientation, registration, attention and concentration, recall, language, and drawing) and the corresponding subscores of the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), using MMSE total score as the index of disease progression. Probabilities of impairment start and full impairment were estimated at each MMSE total score level. From the estimated probabilities for each MMSE subscore as a function of the MMSE total score, the first aspect of cognition to start being impaired was recall, followed by orientation in time, attention and concentration, orientation in place, language, drawing, and registration. For full impairment in subscores, the sequence was recall, drawing, attention and concentration, orientation in time, orientation in place, registration, and language. The sequence of cognitive decline for the corresponding ADAS-cog subscores was remarkably consistent with this pattern. The sequence of cognitive decline in AD can be visualized in an animation using probability estimates for key aspects of cognition. This might be useful for clinicians to set expectations on disease progression for patients and caregivers.

  10. Refining a Learning Progression of Energy

    ERIC Educational Resources Information Center

    Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut

    2017-01-01

    This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies--key ideas about…

  11. Bringing science to medicine: an interview with Larry Weed, inventor of the problem-oriented medical record

    PubMed Central

    Wright, Adam; Sittig, Dean F; McGowan, Julie; Ash, Joan S; Weed, Lawrence L

    2014-01-01

    Larry Weed, MD is widely known as the father of the problem-oriented medical record and inventor of the now-ubiquitous SOAP (subjective/objective/assessment/plan) note, for developing an electronic health record system (Problem-Oriented Medical Information System, PROMIS), and for founding a company (since acquired), which developed problem-knowledge couplers. However, Dr Weed's vision for medicine goes far beyond software—over the course of his storied career, he has relentlessly sought to bring the scientific method to medical practice and, where necessary, to point out shortcomings in the system and advocate for change. In this oral history, Dr Weed describes, in his own words, the arcs of his long career and the work that remains to be done. PMID:24872343

  12. The relationship between two-dimensional self-esteem and problem solving style in an anorexic inpatient sample.

    PubMed

    Paterson, Gillian; Power, Kevin; Yellowlees, Alex; Park, Katy; Taylor, Louise

    2007-01-01

    Research examining cognitive and behavioural determinants of anorexia is currently lacking. This has implications for the success of treatment programmes for anorexics, particularly, given the high reported dropout rates. This study examines two-dimensional self-esteem (comprising of self-competence and self-liking) and social problem-solving in an anorexic population and predicts that self-esteem will mediate the relationship between problem-solving and eating pathology by facilitating/inhibiting use of faulty/effective strategies. Twenty-seven anorexic inpatients and 62 controls completed measures of social problem solving and two-dimensional self-esteem. Anorexics scored significantly higher than the non-clinical group on measures of eating pathology, negative problem orientation, impulsivity/carelessness and avoidance and significantly lower on positive problem orientation and both self-esteem components. In the clinical sample, disordered eating correlated significantly with self-competence, negative problem-orientation and avoidance. Associations between disordered eating and problem solving lost significance when self-esteem was controlled in the clinical group only. Self-competence was found to be the main predictor of eating pathology in the clinical sample while self-liking, impulsivity and negative and positive problem orientation were main predictors in the non-clinical sample. Findings support the two-dimensional self-esteem theory with self-competence only being relevant to the anorexic population and support the hypothesis that self-esteem mediates the relationship between disordered eating and problem solving ability in an anorexic sample. Treatment implications include support for programmes emphasising increasing self-appraisal and self-efficacy. 2006 John Wiley & Sons, Ltd and Eating Disorders Association

  13. Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces

    NASA Astrophysics Data System (ADS)

    Teng, Qiang; Shi, Ting-Ting; Tian, Ren-Yu; Yang, Xiao-Bao; Zhao, Yu-Jun

    2018-02-01

    Organic-inorganic hybrid halide perovskite CH3NH3PbI3 (MAPbI3) has received rapid progress in power conversion efficiency as promising photovoltaic materials, yet the surface structures and the role of MA cations are not well understood. In this work, we investigated the structural stability and electronic properties of (001) surface of cubic, (001) and (110) surfaces of tetragonal and orthorhombic phases of MAPbI3 with considering the orientation of MA cations, by density functional theory calculations. We demonstrate that the orientation of MA cations has profound consequences on the structural stability and the electronic properties of the surfaces, in contrast to the bulk phases. Compared with the MA-I terminated surfaces, the Pb-I2 terminated ones generally have smaller band gaps and the advantage to enable the photo-excited holes to transfer to the hole-transport materials in both tetragonal and orthorhombic phases. Overall, we suggest that the films with Pb-I2 terminated surfaces would prevail in high performance solar energy absorbers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, C.; Horowitz, S.

    In subdivisions, house orientations are largely determined by street layout. The resulting house orientations affect energy consumption (annual and on-peak) for heating and cooling, depending on window area distributions and shading from neighboring houses. House orientations also affect energy production (annual and on-peak) from solar thermal and photovoltaic systems, depending on available roof surfaces. Therefore, house orientations fundamentally influence both energy consumption and production, and an appropriate street layout is a prerequisite for taking full advantage of energy efficiency and renewable energy opportunities. The potential influence of street layout on solar performance is often acknowledged, but solar and energy issuesmore » must compete with many other criteria and constraints that influence subdivision street layout. When only general guidelines regarding energy are available, these factors may be ignored or have limited effect. Also, typical guidelines are often not site-specific and do not account for local parameters such as climate and the time value of energy. For energy to be given its due consideration in subdivision design, energy impacts need to be accurately quantified and displayed interactively to facilitate analysis of design alternatives. This paper describes a new computerized Subdivision Energy Analysis Tool being developed to allow users to interactively design subdivision street layouts while receiving feedback about energy impacts based on user-specified building design variants and availability of roof surfaces for photovoltaic and solar water heating systems.« less

  15. Nuclear Physics Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  16. Technology and Engineering Literacy Framework for the 2014 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2013

    2013-01-01

    To what extent can young people analyze the pros and cons of a proposal to develop a new source of energy? Construct and test a model or prototype? Use the Internet to find and summarize data and information in order to solve a problem or achieve a goal? The exploding growth in the world of technology and the need to answer questions similar to…

  17. Studies in nonlinear problems of energy. Progress report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matkowsky, B.J.

    1994-09-01

    The authors concentrate on modeling, analysis and large scale scientific computation of combustion and flame propagation phenomena, with emphasis on the transition from laminar to turbulent combustion. In the transition process a flame passed through a stages exhibiting increasingly complex spatial and temporal patterns which serve as signatures identifying each stage. Often the transitions arise via bifurcation. The authors investigate nonlinear dynamics, bifurcation and pattern formation in the successive stage of transition. They describe the stability of combustion waves, and transitions to combustion waves exhibiting progressively higher degrees of spatio-temporal complexity. One aspect of this research program is the systematicmore » derivation of appropriate, approximate models from the original models governing combustion. The approximate models are then analyzed. The authors are particularly interested in understanding the basic mechanisms affecting combustion, which is a prerequisite to effective control of the process. They are interested in determining the effects of varying various control parameters, such as Nusselt number, Lewis number, heat release, activation energy, Damkohler number, Reynolds number, Prandtl number, Peclet number, etc. The authors have also considered a number of problems in self-propagating high-temperature synthesis (SHS), in which combustion waves are employed to synthesize advanced materials. Efforts are directed toward understanding fundamental mechanisms. 167 refs.« less

  18. A hospital-wide transition from paper to digital problem-oriented clinical notes. A descriptive history and cross-sectional survey of use, usability, and satisfaction.

    PubMed

    Cillessen, Felix H J M; de Vries Robbé, Pieter F; Biermans, Marion C J

    2017-05-17

    To evaluate the use, usability, and physician satisfaction of a locally developed problem-oriented clinical notes application that replaced paper-based records in a large Dutch university medical center. Using a clinical notes database and an application event log file and a cross-sectional survey of usability, authors retrospectively analyzed system usage for medical specialties, users, and patients over 4 years. A standardized questionnaire measured usability. Authors analyzed the effects of sex, age, professional experience, training hours, and medical specialty on user satisfaction via univariate analysis of variance. Authors also examined the correlation between user satisfaction in relation to users' intensity of use of the application. In total 1,793 physicians used the application to record progress notes for 219,755 patients. The overall satisfaction score was 3.2 on a scale from 1 (highly dissatisfied) to 5 (highly satisfied). A statistically significant difference occurred in satisfaction by medical specialty, but no statistically significant differences in satisfaction took place by sex, age, professional experience, or training hours. Intensity of system use did not correlate with physician satisfaction. By two years after the start of the implementation, all medical specialties utilized the clinical notes application. User satisfaction was neutral (3.2 on a 1-5 scale). Authors believe that the significant factors facilitating this transition mirrored success factors reported by other groups: a generic, consistent, and transparent design of the application; intensive collaboration; continuous monitoring; and an incremental rollout.

  19. An Application of the Patient-Oriented Problem-Solving (POPS) System.

    ERIC Educational Resources Information Center

    Chiodo, Gary T.; And Others

    1991-01-01

    The Patient-Oriented Problem-Solving System, a cooperative learning model, was implemented in a second year immunology course at the Oregon Health Sciences University School of Dentistry, to correlate basic and clinical sciences information about Acquired Immune Deficiency Syndrome. Student enthusiasm and learning were substantial. (MSE)

  20. A Protocol-Analytic Study of Metacognition in Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Cai, Jinfa

    1994-01-01

    Metacognitive behaviors of subjects having high (n=2) and low (n=2) levels of mathematical experience were compared across four cognitive processes in mathematical problem solving: orientation, organization, execution, and verification. High-experience subjects engaged in self-regulation and spent more time on orientation and organization. (36…

  1. The Assessment of Change in Training and Therapy.

    ERIC Educational Resources Information Center

    Belasco, James A.; Trice, Harrison M.

    Designed to serve training oriented professionals, therapy oriented practitioners, and practicing managers, this book presents insights into the change process, along with problems contained in efforts to evaluate this process in management training and in therapy. First, the four essential strategic problems of evaluation are set forth: setting…

  2. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    USDA-ARS?s Scientific Manuscript database

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  3. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy, ET) was suggested to compare energy absorption capabilities of the structures under blast loading. In addition, AEweb/ET (where AEweb is the energy absorbed by the middle core) was also employed to evaluate the energy absorption contribution from the web. Taking advantage of FEA and the simplified analytical model, the influences of material properties as well as core architectures and geometries on energy absorption capabilities (quantified by AET/ ET and AEweb/E T) were investigated through parametric studies. Results from the material property investigation indicated that density of the front face sheet and strength were most influential on the energy absorption capability of the composite sandwich panels under blast loading. The study to investigate the potential effectiveness of energy absorbed via inelastic deformation compared to energy absorbed via progressive failure indicated that for practical applications (where the position of bomb is usually unknown and the panel is designed to be the same anywhere), the energy absorption via inelastic deformation is the more efficient approach. Regarding the geometric optimization, it was found that a core architecture consisting of vertically-oriented webs was ideal. The optimum values for these parameters can be generally described as those which cause the most inelasticity, but not failure, of the face sheets and webs.

  4. The politics of insight

    PubMed Central

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954

  5. The politics of insight.

    PubMed

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.

  6. Direct dynamics trajectory study of the reaction of formaldehyde cation with D2: vibrational and zero-point energy effects on quasiclassical trajectories.

    PubMed

    Liu, Jianbo; Song, Kihyung; Hase, William L; Anderson, Scott L

    2005-12-22

    Quasiclassical, direct dynamics trajectories have been used to study the reaction of formaldehyde cation with molecular hydrogen, simulating the conditions in an experimental study of H2CO+ vibrational effects on this reaction. Effects of five different H2CO+ modes were probed, and we also examined different approaches to treating zero-point energy in quasiclassical trajectories. The calculated absolute cross-sections are in excellent agreement with experiments, and the results provide insight into the reaction mechanism, product scattering behavior, and energy disposal, and how they vary with impact parameter and reactant state. The reaction is sharply orientation-dependent, even at high collision energies, and both trajectories and experiment find that H2CO+ vibration inhibits reaction. On the other hand, the trajectories do not reproduce the anomalously strong effect of nu2(+) (the CO stretch). The origin of the discrepancy and approaches for minimizing such problems in quasiclassical trajectories are discussed.

  7. Constructing of Research-Oriented Learning Mode Based on Network Environment

    ERIC Educational Resources Information Center

    Wang, Ying; Li, Bing; Xie, Bai-zhi

    2007-01-01

    Research-oriented learning mode that based on network is significant to cultivate comprehensive-developing innovative person with network teaching in education for all-around development. This paper establishes a research-oriented learning mode by aiming at the problems existing in research-oriented learning based on network environment, and…

  8. Examining, Documenting, and Modeling the Problem Space of a Variable Domain

    DTIC Science & Technology

    2002-06-14

    Feature-Oriented Domain Analysis ( FODA ) .............................................................................................. 9...development of this proposed process include: Feature-Oriented Domain Analysis ( FODA ) [3,4], Organization Domain Modeling (ODM) [2,5,6], Family-Oriented...configuration knowledge using generators [2]. 8 Existing Methods of Domain Engineering Feature-Oriented Domain Analysis ( FODA ) FODA is a domain

  9. Demand-driven biogas production by flexible feeding in full-scale - Process stability and flexibility potentials.

    PubMed

    Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael

    2017-08-01

    For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Representing object oriented specifications and designs with extended data flow notations

    NASA Technical Reports Server (NTRS)

    Buser, Jon Franklin; Ward, Paul T.

    1988-01-01

    The issue of using extended data flow notations to document object oriented designs and specifications is discussed. Extended data flow notations, for the purposes here, refer to notations that are based on the rules of Yourdon/DeMarco data flow analysis. The extensions include additional notation for representing real-time systems as well as some proposed extensions specific to object oriented development. Some advantages of data flow notations are stated. How data flow diagrams are used to represent software objects are investigated. Some problem areas with regard to using data flow notations for object oriented development are noted. Some initial solutions to these problems are proposed.

  11. Mathematics and Statistics Research Department progress report, period ending June 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denson, M.V.; Funderlic, R.E.; Gosslee, D.G.

    1982-08-01

    This report is the twenty-fifth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation Nuclear Division (UCC-ND). Part A records research progress in analysis of large data sets, biometrics research, computational statistics, materials science applications, moving boundary problems, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology, chemistry, energy, engineering, environmental sciences, health and safety, materials science, safeguards, surveys, and the waste storage program. Part C summarizes the various educational activities inmore » which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  12. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, W.E.; Kane, V.E.; Scott, D.S.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the variousmore » educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  13. Redesigning Orientation in an Intensive Care Unit Using 2 Theoretical Models.

    PubMed

    Kozub, Elizabeth; Hibanada-Laserna, Maribel; Harget, Gwen; Ecoff, Laurie

    2015-01-01

    To accommodate a higher demand for critical care nurses, an orientation program in a surgical intensive care unit was revised and streamlined. Two theoretical models served as a foundation for the revision and resulted in clear clinical benchmarks for orientation progress evaluation. The purpose of the project was to integrate theoretical frameworks into practice to improve the unit orientation program. Performance improvement methods served as a framework for the revision, and outcomes were measured before and after implementation. The revised orientation program increased 1- and 2-year nurse retention and decreased turnover. Critical care knowledge increased after orientation for both the preintervention and postintervention groups. Incorporating a theoretical basis for orientation has been shown to be successful in increasing the number of nurses completing orientation and improving retention, turnover rates, and knowledge gained.

  14. Qualitative methods: beyond the cookbook.

    PubMed

    Harding, G; Gantley, M

    1998-02-01

    Qualitative methods appear increasingly in vogue in health services research (HSR). Such research, however, has utilized, often uncritically, a 'cookbook' of methods for data collection, and common-sense principles for data analysis. This paper argues that qualitative HSR benefits from recognizing and drawing upon theoretical principles underlying qualitative data collection and analysis. A distinction is drawn between problem-orientated and theory-orientated research, in order to illustrate how problem-orientated research would benefit from the introduction of theoretical perspectives in order to develop the knowledge base of health services research.

  15. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ping; Liu, Hai-feng; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin

    2018-02-01

    LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3.

  16. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  17. Restart Operator Meta-heuristics for a Problem-Oriented Evolutionary Strategies Algorithm in Inverse Mathematical MISO Modelling Problem Solving

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.

    2017-02-01

    This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.

  18. Future time orientation and temperament: exploration of their relationship to primary and secondary psychopathy.

    PubMed

    Bjørnebekk, Gunnar; Gjesme, Torgrim

    2009-08-01

    The present study combines Lykken's theory about the role of reward sensitivity and punishment insensitivity in the development of antisocial behavior with Gjesme's theory of future time orientation. 158 adolescents comprised a target group of 79 adolescents who had defined behavioral problems and a matched referential group of 79 adolescents who did not have notable behavioral problems. The results suggest that attributes related to primary psychopathy are associated with a relatively weak or hyporeactive behavioral inhibition system, behavioral approach reactivity, and low future time orientation. Moreover, attributes related to secondary psychopathy are related to an overly sensitive (hyper-reactive) behavioral approach system and low future time orientation. Robust positive associations for behavioral approach reactivity and low future time orientation with primary and secondary psychopathy suggest that high behavioral approach/low future time orientation may represent a core feature common to the two factors of psychopathy.

  19. Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Remiens, Denis; Costecalde, Jean; Chen, Ying; Dong, Xianlin; Wang, Genshui

    2013-10-01

    The effect of residual stress on energy storage property was investigated for a series of PbZrO3 thin films on SrTiO3 and Si substrates. Compressive or tensile residual stress influences the critical electric field EA for the ferroelectric-to-antiferroelectric phase transition, thus for films with (110)/(101) orientation, energy density W of films on SrTiO3 is 38% larger than films on Si; in contrast, (001)-oriented PbZrO3 films on SrTiO3 show slightly smaller W compared to films on Si. We conclude that the different responses of W to stress are related to the different constrain states in films with different orientations.

  20. [Kinetic theory and boundary conditions for highly inelastic spheres]. Quarterly progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, M.

    1993-12-31

    In this quarter, a kinetic theory was employed to set up the boundary value problem for steady, fully developed, gravity-driven flows of identical, smooth, highly inelastic spheres down bumpy inclines. The solid fraction, mean velocity, and components of the full second moment of fluctuation velocity were treated as mean fields. In addition to the balance equations for mass and momentum, the balance of the full second moment of fluctuation velocity was treated as an equation that must be satisfied by the mean fields. However, in order to simplify the resulting boundary value problem, fluxes of second moments in its isotropicmore » piece only were retained. The constitutive relations for the stresses and collisional source of second moment depend explicitly on the second moment of fluctuation velocity, and the constitutive relation for the energy flux depends on gradients of granular temperature, solid fraction, and components of the second moment. The boundary conditions require that the flows are free of stress and energy flux at their tops, and that momentum and energy are balanced at the bumpy base. The details of the boundary value problem are provided. In the next quarter, a solution procedure will be developed, and it will be employed to obtain sample numerical solutions to the boundary value problem described here.« less

  1. Justification of violence beliefs and social problem-solving as mediators between maltreatment and behavior problems in adolescents.

    PubMed

    Calvete, Esther

    2007-05-01

    This study examined whether justification of violence beliefs and social problem solving mediated between maltreatment experiences and aggressive and delinquent behavior in adolescents. Data were collected on 191 maltreated and 546 nonmaltreated adolescents (ages 14 to 17 years), who completed measures of justification of violence beliefs, social problem-solving dimensions (problem orientation, and impulsivity/carelessness style), and psychological problems. Findings indicated that maltreated adolescents' higher levels of delinquent and aggressive behavior were partially accounted for by justification of violence beliefs, and that their higher levels of depressive symptoms were partially mediated by a more negative orientation to social problem-solving. Comparisons between boys and girls indicated that the model linking maltreatment, cognitive variables, and psychological problems was invariant.

  2. Stress and performance: do service orientation and emotional energy moderate the relationship?

    PubMed

    Smith, Michael R; Rasmussen, Jennifer L; Mills, Maura J; Wefald, Andrew J; Downey, Ronald G

    2012-01-01

    The current study examines the moderating effect of customer service orientation and emotional energy on the stress-performance relationship for 681 U.S. casual dining restaurant employees. Customer service orientation was hypothesized to moderate the stress-performance relationship for Front-of-House (FOH) workers. Emotional energy was hypothesized to moderate stress-performance for Back-of-House (BOH) workers. Contrary to expectations, customer service orientation failed to moderate the effects of stress on performance for FOH employees, but the results supported that customer service orientation is likely a mediator of the relationship. However, the hypothesis was supported for BOH workers; emotional energy was found to moderate stress performance for these employees. This finding suggests that during times of high stress, meaningful, warm, and empathetic relationships are likely to impact BOH workers' ability to maintain performance. These findings have real-world implications in organizational practice, including highlighting the importance of developing positive and meaningful social interactions among workers and facilitating appropriate person-job fits. Doing so is likely to help in alleviating worker stress and is also likely to encourage worker performance.

  3. Key aspects of coronal heating

    PubMed Central

    Klimchuk, James A.

    2015-01-01

    We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better. PMID:25897094

  4. Iterated local search algorithm for solving the orienteering problem with soft time windows.

    PubMed

    Aghezzaf, Brahim; Fahim, Hassan El

    2016-01-01

    In this paper we study the orienteering problem with time windows (OPTW) and the impact of relaxing the time windows on the profit collected by the vehicle. The way of relaxing time windows adopted in the orienteering problem with soft time windows (OPSTW) that we study in this research is a late service relaxation that allows linearly penalized late services to customers. We solve this problem heuristically by considering a hybrid iterated local search. The results of the computational study show that the proposed approach is able to achieve promising solutions on the OPTW test instances available in the literature, one new best solution is found. On the newly generated test instances of the OPSTW, the results show that the profit collected by the OPSTW is better than the profit collected by the OPTW.

  5. Some Characteristics and Writing Problems of Technically Oriented Students.

    ERIC Educational Resources Information Center

    Ruehr, Ruthann

    An understanding of the writing problems and personalities of some of the technically oriented students at Michigan Technological University may help others who teach similar students. Although their scores on aptitude tests are high, these students have had very little experience in writing. In addition, the majority of the students have had very…

  6. Students' Performance Awareness, Motivational Orientations and Learning Strategies in a Problem-Based Electromagnetism Course

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aims to explore problem-based learning (PBL) in conjunction with students' confidence in the basic ideas of electromagnetism and their motivational orientations and learning strategies. The 78 first-year geology and geophysics students followed a three-week PBL instruction in electromagnetism. The students' confidence was assessed…

  7. An Achievement Degree Analysis Approach to Identifying Learning Problems in Object-Oriented Programming

    ERIC Educational Resources Information Center

    Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul

    2014-01-01

    Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…

  8. Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language

    ERIC Educational Resources Information Center

    Unuakhalu, Mike F.

    2009-01-01

    This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…

  9. Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction

    ERIC Educational Resources Information Center

    Muller, Orna; Haberman, Bruria

    2008-01-01

    Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…

  10. An Analysis of Group-Oriented Contingencies and Associated Side Effects in Preschool Children

    ERIC Educational Resources Information Center

    Payne, Steven W.; Dozier, Claudia L.; Briggs, Adam M.; Newquist, Matthew H.

    2017-01-01

    Group-oriented contingencies are arranged to target the behavior of a group of people simultaneously. Overall, group-oriented contingencies have been shown to be effective in both decreasing problem behavior and increasing appropriate behavior. However, results are mixed regarding which type(s) of group-oriented contingency is most effective for…

  11. Amber Plug-In for Protein Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliva, Ricardo

    2004-05-10

    The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute molecular energies based on the Amber model. The main class is called ProteinEnergy. Its main interface methods are (1) "init" to initialize internal variables needed to compute the energy. (2) "eval" to evaluate the total energy given a vector of coordinates. Additional methods allow themore » user to evaluate the individual components of the energy model (bond, angle, dihedral, non-bonded-1-4, and non-bonded energies) and to obtain the energy of each individual atom. The Amber Engine library source code includes examples and test routines that illustrate the use of the library in stand alone programs. The energy minimization module uses the AmberEngine library and the nonlinear optimization library OPT++. OPT++ is open source software available under the GNU Lesser General Public License. The minimization module currently makes use of the LBFGS optimization algorithm in OPT++ to perform the energy minimization. Future releases may give the user a choice of other algorithms available in OPT++.« less

  12. A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1987-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.

  13. Controlling the opto-electronic properties of nc-SiOx:H films by promotion of 〈220〉 orientation in the growth of ultra-nanocrystallites at the grain boundary

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Samanta, Subhashis

    2018-01-01

    A systematic development of undoped nc-SiOx:H thin films from (SiH4 + CO2) plasma diluted by a combination of H2 and He has been investigated through structural, optical and electrical characterization and correlation. Gradual inclusion of O into a highly crystalline silicon network progressively produces a two-phase structure where Si-nanocrystals (Si-nc) are embedded into the a-SiOx:H matrix. However, at the intermediate grain boundary region the growth of ultra-nanocrystallites controls the effectiveness of the material. The ultra-nanocrystallites are the part and portion of crystallinity accommodating the dominant fraction of thermodynamically preferred 〈220〉 crystallographic orientation, most favourable for stacked layer device performance. Atomic H plays a dominant role in maintaining an improved nanocrystalliny in the network even during O inclusion, while He in its excited state (He*) maintains a good energy balance at the grain boundary and produces a significant fraction of ultra-nanocrystalline component which has been demonstrated to organize the energetically favourable 〈220〉 crystallographic orientation in the network. The nc-SiOx:H films, maintaining proportionally good electrical conductivity over an wide range of optical band gap, remarkably low microstructure factor and simultaneous high crystalline volume fraction dominantly populated by ultra-nanocrystallites of 〈220〉 crystallographic orientation mostly at the grain boundary, have been obtained in technologically most popular 13.56 MHz PECVD SiH4 plasma even at a low substrate temperature ∼250 °C, convenient for device fabrication.

  14. Virtual and flexible digital signal processing system based on software PnP and component works

    NASA Astrophysics Data System (ADS)

    He, Tao; Wu, Qinghua; Zhong, Fei; Li, Wei

    2005-05-01

    An idea about software PnP (Plug & Play) is put forward according to the hardware PnP. And base on this idea, a virtual flexible digital signal processing system (FVDSPS) is carried out. FVDSPS is composed of a main control center, many sub-function modules and other hardware I/O modules. Main control center sends out commands to sub-function modules, and manages running orders, parameters and results of sub-functions. The software kernel of FVDSPS is DSP (Digital Signal Processing) module, which communicates with the main control center through some protocols, accept commands or send requirements. The data sharing and exchanging between the main control center and the DSP modules are carried out and managed by the files system of the Windows Operation System through the effective communication. FVDSPS real orients objects, orients engineers and orients engineering problems. With FVDSPS, users can freely plug and play, and fast reconfigure a signal process system according to engineering problems without programming. What you see is what you get. Thus, an engineer can orient engineering problems directly, pay more attention to engineering problems, and promote the flexibility, reliability and veracity of testing system. Because FVDSPS orients TCP/IP protocol, through Internet, testing engineers, technology experts can be connected freely without space. Engineering problems can be resolved fast and effectively. FVDSPS can be used in many fields such as instruments and meter, fault diagnosis, device maintenance and quality control.

  15. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices

    NASA Astrophysics Data System (ADS)

    Savkiv, Volodymyr; Mykhailyshyn, Roman; Duchon, Frantisek; Mikhalishin, Mykhailo

    2017-11-01

    The article deals with the topical issue of reducing energy consumption for transportation of industrial objects. The energy efficiency of the process of objects manipulation with the use of the orientation optimization method while gripping with the help of different methods has been studied. The analysis of the influence of the constituent parts of inertial forces, that affect the object of manipulation, on the necessary force characteristics and energy consumption of Bernoulli gripping device has been proposed. The economic efficiency of the use of the optimal orientation of Bernoulli gripping device while transporting the object of manipulation in comparison to the transportation without re-orientation has been proved.

  16. Orienting semi-conducting π-conjugated polymers.

    PubMed

    Brinkmann, Martin; Hartmann, Lucia; Biniek, Laure; Tremel, Kim; Kayunkid, Navaphun

    2014-01-01

    The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi-conducting polymers can generate a large palette of semi-crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets.

    PubMed

    Dubois, J; Poupon, C; Lethimonnier, F; Le Bihan, D

    2006-08-01

    A method is proposed for generating schemes of diffusion gradient orientations which allow the diffusion tensor to be reconstructed from partial data sets in clinical DT-MRI, should the acquisition be corrupted or terminated before completion because of patient motion. A general energy-minimization electrostatic model was developed in which the interactions between orientations are weighted according to their temporal order during acquisition. In this report, two corruption scenarios were specifically considered for generating relatively uniform schemes of 18 and 60 orientations, with useful subsets of 6 and 15 orientations. The sets and subsets were compared to conventional sets through their energy, condition number and rotational invariance. Schemes of 18 orientations were tested on a volunteer. The optimized sets were similar to uniform sets in terms of energy, condition number and rotational invariance, whether the complete set or only a subset was considered. Diffusion maps obtained in vivo were close to those for uniform sets whatever the acquisition time was. This was not the case with conventional schemes, whose subset uniformity was insufficient. With the proposed approach, sets of orientations responding to several corruption scenarios can be generated, which is potentially useful for imaging uncooperative patients or infants.

  18. Dare to Be Different

    ERIC Educational Resources Information Center

    Wassermann, Selma

    2007-01-01

    In this article, the author profiles Charles Dickens Elementary School in Vancouver, British Columbia, a school that dares to be different from the rest. This elementary school operates on a child-centered, multi-aged framework that is based on belief in an orientation towards continuous progress, appropriate evaluation of progress, schoolwide…

  19. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature.

    PubMed

    Klempner, Samuel J; Mehta, Pareen; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius

    2017-01-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) is a universal event and limits clinical efficacy. The third-generation EGFR inhibitor osimertinib is active in EGFR-mutant/T790M positive non-small-cell lung cancer. Mechanisms of acquired resistance are emerging, and here we describe a cis -oriented solvent-front EGFR G796S mutation as the resistance mechanism observed in a progression biopsy and circulating tumor DNA (ctDNA) from a patient with initial response followed by progression on osimertinib. This is one of the earliest reports of a sole solvent-front tertiary EGFR mutation as a resistance mechanism to osimertinib. Our case suggests a monoclonal resistance mechanism. We review the importance of the solvent-front residues across TKIs and describe known osimertinib resistance mechanisms. We observe that nearly all clinical osimertinib-resistant tertiary EGFR mutations are oriented in cis with EGFR T790M. This case highlights the importance of mutations affecting EGFR kinase domains and supports the feasibility of broad panel ctDNA assays for detection of novel acquired resistance and tumor heterogeneity in routine clinical care.

  20. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    PubMed

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamarian, I.; Samani, P.; Rohrer, G. S.

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  2. Investigating the Wicked Problems of (Un)sustainability Through Three Case Studies Around the Water-Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Curren, R. R.

    2016-12-01

    Effective engagement with the problems of sustainability begins with an understanding of the nature of the challenges. The entanglement of interacting human and Earth systems produces solution-resistant dilemmas that are often portrayed as wicked problems. As introduced by urban planners Rittel and Webber (1973), wicked problems are "dynamically complex, ill-structured, public problems" arising from complexity in both biophysical and socio-economic systems. The wicked problem construct is still in wide use across diverse contexts, disciplines, and sectors. Discourse about wicked problems as related to sustainability is often connected to discussion of complexity or complex systems. In preparation for life and work in an uncertain, dynamic and hyperconnected world, students need opportunities to investigate real problems that cross social, political and disciplinary divides. They need to grapple with diverse perspectives and values, and collaborate with others to devise potential solutions. Such problems are typically multi-casual and so intertangled with other problems that they cannot be resolved using the expertise and analytical tools of any single discipline, individual, or organization. We have developed a trio of illustrative case studies that focus on energy, water and food, because these resources are foundational, interacting, and causally connected in a variety of ways with climate destabilization. The three interrelated case studies progress in scale from the local and regional, to the national and international and include: 1) the 2010 Gulf of Mexico oil spill with examination of the multiple immediate and root causes of the disaster, its ecological, social, and economic impacts, and the increasing risk and declining energy return on investment associated with the relentless quest for fossil fuels; 2) development of Australia's innovative National Water Management System; and 3) changing patterns of food production and the intertwined challenge of managing transnational water resources in the rapidly growing Mekong Region of Southeast Asia. .

  3. Fundamentalist physics: why Dark Energy is bad for astronomy

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.

    2007-06-01

    Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.

  4. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films

    PubMed Central

    Zhang, Yan-ping; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin

    2018-01-01

    LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co–O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co–O binding energy. The increase in the mean Co–O bond length will decrease the crystal field splitting energy of Co3+ and Co–O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3. PMID:29515854

  5. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films.

    PubMed

    Zhang, Yan-Ping; Liu, Hai-Feng; Hu, Hai-Long; Xie, Rui-Shi; Ma, Guo-Hua; Huo, Ji-Chuan; Wang, Hai-Bin

    2018-02-01

    LaCoO 3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO 3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO 3 films are epitaxially grown in accordance with the orientation of LaAlO 3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO 6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO 3 , and the (100) oriented LaCoO 3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO 3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co 3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co 3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO 3 .

  6. A consideration of the nature of work and the consequences for the human-oriented design of production and products.

    PubMed

    Bubb, Heiner

    2006-07-01

    In this article, it is shown that human work can be understood as a process of creating order, and that order can be seen as a form of information. Since information can be considered as negative entropy, work is associated with energy consumption. Therefore, it is important to investigate the nature of human necessities in more detail in order to meet the desire for comfort through the efficient application of energy. Temporary increases of information cause accelerated increases in entropy. This explains the appearance of living organisms, and the historic development of increasingly complex technology. Through technical progress, repetitive human work is being replaced by automation, so that primarily creative work remains. Now the question arises of how much creative work a human can manage. In addition, one goal of automation should be the reduction of human errors, but in doing so, an optimal balance should be found between supporting the operator both during normal procedures and during unforeseen circumstances.

  7. Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems

    NASA Technical Reports Server (NTRS)

    Asano, S.; Sato, M.; Hansen, J. E.

    1979-01-01

    A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.

  8. Gluon Bremsstrahlung in Weakly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Arnold, Peter

    2009-11-01

    I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≳10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q̂.

  9. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Liu, X.-H.; Erdogan, F.

    1986-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  10. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1984-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  11. AN EXPERIMENT IN TEACHING TOPOGRAPHICAL ORIENTATION AND SPATIAL ORGANIZATION TO CONGENITALLY BLIND CHILDREN.

    ERIC Educational Resources Information Center

    ASCARELLI, ANNA; GARRY, RALPH

    THIS RESEARCH ATTEMPTED TO ESTABLISH A BETTER UNDERSTANDING OF THE PROBLEMS OF CONGENITALLY TOTALLY BLIND CHILDREN AND TO TEST THE POSSIBILITY OF MEETING THESE PROBLEMS WITH A SPECIAL TRAINING PROGRAM IN GENERAL ORIENTATION AND SPACE PERCEPTION. A SAMPLE OF 60 CHILDREN WAS SELECTED FOR THE EXPERIMENT. THESE SUBJECTS WERE WITHOUT ADDITIONAL…

  12. An Investigation of Difficulties Experienced by Students Developing Unified Modelling Language (UML) Class and Sequence Diagrams

    ERIC Educational Resources Information Center

    Sien, Ven Yu

    2011-01-01

    Object-oriented analysis and design (OOAD) is not an easy subject to learn. There are many challenges confronting students when studying OOAD. Students have particular difficulty abstracting real-world problems within the context of OOAD. They are unable to effectively build object-oriented (OO) models from the problem domain because they…

  13. Future Orientation, School Contexts, and Problem Behaviors: A Multilevel Study

    ERIC Educational Resources Information Center

    Chen, Pan; Vazsonyi, Alexander T.

    2013-01-01

    The association between future orientation and problem behaviors has received extensive empirical attention; however, previous work has not considered school contextual influences on this link. Using a sample of N = 9,163 9th to 12th graders (51.0% females) from N = 85 high schools of the National Longitudinal Study of Adolescent Health, the…

  14. Problem-Solving Orientation and Attributional Style as Predictors of Depressive Symptoms in Egyptian Adolescents with Visual Impairment

    ERIC Educational Resources Information Center

    Emam, Mahmoud M.

    2013-01-01

    The association between attributional style (AS), problem-solving orientation (PSO), and gender on depressive symptoms was investigated in Egyptian adolescents with visual impairment (VI). After being written in Braille, measures of AS, PSO, and depression were administered to 110 adolescents with VI, ages 12-17 years, from a residential school…

  15. Sex-oriented stable matchings of the marriage problem with correlated and incomplete information

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Capocci, Andrea; Laureti, Paolo

    2001-10-01

    In the stable marriage problem two sets of agents must be paired according to mutual preferences, which may happen to conflict. We present two generalizations of its sex-oriented version, aiming to take into account correlations between the preferences of agents and costly information. Their effects are investigated both numerically and analytically.

  16. Overcoming the Glassy-Eyed Nod: An Application of Process-Oriented Guided Inquiry Learning Techniques in Information Technology

    ERIC Educational Resources Information Center

    Myers, Trina; Monypenny, Richard; Trevathan, Jarrod

    2012-01-01

    Two significant problems faced by universities are to ensure sustainability and to produce quality graduates. Four aspects of these problems are to improve engagement, to foster interaction, develop required skills and to effectively gauge the level of attention and comprehension within lectures and large tutorials. Process-Oriented Guided Inquiry…

  17. A Preliminary Language Validity Analysis of the Problem Oriented Screening Instrument for Teenagers (POSIT).

    ERIC Educational Resources Information Center

    Mason, Michael J.

    1995-01-01

    The Problem Oriented Screening Inventory for Teenagers (POSIT) was analyzed in a Hispanic majority school district to determine the test/retest correlation of the English and Spanish versions of the instrument. Data analysis indicated fairly weak agreement between the English and Spanish POSIT version results for this sample of bilingual…

  18. Links between Alcohol and Other Drug Problems and Maltreatment among Adolescent Girls: Perceived Discrimination, Ethnic Identity, and Ethnic Orientation as Moderators

    ERIC Educational Resources Information Center

    Gray, Calonie M. K.; Montgomery, Marilyn J.

    2012-01-01

    Objectives: This study examined the links between maltreatment, posttraumatic stress symptoms, ethnicity-specific factors (i.e., perceived discrimination, ethnic identity, and ethnic orientation), and alcohol and/or other drug (AOD) problems among adolescent girls. Methods: These relations were examined using archived data from a community sample…

  19. Understanding the connection between the energy released during solar flares and their emission in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    da Costa, F. Rubio

    2017-10-01

    While progress has been made on understanding how energy is released and deposited along the solar atmosphere during explosive events such as solar flares, the chromospheric and coronal heating through the sudden release of magnetic energy remain an open problem in solar physics. Recent hydrodynamic models allow to investigate the energy deposition along a flare loop and to study the response of the chromosphere. These results have been improved with the consideration of transport and acceleration of particles along the loop. RHESSI and Fermi/GBM X-ray and gamma-ray observations help to constrain the spectral properties of the injected electrons. The excellent spatial, spectral and temporal resolution of IRIS will also help us to constrain properties of explosive events, such as the continuum emission during flares or their emission in the chromosphere.

  20. The Riesz transform and simultaneous representations of phase, energy and orientation in spatial vision.

    PubMed

    Langley, Keith; Anderson, Stephen J

    2010-08-06

    To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.

  1. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  2. Tiger Team Assessments seventeen through thirty-five: A summary and analysis. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    This report provides a summary and analysis of the Department of Energy`s (DOE`S) 19 Tiger Team Assessments that were conducted from October 1990 to July 1992. The sites are listed in the box below, along with their respective program offices and assessment completion dates. This analysis relied solely on the information contained in the Tiger Team Assessment Reports. The findings and concerns documented by the Tiger Teams provide a database of information about the then-current ES&H programs and practice. Program Secretarial Officers (PSOS) and field managers may use this information, along with other sources (such as the Corrective Action Plans,more » Progress Assessments, and Self-Assessments), to address the ES&H deficiencies found, prioritize and plan appropriate corrective actions, measure progress toward solving the problems, strengthen and transfer knowledge about areas where site performance exemplified the ES&H mindset, and so forth. Further analyses may be suggested by the analysis presented in this report.« less

  3. Role of Medium Chain Triglycerides (Axona®) in the Treatment of Mild to Moderate Alzheimer's Disease.

    PubMed

    Sharma, Alok; Bemis, Marc; Desilets, Alicia R

    2014-08-01

    Treatment of Alzheimer's disease (AD) with acetylcholinesterase inhibitors or N-methyl-D-aspartate (NMDA) receptor antagonists provides symptomatic relief but do not prevent its progression. Thus, additional approaches aimed at slowing the progression of the disease have been investigated. Reports detailing reduced brain glucose metabolism in the early stages of AD led to the hypothesis that alternate energy sources aimed at increasing neuronal metabolism may protect neurons and thus benefit patients with AD. Medium-chain triglycerides (MCTs) are metabolized to ketone bodies that serve as an alternative source of energy for neurons. Data from clinical trials suggest that MCTs improve cognition in patients with mild to moderate AD in apolipoprotein E4-negative patients. Adverse events observed were mild and included minor gastrointestinal problems such as diarrhea, dyspepsia, and flatulence. However, since genomic profiles are not routinely conducted in patients with AD in a clinical setting, the role of MCTs in clinical practice seems to be minimal. © The Author(s) 2014.

  4. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  5. The Infusion of Corporate Values into Progressive Education: Professional Vulnerability or Complicity?

    ERIC Educational Resources Information Center

    Gamson, David A.

    2004-01-01

    Examines the history of educational administration in the USA during the Progressive era (1890-1940). Using Callahan's Education and the Cult of Efficiency as a starting point, examines school district-based administrative practices that offered viable alternatives to the business-oriented, "scientific management" reforms that tended to…

  6. Bringing science to medicine: an interview with Larry Weed, inventor of the problem-oriented medical record.

    PubMed

    Wright, Adam; Sittig, Dean F; McGowan, Julie; Ash, Joan S; Weed, Lawrence L

    2014-01-01

    Larry Weed, MD is widely known as the father of the problem-oriented medical record and inventor of the now-ubiquitous SOAP (subjective/objective/assessment/plan) note, for developing an electronic health record system (Problem-Oriented Medical Information System, PROMIS), and for founding a company (since acquired), which developed problem-knowledge couplers. However, Dr Weed's vision for medicine goes far beyond software--over the course of his storied career, he has relentlessly sought to bring the scientific method to medical practice and, where necessary, to point out shortcomings in the system and advocate for change. In this oral history, Dr Weed describes, in his own words, the arcs of his long career and the work that remains to be done. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Coping, problem solving, depression, and health-related quality of life in patients receiving outpatient stroke rehabilitation.

    PubMed

    Visser, Marieke M; Heijenbrok-Kal, Majanka H; Spijker, Adriaan Van't; Oostra, Kristine M; Busschbach, Jan J; Ribbers, Gerard M

    2015-08-01

    To investigate whether patients with high and low depression scores after stroke use different coping strategies and problem-solving skills and whether these variables are related to psychosocial health-related quality of life (HRQOL) independent of depression. Cross-sectional study. Two rehabilitation centers. Patients participating in outpatient stroke rehabilitation (N=166; mean age, 53.06±10.19y; 53% men; median time poststroke, 7.29mo). Not applicable. Coping strategy was measured using the Coping Inventory for Stressful Situations; problem-solving skills were measured using the Social Problem Solving Inventory-Revised: Short Form; depression was assessed using the Center for Epidemiologic Studies Depression Scale; and HRQOL was measured using the five-level EuroQol five-dimensional questionnaire and the Stroke-Specific Quality of Life Scale. Independent samples t tests and multivariable regression analyses, adjusted for patient characteristics, were performed. Compared with patients with low depression scores, patients with high depression scores used less positive problem orientation (P=.002) and emotion-oriented coping (P<.001) and more negative problem orientation (P<.001) and avoidance style (P<.001). Depression score was related to all domains of both general HRQOL (visual analog scale: β=-.679; P<.001; utility: β=-.009; P<.001) and stroke-specific HRQOL (physical HRQOL: β=-.020; P=.001; psychosocial HRQOL: β=-.054, P<.001; total HRQOL: β=-.037; P<.001). Positive problem orientation was independently related to psychosocial HRQOL (β=.086; P=.018) and total HRQOL (β=.058; P=.031). Patients with high depression scores use different coping strategies and problem-solving skills than do patients with low depression scores. Independent of depression, positive problem-solving skills appear to be most significantly related to better HRQOL. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Studies in nonlinear problems of energy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matkowsky, B.J.

    1998-12-01

    The author completed a successful research program on Nonlinear Problems of Energy, with emphasis on combustion and flame propagation. A total of 183 papers associated with the grant has appeared in the literature, and the efforts have twice been recognized by DOE`s Basic Science Division for Top Accomplishment. In the research program the author concentrated on modeling, analysis and computation of combustion phenomena, with particular emphasis on the transition from laminar to turbulent combustion. Thus he investigated the nonlinear dynamics and pattern formation in the successive stages of transition. He described the stability of combustion waves, and transitions to wavesmore » exhibiting progressively higher degrees of spatio-temporal complexity. Combustion waves are characterized by large activation energies, so that chemical reactions are significant only in thin layers, termed reaction zones. In the limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts, which must be found during the course of the analysis, so that the problems are moving free boundary problems. The analytical studies were carried out for the limiting case with fronts, while the numerical studies were carried out for the case of finite, though large, activation energy. Accurate resolution of the solution in the reaction zone(s) is essential, otherwise false predictions of dynamical behavior are possible. Since the reaction zones move, and their location is not known a-priori, the author has developed adaptive pseudo-spectral methods, which have proven to be very useful for the accurate, efficient computation of solutions of combustion, and other, problems. The approach is based on a combination of analytical and numerical methods. The numerical computations built on and extended the information obtained analytically. Furthermore, the solutions obtained analytically served as benchmarks for testing the accuracy of the solutions determined computationally. Finally, the computational results suggested new analysis to be considered. A cumulative list of publications citing the grant make up the contents of this report.« less

  9. Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.

    PubMed

    Shan, Tzu-Ray; Wixom, Ryan R; Mattsson, Ann E; Thompson, Aidan P

    2013-01-24

    The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. Reactions occur with shock velocities of 6 km/s or stronger, and reactions initiate through the dissociation of nitro and nitrate groups from the PETN molecules. The most sensitive orientation is [110], while [100] is the most insensitive. For the [001] orientation, PETN decomposition via nitro group dissociation is the dominant reaction initiation mechanism, while for the [110] and [100] orientations the decomposition is via mixed nitro and nitrate group dissociation. For shock along the [001] orientation, we find that CO-NO(2) bonds initially acquire more kinetic energy, facilitating nitro dissociation. For the other two orientations, C-ONO(2) bonds acquire more kinetic energy, facilitating nitrate group dissociation.

  10. The Challenge of Induction! Introducing Engineering Students to Higher Education: A Task-Oriented Approach.

    ERIC Educational Resources Information Center

    Edward, Norrie; Middleton, June

    2002-01-01

    First-year engineering students at Robert Gordon University (Scotland) were presented with a task-oriented induction program. Students were divided into groups and assigned a facilitator, later personal tutor, to whom they could refer. Student reaction to the experience was very favorable. Effect on progression rates is yet to be determined. (AEF)

  11. Image classification independent of orientation and scale

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1998-04-01

    The recognition of targets independently of orientation has become fairly well developed in recent years for in-plane rotation. The out-of-plane rotation problem is much less advanced. When both out-of-plane rotations and changes of scale are present, the problem becomes very difficult. In this paper we describe our research on the combined out-of- plane rotation problem and the scale invariance problem. The rotations were limited to rotations about an axis perpendicular to the line of sight. The objects to be classified were three kinds of military vehicles. The inputs used were infrared imagery and photographs. We used a variation of a method proposed by Neiberg and Casasent, where a neural network is trained with a subset of the database and a minimum distances from lines in feature space are used for classification instead of nearest neighbors. Each line in the feature space corresponds to one class of objects, and points on one line correspond to different orientations of the same target. We found that the training samples needed to be closer for some orientations than for others, and that the most difficult orientations are where the target is head-on to the observer. By means of some additional training of the neural network, we were able to achieve 100% correct classification for 360 degree rotation and a range of scales over a factor of five.

  12. Optimal Control of Induction Machines to Minimize Transient Energy Losses

    NASA Astrophysics Data System (ADS)

    Plathottam, Siby Jose

    Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.

  13. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  14. Applying AI systems in the T and D arena. [Artificial Intelligence, Transmission and Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata, S.S.; Liu, Chenching; Sumic, Z.

    1993-04-01

    The power engineering community has capitalized on various computer technologies since the early 1960s, with most successful application to solving well-defined problems that are capable of being modeled. Although computing methods have made notable progress in the power engineering arena, there is still a class of problems that is not easy to define or formulate to apply conventional computerized methods. In addition to being difficult to express in a closed mathematical form, these problems are often characterized by the absence of one or both of the following features: a predetermined decision path from the initial state to goal (ill-structured problem);more » a well-defined criteria for whether an obtained solution is acceptable (open-ended problem). Power engineers have been investigating the application of AI-based methodologies to power system problems. Most of the work in the past has been geared towards the development of expert systems as an operator's aid in energy control centers for bulk power transmission systems operating under abnormal conditions. Alarm processing, fault diagnosis, system restoration, and voltage/var control are a few key areas where significant research work has progressed to date. Results of this research have effected more than 100 prototype expert systems for power systems throughout the US, Japan, and Europe. The objectives of this article are to: expose engineers to the benefits of using AI methods for a host of transmission and distribution (T and D) problems that need immediate attention; identify problems that could be solved more effectively by applying AI approaches; summarize recent developments and successful AI applications in T and D.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lave, Matthew Samuel; Stein, Joshua S.; Burnham, Laurie

    A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, wheremore » the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less

  16. Towards Current Profile Control in ITER: Potential Approaches and Research Needs

    NASA Astrophysics Data System (ADS)

    Schuster, E.; Barton, J. E.; Wehner, W. P.

    2014-10-01

    Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.

  17. Driving Behavior among Different Groups of Iranian Drivers Based on Driver Coping Styles

    PubMed Central

    Lotfi, Saeid; Yazdanirad, Saeid; Pourabdiyan, Siyamak; Hassanzadeh, Akbar; Lotfi, Aliakbar

    2017-01-01

    Background: This study aimed to assess driving behavior of Iranian drivers based on their coping styles (problem-oriented, emotion-oriented, and avoiding). Methods: This study was conducted on 610 drivers divided into four different groups. The drivers’ behaviors and coping styles were evaluated using driver behavior questionnaire (DBQ) and coping inventory for stressful situations. Results: The results showed a significant difference among the three coping styles regarding the mean scores of DBQ dimensions (P < 0.001). In addition, the emotion-oriented drivers obtained higher mean scores compared to those with other coping styles. Conclusions: It can be concluded that emotion-oriented drivers were more susceptible to crashes compared to those with problem-solving and avoidance coping styles. PMID:28757929

  18. Relationships Between Future Orientation, Impulsive Sensation Seeking, and Risk Behavior Among Adjudicated Adolescents

    PubMed Central

    Robbins, Reuben N.; Bryan, Angela

    2005-01-01

    Because of high levels of risk behavior, adjudicated adolescents are at high risk for negative health outcomes such as nicotine and drug addiction and sexually transmitted diseases. The goal of this article is to examine relationships between future orientation and impulsive-sensation-seeking personality constructs to risk behaviors among 300 adjudicated adolescents. Significant relationships between impulsive sensation seeking and future orientation were found for several risk behaviors. Individuals with more positive future orientation were less likely to use marijuana, hard drugs, alcohol during sex, had fewer alcohol problems, had lower levels of alcohol frequency and quantity of use, and perceived greater risks associated with such behaviors. Higher impulsivity reliably predicted alcohol problems, alcohol use, condom use, and cigarette smoking. PMID:16429605

  19. The spectrum of progressive derecho formation environments

    NASA Astrophysics Data System (ADS)

    Guastini, Corey T.

    Progressive derechos are severe mesoscale convective systems that often form east of the Rocky Mountains during the warm season (May--August) and cause, by definition, straight-line wind damage along paths upwards of 400 km long. This study develops a subjective, seven-category classification scheme that spans the spectrum of progressive derecho formation environments from those dominated by robust upper-level ridges to those characterized by vigorous upper-level troughs. A climatology of 256 progressive derecho events is created for 1996--2013 and is categorized according to the developed classification scheme. Derecho initiation-relative composites are constructed for each of the seven groups using 0.5° Climate Forecast System Reanalysis data to document the environmental characteristics unique to each group as well as those shared among them. Finally, two in-depth case studies and five cursory case studies provide examples of the seven categories and reveal important nuances in mesoscale dynamic and thermodynamic structure inherent to all derecho cases. Results of the climatology show progressive derecho activity increases from 1 May through 1 July before decreasing again through the end of August and follows a northward trend in latitude from 1 May through 1 August before shifting slightly southward through the end of the warm season. Upslope flow in the vicinity of the Rocky Mountains initiates 28 percent of progressive derechos, upper-level troughs initiate 20 percent, 47 percent form in benign synoptic environments, and 5 percent are unclassifiable. Composite results show all progressive derecho initiation environments are marked by a long axis of instability caused by the overlap of high atmospheric moisture content and steep midlevel lapse rates, but the relative positions and strengths of upper-level troughs and ridges are crucial in determining how the instability axis develops and what its orientation in space will be. Case studies reveal instability axes forming in benign synoptic environments are generally zonally oriented and mainly the result of convergence of low-level moisture, whereas stronger synoptic-scale forcing forms meridionally oriented instability axes through the northward advection of Gulf moisture. The length and magnitude of these instability axes largely determines the duration and severity of a given progressive derecho.

  20. Future Orientation, Impulsivity, and Problem Behaviors: A Longitudinal Moderation Model

    ERIC Educational Resources Information Center

    Chen, Pan; Vazsonyi, Alexander T.

    2011-01-01

    In the current study, based on a sample of 1,873 adolescents between 11.4 and 20.9 years of age from the first 3 waves of the National Longitudinal Study of Adolescent Health, we investigated the longitudinal effects of future orientation on levels of and developmental changes in problem behaviors, while controlling for the effects by impulsivity;…

  1. Application of Real-World Problems in Computer Science Education: Teachers' Beliefs, Motivational Orientations and Practices

    ERIC Educational Resources Information Center

    Ferreira, Deller James; Ambrósio, Ana Paula Laboissière; Melo, Tatiane F. N.

    2018-01-01

    This article describes how it is due to the fact that computer science is present in many activities of daily life, students need to develop skills to solve problems to improve the lives of people in general. This article investigates correlations between teachers' motivational orientations, beliefs and practices with respect to the application of…

  2. Neural Models of Spatial Orientation in Novel Environments

    DTIC Science & Technology

    1994-01-01

    tool use, the problem of self-organizing body -centered spatial representations for movement planning and spatial orientation, and the problem of...meeting of the American Association for the Advancement of Science, Boston, February, 1993. 23. Grossberg, S., annual Linnaeus Lecture, Uppsala...Congress on Neural Networks entitled --A self-organizing neural network for learning a body -centered invariant representa- tion of 3-D target

  3. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  4. Progress in the Development of CdZnTe Unipolar Detectors for Different Anode Geometries and Data Corrections

    PubMed Central

    Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi

    2013-01-01

    CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509

  5. Sequential Reactions of Surface-Tethered Glycolytic Enzymes

    PubMed Central

    Mukai, Chinatsu; Bergkvist, Magnus; Nelson, Jacquelyn L.; Travis, Alexander J.

    2014-01-01

    SUMMARY The development of complex hybrid organic-inorganic devices faces several challenges, including how they can generate energy. Cells face similar challenges regarding local energy production. Mammalian sperm solve this problem by generating ATP down the flagellar principal piece by means of glycolytic enzymes, several of which are tethered to a cytoskeletal support via germ cell-specific targeting domains. Inspired by this design, we have produced recombinant hexokinase type 1 and glucose-6-phosphate isomerase capable of oriented immobilization on a nickel-nitrilotriacetic acid modified surface. Specific activities of enzymes tethered via this strategy were substantially higher than when randomly adsorbed. Furthermore, these enzymes showed sequential activities when tethered onto the same surface. This is the first demonstration of surface-tethered pathway components showing sequential enzymatic activities, and it provides a first step toward reconstitution of glycolysis on engineered hybrid devices. PMID:19778729

  6. Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelmann, Andreas; Gsell, Achim; Oswald, Benedikt

    Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O ondiversecomputer architectures. In our scientific application, thelargestparallel particle simulations generate vast quantitiesofsix-dimensional data. Such a simulation run produces data foranaggregate data size up to several TB per run. Motived by the needtoaddress data I/O and access challenges, we have implemented H5Part,anopen source data I/O API that simplifies the use of the HierarchicalDataFormat v5 library (HDF5). HDF5 is an industry standard forhighperformance, cross-platform data storage and retrieval that runsonall contemporary architectures from large parallel supercomputerstolaptops. H5Part, whichmore » is oriented to the needs of the particlephysicsand cosmology communities, provides support for parallelstorage andretrieval of particles, structured and in the future unstructuredmeshes.In this paper, we describe recent work focusing on I/O supportforparticles and structured meshes and provide data showing performance onmodernsupercomputer architectures like the IBM POWER 5.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Research is organized around two major programs: thermal and aquatic stress and mineral cycling. These programs are strengthened by a previously established foundation of basic ecological knowledge. Research in basic ecology continues to be a major component of all SREL environmental programs. Emphasis in all programs has been placed upon field-oriented research relating to regional and local problems having broad ecological significance. For example, extensive research has been conducted in the Par Pond reservoir system and the Savannah River swamp, both of which have received thermal effluent, heavy metals, and low levels of radioisotopes. Furthermore, the availability of low levelsmore » of plutonium and uranium in both terrestrial and aquatic environments on the Savannah River Plant (SRP) has provided an unusual opportunity for field research in this area. The studies seek to document the effects, to determine the extent of local environmental problems, and to establish predictable relationships which have general applicability. In order to accomplish this objective it has been imperative that studies be carried out in the natural, environmentally unaffected areas on the SRP as a vital part of the overall program. Progress is reported in forty-nine studies.« less

  8. Prepublication disclosure of scientific results: Norms, competition, and commercial orientation

    PubMed Central

    2018-01-01

    On the basis of a survey of 7103 active faculty researchers in nine fields, we examine the extent to which scientists disclose prepublication results, and when they do, why? Except in two fields, more scientists disclose results before publication than not, but there is significant variation in their reasons to disclose, in the frequency of such disclosure, and in withholding crucial results when making public presentations. They disclose results for feedback and credit and to attract collaborators. Particularly in formulaic fields, scientists disclose to attract new researchers to the field independent of collaboration and to deter others from working on their exact problem. A probability model shows that 70% of field variation in disclosure is related to differences in respondent beliefs about norms, competition, and commercialization. Our results suggest new research directions—for example, do the problems addressed or the methods of scientific production themselves shape norms and competition? Are the levels we observe optimal or simply path-dependent? What is the interplay of norms, competition, and commercialization in disclosure and the progress of science? PMID:29774233

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  10. Office of Inspector General audit report on Project Hanford management contract costs and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    On August 6, 1996, the Richland Operations Office (Richland) awarded the Project Hanford Management Contract (Management Contract) to Fluor Daniel Hanford, Inc. (Fluor Daniel). This performance-based, 5-year contract to support cleanup of the Department of Energy`s (DOE) Hanford Site (Hanford) contained performance goals or expectations related to the stabilization, transition, and diversification of the Tri-Cities` economy near Hanford in southeastern Washington. One of these economic goals was that Fluor Daniel and its major subcontractors would help generate 3,000 new, non-Hanford, private sector jobs that would help stabilize and diversify the Tri-Cities` economy. The contract specifically called for Fluor Daniel tomore » help generate 200 jobs, establish an investment fund, and bring 6 new growth-oriented enterprise companies to the Tri-Cities by the end of Fiscal Year (FY) 1997. The objective of the audit was to determine whether Richland was making adequate progress in stabilizing and diversifying the economy of the Tri-Cities by creating 3,000 new, non-Hanford jobs within 5 years. Accordingly, the author examined the progress made in FY 1997, which was the first year of the Management Contract. Richland and Fluor Daniel are at risk of not meeting the Management Contract`s goals of stabilizing and diversifying the economy of the Tri-Cities because most of the new jobs created during FY 1997 were not comparable to Hanford jobs and, thus, may not sustain long-term economic goals. Therefore, Fluor Daniel has not met its expectations in the first year and is not making adequate progress toward meeting the Management Contract`s overall economic goals.« less

  11. A knowledge-based, concept-oriented view generation system for clinical data.

    PubMed

    Zeng, Q; Cimino, J J

    2001-04-01

    Information overload is a well-known problem for clinicians who must review large amounts of data in patient records. Concept-oriented views, which organize patient data around clinical concepts such as diagnostic strategies and therapeutic goals, may offer a solution to the problem of information overload. However, although concept-oriented views are desirable, they are difficult to create and maintain. We have developed a general-purpose, knowledge-based approach to the generation of concept-oriented views and have developed a system to test our approach. The system creates concept-oriented views through automated identification of relevant patient data. The knowledge in the system is represented by both a semantic network and rules. The key relevant data identification function is accomplished by a rule-based traversal of the semantic network. This paper focuses on the design and implementation of the system; an evaluation of the system is reported separately.

  12. Coronal Heating and the Need for High-Resolution Observations

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Despite excellent progress in recent years in understanding coronal heating, there remain many crucial questions that are still unanswered. Limitations in the observations are one important reason. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. As a consequence, high spatial resolution, broad temperature coverage, high temperature fidelity, and sensitivity to velocities and densities are all critical observational parameters. Current instruments lack one or more of these properties, and this has led to considerable ambiguity and confusion. In this talk, I will discuss recent ideas about coronal heating and emphasize that high spatial resolution observations, especially spectroscopic observations, are needed to make major progress on this important problem.

  13. Semantic Web Services Challenge, Results from the First Year. Series: Semantic Web And Beyond, Volume 8.

    NASA Astrophysics Data System (ADS)

    Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M.

    Explores trade-offs among existing approaches. Reveals strengths and weaknesses of proposed approaches, as well as which aspects of the problem are not yet covered. Introduces software engineering approach to evaluating semantic web services. Service-Oriented Computing is one of the most promising software engineering trends because of the potential to reduce the programming effort for future distributed industrial systems. However, only a small part of this potential rests on the standardization of tools offered by the web services stack. The larger part of this potential rests upon the development of sufficient semantics to automate service orchestration. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. A common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their capabilities and shortcomings, is necessary to make progress in developing the full potential of Service-Oriented Computing. The Semantic Web Services Challenge is an open source initiative that provides a public evaluation and certification of multiple frameworks on common industrially-relevant problem sets. This edited volume reports on the first results in developing common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. Semantic Web Services Challenge: Results from the First Year is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.

  14. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  15. New generation lidar systems for eye safe full time observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1995-01-01

    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  16. Visualization on the Day Night Year Globe

    NASA Astrophysics Data System (ADS)

    Božić, Mirjana; Vušković, Leposava; Popović, Svetozar; Popović, Jelena; Marković-Topalović, Tatjana

    2016-11-01

    The story about a properly oriented outdoor globe in the hands and minds of Eratosthenes, Jefferson, Milanković and science educators is presented. Having the same orientation in space as the Earth, the Day Night Year Globe (DING) shows in real time the pattern of illumination of the Earth’s surface and its diurnal and seasonal variations. It is an ideal object for the visualization of knowledge and increase in knowledge about: the form of the Earth, Earth’s rotation, Earth’s revolution around the Sun, the length of seasons, solstices, equinoxes, the longitude problem, the distribution of the Sun’s radiation over the Earth, the impact of this radiation on Earth’s climate, and how to use it efficiently. By attaching a movable vane to the poles, or adding pins around the equator to read time, DING becomes a spherical/globe-shaped sundial. So, the DING is simultaneously useful for teaching physics, geophysics, astronomy, use of solar energy and promoting an inquiry-based learning environment for students and the public.

  17. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  18. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  19. 78 FR 64979 - Agency Information Collection Activities; Revision of a Previously Approved Collection, with...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Collection, with Change; Comments Requested: COPS Progress Report ACTION: 60-Day Notice. The Department of Justice (DOJ) Office of Community Oriented Policing Services (COPS) will be submitting the following...; comments requested. (2) Title of the Form/Collection: COPS Progress Report. (3) Agency form number, if any...

  20. 76 FR 10064 - Agency Information Collection Activities: Extension of a Previously Approved Collection; Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Collection Under Review: COPS Progress Report. The Department of Justice (DOJ) Office of Community Oriented Policing Services (COPS) will be submitting the following information collection request to the Office of... Form/Collection: COPS Progress Report. (3) Agency form number, if any, and the applicable component of...

  1. Social Possible Selves, Self-Regulation, and Social Goal Progress in Older Adulthood

    ERIC Educational Resources Information Center

    Ko, Han-Jung; Mejía, Shannon; Hooker, Karen

    2014-01-01

    Lifespan development involves setting and pursuing self-guided goals. This study examines how in the social domain, possible selves, a future-oriented self-concept, and self-regulation, including self-regulatory beliefs and intraindividual variability in self-regulatory behavior, relate to differences in overall daily social goal progress. An…

  2. Are We Making "PROGRESS"? A Critical Literacies Framework to Engage Pre-Service Teachers for Social Justice

    ERIC Educational Resources Information Center

    Matteson, Holly C.; Boyd, Ashley S.

    2017-01-01

    In this article, authors describe an original framework aimed to acquaint pre-service English teachers with concepts related to social justice to facilitate their critical literacies related to eight components: positionality, race, orientation, gender, relationships, environment, social class, and stereotypes (PROGRESS). Authors then illustrate…

  3. Renewing America's Progress: A Positive Solution to School Reform.

    ERIC Educational Resources Information Center

    Genck, Fredric H.

    This book was designed to help citizens evaluate and improve their local schools. It contends that the solution to the potential end of America's progress is through positive school reform--the public management of schools. It presents a system of participative and results-oriented management that is implemented by boards, administrators, and…

  4. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    NASA Astrophysics Data System (ADS)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  5. Stereodirectional Origin of anti-Arrhenius Kinetics for a Tetraatomic Hydrogen Exchange Reaction: Born-Oppenheimer Molecular Dynamics for OH + HBr.

    PubMed

    Coutinho, Nayara D; Aquilanti, Vincenzo; Silva, Valter H C; Camargo, Ademir J; Mundim, Kleber C; de Oliveira, Heibbe C B

    2016-07-14

    Among four-atom processes, the reaction OH + HBr → H2O + Br is one of the most studied experimentally: its kinetics has manifested an unusual anti-Arrhenius behavior, namely, a marked decrease of the rate constant as the temperature increases, which has intrigued theoreticians for a long time. Recently, salient features of the potential energy surface have been characterized and most kinetic aspects can be considered as satisfactorily reproduced by classical trajectory simulations. Motivation of the work reported in this paper is the investigation of the stereodirectional dynamics of this reaction as the prominent reason for the peculiar kinetics: we started in a previous Letter ( J. Phys. Chem. Lett. 2015 , 6 , 1553 - 1558 ) a first-principles Born-Oppenheimer "canonical" molecular dynamics approach. Trajectories are step-by-step generated on a potential energy surface quantum mechanically calculated on-the-fly and are thermostatically equilibrated to correspond to a specific temperature. Here, refinements of the method permitted a major increase of the number of trajectories and the consideration of four temperatures -50, +200, +350, and +500 K, for which the sampling of initial conditions allowed us to characterize the stereodynamical effect. The role is documented of the adjustment of the reactants' mutual orientation to encounter the entrance into the "cone of acceptance" for reactivity. The aperture angle of this cone is dictated by a range of directions of approach compatible with the formation of the specific HOH angle of the product water molecule; and consistently the adjustment is progressively less effective the higher the kinetic energy. Qualitatively, this emerging picture corroborates experiments on this reaction, involving collisions of aligned and oriented molecular beams, and covering a range of energies higher than the thermal ones. The extraction of thermal rate constants from this molecular dynamics approach is discussed and the systematic sampling of the canonical ensemble is indicated as needed for quantitative comparison with the kinetic experiments.

  6. New isotope technologies in environmental physics

    NASA Astrophysics Data System (ADS)

    Povinec, P. P.; Betti, M.; Jull, A. J. T.; Vojtyla, P.

    2008-02-01

    As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.

  7. Opportunities and choice in a new vector era

    NASA Astrophysics Data System (ADS)

    Nowak, A.

    2014-06-01

    This work discusses the significant changes in computing landscape related to the progression of Moore's Law, and the implications on scientific computing. Particular attention is devoted to the High Energy Physics domain (HEP), which has always made good use of threading, but levels of parallelism closer to the hardware were often left underutilized. Findings of the CERN openlab Platform Competence Center are reported in the context of expanding "performance dimensions", and especially the resurgence of vectors. These suggest that data oriented designs are feasible in HEP and have considerable potential for performance improvements on multiple levels, but will rarely trump algorithmic enhancements. Finally, an analysis of upcoming hardware and software technologies identifies heterogeneity as a major challenge for software, which will require more emphasis on scalable, efficient design.

  8. "Thinking about a Sustainable Earth"

    NASA Astrophysics Data System (ADS)

    Ikeshita, Makoto

    2014-05-01

    1.Introduction The Course of study for Junior high school teaching was changed in 2008 in Japan. We should especially mention about this change that ESD, "Education for Sustainable Development," was written as a point of view. ESD is a kind of educations that is studied with a target for a region and that aims at reorganize of consciousness through thinking of how to be a better region. ESD's view was written for Social studies, Science, Foreign Languages, Health and Physical Education, Home Economics and Technical Arts, and the Period for Integrated Studies. Of these subjects, Social studies are the one of core subjects. Social studies for Junior high school consist of Geography, History and Civics. "Problem of us and international society" is the last part of Civics. Teacher helps students to understand international society deeply and think about the role of our country for it. Students research many problems (global environment, resources and energy, poverty etc.) and organize their thoughts on how make a better society as a part of the human family. I taught them to think about how to solve many themes like religious problems, terrorism problems, the North-South problems, and resource and energy problems. It is my practice to let them think about what they should do to solve the global warming problem. 2.The truth of my class I pointed out to the students that the length of summer time in Japan is increasing, and we can anticipate it will continue to increase in the future. After that, I explained to them that occurrence of sudden, heavy downpour of rain is increasing and helped them understand the process of this kind of downpour through some diagrams and pictures. I helped them understand the context of this increase of the length of summer time and heavy downpour within the whole earth's ecosystem. Such increases as these things are causing global warming. I asked them to think about what are the possible problems if global warming progresses. The ideas the students thought of were; a rise in the sea level because of melting ice at the north and south poles, floods, the increase of typhoons and cyclones, the increase of droughts, the progression of desertification, etc. Lastly, I asked them to think about what we can do to prevent global warming. The students suggested: saving energy to decrease carbon dioxide emissions, developing further public transportation, using bikes instead of cars, promoting recycling, and decreasing the output of garbage. 3.Conclusion It is very effective to let them think about being sustainable earth after studying Geography, History and Civics at the end of Junior high school to raise awareness concerning sustainable region on the earth, on which we live.

  9. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  10. OWL: A scalable Monte Carlo simulation suite for finite-temperature study of materials

    NASA Astrophysics Data System (ADS)

    Li, Ying Wai; Yuk, Simuck F.; Cooper, Valentino R.; Eisenbach, Markus; Odbadrakh, Khorgolkhuu

    The OWL suite is a simulation package for performing large-scale Monte Carlo simulations. Its object-oriented, modular design enables it to interface with various external packages for energy evaluations. It is therefore applicable to study the finite-temperature properties for a wide range of systems: from simple classical spin models to materials where the energy is evaluated by ab initio methods. This scheme not only allows for the study of thermodynamic properties based on first-principles statistical mechanics, it also provides a means for massive, multi-level parallelism to fully exploit the capacity of modern heterogeneous computer architectures. We will demonstrate how improved strong and weak scaling is achieved by employing novel, parallel and scalable Monte Carlo algorithms, as well as the applications of OWL to a few selected frontier materials research problems. This research was supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.

  11. Inventing Orientation and Mobility Techniques and Teaching Methods: A Conversation with Russell Williams

    ERIC Educational Resources Information Center

    Welsh, Richard L.

    2005-01-01

    Russell C. Williams was a key figure in the progression of orientation and mobility from the Army's immediate response to the servicemen and women who lost their sight during World War II to a recognized profession delivering individualized instruction to visually impaired people throughout the world. Blinded in combat while serving in the U.S.…

  12. Inventing Orientation and Mobility Techniques and Teaching Methods: A Conversation with Russell Williams (Part 2)

    ERIC Educational Resources Information Center

    Welsh, Rachard L.

    2005-01-01

    This is the final part of the adaptation from my on-stage conversation with Russell Williams at the 1998 International Mobility conference in Atlanta, GA, which attempted to highlight Williams's contributions to the progression of orientation and mobility from the Army's immediate response to the service men and women who lost their sight during…

  13. Coping as a Mediator Between Parental Attachment and Resilience: An Examination of Differential Effects Between Chinese Adolescents From Single Parent Families Versus Those From Intact Families.

    PubMed

    Guo, Xiamei

    2018-01-01

    The crude divorce rate has been increasing steadily for over a decade in China. Consequently, more and more children have to face the challenge of growing up in single parent families. The current study investigated the mediating effects of problem-oriented and emotion-oriented coping on the relationship between parental attachment and psychological resilience among a sample of Chinese adolescents from single parent families and intact families. Participants were 975 high school students (44.30% males; aged 15-19 years, M = 16.32 years, SD = 0.74), 871 from intact families and 104 from single parent families. Structural equation modeling showed that security in maternal attachment was positively associated with resilience through the indirect effect of reduced emotion-oriented coping among adolescents from single parent families. Among adolescents from intact families, security in maternal attachment was both directly associated with resilience and indirectly through enhanced problem-oriented and reduced emotion-oriented coping. Security in paternal attachment was associated with resilience both directly and indirectly through enhanced problem-oriented coping as well among those from intact families. Female adolescents exhibited significantly lower levels of resilience than male adolescents did regardless of the marital status of their parents. Limitations and suggestions for future research are discussed.

  14. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  15. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  16. Community College Adjunct Faculty Perceptions of Orientation, Mentoring, and Professional Development

    ERIC Educational Resources Information Center

    Horton, Dolly R.

    2013-01-01

    The problem addressed in this study was the paucity of professional development, mentoring, and orientation opportunities for adjunct faculty in the community college system. The purpose of this qualitative study was to investigate adjunct faculty member perceptions of their orientation, mentoring, and professional development experiences at a…

  17. Quality-Oriented Management of Educational Innovation at Madrasah Ibtidaiyah

    ERIC Educational Resources Information Center

    Sofanudin, Aji; Rokhman, Fathur; Wasino; Rusdarti

    2016-01-01

    This study aims to explore the quality-oriented management of educational innovation at Madrasah Ibtidaiyah. Quality-Oriented Management of Educational Innovation is the process of managing new resources (ideas, practices, objects, methods) in the field of education to achieve educational goals or solve the problem of education. New ideas,…

  18. An Updated Status of the Experiments with Sensor Webs and OGC Service-Oriented Architectures to Enable Global Earth Observing System of Systems (GEOSS)

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Sohlberg, Rob; Frye, Stu; Cappelaere, P.; Derezinski, L.; Ungar, Steve; Ames, Troy; Chien, Steve; Tran, Danny

    2007-01-01

    A viewgraph presentation on experiments with sensor webs and service oriented architectures is shown. The topics include: 1) Problem; 2) Basic Service Oriented Architecture Approach; 3) Series of Experiments; and 4) Next Experiments.

  19. The Problem of a Market-Oriented University

    ERIC Educational Resources Information Center

    Hayrinen-Alestalo, Marja; Peltola, Ulla

    2006-01-01

    Economy- and technology-driven theories dominate current explanations of social change. The political orientations of the European Union and many of its member states are increasingly based on the idea of knowledge economy where public organisations move towards market-orientation. Among the other producers of knowledge, universities are expected…

  20. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    NASA Astrophysics Data System (ADS)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  1. Characterization of impact damage in woven fiber composites using fiber Bragg grating sensing and NDE

    NASA Astrophysics Data System (ADS)

    Hiche, Cristobal; Liu, Kuang C.; Seaver, Mark; Wei, Jun; Chattopadhyay, Aditi

    2009-03-01

    Woven fiber composites are currently being investigated due to their advantages over other materials, making them suitable for low weight, high stiffness, and high interlaminar fracture toughness applications such as missiles, body armor, satellites, and many other aerospace applications. Damage characterization of woven fabrics is a complex task due to their tendency to exhibit different failure modes based on the weave configuration, orientation, ply stacking and other variables. A multiscale model is necessary to accurately predict progressive damage. The present research is an experimental study on damage characterization of three different woven fiber laminates under low energy impact using Fiber Bragg Grating (FBG) sensors and flash thermography. A correlation between the measured strain from FBG sensors and the damaged area obtained from flash thermography imaging has been developed. It was observed that the peak strain in the fabrics were strongly dependent on the weave geometry and decreased at different rates as damage area increased due to dissimilar failure modes. Experimental observations were validated with the development of a multiscale model. A FBG sensor placement model was developed which showed that FBG sensor location and orientation plays a key role in the sensing capabilities of strain on the samples.

  2. Harnessing the Promise of Moral Distress: A Call for Re-Orientation.

    PubMed

    Carse, Alisa; Rushton, Cynda Hylton

    2017-01-01

    Despite over three decades of research into the sources and costs of what has become an "epidemic" of moral distress among healthcare professionals, spanning many clinical disciplines and roles, there has been little significant progress in effectively addressing moral distress. We believe the persistent sense of frustration, helplessness, and despair still dominating the clinical moral distress narrative signals a need for re-orientation in the way moral distress is understood and worked with. Most fundamentally, moral distress reveals moral investment and energy. It is the troubled call of conscience, an expression of fidelity to moral commitments seen as imperiled or compromised. It is crucial that we find ways to empower clinicians in heeding this call-to support clinicians' moral agency and voice, foster their moral resilience, and facilitate their ability to contribute to needed reform within the organizations and systems in which they work. These objectives must inform creative expansion in the design of strategies for addressing moral distress in the day-to-day of clinical practice. We include suggestions about promising directions such strategies might take in the hope of spurring further innovation within clinical environments. Copyright 2016 The Journal of Clinical Ethics. All rights reserved.

  3. How does coconut oil affect cognitive performance in alzheimer patients?

    PubMed

    De la Rubia Ortí, José Enrique; Sánchez Álvarez, Carmen; Selvi Sabater, Pablo; Bueno Cayo, Alma María; Sancho Castillo, Sandra; Rochina, Mariano Julián; Hu Yang, Iván

    2017-03-30

    Introduction: Alzheimer’s disease is one of the most prevalent neurodegenerative dementia in developed world. This fact, coupled with the lack cure, makes new no pharmacological therapeutic strategies such as nutrient management to investigate. In this regard, it stresses the possible influence of coconut oil as alternative energy source capable of stopping the progressively neuronal death that occurs in this disease. Objectives: To assess the cognitive impact of coconut oil in Alzheimer’s patients, and specifically in orientation, language-building, fixing, calculation-concentration and memory areas. Methods: Prospective, longitudinal, qualitative, analytical and experimental study through a clinical trial where 44 patients with Alzheimer’s in region of Ribera (Valencia), of which half was selected to receive during 21 days, 40 ml coconut oil daily divided between breakfast (20 ml) and food (20 ml). Before and after administration of the oil, they were evaluated through cognitive test Mini-Mental State Examination to determine possible changes. Results: It was observed in patients who received coconut oil, that cognitive improvement after completion of the intervention, statistically significant improved in the orientation and language-construction areas. Conclusions: Coconut oil appears to improve cognitive abilities of Alzheimer’s patients, with different intensity depending on the cognitive area.

  4. Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis

    NASA Astrophysics Data System (ADS)

    Gluhih, I. N.; Akhmadulin, R. K.

    2017-07-01

    One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.

  5. Discrimination and externalizing problems among Moroccan- and Romanian-origin early adolescents in Italy: Moderating role of cultural orientations and impulse control.

    PubMed

    Miconi, Diana; Altoè, Gianmarco; Salcuni, Silvia; Di Riso, Daniela; Schiff, Sami; Moscardino, Ughetta

    2018-05-24

    Although discrimination is a common stressor in the everyday life of immigrant youth, individuals are not equally susceptible to its adverse effects. This cross-sectional study aimed to examine whether cultural orientation preferences and impulse control (IC) moderate the association between perceived discrimination and externalizing problems among Moroccan- and Romanian-origin early adolescents in Italy. The sample included 126 Moroccan and 126 Romanian youths (46% girls, 42% first-generation) aged 11-13 years and their parents. Perceived discrimination and cultural orientations were assessed using self-report questionnaires, while IC was evaluated via a computerized version of the Iowa Gambling Task. Externalizing behaviors were assessed via parental report. Cluster analysis identified separated, assimilated, and integrated early adolescents. Regression analyses revealed that when facing discrimination, youths who endorsed separation and exhibited low levels of IC were more vulnerable to externalizing problems. In contrast, among assimilated adolescents the discrimination-externalizing difficulties link was significant at high levels of IC. Furthermore, low levels of IC were associated with more externalizing problems for Romanian, but not for Moroccan early adolescents. Findings underscore the need to consider both cultural orientation processes and early adolescents' ability to control their impulses when developing interventions aimed to reduce discrimination-related problem behaviors in immigrant youth. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. A fiber orientation-adapted integration scheme for computing the hyperelastic Tucker average for short fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Goldberg, Niels; Ospald, Felix; Schneider, Matti

    2017-10-01

    In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.

  7. Implementing a Case-Based E-Learning Environment in a Lecture-Oriented Anaesthesiology Class: Do Learning Styles Matter in Complex Problem Solving over Time?

    ERIC Educational Resources Information Center

    Choi, Ikseon; Lee, Sang Joon; Kang, Jeongwan

    2009-01-01

    This study explores how students' learning styles influence their learning while solving complex problems when a case-based e-learning environment is implemented in a conventional lecture-oriented classroom. Seventy students from an anaesthesiology class at a dental school participated in this study over a 3-week period. Five learning-outcome…

  8. The Influence of Emotional Difficulty, Parent-Child Relationship, Peer Relationships, Materially-Oriented and Appearance-Oriented Attitudes on Adolescent Problem Behavior

    ERIC Educational Resources Information Center

    Bae, Sung Man

    2016-01-01

    This study explored predictors of adolescent problem behavior utilizing panel data from the National Youth Policy Institute. Data were collected from June 2013 to August 2013 from 3195 middle school students living in 15 cities of South Korea. Data were analysed using hierarchical regression in two steps. The first step included gender and school…

  9. Energy [R]Evolution: Opportunities for Decarbonizing Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.

    2016-12-01

    The future of conventional energy in Canada is uncertain. World oil prices have suffered steep declines recently and there are no strong arguments for recovery in the foreseeable future. The country is now engaged in serious debates and discussions over the value of GHG emissions, pipelines, oil and gas operations, and renewable energy. Oilsands deposits in northern Alberta require long-term investment and decades of consistent sales to repay those investments. The election of more progressive governments in Alberta and Canada may provide the national and global credibility and opportunity to address the environmental problems caused by Oilsands and other fossil fuel developments. The discussion will focus on the possible ways forward for Canada to diversify the regional and national economy with renewable energy networks, thereby meeting our Paris GHG emission reduction commitments. The end goal of this work is to see the Canadian economy decarbonized within two decades.

  10. Continuous method for manufacturing grain-oriented magnetostrictive bodies

    DOEpatents

    Gibson, Edwin D.; Verhoeven, John D.; Schmidt, Frederick A.; McMasters, O. Dale

    1988-01-01

    The invention comprises a continuous casting and crystallization method for manufacturing grain-oriented magnetostrictive bodies. A magnetostrictive alloy is melted in a crucible having a bottom outlet. The melt is discharged through the bottom of the crucible and deposited in an elongated mold. Heat is removed from the deposited melt through the lower end portion of the mold to progressively solidify the melt. The solid-liquid interface of the melt moves directionally upwardly from the bottom to the top of the mold, to produce the axial grain orientation.

  11. The relation of locus-of-control orientation and task structure to problem-solving performance of sixth-grade student pairs

    NASA Astrophysics Data System (ADS)

    Main, June Dewey; Budd Rowe, Mary

    This study investigated the relationship of locus-of-control orientations and task structure to the science problem-solving performance of 100 same-sex, sixth-grade student pairs. Pairs performed a four-variable problem-solving task, racing cylinders down a ramp in a series of trials to determine the 3 fastest of 18 different cylinders. The task was completed in one of two treatment conditions: the structured condition with moderate cuing and the unstructured condition with minimal cuing. Pairs completed an after-task assessment, predicting the results of proposed cylinder races, to measure the ability to understand and apply task concepts. Overall conclusions were: (1) There was no relationship between locus-of-control orientation and effectiveness of problem-solving strategy; (2) internality was significantly related to higher accuracy on task solutions and on after-task predictions; (3) there was no significant relationship between task structure and effectiveness of problem-solving strategy; (4) solutions to the task were more accurate in the unstructured task condition; (5) internality related to more accurate solutions in the unstructured task condition.

  12. Socioeconomic status, parenting, and externalizing problems in African American single-mother homes: A person-oriented approach.

    PubMed

    Anton, Margaret T; Jones, Deborah J; Youngstrom, Eric A

    2015-06-01

    African American youth, particularly those from single-mother homes, are overrepresented in statistics on externalizing problems. The family is a central context in which to understand externalizing problems; however, reliance on variable-oriented approaches to the study of parenting, which originate from work with intact, middle-income, European American families, may obscure important information regarding variability in parenting styles among African American single mothers, and in turn, variability in youth outcomes as well. The current study demonstrated that within African American single-mother families: (a) a person-, rather than variable-, oriented approach to measuring parenting style may further elucidate variability; (b) socioeconomic status may provide 1 context within which to understanding variability in parenting style; and (c) 1 marker of socioeconomic status, income, and parenting style may each explain variability in youth externalizing problems; however, the interaction between income and parenting style was not significant. Findings have potential implications for better understanding the specific contexts in which externalizing problems may be most likely to occur within this at-risk and underserved group. (c) 2015 APA, all rights reserved).

  13. Socioeconomic Status, Parenting, and Externalizing Problems in African American Single-Mother Homes: A Person-Oriented Approach

    PubMed Central

    Anton, Margaret T.; Jones, Deborah J.; Youngstrom, Eric A.

    2016-01-01

    African American youth, particularly those from single-mother homes, are overrepresented in statistics on externalizing problems. The family is a central context in which to understand externalizing problems; however, reliance on variable-oriented approaches to the study of parenting, which originate from work with intact, middle-income, European American families, may obscure important information regarding variability in parenting styles among African American single mothers, and in turn, variability in youth outcomes as well. The current study demonstrated that within African American single-mother families: (a) a person-, rather than variable-, oriented approach to measuring parenting style may further elucidate variability; (b) socioeconomic status may provide 1 context within which to understanding variability in parenting style; and (c) 1 marker of socioeconomic status, income, and parenting style may each explain variability in youth externalizing problems; however, the interaction between income and parenting style was not significant. Findings have potential implications for better understanding the specific contexts in which externalizing problems may be most likely to occur within this at-risk and underserved group. PMID:26053349

  14. Pharmaceutical orientation at hospital discharge of transplant patients: strategy for patient safety

    PubMed Central

    Lima, Lívia Falcão; Martins, Bruna Cristina Cardoso; de Oliveira, Francisco Roberto Pereira; Cavalcante, Rafaela Michele de Andrade; Magalhães, Vanessa Pinto; Firmino, Paulo Yuri Milen; Adriano, Liana Silveira; da Silva, Adriano Monteiro; Flor, Maria Jose Nascimento; Néri, Eugenie Desirée Rabelo

    2016-01-01

    ABSTRACT Objective: To describe and analyze the pharmaceutical orientation given at hospital discharge of transplant patients. Methods: This was a cross-sectional, descriptive and retrospective study that used records of orientation given by the clinical pharmacist in the inpatients unit of the Kidney and Liver Transplant Department, at Hospital Universitário Walter Cantídio, in the city of Fortaleza (CE), Brazil, from January to July, 2014. The following variables recorded at the Clinical Pharmacy Database were analyzed according to their significance and clinical outcomes: pharmaceutical orientation at hospital discharge, drug-related problems and negative outcomes associated with medication, and pharmaceutical interventions performed. Results: The first post-transplant hospital discharge involved the entire multidisciplinary team and the pharmacist was responsible for orienting about drug therapy. The mean hospital discharges/month with pharmaceutical orientation during the study period was 10.6±1.3, totaling 74 orientations. The prescribed drug therapy had a mean of 9.1±2.7 medications per patient. Fifty-nine drug-related problems were identified, in which 67.8% were related to non-prescription of medication needed, resulting in 89.8% of risk of negative outcomes associated with medications due to untreated health problems. The request for inclusion of drugs (66.1%) was the main intervention, and 49.2% of the medications had some action in the digestive tract or metabolism. All interventions were classified as appropriate, and 86.4% of them we able to prevent negative outcomes. Conclusion: Upon discharge of a transplanted patient, the orientation given by the clinical pharmacist together with the multidisciplinary team is important to avoid negative outcomes associated with drug therapy, assuring medication reconciliation and patient safety. PMID:27759824

  15. Mental Health and School Functioning for Girls in the Child Welfare System: the Mediating Role of Future Orientation and School Engagement.

    PubMed

    Threlfall, Jennifer M; Auslander, Wendy; Gerke, Donald; McGinnis, Hollee; Myers Tlapek, Sarah

    2017-01-01

    This study investigated the association between mental health problems and academic and behavioral school functioning for adolescent girls in the child welfare system and determined whether school engagement and future orientation meditated the relationship. Participants were 231 girls aged between 12 and 19 who had been involved with the child welfare system. Results indicated that 39% of girls reported depressive symptoms in the clinical range and 54% reported posttraumatic symptoms in the clinical range. The most common school functioning problems reported were failing a class (41%) and physical fights with other students (35%). Participants reported a mean number of 1.7 school functioning problems. Higher levels of depression and PTSD were significantly associated with more school functioning problems. School engagement fully mediated the relationship between depression and school functioning and between PTSD and school functioning, both models controlling for age, race, and placement stability. Future orientation was not significantly associated with school functioning problems at the bivariate level. Findings suggest that school engagement is a potentially modifiable target for interventions aiming to ameliorate the negative influence of mental health problems on school functioning for adolescent girls with histories of abuse or neglect.

  16. Ground-state energies and charge radii of medium-mass nuclei in the unitary-model-operator approach

    NASA Astrophysics Data System (ADS)

    Miyagi, Takayuki; Abe, Takashi; Okamoto, Ryoji; Otsuka, Takaharu

    2014-09-01

    In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. The part of numerical calculation has been done on the NEC SX8R at RCNP, Osaka University. This work was supported in part by MEXT SPIRE and JICFuS. It was also supported in part by the Program in part for Leading Graduate Schools, MEXT, Japan.

  17. Sparky IntroChem: A Student-Oriented Introductory Chemistry Course.

    ERIC Educational Resources Information Center

    Butcher, David J.; Brandt, Paul F.; Norgaard, Nicholas J.; Atterholt, Cynthia A.; Salido, Arthur L.

    2003-01-01

    Describes an introductory chemistry course that incorporates student-oriented approaches such as inquiry and problem-based laboratories. Provides an overview of the modules. (Contains 16 references.) (DDR)

  18. [Diabetes type 1 in young adults: The relationship between psycho-social variables, glycemic control, depression and anxiety].

    PubMed

    Steinsdottir, Fjola Katrin; Halldorsdottir, Hildur; Gudmundsdottir, Arna; Arnardottir, Steinunn; Smari, Jakop; Arnarson, Eirikur Orn

    2008-12-01

    The aim of the present study was to investigate whether psycho-social variables, for example social support and task- and emotion-oriented coping would predict psychological and physical well being among young adults with diabetes. Participants were 56 individuals in their twenties suffering from type 1 diabetes. Response rate was 78%. The participants came from the whole of Iceland, 64.3% from the Greater Reykjavík area and 33.9% from rural areas. One participant did not indicate his place of residence. Self-assessment scales were used to assess depression, anxiety, task-, avoidance- and emotion-oriented coping, social support and problems relating to diabetes. Additional information was obtained from patients' records concerning the results of blood glucose measurements (HbA1c). Good social support was related to less anxiety and depression and to less self-reported problems related to having diabetes. Emotion-oriented coping was related to not feeling well and task- oriented coping to feeling better. No relationship was found between psychosocial variables and blood glucose measurements and a limited relationship between self-reported problems related to having diabetes and these measurements. Social support and coping are strongly related to measurements of depression, anxiety and problems related to having diabetes in the present age group. The results indicate that it is very important to teach and strengthen usage, as possible, of task-oriented coping instead of emotion-oriented coping. The results also indicate that social support is highly important for young adults with diabetes type 1. It is clear that friends and family have to be more involved in the treatment and also more educated about the disease and the importance of giving the right kind of support.

  19. [Application and case analysis on the problem-based teaching of Jingluo Shuxue Xue (Science of Meridian and Acupoint) in reference to the team oriented learning method].

    PubMed

    Ma, Ruijie; Lin, Xianming

    2015-12-01

    The problem based teaching (PBT) has been the main approach to the training in the universities o the world. Combined with the team oriented learning method, PBT will become the method available to the education in medical universities. In the paper, based on the common questions in teaching Jingluo Shuxue Xue (Science of Meridian and Acupoint), the concepts and characters of PBT and the team oriented learning method were analyzed. The implementation steps of PBT were set up in reference to the team oriented learning method. By quoting the original text in Beiji Qianjin Yaofang (Essential recipes for emergent use worth a thousand gold), the case analysis on "the thirteen devil points" was established with PBT.

  20. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less

  1. [DIET CHARACTERISTICS IN PATIENTS WITH CHRONIC KIDNEY DISEASE].

    PubMed

    Bašić-Marković, N; Šutić, I; Popović, B; Marković, R; Vučak, J

    2016-12-01

    Because of the increasing number of patients, chronic kidney disease (CKD) has become a significant public health problem. As kidney function decreases, it is necessary to introduce certain dietary modifications. The aim was to investigate what is the appropriate approach to diet of CKD patients, which could contribute to slowing down progression of the disease. Dietary recommendations are individual for each patient, but also vary in the same patient depending on the stage of disease progression because special attention must be paid to appropriate intake of macronutrients (protein, carbohydrates and fats), micronutrients (sodium, potassium, calcium, phosphorus, zinc, selenium, various vitamins), and water. In newly diagnosed patients, it is necessary to assess their nutritional status and energy requirements. It has been shown that protein-energy malnutrition, muscle loss and cachexia are strong predictors of mortality in CKD. Comparing different dietary approaches in everyday life of patients suffering from CKD, it was found that the most effective diet is Mediterranean food style. Studies confirm that Mediterranean diet has a preventive effect on renal function and reduces progression of the disease. Preventive measures, correct identification and early intervention can increase survival of patients and improve their quality of life. Mediterranean diet tailored to individual stages of CKD has been confirmed as the best choice in CKD patients.

  2. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.

    PubMed

    Lee, Sechan; Kwon, Giyun; Ku, Kyojin; Yoon, Kyungho; Jung, Sung-Kyun; Lim, Hee-Dae; Kang, Kisuk

    2018-03-27

    Organic rechargeable batteries, which use organics as electrodes, are excellent candidates for next-generation energy storage systems because they offer design flexibility due to the rich chemistry of organics while being eco-friendly and potentially cost efficient. However, their widespread usage is limited by intrinsic problems such as poor electronic conductivity, easy dissolution into liquid electrolytes, and low volumetric energy density. New types of organic electrode materials with various redox centers or molecular structures have been developed over the past few decades. Moreover, research aimed at enhancing electrochemical properties via chemical tuning has been at the forefront of organic rechargeable batteries research in recent years, leading to significant progress in their performance. Here, an overview of the current developments of organic rechargeable batteries is presented, with a brief history of research in this field. Various strategies for improving organic electrode materials are discussed with respect to tuning intrinsic properties of organics using molecular modification and optimizing their properties at the electrode level. A comprehensive understanding of the progress in organic electrode materials is provided along with the fundamental science governing their performance in rechargeable batteries thus a guide is presented to the optimal design strategies to improve the electrochemical performance for next-generation battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Better, Cheaper, Faster Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  4. Inadequate Models of Adolescent Substance Use Prevention: Looking for Options to Promote Pro-Social Change and Engagement.

    PubMed

    Ostaszewski, Krzysztof

    2015-01-01

    In the adolescent substance use prevention two competing models can be found: negative and positive. The negative model is entirely focused on risks and problems that young people should avoid. The positive model goes beyond that problem-oriented perspective and calls for positive youth growth and development. Both models of prevention seems to be inadequate to address effectively the challenging problem of adolescent substance use associated consequences. Both models are in fact flawed, but in different ways. Old, negative model neglects the power of individual strengths and ecological developmental assets, while new, positive model is often instrumentally used by politicians and other stakeholders for completely different goals than an informed, science-based prevention. As a result many substance use prevention programs implemented at schools and in communities are neither theoretically nor empirically informed. In order to address these flaws, the model of balanced prevention was outlined. It posits that triple well informed efforts are needed to achieve both specific substance use prevention goals and youth personal/social development. These efforts include protection building, risks reducing and individual assets development support. The proposed model is an ongoing work in progress. It can be considered as an encouragement for international dialogue to build a balanced conceptual foundation for adolescent substance use prevention.

  5. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  6. Video quality assessment based on correlation between spatiotemporal motion energies

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Mou, Xuanqin

    2016-09-01

    Video quality assessment (VQA) has been a hot research topic because of rapid increase of huge demand of video communications. From the earliest PSNR metric to advanced models that are perceptual aware, researchers have made great progress in this field by introducing properties of human vision system (HVS) into VQA model design. Among various algorithms that model the property of HVS perceiving motion, the spatiotemporal energy model has been validated to be high consistent with psychophysical experiments. In this paper, we take the spatiotemporal energy model into VQA model design by the following steps. 1) According to the pristine spatiotemporal energy model proposed by Adelson et al, we apply the linear filters, which are oriented in space-time and tuned in spatial frequency, to filter the reference and test videos respectively. The outputs of quadrature pairs of above filters are then squared and summed to give two measures of motion energy, which are named rightward and leftward energy responses, respectively. 2) Based on the pristine model, we calculate summation of the rightward and leftward energy responses as spatiotemporal features to represent perceptual quality information for videos, named total spatiotemporal motion energy maps. 3) The proposed FR-VQA model, named STME, is calculated with statistics based on the pixel-wise correlation between the total spatiotemporal motion energy maps of the reference and distorted videos. The STME model was validated on the LIVE VQA Database by comparing with existing FR-VQA models. Experimental results show that STME performs with excellent prediction accuracy and stays in state-of-the-art VQA models.

  7. Health effects research program. Summary report for fiscal years 1974-1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, R.D.; Taylor, A.D.; Gordon, J.G.

    1979-12-01

    The Federal Interagency Energy/Environment Research and Development Program which is coordinated by the U.S. Environmental Protection Agency was initiated in the latter half of fiscal year 1974 to ensure that health and environmental problems related to energy resource development would be anticipated and evaluated. This document provides an overview of the Interagency-supported health effects research program from an administrative as well as various technical perspectives. In this updated program review, which is based on the individual task progress reports available for fiscal years 1974 through 1978, the research projects are reviewed and discussed according to King-Muir objectives and selected scientificmore » discipline, biological endpoint, and agent/pollutant categories.« less

  8. Some useful innovations with TRASYS and SINDA-85

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.

  9. Generative rules of Drosophila locomotor behavior as a candidate homology across phyla.

    PubMed

    Gomez-Marin, Alex; Oron, Efrat; Gakamsky, Anna; Dan Valente; Benjamini, Yoav; Golani, Ilan

    2016-06-08

    The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution.

  10. Positive and Negative Affect During Sexual Activity: Differences Between Homosexual and Heterosexual Men and Women, With and Without Sexual Problems.

    PubMed

    Peixoto, Maria Manuela; Nobre, Pedro

    2016-01-02

    Empirical research suggests that emotional response during sexual activity discriminates between sexually functional and dysfunctional heterosexual men and women, with clinics presenting lower positive and higher negative affect. However, there is no evidence about the role of emotions in gay men and lesbian women with sexual problems. The present study analyzed affective states during sexual activity in homosexual and heterosexual men and women, with and without sexual problems. Participants in this study were 156 men and 168 women. A 2 (group) × 2 (sexual orientation) multivariate analysis of variance was performed. Participants completed a web-survey assessing sexual functioning and the Positive Affect-Negative Affect Scale. Findings indicated a main effect of group, with groups with sexual problems reporting significantly more negative and lower positive affect compared with men and women without sexual problems, regardless of sexual orientation. However, findings have also shown an interaction effect in the male sample with gay men, contrary to heterosexual men, reporting similar affective responses regardless of having a sexual dysfunction or not. Overall, findings emphasize the role of affective responses during sexual activity in men and women with sexual problems, suggesting the importance of addressing emotional responses in assessment and treatment of sexual problems in individuals with different sexual orientations.

  11. Effect of Various Material Properties on the Adhesive Stage of Fretting

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.

  12. Caller sex and orientation influence spectral characteristics of "two-voice" stereotyped calls produced by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Samarra, Filipa I P; Perthuison, Aurélie D

    2007-06-01

    This study investigates how particular received spectral characteristics of stereotyped calls of sexually dimorphic adult killer whales may be influenced by caller sex, orientation, and range. Calls were ascribed to individuals during natural behavior using a towed beamforming array. The fundamental frequency of both high-frequency and low-frequency components did not differ consistently by sex. The ratio of peak energy within the fundamental of the high-frequency component relative to summed peak energy in the first two low-frequency component harmonics, and the number of modulation bands off the high-frequency component, were significantly greater when whales were oriented towards the array, while range and adult sex had little effect. In contrast, the ratio of peak energy in the first versus second harmonics of the low-frequency component was greater in calls produced by adult females than adult males, while orientation and range had little effect. The dispersion of energy across harmonics has been shown to relate to body size or sex in terrestrial species, but pressure effects during diving are thought to make such a signal unreliable in diving animals. The observed spectral differences by signaler sex and orientation suggest that these types of information may be transmitted acoustically by freely diving killer whales.

  13. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    PubMed

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their photocatalytic activity and/or light adsorption capability. Comments on current and future challenges are also provided. The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.

  14. Non-Boolean computing with nanomagnets for computer vision applications

    NASA Astrophysics Data System (ADS)

    Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  15. 9.9 Sales Grid Style Produces Results

    ERIC Educational Resources Information Center

    Blake, Robert R.; Mouton, Jane Srygley

    1970-01-01

    Selling effectiveness experiments have provided evidence that solution selling (problem solving) produces far better results than formula selling (sales technique oriented), hard sell, people-oriented selling, or order taking. (PT)

  16. The Cyclic Life-Test of a T5 Ion Thruster Hollow Cathode to 4200 Hours.

    DTIC Science & Technology

    1981-05-01

    Conference on Fluid Mechanics in Energy Conversion, Alta (Utah) 1979, p. 263. (Published by SIAM, 1980.) Invited paper. 101. G.S.S. Ludford & Asok K. Sen...GCttingen 1979. Progress in Astronautics and Aeronautics, 76 (1981). p. 427. (Combustion in Reactive Systems, ed. by J. Ray Bowen, N. Manson, Antoni...steady detonation waves in a simple model problem. To appear in Studies in Applied Mathematics. 106. Asok K. Sen & G.S.S. Ludford: Effects of mass

  17. New applications of the renormalization group method in physics: a brief introduction.

    PubMed

    Meurice, Y; Perry, R; Tsai, S-W

    2011-07-13

    The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.

  18. ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.

    PubMed

    Bodily, Paul M; Fujimoto, M Stanley; Snell, Quinn; Ventura, Dan; Clement, Mark J

    2016-01-01

    The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. http://bioresearch.byu.edu/scaffoldscaffolder. paulmbodily@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A shared computer-based problem-oriented patient record for the primary care team.

    PubMed

    Linnarsson, R; Nordgren, K

    1995-01-01

    1. INTRODUCTION. A computer-based patient record (CPR) system, Swedestar, has been developed for use in primary health care. The principal aim of the system is to support continuous quality improvement through improved information handling, improved decision-making, and improved procedures for quality assurance. The Swedestar system has evolved during a ten-year period beginning in 1984. 2. SYSTEM DESIGN. The design philosophy is based on the following key factors: a shared, problem-oriented patient record; structured data entry based on an extensive controlled vocabulary; advanced search and query functions, where the query language has the most important role; integrated decision support for drug prescribing and care protocols and guidelines; integrated procedures for quality assurance. 3. A SHARED PROBLEM-ORIENTED PATIENT RECORD. The core of the CPR system is the problem-oriented patient record. All problems of one patient, recorded by different members of the care team, are displayed on the problem list. Starting from this list, a problem follow-up can be made, one problem at a time or for several problems simultaneously. Thus, it is possible to get an integrated view, across provider categories, of those problems of one patient that belong together. This shared problem-oriented patient record provides an important basis for the primary care team work. 4. INTEGRATED DECISION SUPPORT. The decision support of the system includes a drug prescribing module and a care protocol module. The drug prescribing module is integrated with the patient records and includes an on-line check of the patient's medication list for potential interactions and data-driven reminders concerning major drug problems. Care protocols have been developed for the most common chronic diseases, such as asthma, diabetes, and hypertension. The patient records can be automatically checked according to the care protocols. 5. PRACTICAL EXPERIENCE. The Swedestar system has been implemented in a primary care area with 30,000 inhabitants. It is being used by all the primary care team members: 15 general practitioners, 25 district nurses, and 10 physiotherapists. Several years of practical experience of the CPR system shows that it has a positive impact on quality of care on four levels: 1) improved clinical follow-up of individual patients; 2) facilitated follow-up of aggregated data such as practice activity analysis, annual reports, and clinical indicators; 3) automated medical audit; and 4) concurrent audit. Within that primary care area, quality of care has improved substantially in several aspects due to the use of the CPR system [1].

  20. Preliminary Development of an Object-Oriented Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented.

  1. Gender role, sexual orientation and suicide risk.

    PubMed

    Fitzpatrick, Kathleen Kara; Euton, Stephanie J; Jones, Jamie N; Schmidt, Norman B

    2005-07-01

    There has been interest in the relationship between homosexuality, gender role and suicide risk. Though homosexuals are more likely to identify as cross-gender, research has not simultaneously examined sexual orientation and gender role in assessing suicide risk. In the current study, the unique and interactive effects of sexual orientation and gender role were assessed in regard to suicidal ideation, related psychopathology and measures of coping. 77 participants were recruited from an undergraduate psychology subject pool (n=47) or from gay, lesbian and transgender student organizations (n=30) and assessed on measures of gender role, homosexuality, and psychopathology. Consistent with expectations, cross-gender role (i.e., personality traits associated with the opposite sex) is a unique predictor of suicidal symptoms. Moreover, gender role accounted for more of the overall variance in suicidal symptoms, positive problem orientation, peer acceptance and support, than sexual orientation. After accounting for gender role, sexual orientation contributed little to the variance in suicidal symptoms, associated pathology and problem-solving deficits. There was no support for gender role by sexual orientation interaction effects. The cross-sectional nature of the data limits statements regarding causality. Cross-gendered individuals, regardless of sexual orientation, appear to have higher risk for suicidal symptoms. Researchers and clinicians should assess gender role in evaluations of youth samples.

  2. Reading Achievement in Disadvantaged Children as a Consequence of Non Verbal Perceptual Training. Final Technical Progress Report.

    ERIC Educational Resources Information Center

    Elkind, David; Deblinger, Jo Ann

    The theoretical orientation based on perceptual development, proposed by Piaget in 1961, is the starting point of this investigation. According to Piaget, the perception of the young child is "centered" on dominant aspects of the field. With maturity, perception becomes "decentered" and progressively freed from the field. The…

  3. A mediational model of self-esteem and social problem-solving in anorexia nervosa.

    PubMed

    Paterson, Gillian; Power, Kevin; Collin, Paula; Greirson, David; Yellowlees, Alex; Park, Katy

    2011-01-01

    Poor problem-solving and low self-esteem are frequently cited as significant factors in the development and maintenance of anorexia nervosa. The current study examines the multi-dimensional elements of these measures and postulates a model whereby self-esteem mediates the relationship between social problems-solving and anorexic pathology and considers the implications of this pathway. Fifty-five inpatients with a diagnosis of anorexia nervosa and 50 non-clinical controls completed three standardised multi-dimensional questionnaires pertaining to social problem-solving, self-esteem and eating pathology. Significant differences were yielded between clinical and non-clinical samples on all measures. Within the clinical group, elements of social problem-solving most significant to anorexic pathology were positive problem orientation, negative problem orientation and avoidance. Components of self-esteem most significant to anorexic pathology were eating, weight and shape concern but not eating restraint. The mediational model was upheld with social problem-solving impacting on anorexic pathology through the existence of low self-esteem. Problem orientation, that is, the cognitive processes of social problem-solving appear to be more significant than problem-solving methods in individuals with anorexia nervosa. Negative perceptions of eating, weight and shape appear to impact on low self-esteem but level of restriction does not. Finally, results indicate that self-esteem is a significant factor in the development and execution of positive or negative social problem-solving in individuals with anorexia nervosa by mediating the relationship between those two variables. Copyright © 2010 John Wiley & Sons, Ltd and Eating Disorders Association.

  4. Four Years On. A Follow-up Study at School Leaving Age of Children Formerly Attending a Traditional and a Progressive Junior School.

    ERIC Educational Resources Information Center

    Gooch, S.; Pringle, M. L. Kellmer

    Beginning in 1956 about 250 students in two London, England junior schools were intensively studied over a 4-year period for intellectual, educational, emotional, and social development. The schools approached instruction differently; one was child-oriented; the other was subject-oriented. In 1964 this followup study was conducted with some of the…

  5. Determination of the five parameter grain boundary character distribution of nanocrystalline alpha-zirconium thin films using transmission electron microscopy

    DOE PAGES

    Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...

    2017-03-24

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  6. Generational differences in young adults' life goals, concern for others, and civic orientation, 1966-2009.

    PubMed

    Twenge, Jean M; Campbell, W Keith; Freeman, Elise C

    2012-05-01

    Three studies examined generational differences in life goals, concern for others, and civic orientation among American high school seniors (Monitoring the Future; N = 463,753, 1976-2008) and entering college students (The American Freshman; N = 8.7 million, 1966-2009). Compared to Baby Boomers (born 1946-1961) at the same age, GenX'ers (born 1962-1981) and Millennials (born after 1982) considered goals related to extrinsic values (money, image, fame) more important and those related to intrinsic values (self-acceptance, affiliation, community) less important. Concern for others (e.g., empathy for outgroups, charity donations, the importance of having a job worthwhile to society) declined slightly. Community service rose but was also increasingly required for high school graduation over the same time period. Civic orientation (e.g., interest in social problems, political participation, trust in government, taking action to help the environment and save energy) declined an average of d = -.34, with about half the decline occurring between GenX and the Millennials. Some of the largest declines appeared in taking action to help the environment. In most cases, Millennials slowed, though did not reverse, trends toward reduced community feeling begun by GenX. The results generally support the "Generation Me" view of generational differences rather than the "Generation We" or no change views.

  7. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  8. Generalized Orienteering Problem with Resource Dependent Rewards

    DTIC Science & Technology

    2013-02-19

    School, Monterey, California February 19, 2013 Abstract We introduce a generalized Orienteering Problem where, as usual, a vehicle is routed from a ...prescribed start node, through a directed network, to a prescribed destination node, collecting rewards at each node visited, in order to maximize the...total reward along the path. In our generalization, transit on arcs in the network and reward collection at nodes both consume a variable amount of the

  9. Multi-point objective-oriented sequential sampling strategy for constrained robust design

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhang, Siliang; Chen, Wei

    2015-03-01

    Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.

  10. Demographics, behavior problems, and psychosexual characteristics of adolescents with gender identity disorder or transvestic fetishism.

    PubMed

    Zucker, Kenneth J; Bradley, Susan J; Owen-Anderson, Allison; Kibblewhite, Sarah J; Wood, Hayley; Singh, Devita; Choi, Kathryn

    2012-01-01

    This study provided a descriptive and quantitative comparative analysis of data from an assessment protocol for adolescents referred clinically for gender identity disorder (n = 192; 105 boys, 87 girls) or transvestic fetishism (n = 137, all boys). The protocol included information on demographics, behavior problems, and psychosexual measures. Gender identity disorder and transvestic fetishism youth had high rates of general behavior problems and poor peer relations. On the psychosexual measures, gender identity disorder patients had considerably greater cross-gender behavior and gender dysphoria than did transvestic fetishism youth and other control youth. Male gender identity disorder patients classified as having a nonhomosexual sexual orientation (in relation to birth sex) reported more indicators of transvestic fetishism than did male gender identity disorder patients classified as having a homosexual sexual orientation (in relation to birth sex). The percentage of transvestic fetishism youth and male gender identity disorder patients with a nonhomosexual sexual orientation self-reported similar degrees of behaviors pertaining to transvestic fetishism. Last, male and female gender identity disorder patients with a homosexual sexual orientation had more recalled cross-gender behavior during childhood and more concurrent cross-gender behavior and gender dysphoria than did patients with a nonhomosexual sexual orientation. The authors discuss the clinical utility of their assessment protocol.

  11. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  12. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  13. Preferred orientation of albumin adsorption on a hydrophilic surface from molecular simulation.

    PubMed

    Hsu, Hao-Jen; Sheu, Sheh-Yi; Tsay, Ruey-Yug

    2008-12-01

    In general, non-specific protein adsorption follows a two-step procedure, i.e. first adsorption onto a surface in native form, and a subsequent conformational change on the surface. In order to predict the subsequent conformational change, it is important to determine the preferred orientation of an adsorbed protein in the first step of the adsorption. In this work, a method based on finding the global minimum of the interaction potential energy of an adsorbed protein has been developed to delineate the preferred orientations for the adsorption of human serum albumin (HSA) on a model surface with a hydrophilic self-assembled monolayer (SAM). For computational efficiency, solvation effects were greatly simplified by only including the dampening of electrostatic effects while neglecting contributions due to the competition of water molecules for the functional groups on the surface. A contour map obtained by systematic rotation of a molecule in conjunction with perpendicular motion to the surface gives the minimum interaction energy of the adsorbed molecule at various adsorption orientations. Simulation results show that for an -OH terminated SAM surface, a "back-on" orientation of HSA is the preferred orientation. The projection area of this adsorption orientation corresponds with the "triangular-side-on" adsorption of a heart shaped HSA molecule. The method proposed herein is able to provide results which are consistent with those predicted by Monte Carlo (MC) simulations with a substantially less computing cost. The high computing efficiency of the current method makes it possible to be implemented as a design tool for the control of protein adsorption on surfaces; however, before this can be fully realized, these methods must be further developed to enable interaction free energy to be calculated in place of potential energy, along with a more realistic representation of solvation effects.

  14. Cyclic Degradation Behavior of < 001 > -Oriented Fe-Mn-Al-Ni Single Crystals in Tension

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Kriegel, M. J.; Krooß, P.; Martin, S.; Klemm, V.; Weidner, A.; Chumlyakov, Y.; Biermann, H.; Rafaja, D.; Niendorf, T.

    2017-12-01

    In the present study, functional fatigue behavior of a near 〈001〉-oriented Fe-Mn-Al-Ni single crystal was investigated under tensile load. An incremental strain test up to 3.5% strain and cyclic tests up to 25 cycles revealed rapid pseudoelastic degradation. Progressive microstructural degradation was studied by in situ scanning electron microscopy. The results show a partially inhibited reactivation of previously formed martensite and proceeding activation of untransformed areas in subsequent cycles. The preferentially formed martensite variants were identified by means of Schmid factor calculation and the Kurdjumov-Sachs relationship. Post mortem transmission electron microscopy investigations shed light on the prevailing degradation mechanisms. Different types of dislocations were found promoting the progressive degradation during cyclic loading.

  15. Baccalaureate vs Associate Degree Nurses: The Care-Cure Dichotomy

    ERIC Educational Resources Information Center

    Bullough, Bonnie; Sparks, Colleen

    1975-01-01

    The authors discuss the care-cure dichotomy (baccaulaureate students were found to be care-oriented; the associate degree students were cure-oriented) and the problems these attitudes present. (Author/BP)

  16. Implementing Strategic Orientation

    ERIC Educational Resources Information Center

    Fischer, Arthur K.; Brownback, Sarah

    2012-01-01

    An HRM case dealing with problems and issues of setting up orientation programs which align with corporate strategy. Discussion concerns how such a case can be used to exhibit the alignment between HRM and business strategy.

  17. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallowmore » primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.« less

  18. Enabling health systems transformation: what progress has been made in re-orienting health services?

    PubMed

    Wise, Marilyn; Nutbeam, Don

    2007-01-01

    The Ottawa Charter has been remarkably influential in guiding the development of the goals and concepts of health promotion, and in shaping global public health practice in the past 20 years. However, of the five action areas identified in the Ottawa Charter, it appears that there has been little systematic attention to the challenge of re-orienting health services, and less than optimal progress in practice. The purposes of re-orienting health services as proposed in the Ottawa Charter were to achieve a better balance in investment between prevention and treatment, and to include a focus on population health outcomes alongside the focus on individual health outcomes. However, there is little evidence that a re-orientation of health services in these terms has occurred systematically anywhere in the world. This is in spite of the fact that direct evidence of the need to re-orient health services and of the potential benefits of doing so has grown substantially since 1986. Patient education, preventive care (screening, immunisation), and organisational and environmental changes by health organisations have all been found to have positive health and environmental outcomes. However, evidence of effectiveness has not been sufficient, on its own, to sway community preferences and political decisions. The lack of progress points to the need for significant re-thinking of the approaches we have adopted to date. The paper proposes a number of ways forward. These include working effectively in partnership with the communities we want to serve to mobilise support for change, and to reinforce this by working more effectively at influencing broader public opinion through the media. The active engagement of clinical health professionals is also identified as crucial to achieving sustainable change. Finally we recognize that by working in partnership with like-minded advocacy organizations, the IUHPE could put its significant knowledge and experience to work in leading action to transform health care systems to make a major contribution to the improvement of public health.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilieva, N., E-mail: nevena.ilieva@parallel.bas.bg; Dai, J., E-mail: daijing491@gmail.com; Sieradzan, A., E-mail: adams86@wp.pl

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolvedmore » problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.« less

  20. Solitons and protein folding: An In Silico experiment

    NASA Astrophysics Data System (ADS)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-01

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen's dogma states that the native 3D shape of a protein is completely determined by protein's amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix-loop-helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  1. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  2. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  3. Phosphodiesterase Inhibition Increases CREB Phosphorylation and Restores Orientation Selectivity in a Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Krahe, Thomas E.; Wang, Weili; Medina, Alexandre E.

    2009-01-01

    Background Fetal alcohol spectrum disorders (FASD) are the leading cause of mental retardation in the western world and children with FASD present altered somatosensory, auditory and visual processing. There is growing evidence that some of these sensory processing problems may be related to altered cortical maps caused by impaired developmental neuronal plasticity. Methodology/Principal Findings Here we show that the primary visual cortex of ferrets exposed to alcohol during the third trimester equivalent of human gestation have decreased CREB phosphorylation and poor orientation selectivity revealed by western blotting, optical imaging of intrinsic signals and single-unit extracellular recording techniques. Treating animals several days after the period of alcohol exposure with a phosphodiesterase type 1 inhibitor (Vinpocetine) increased CREB phosphorylation and restored orientation selectivity columns and neuronal orientation tuning. Conclusions/Significance These findings suggest that CREB function is important for the maturation of orientation selectivity and that plasticity enhancement by vinpocetine may play a role in the treatment of sensory problems in FASD. PMID:19680548

  4. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac

    2003-08-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less

  5. Evaluation of Building Energy Saving Through the Development of Venetian Blinds' Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho

    2018-02-01

    As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.

  6. New designs of LMJ targets for early ignition experiments

    NASA Astrophysics Data System (ADS)

    C-Clérouin, C.; Bonnefille, M.; Dattolo, E.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Poggi, F.; Seytor, P.

    2008-05-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  7. Attachment, Social Value Orientation, Sensation Seeking, and Bullying in Early Adolescence

    PubMed Central

    Innamorati, Marco; Parolin, Laura; Tagini, Angela; Santona, Alessandra; Bosco, Andrea; De Carli, Pietro; Palmisano, Giovanni L.; Pergola, Filippo; Sarracino, Diego

    2018-01-01

    In this study, bullying is examined in light of the “prosocial security hypothesis”— i.e., the hypothesis that insecure attachment, with temperamental dispositions such as sensation seeking, may foster individualistic, competitive value orientations and problem behaviors. A group of 375 Italian students (53% female; Mean age = 12.58, SD = 1.08) completed anonymous questionnaires regarding attachment security, social values, sensation seeking, and bullying behaviors. Path analysis showed that attachment to mother was negatively associated with bullying of others, both directly and through the mediating role of conservative socially oriented values, while attachment to father was directly associated with victimization. Sensation seeking predicted bullying of others and victimization both directly and through the mediating role of conservative socially oriented values. Adolescents’ gender affected how attachment moderated the relationship between sensation seeking and problem behavior. PMID:29535668

  8. Attachment, Social Value Orientation, Sensation Seeking, and Bullying in Early Adolescence.

    PubMed

    Innamorati, Marco; Parolin, Laura; Tagini, Angela; Santona, Alessandra; Bosco, Andrea; De Carli, Pietro; Palmisano, Giovanni L; Pergola, Filippo; Sarracino, Diego

    2018-01-01

    In this study, bullying is examined in light of the "prosocial security hypothesis"- i.e., the hypothesis that insecure attachment, with temperamental dispositions such as sensation seeking, may foster individualistic, competitive value orientations and problem behaviors. A group of 375 Italian students (53% female; Mean age = 12.58, SD = 1.08) completed anonymous questionnaires regarding attachment security, social values, sensation seeking, and bullying behaviors. Path analysis showed that attachment to mother was negatively associated with bullying of others, both directly and through the mediating role of conservative socially oriented values, while attachment to father was directly associated with victimization. Sensation seeking predicted bullying of others and victimization both directly and through the mediating role of conservative socially oriented values. Adolescents' gender affected how attachment moderated the relationship between sensation seeking and problem behavior.

  9. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    NASA Astrophysics Data System (ADS)

    McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.

    2016-12-01

    The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  10. Social problem-solving abilities and personality disorder characteristics among dual-diagnosed persons in substance abuse treatment.

    PubMed

    Herrick, S M; Elliott, T R

    2001-01-01

    We examined the relation of self-appraised social problem-solving abilities and personality-disorder characteristics to the adjustment and compliance of persons with dual diagnoses in substance-abuse treatment. It was hypothesized that elements of the problem-orientation component would remain predictive of depressive behavior and distress after considering personality-disorder characteristics among 117 persons receiving inpatient-substance-abuse treatment. Furthermore, self-appraised problem-solving abilities were expected to predict the occurrence of "dirty" drug and alcohol screens during treatment and compliance with the first scheduled community follow-up visit. Results supported predictions concerning the relation of problem-solving confidence to depressive behavior, distress, and substance-use screens; however, a paradoxical relation was observed between the problem-orientation variables and compliance with the first outpatient visit. The results are interpreted within the context of contemporary models of social problem solving and the implications for cognitive-behavioral assessment and intervention are considered.

  11. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  12. Restructuring reward processing with Mindfulness-Oriented Recovery Enhancement: novel therapeutic mechanisms to remediate hedonic dysregulation in addiction, stress, and pain.

    PubMed

    Garland, Eric L

    2016-06-01

    Though valuation processes are fundamental to survival of the human species, hedonic dysregulation is at the root of an array of maladies, including addiction, stress, and chronic pain, as evidenced by the allostatic shift in the relative salience of natural reward to drug reward observed among persons with severe substance use disorders. To address this crucial problem, novel interventions are needed to restore hedonic regulatory processes gone awry in persons exhibiting addictive behaviors. This article describes a theoretical rationale and empirical evidence for the effects of one such new intervention, Mindfulness-Oriented Recovery Enhancement (MORE), on top-down and bottom-up mechanisms implicated in cognitive control and hedonic regulation. MORE is innovative and distinct from extant mindfulness-based interventions in that it unites traditional mindfulness meditation with reappraisal and savoring strategies designed to reverse the downward shift in salience of natural reward relative to drug reward, representing a crucial tipping point to disrupt the progression of addiction-a mechanistic target that no other behavioral intervention has been designed to address. Though additional studies are needed, clinical and biobehavioral data from several completed and ongoing trials suggest that MORE may exert salutary effects on addictive behaviors and the neurobiological processes that underpin them. © 2016 New York Academy of Sciences.

  13. Intervention studies to foster resilience - A systematic review and proposal for a resilience framework in future intervention studies.

    PubMed

    Chmitorz, A; Kunzler, A; Helmreich, I; Tüscher, O; Kalisch, R; Kubiak, T; Wessa, M; Lieb, K

    2018-02-01

    Psychological resilience refers to the phenomenon that many people are able to adapt to the challenges of life and maintain mental health despite exposure to adversity. This has stimulated research on training programs to foster psychological resilience. We evaluated concepts, methods and designs of 43 randomized controlled trials published between 1979 and 2014 which assessed the efficacy of such training programs and propose standards for future intervention research based on recent developments in the field. We found that concepts, methods and designs in current resilience intervention studies are of limited use to properly assess efficacy of interventions to foster resilience. Major problems are the use of definitions of resilience as trait or a composite of resilience factors, the use of unsuited assessment instruments, and inappropriate study designs. To overcome these challenges, we propose 1) an outcome-oriented definition of resilience, 2) an outcome-oriented assessment of resilience as change in mental health in relation to stressor load, and 3) methodological standards for suitable study designs of future intervention studies. Our proposals may contribute to an improved quality of resilience intervention studies and may stimulate further progress in this growing research field. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Application of the phase extension method in virus crystallography.

    PubMed

    Reddy, Vijay S

    2016-01-01

    The procedure for phase extension (PX) involves gradually extending the initial phases from low resolution (e.g., ~8Å) to the high-resolution limit of a diffraction data set. Structural redundancy present in the viral capsids that display icosahedral symmetry results in a high degree of non-crystallographic symmetry (NCS), which in turn translates into higher phasing power and is critical for improving and extending phases to higher resolution. Greater completeness of the diffraction data and determination of a molecular replacement solution, which entails accurately identifying the virus particle orientation(s) and position(s), are important for the smooth progression of the PX procedure. In addition, proper definition of a molecular mask (envelope) around the NCS-asymmetric unit has been found to be important for the success of density modification procedures, such as density averaging and solvent flattening. Regardless of the degree of NCS, the PX method appears to work well in all space groups, provided an accurate molecular mask is used along with reasonable initial phases. However, in the cases with space group P1, in addition to requiring a molecular mask, starting the phase extension at a higher resolution (e.g., 6Å) overcame the previously reported problems due to Babinet phases and phase flipping errors.

  15. Recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    Among the foreground domains of all the research-development programs at national and international level, a special place is occupied by that concerning the nanosciences, nanotechnologies, new materials and technologies. Electrospinning found a well-deserved place in this space, offering the preparation of nanomaterials with distinctive properties and applications in medicine, environment, photonic sensors, filters, etc. These multiple applications are generated by the fact that the electrospinning technology makes available the production of nanofibers with controllable characteristics (length, porosity, density, and mechanical characteristics), complexity and architecture. The apparition of 3D printing technology favors the production of complex nanofibrous structures, controlled assembly, self-assembly of electrospun nanofibers for the production of scaffolds used in various medical applications. The architecture of fibrous deposits has a special influence on the subsequent development of the cells of the reconstructed organism. The present work proposes to study of recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays and progress in research on the production of complex 2D and 3D structures.

  16. Microgravity Research Aboard the Progress Vehicle in Autonomous Flight

    NASA Astrophysics Data System (ADS)

    Bryukhanov, N. A.; Tsvetkov, V. V.; Beliaev, M. Yu.; Babkin, E. V.; Matveeva, T. V.; Sazonov, V. V.

    Three modes of uncontrolled rotation of the Progress space vehicle are proposed for experiments to study microgravity environment. They are described in the paper: triaxial gravitational orientation, gravitational orientation of the rotating vehicle and rotation in the orbital plane around the axis of the maximal moment of inertia of the vehicle. The modes were tested from May 24 to June 1, 2004, on the Progress M1-11 vehicle. Real motion of the vehicle around its center of mass in these modes was determined on the base of telemetric data on electrical current from the solar arrays. Values of current obtained on several hours time interval were processed with the help of the least squares method and integration of the vehicle rotational motion equations. As a result of processing, initial conditions of the motion and parameters of the mathematical model used for experiment were estimated. For the motions investigated, the quasi-static component of the micro-acceleration was calculated for the point aboard the vehicle where research equipment can be mounted.

  17. Time Perspectives and Gambling in Adolescent Boys: Differential Effects of Present- and Future-Orientation.

    PubMed

    Donati, Maria Anna; Sottili, Elena; Morsanyi, Kinga; Primi, Caterina

    2018-06-04

    Adolescent boys are characterised by increased risk-taking behavior, including a relatively high propensity to develop problem gambling habits. The association between gambling and sensitivity to immediately available rewards is well-established, suggesting that gamblers are less influenced by potential future consequences than non-gamblers. Nevertheless, existing studies have considered present- and future-orientation as two ends of the same continuum, and have not investigated the possibility that present and future perspectives might make independent contributions to gambling behavior. In the current study, we adopted Zimbardo's multidimensional approach, which discriminates between not only present and future perspectives, but also between a hedonistic and fatalistic present-orientation (in addition to positive and negative orientations towards the past). The participants were 223 male adolescents (mean age = 16.7 years). We investigated the effects of time perspectives on gambling frequency and gambling problem severity, after taking into account the effects of age, sensation seeking, and gambling-related cognitive distortions. Gambling frequency was significantly predicted by the present fatalistic perspective, and problem gambling was significantly (negatively) related to the future perspective. The present hedonistic and past negative perspectives were also significantly related to both gambling frequency and gambling problems, although they did not explain additional variance in gambling behavior when the effects of the other factors were controlled. Overall, these results offer a fresh perspective on the role of time perspectives in gambling behavior, with potential implications for understanding the origins of gambling problems and the development of novel interventions.

  18. Energy-selective Neutron Imaging for Three-dimensional Non-destructive Probing of Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.

    Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.

  19. Computer Oriented Exercises on Attitudes and U.S. Gasoline Consumption, Attitude. Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide present: (1) the three gasoline consumption-reducing options for which attitudes are to be explored; (2) exercises; and (3) appendices including an energy attitudes survey. (MR)

  20. [Evolution of the audio-visual technologies of production and diffusion and the conditions of their application in the Third World].

    PubMed

    Lefebvre, M

    1979-01-01

    The present information production techniques are so inefficient that it is out of the question to generalize them. On the other hand audio-visual communication raises a major political problem, especially for developing countries. Audio-visual equipment has gone through adjustment phases; the example of the tape and cassette recorder is given: 2 technological improvements have completely modified its use; the transistors have allowed considerable reduction in volume and weight as well as the energy necessary; the invention of the cassette has simplified its use. Technological research is following 3 major directions: the production of equipment which consumes little energy; the improvement of electronic component production techniques (towards cheaper electronic components); finally, the designing of systems allowing to stock large quantities of information. The communication systems will probably make so much progress in the areas of technology and programming, that they will soon have very different uses than the present ones. The question is whether our civilizations will let themselves be dominated by these new systems, or whether they will succeed to turn them into progress tools.

  1. What should DOE do to help establish voluntary consensus standards for measuring and rating the performance of PV modules?

    NASA Technical Reports Server (NTRS)

    Runkle, L. D.

    1984-01-01

    In response to concern expressed by the photovoltaics community over progress toward the establishment and issuance of concensus standards on photovoltaic performance measurements, a review of the status of and progress in developing these standards was conducted. It examined the roles of manufacturers, and consumers and the national laboratories funded by the U.S. Department of Energy (DOE) in supporting this effort. This was done by means of a series of discussions with knowledgeable members of the photovoltaic community. Results of these interviews are summarized and a new approach to managing support of standards activity is recommended that responds to specific problems found in the performance measurement standards area. The study concludes that there is a positive role to be played by the U.S. Department of Energy in establishing collector performance measurement standards. It recommends that DOE continue to provide direct financial support for selected committees and for research at national laboratories, and that management of the activity be restructured to increase the authority and responsibility of the consensus committees.

  2. Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.

    PubMed

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-12-13

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.

  3. Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks

    PubMed Central

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-01-01

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398

  4. Secondary iris recognition method based on local energy-orientation feature

    NASA Astrophysics Data System (ADS)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing

    2015-01-01

    This paper proposes a secondary iris recognition based on local features. The application of the energy-orientation feature (EOF) by two-dimensional Gabor filter to the extraction of the iris goes before the first recognition by the threshold of similarity, which sets the whole iris database into two categories-a correctly recognized class and a class to be recognized. Therefore, the former are accepted and the latter are transformed by histogram to achieve an energy-orientation histogram feature (EOHF), which is followed by a second recognition with the chi-square distance. The experiment has proved that the proposed method, because of its higher correct recognition rate, could be designated as the most efficient and effective among its companion studies in iris recognition algorithms.

  5. Association Between Anticipatory Grief and Problem Solving Among Family Caregivers of Persons with Cognitive Impairment

    PubMed Central

    Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda

    2013-01-01

    Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394

  6. Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence

    PubMed Central

    Kushnerenko, Elena V.; Van den Bergh, Bea R. H.; Winkler, István

    2013-01-01

    Orienting to salient events in the environment is a first step in the development of attention in young infants. Electrophysiological studies have indicated that in newborns and young infants, sounds with widely distributed spectral energy, such as noise and various environmental sounds, as well as sounds widely deviating from their context elicit an event-related potential (ERP) similar to the adult P3a response. We discuss how the maturation of event-related potentials parallels the process of the development of passive auditory attention during the first year of life. Behavioral studies have indicated that the neonatal orientation to high-energy stimuli gradually changes to attending to genuine novelty and other significant events by approximately 9 months of age. In accordance with these changes, in newborns, the ERP response to large acoustic deviance is dramatically larger than that to small and moderate deviations. This ERP difference, however, rapidly decreases within first months of life and the differentiation of the ERP response to genuine novelty from that to spectrally rich but repeatedly presented sounds commences during the same period. The relative decrease of the response amplitudes elicited by high-energy stimuli may reflect development of an inhibitory brain network suppressing the processing of uninformative stimuli. Based on data obtained from healthy full-term and pre-term infants as well as from infants at risk for various developmental problems, we suggest that the electrophysiological indices of the processing of acoustic and contextual deviance may be indicative of the functioning of auditory attention, a crucial prerequisite of learning and language development. PMID:24046757

  7. A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.

  8. Aspects on Teaching/Learning with Object Oriented Programming for Entry Level Courses of Engineering.

    ERIC Educational Resources Information Center

    de Oliveira, Clara Amelia; Conte, Marcos Fernando; Riso, Bernardo Goncalves

    This work presents a proposal for Teaching/Learning, on Object Oriented Programming for Entry Level Courses of Engineering and Computer Science, on University. The philosophy of Object Oriented Programming comes as a new pattern of solution for problems, where flexibility and reusability appears over the simple data structure and sequential…

  9. Get to Know Your Librarian: How a Simple Orientation Program Helped Alleviate Library Anxiety

    ERIC Educational Resources Information Center

    Muszkiewicz, Rachael

    2017-01-01

    Library orientations do their part to familiarize students with information literacy, and how the library fits within university life. But what if an orientation could give a student a strong introduction to their academic librarians? Research in academic libraries has noted that library anxiety remains a continual problem among current students.…

  10. Evaluation des apports solaires a l'echelle d'un quartier urbain en periode de chauffe selon sa typologie, son orientation et sa latitude dans un contexte de densification de la ville

    NASA Astrophysics Data System (ADS)

    Chenard, Laurent

    Mass urbanization is a major issue for town administrators. Population increase will have an impact on the quality of the environment for citizens. Government will have to take decisions to limit those effects. Green energies are part of the solution to reach fixed goals by the public administration for sustainable development. Passive solar energy is studied in this work in an urban canopy located in five different towns: San Francisco, Montreal, Bordeaux, Lyon and Stockholm. Passive solar energy is calculated in the heating season. Direct and diffuse solar radiation is considered by using the Perez model. Radiosity is not taken into account. Heating demand is calculated by the heating degree day method. Seven urban forms have been created to determine the amount of solar energy entering in every window of the urban canopy while taking into account urban context and forms. Optimal orientation of the canopy shows an increase of 5% of the passive solar radiation from original orientation, 180 degrees rotation from first orientation straight south. This value goes lower when stories are added to the urban context. A rotation of 90 degrees from the first orientation shows a decrease of 6 to 15% in solar passive gain. Densification of the urban canopy by adding stories to the buildings results in a loss up to 65% of the solar gain for the first story. It is showed that solar passive energy has a low ratio of 5% for space heating for old buildings, 1960 constructions. Today's buildings have a difference between passive solar energy and heating demand of 10 to 75% depending on the model and location.

  11. A Generalized Orienteering Problem for Optimal Search and Interdiction Planning

    DTIC Science & Technology

    2013-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION A GENERALIZED ORIENTEERING PROBLEM FOR OPTIMAL SEARCH AND INTERDICTION PLANNING by Jesse...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently...16. SECURITY CLASSIFICATION OF: a . REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON 19b

  12. A cylindrical shell with an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1982-01-01

    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.

  13. Interaction between a circular inclusion and an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.; Ratwani, M.

    1975-01-01

    The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.

  14. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  15. Public Health & Nutrition in the Asia-Pacific: reflections on a quarter century.

    PubMed

    Cavalli-Sforza, Luca Tommaso

    2015-01-01

    Some reflections from work in the Asia Pacific Region, mostly with WHO, in the past 25 years, and the changes in nutrition seen in this time are shared. In 1988-89 I helped to start a Centre for Child Nutrition in Chengdu, Sichuan, through the Italian Development Cooperation. The nutritional problems in urban and rural China, 25 years ago, were similar to those elsewhere in the Region. Like China, these countries underwent rapid economic development and changes in health patterns, within two decades. The main problems for child nutrition had to do with infant feeding practices and less breastfeeding: anaemia, protein energy malnutrition and rickets were frequent. How did China and other countries tackle these and other nutrition problems? In the 1990s the global nutrition community started working on a problem-solving framework. In 1992, at the 1st FAO/WHO International Conference on Nutrition, 159 countries agreed to develop national nutrition plans. In 2014, 22 years later, FAO and WHO invited countries to review their national nutrition situation and plans. The epidemiological picture today is profoundly different. Many Asia-Pacific countries have achieved remarkable progress in socio-economic development, including malnutrition reduction. To reach the MDGs and the post-MDG goals being formulated, the remaining under-nutrition problems need to be alleviated, inequalities between sectors of society reduced, and also the growing threat of overweight/obesity and NCDs prevented and controlled. Assessing, monitoring and evaluating programmes to improve progress, now requires focusing not only on biological outcomes, but also on food security, programme process, and the policy environment.

  16. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    PubMed

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  17. Engineering of oriented carbon nanotubes in composite materials

    PubMed Central

    Beigmoradi, Razieh; Mohebbi-Kalhori, Davod

    2018-01-01

    The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook. PMID:29515955

  18. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-01

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  19. Probing Shells Against Buckling: A Nondestructive Technique for Laboratory Testing

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.; Hutchinson, John W.; Sieber, Jan

    2017-12-01

    This paper addresses testing of compressed structures, such as shells, that exhibit catastrophic buckling and notorious imperfection sensitivity. The central concept is the probing of a loaded structural specimen by a controlled lateral displacement to gain quantitative insight into its buckling behavior and to measure the energy barrier against buckling. This can provide design information about a structure’s stiffness and robustness against buckling in terms of energy and force landscapes. Developments in this area are relatively new but have proceeded rapidly with encouraging progress. Recent experimental tests on uniformly compressed spherical shells, and axially loaded cylinders, show excellent agreement with theoretical solutions. The probing technique could be a valuable experimental procedure for testing prototype structures, but before it can be used a range of potential problems must be examined and solved. The probing response is highly nonlinear and a variety of complications can occur. Here, we make a careful assessment of unexpected limit points and bifurcations, that could accompany probing, causing complications and possibly even collapse of a test specimen. First, a limit point in the probe displacement (associated with a cusp instability and fold) can result in dynamic buckling as probing progresses, as demonstrated in the buckling of a spherical shell under volume control. Second, various types of bifurcations which can occur on the probing path which result in the probing response becoming unstable are also discussed. To overcome these problems, we outline the extra controls over the entire structure that may be needed to stabilize the response.

  20. 76 FR 55376 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice.... Applicants: Duke Energy Corporation, Progress Energy, Inc. Description: Additional information of Duke Energy Corporation and Progress Energy, Inc. regarding their application for approval of their proposed merger. Filed...

Top