Science.gov

Sample records for energy-sensitive imaging detector

  1. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    SciTech Connect

    Taguchi, K.

    2015-06-15

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications.

  2. Energy-sensitive imaging detector applied to the dissociative recombination of D{sub 2}H{sup +}

    SciTech Connect

    Buhr, H.; Schwalm, D.; Mendes, M. B.; Novotny, O.; Berg, M. H.; Bing, D.; Krantz, C.; Orlov, D. A.; Sorg, T.; Stuetzel, J.; Varju, J.; Wolf, A.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2010-06-15

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10x10 cm{sup 2}) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D{sub 2}H{sup +}. A huge isotope effect is observed when comparing the relative branching ratio between the D{sub 2} + H and the HD + D channel; the ratio 2B(D{sub 2} + H)/B(HD + D), which is measured to be 1.27{+-}0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7{+-}0.5 at {approx}5 eV.

  3. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  4. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  5. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  6. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  7. On the analogy between pulse-pile-up in energy-sensitive, photon-counting detectors and level-crossing of shot noise

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Bartels, Matthias; Daerr, Heiner; Proksa, Roland

    2016-03-01

    Shot noise processes are omnipresent in physics and many of their properties have been extensively studied in the past, including the particular problem of level crossing of shot noise. Energy-sensitive, photon-counting detectors using comparators to discriminate pulse-heights are currently heavily investigated for medical applications, e.g. for x-ray computed tomography and x-ray mammography. Surprisingly, no mention of the close relation between the two topics can be found in the literature on photon-counting detectors. In this paper, we point out the close analogy between level crossing of shot noise and the problem of determining count rates of photon- counting detectors subject to pulse pile-up. The latter is very relevant for obtaining precise forward models for photon-counting detectors operated under conditions of very high x-ray flux employed in clinical x-ray computed tomography. Although several attempts have been made to provide reasonably accurate, approximative models for the registered number of counts in x-ray detectors under conditions of high flux and arbitrary x-ray spectra, see, e.g., no exact, analytic solution is given in the literature for general continuous pulse shapes. In this paper we present such a solution for arbitrary response functions, x-ray spectra and continuous pulse shapes based on a result from the theory of level crossing. We briefly outline the theory of level crossing including the famous Rice theorem and translate from the language of level crossing to the language of photon-counting detection.

  8. The ROSAT WFC imaging detectors

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.; Sansom, A. E.

    1990-11-01

    Results of the calibration program performed on flight and flight-spare detectors for the Rosat Wide Field Camera (WFC) are presented. The result of an accelerated life test on a development model detector assembled to flight standard are summarized. Imaging tests demonstrate that the lookup table technique for removing distortion works efficiency with low differential nonlinearity. No undesirable 'chicken wire' effects are seen in the images, and the detector resolution matches the on-axis performance of the telescope and is constant across the field of view. Peaks in efficiency occur at 10.2, 20, and 100 eV and mimima at 13 and 45 eV. The secondary 13 eV minimum is correlated with the onset of two-electron photoemission. The mean change in gain as a function of photon energy in the EUV band is much less rapid than in the soft X-ray band.

  9. A new generation of detectors for scanning x-ray beam imaging systems

    NASA Astrophysics Data System (ADS)

    Rommel, J. Martin

    2016-01-01

    Scanning x-ray beam imaging systems were first developed by American Science and Engineering, Inc. (AS&E) in the early 1970s [1]. Since then, these systems have found a wide range of applications in security inspection and non-destructive testing. Large-area detectors are most frequently used to collect backscattered radiation but smaller transmission detectors are also employed for selected applications. Until recently, only two basic detector designs have been used: large scintillator blocks with attached photomultiplier tubes (PMTs) or large-volume light-sealed boxes, lined with scintillating screens and port windows for PMTs. In both cases, the detectors have required considerable depth to provide acceptable light collection efficiency. A new design recently developed by AS&E relies on wavelength shifting fibres (WSF) for light collection. For the first time, this approach enables the construction of thin large-area detectors. Stacking layers of WSF ribbons and scintillating screens in varying combinations enables optimization of the detection efficiency for different applications. Taking separate readings from different layers provides an energy-sensitive signal combination. Energy sensitivity can be improved further by adding filtration between the signal channels. Several prototype configurations have been built and characterized for both backscatter and transmission imaging. A WSF-based detector has been commercialized for a transmission x-ray imaging application.

  10. Enhanced neutron imaging detector using optical processing

    SciTech Connect

    Hutchinson, D.P.; McElhaney, S.A.

    1992-01-01

    Existing neutron imaging detectors have limited count rates due to inherent property and electronic limitations. The popular multiwire proportional counter is qualified by gas recombination to a count rate of less than 10{sup 5} n/s over the entire array and the neutron Anger camera, even though improved with new fiber optic encoding methods, can only achieve 10{sup 6} cps over a limited array. We present a preliminary design for a new type of neutron imaging detector with a resolution of 2--5 mm and a count rate capability of 10{sup 6} cps pixel element. We propose to combine optical and electronic processing to economically increase the throughput of advanced detector systems while simplifying computing requirements. By placing a scintillator screen ahead of an optical image processor followed by a detector array, a high throughput imaging detector may be constructed.

  11. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  12. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  13. Learning object detectors from online image search

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Tretter, Daniel R.

    2011-03-01

    Being able to detect distinguishable objects is a key component in many high level computer vision applications. Traditional methods for building such detectors require a large amount of carefully collected and cleaned data. For example to build a face detector, a large number of face images need to be collected and faces in each image need to be cropped and aligned as the data for training. This process is tedious and error-pruning. Recently more and more people are sharing their photos on the internet, if we could leverage these data for building a detector, it will save tremendous amount of effort in collecting training data. Popular internet search engines and community photo websites like Google image search, Picassa, Flickr make it possible to harvesting online images for image understanding tasks. In this paper, we develop a method leveraging images obtained from online image search to build an object detector. The proposed method can automatically identify the most distinguishable features across the downloaded images. Using these learned features, a detector can be built to detect the object in a new image. Experiments show promising results of our approach.

  14. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  15. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  16. Simulation study of an energy sensitive photon counting silicon strip detector for computed tomography: identifying strengths and weaknesses and developing work-arounds

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Xu, Cheng; Svensson, Christer; Danielsson, Mats

    2010-04-01

    We model the effect of signal pile-up on the energy resolution of a photon counting silicon detector designed for high flux spectral CT with sub-millimeter pixel size. Various design parameters, such as bias voltage, lower threshold level for discarding of electronic noise and the entire electronic read out chain are modeled and realistic parameter settings are determined. We explicitly model the currents induced on the collection electrodes of a pixel and superimpose signals emanating from events in neighboring pixels, either due to charge sharing or signals induced during charge collection. Electronic noise is added to the pulse train before feeding it through a model of the read out electronics where the pulse height spectrum is saved to yield the detector energy response function. The main result of this study is that a lower threshold of 5 keV and a rather long time constant of the shaping filter (τ0 = 30 ns) are needed to discard induced pulses from events in neighboring pixels. These induction currents occur even if no charge is being deposited in the analyzed pixel from the event in the neighboring pixel. There is also only a limited gain in energy resolution by increasing the bias voltage to 1000 V from 600 V. We show that with these settings the resulting energy resolution, as measured by the FWHM/E of the photo peak, is 5% at 70 keV.

  17. Novel gaseous detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-02-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a "sandwich" of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors.

  18. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  19. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  20. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  1. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  2. Position sensitive detector for fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Prokazov, Y.; Turbin, E.; Weber, A.; Hartig, R.; Zuschratter, W.

    2014-12-01

    We present a detector system with a microchannel plate based photomultiplier tube (MCP-PMT) and its application for fluorescence lifetime imaging (FLIM) in visible light. A capacity coupled imaging technique (charge image) combined with a charge division anode is employed for the positional readout. Using an artificial neural network's (ANN) computation model we are able to reconstruct the position of the incident photon as precise as 20 microns over the detector active area of 25 mm diameter. Thus, the resulting image quality corresponds roughly to a megapixel conventional CCD camera. Importantly, it is feasible to reach such resolution using only 9 charge acquisition channels supporting the anode structure of 14 interconnected readout electrodes. Additionally, the system features better than 50 ps temporal resolution allowing single photon counting FLIM acquisition with a regular fluorescence wide-field microscope.

  3. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  4. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  5. LISe pixel detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  6. Characterisation of a track structure imaging detector.

    PubMed

    Casiraghi, M; Bashkirov, V A; Hurley, R F; Schulte, R W

    2015-09-01

    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation.

  7. Comparative Study of Edge Detectors in case of Echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manoj Kumar

    2010-11-01

    In this paper we compare different edge detectors based on peak signal to noise ratio on Echocardiographic images. Edge detection is a critical element in image processing, since edges contain a major function of image information. The function of edge detection is to identify the boundaries of homogeneous regions in an image based on properties such as intensity and texture.We have taken Perwitt edge detector, Robarts edge detector, LoG edge detector, Canny edge detector, and Sobel edge detector for this comparison and study.

  8. Multispectral imaging using a single bucket detector.

    PubMed

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-22

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  9. Microtomography with sandwich detectors for small-animal bone imaging

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Kim, D.; Youn, H.; Cho, S.; Kim, H. K.

    2016-10-01

    An x-ray radiographic system consisting of two detectors in tandem, or a sandwich detector, can produce dual-energy image from a single-shot exposure. Subtraction of two images obtained from the two detectors can produce a sharper image through an unsharp masking effect if the two images are formed at different spatial resolutions. This is indeed possible by incorporating different thicknesses of x-ray conversion layers in the detectors. In this study, we have developed a microtomography system with a sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The results show that the bone-enhanced images reconstructed from the dual-energy projection data provide higher visibility of bone details than the conventionally reconstructed images. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone-enhanced small-animal imaging.

  10. Characteristics of stereo images from detectors in focal plane array.

    PubMed

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  11. Multispectral imaging using a single bucket detector

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  12. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  13. Computational imaging with a balanced detector.

    PubMed

    Soldevila, F; Clemente, P; Tajahuerce, E; Uribe-Patarroyo, N; Andrés, P; Lancis, J

    2016-06-29

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media.

  14. Computational imaging with a balanced detector

    PubMed Central

    Soldevila, F.; Clemente, P.; Tajahuerce, E.; Uribe-Patarroyo, N.; Andrés, P.; Lancis, J.

    2016-01-01

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media. PMID:27353733

  15. Computational imaging with a balanced detector

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Clemente, P.; Tajahuerce, E.; Uribe-Patarroyo, N.; Andrés, P.; Lancis, J.

    2016-06-01

    Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. By means of a fast digital micromirror device together with a low numerical aperture collecting system, we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. By using this strategy, we foresee real-time biological imaging with large area detectors in conditions where array sensors are unable to operate properly, such as infrared imaging and dealing with objects embedded in turbid media.

  16. Imaging in (high pressure) Micromegas TPC detectors

    NASA Astrophysics Data System (ADS)

    Luzón, G.; Cebrián, S.; Castel, J.; Dafni, Th.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Iguaz, F. J.; Mirallas, H.; Ruíz-Choliz, E.

    2016-11-01

    The T-REX project of the group of the University of Zaragoza includes a number of R&D and prototyping activities to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches where the pattern recognition of the signal is crucial for background discrimination. In the CAST experiment (CERN Axion Solar Telescope) a background level as low as 0.8 × 10-6 counts keV-1 cm-2 s-1 was achieved. Prototyping and simulations promise a 105 better signal-to-noise ratio than CAST for the future IAXO (International Axion Observatory) using x-ray telescopes. A new strategy is also explored in the search of WIMPS based on high gas pressure: the TREX-DM experiment, a low energy threshold detector. In both cases, axion and WIMP searches, the image of the expected signal is quite simple: a one cluster deposition coming from the magnet bore in the case of axions and, if possible, with a tadpole form in the case of WIMPs. It is the case of double beta decay (DBD) where imaging and pattern recognition play a major role. Results obtained in Xe + trimethylamine (TMA) mixture point to a reduction in electron diffusion which improves the quality of the topological pattern, with a positive impact on the discrimination capability, as shown in TREX-ββ prototype. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM at the transition energy Qββ and even better (up to ~ 1% FWHM) as extrapolated from low energy events. That makes Micromegas-based HPXe TPC a very competitive technique for the next generation DBD experiments (as PANDAX-III). Here, it will be shown the last results of the TREX project detectors and software concerning Axions, Dark matter and double beta decay.

  17. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  18. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  19. Software Development for Ring Imaging Detector

    NASA Astrophysics Data System (ADS)

    Torisky, Benjamin

    2016-03-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to their Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beam. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 12 GeV range. With this addition, when the electron beam hits the target, the resulting pions, kaons, and other particles will pass through a wall of translucent aerogel tiles and create Cherenkov radiation. This light can then be accurately detected by a large array of Multi-Anode PhotoMultiplier Tubes (MA-PMT). I am presenting an update on my work on the implementation of Java based reconstruction programs for the RICH in the CLAS12 main analysis package.

  20. Microbolometer Detectors for Passive Millimeter-Wave Imaging

    DTIC Science & Technology

    2005-03-01

    Proc. SPIE April 2003, 5077, 33–41. 6. Rahman A.; et al. Micromachined room - temperature microbolometer for mm-wave detection and focal-plane... Microbolometer Detectors for Passive Millimeter -Wave Imaging by Joseph Nemarich ARL-TR-3460 March 2005...GRANT NUMBER 4. TITLE AND SUBTITLE Microbolometer Detectors for Passive Millimeter -Wave Imaging 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER

  1. Real-time imaging detectors for portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Cheng, Chee-Wai

    1993-12-01

    This paper reviews the status of real-time imaging systems which are used in radiation-therapy for radiotherapy localization and verification. Imaging systems under review include (1) metal- fluorescent screens, optically coupled to video cameras; (2) metal-phosphor screen in direct contact with two-dimensional photo-diode array (flat panel detector); (3) two-dimensional liquid ionization chamber; and (4) linear diode arrays. These systems permit frequent verification during the treatment and have been shown to be very useful. Unfortunately the image quality achieved, while impressive considering the short time the devices have been on the market, is significantly inferior to that which is available from the metal/film combination (port film).

  2. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  3. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  4. Imaging detectors and electronics - A view of the future

    SciTech Connect

    Spieler, Helmuth

    2004-06-16

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  5. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  6. Recent advances in CZT strip detectors and coded mask imagers

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  7. Flat-panel-detector-based volume tomographic angiography imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Zhang, Dinghua; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-09-01

    Recent development of large area flat panel solid state detector arrays indicates that flat panel image sensors have some common potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high DQE, high frame rate and high dynamic range, small image lag (less than 1%) and excellent linearity (approximately 1%). The advantages of the new flat-panel detector make it a promising candidate for cone beam volume tomographic angiography imaging. The purpose of this study is to characterize a Selenium thin film transistor (STFT) flat panel detector-based imaging system for cone beam volume tomographic angiography imaging applications. A prototype STFT detector-based cone beam volume tomographic angiography imaging system has been designed and constructed based on the modification of a GE 8800 CT scanner. This system is evaluated using a vascular phantom with different x-ray spectra, different sizes of vessels and different iodine concentration levels. The results indicate that with the currently available STFT flat panel detector, 90 kVp is the optimal kVp to achieve the highest signal-to-noise ratio for volume tomographic angiography imaging and the low contrast resolution of the system is 4 mg/ml iodine for a 2 mm vessel.

  8. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  9. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  10. Uncooled infrared detector and imager development at DALI Technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang; Zhu, Xiaorong; Ma, Zhigang

    2015-06-01

    Zhejiang Dali Technology Co. Ltd. is one of the major players in the China Infrared industry. The company has been working on infrared imagers using uncooled FPAs for about 15 years. It started the research and development of uncooled microbolometer detectors since 2006, and has brought several uncooled detectors into mass production, including 35um 384x288, 25um 160x120, 384x288, 640x480, and 17um 384x288, 640x480. In this presentation, we will describe the uncooled infrared detector and imager development at DALI Technology.

  11. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves

    NASA Astrophysics Data System (ADS)

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-01

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  12. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-07

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  13. The challenge of highly curved monolithic imaging detectors

    NASA Astrophysics Data System (ADS)

    Iwert, Olaf; Delabre, Bernard

    2010-07-01

    In a recent optical design study of CODEX - a visible spectrograph planned for the European Extremely Large Telescope (E-ELT) - it was determined that a significant simplification of the optical design - accompanied by an improvement of the image quality - could be achieved through the application of large format (90mm square) concave spherically curved detectors with a low radius of curvature (500 to 250mm). Current assemblies of image sensors and optics rely on the optics to project a corrected image onto a flat detector. While scientific large-size CCDs (49mm square) have been produced unintentionally with a spherical radius of convex curvature of around 5m, in the past most efforts have concentrated onto flattening the light-sensitive detector silicon area as best as possible for both scientific state-of-the-art systems, as well as commercial low-cost consumer products. In some cases curved focal planes are mosaicked out of individual flat detectors, but a standard method to derive individual spherically curved large size detectors has not been demonstrated. This paper summarizes important developments in the area of curved detectors in the past and their different technical approaches mostly linked to specific thinning processes. ESO's specifications for an ongoing feasibility study are presented. First results of the latter are described with a link to theoretical and practical examinations of currently available technology to implement curved CCD and CMOS detectors for scientific applications.

  14. Digital Images of Breast Biopsies using a Silicon Strip Detector

    SciTech Connect

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima

    2006-09-08

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics.

  15. Simulation of computed radiography with imaging plate detectors

    SciTech Connect

    Tisseur, D.; Costin, M.; Mathy, F.; Schumm, A.

    2014-02-18

    Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

  16. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  17. A Gas Electron Multiplier (GEM) Detector for Fast Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Jewett, C. C.; McMahan, M.; Cerny, J.; Heilbronn, L.; Johnson, M.

    2008-10-01

    We have built a Gas Electron Multiplier (GEM) detector for detection of fast neutrons at Lawrence Berkeley National Laboratory. The detector consists of a 0.0625 inch thick polypropylene neutron converter, three GEM foils and a grid of 16 readout pads on a printed circuit board. In this talk, we present images of the GEM detector, the results of tests with ^60Co, AmBe sources and our neutron beam, and a comparison between the proposed fast neutron GEM detector and a fast neutron ^238U fission chamber we purchased. One of the advantages of the GEM detector over the fission chamber is the fact that it provides the x-y position information of the neutrons.

  18. Flat-panel detector-based cone beam volume CT breast imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Conover, David L.; Ning, Ruola

    2003-06-01

    Preliminary evaluation of large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages over film-screen and CCD-based imagers: compactness, high resolution, high frame rate, large dynamic range, small image lag (<1%), and excellent linearity (~1%). A real time large-area flat panel detector (FPD) Varian PaxScan 2520 was evaluated for cone-beam volume breast imaging (CBVCTBI) in terms of dynamic range, linearity, image lag, and spatial as well as low contrast resolution. In addition, specially made breast phantoms were imaged with our prototyped CBVCTBI system to provide real outcomes to evaluate the detector under full imaging system conditions including the x-ray source, gantry geometry, x-ray technique selection, data acquisition system and reconstruction algorithms. We have concentrated on the low kVp range (30 to 80 kVp) in the context of the breast-imaging task. For ~288 images/scan the exposure required was ~2.5mR/projection. This is equivalent to that of a conventional mammography screening exam. The results indicate that the FPD-based CBVCTBI system can achieve sufficient high- and low-contrast resolution for diagnostic CBVCT breast imaging with a clinically acceptable exposure level. The advantages of the new FPD make it a promising candidate for CBVCTBI.

  19. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  20. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  1. Reconstruction algorithms for optoacoustic imaging based on fiber optic detectors

    NASA Astrophysics Data System (ADS)

    Lamela, Horacio; Díaz-Tendero, Gonzalo; Gutiérrez, Rebeca; Gallego, Daniel

    2011-06-01

    Optoacoustic Imaging (OAI), a novel hybrid imaging technology, offers high contrast, molecular specificity and excellent resolution to overcome limitations of the current clinical modalities for detection of solid tumors. The exact time-domain reconstruction formula produces images with excellent resolution but poor contrast. Some approximate time-domain filtered back-projection reconstruction algorithms have also been reported to solve this problem. A wavelet transform implementation filtering can be used to sharpen object boundaries while simultaneously preserving high contrast of the reconstructed objects. In this paper, several algorithms, based on Back Projection (BP) techniques, have been suggested to process OA images in conjunction with signal filtering for ultrasonic point detectors and integral detectors. We apply these techniques first directly to a numerical generated sample image and then to the laserdigitalized image of a tissue phantom, obtaining in both cases the best results in resolution and contrast for a waveletbased filter.

  2. Residual images in charged-coupled device detectors

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Mündermann, Lars; Widenhorn, Ralf; Bodegom, Erik; McGlinn, T. C.

    2002-05-01

    We present results of a systematic study of persistent, or residual, images that occur in charged-coupled device (CCD) detectors. A phenomenological model for these residual images, also known as "ghosting," is introduced. This model relates the excess dark current in a CCD after exposure to the number of filled impurity sites which is tested for various temperatures and exposure times. We experimentally derive values for the cross section, density, and characteristic energy of the impurity sites responsible for the residual images.

  3. Development and performance of a gamma-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  4. Gamma-ray imaging with coaxial HPGe detector

    SciTech Connect

    Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

    2005-04-12

    We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

  5. Background measurements from balloon-born imaging CZT detectors

    NASA Astrophysics Data System (ADS)

    Jenkins, Jonathan A.; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl M.; Parker, Bradford H.; Barthelmy, Scott D.

    2003-03-01

    We report detector characteristics and background measurements from two prototype imaging CdZnTe (CZT) detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10 mm × 10 mm × 5 mm CZT crystals, each with a 4 × 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman CZT. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40o field-of-view collimator used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previosu detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum reaches ~5×10-3 counts cm-2s-1keV-1 at 100 keV and has a power-law index of ~2 at hgih energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the enregy scale because of calibration complications.

  6. The PICASSO digital detector for Diffraction Enhanced Imaging at ELETTRA

    NASA Astrophysics Data System (ADS)

    Arfelli, F.; Astolfo, A.; Menk, R.-H.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Chen, R. C.; Dreossi, D.; Longo, R.; Vallazza, E.; Castelli, E.

    2010-07-01

    A clinical mammography program is in progress at the medical beamline SYRMEP of the Italian synchrotron radiation laboratory ELETTRA in Trieste. A conventional screen-film system is utilized as detector for the examinations on patients. For the next experimental step a digital detector has been designed taking into account the essential requirements for mammography such as high spatial and contrast resolution, high efficiency for low dose examinations and high speed for short acquisition time. A double-layer prototype has already been tested in the frame of the PICASSO project. In addition, an analyzer crystal set-up for Diffraction Enhanced Imaging (DEI) has been available for many years at the SYRMEP beamline. Applying the DEI technique several successful experiments have been carried out in biomedical imaging and in particular in-vitro breast imaging utilizing commercially available detectors. Recently a system upgrade yielded a double-crystal analyzer set-up with improved stability and higher angular resolution. In this study the PICASSO detector has been utilized in combination with the new analyzer set-up for imaging in-vitro breast tissue samples. In order to test the potential of the combined system planar and tomographic images have been acquired and the first results are here presented.

  7. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  8. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  9. Broadband terahertz imaging with highly sensitive silicon CMOS detectors.

    PubMed

    Schuster, Franz; Coquillat, Dominique; Videlier, Hadley; Sakowicz, Maciej; Teppe, Frédéric; Dussopt, Laurent; Giffard, Benoît; Skotnicki, Thomas; Knap, Wojciech

    2011-04-11

    This paper investigates terahertz detectors fabricated in a low-cost 130 nm silicon CMOS technology. We show that the detectors consisting of a nMOS field effect transistor as rectifying element and an integrated bow-tie coupling antenna achieve a record responsivity above 5 kV/W and a noise equivalent power below 10 pW/Hz(0.5) in the important atmospheric window around 300 GHz and at room temperature. We demonstrate furthermore that the same detectors are efficient for imaging in a very wide frequency range from ~0.27 THz up to 1.05 THz. These results pave the way towards high sensitivity focal plane arrays in silicon for terahertz imaging.

  10. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  11. A Compact Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Kumar, A.; Thompson, K. E.

    1993-01-01

    A new type of image detector will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging Detector (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the detector are discussed.

  12. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  13. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  14. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  15. SWIR hyperspectral imaging detector for surface residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick

    2013-05-01

    ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.

  16. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  17. Detector defect correction of medical images on graphics processors

    NASA Astrophysics Data System (ADS)

    Membarth, Richard; Hannig, Frank; Teich, Jürgen; Litz, Gerhard; Hornegger, Heinz

    2011-03-01

    The ever increasing complexity and power dissipation of computer architectures in the last decade blazed the trail for more power efficient parallel architectures. Hence, such architectures like field-programmable gate arrays (FPGAs) and particular graphics cards attained great interest and are consequently adopted for parallel execution of many number crunching loop programs from fields like image processing or linear algebra. However, there is little effort to deploy barely computational, but memory intensive applications to graphics hardware. This paper considers a memory intensive detector defect correction pipeline for medical imaging with strict latency requirements. The image pipeline compensates for different effects caused by the detector during exposure of X-ray images and calculates parameters to control the subsequent dosage. So far, dedicated hardware setups with special processors like DSPs were used for such critical processing. We show that this is today feasible with commodity graphics hardware. Using CUDA as programming model, it is demonstrated that the detector defect correction pipeline consisting of more than ten algorithms is significantly accelerated and that a speedup of 20x can be achieved on NVIDIA's Quadro FX 5800 compared to our reference implementation. For deployment in a streaming application with steadily new incoming data, it is shown that the memory transfer overhead of successive images to the graphics card memory is reduced by 83% using double buffering.

  18. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  19. DUNBID, the Delft University neutron backscattering imaging detector.

    PubMed

    Bom, V R; van Eijk, C W E; Ali, M A

    2005-01-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented.

  20. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  1. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  2. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  3. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  4. An Integrated Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  5. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  6. Terahertz detectors for long wavelength multi-spectral imaging.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  7. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  8. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  9. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition in a healthy

  10. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.

    PubMed

    Fahmi, Rachid; Eck, Brendan L; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G; Wilson, David L

    2016-03-21

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 ke

  11. Construction and testing of the SLD Cerenkov Ring Imaging Detector

    SciTech Connect

    Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Williams, D.A.; Zucchelli, P. . Inst. for Particle Physics); Whitaker, J.S.; Wilson, R.J. . Dept. of Physics); Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S. . Dept. of Physics); Johns

    1990-01-01

    We report on the construction of the Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider and the testing of its components. We include results from testing the drift boxes, liquid radiator trays, and mirrors for the barrel CRID. We also discuss development of the support systems essential for the operation of the CRID: gas and liquid recirculator systems and monitoring. 15 refs., 9 figs.

  12. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  13. SLAC Large Detector (SLD) Image and Event Display Collections

    DOE Data Explorer

    Perl, Joseph; Cowan, Ray; Johnson, Tony

    The SLD makes use of the unique capabilities of the Stanford Linear Collider (SLC) to perform studies of polarized Z particles produced in collisions between electrons and positrons. The SLD Event Display Collection shows computer generated pictures of a number of Z particle decays as reconstructed by the SLD detector. More than 90 images, each in several formats, captured from 1991 - 1996 events, are archived here. There are also figures and data plots available.

  14. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector.

    PubMed

    Epple, Franz M; Ehn, Sebastian; Thibault, Pierre; Koehler, Thomas; Potdevin, Guillaume; Herzen, Julia; Pennicard, David; Graafsma, Heinz; Noël, Peter B; Pfeiffer, Franz

    2015-03-01

    Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic.

  15. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  16. Image quality of digital radiography using flat detector technology

    NASA Astrophysics Data System (ADS)

    Ducourant, Thierry; Couder, David; Wirth, Thibaut; Trochet, J. C.; Bastiaens, Raoul J. M.; Bruijns, Tom J. C.; Luijendijk, Hans A.; Sandkamp, Bernhard; Davies, Andrew G.; Didier, Dominique; Gonzalez, Agustin; Terraz, Sylvain; Ruefenacht, Daniel

    2003-06-01

    One of the most demanding applications in dynamic X-Ray imaging is Digital Subtraction Angiography (DSA). As opposed to other applications such as Radiography or Fluoroscopy, there has been so far limited attempts to introduce DSA with flat detector (FD) technology: Up to now, only part of the very demanding requirements could be taken into account. In order to enable an introduction of FD technology also in this area, a complete understanding of all physical phenomena related to the use of this technology in DSA is necessary. This knowledge can be used for detector design and performance optimization. Areas of research include fast switching between several detector operating modes (e.g. switching between fluoroscopy and high dose exposure modes and vice versa) and non stability during the DSA run e.g. due to differences in gain between subsequent images. Furthermore, effects of local and global X-Ray overexposure (due to direct radiation), which can cause temporal artifacts such as ghosting, may have a negative impact on the image quality. Pixel shift operations and image subtraction enhance the visibility of any artifact. The use of a refresh light plays an important role in the optimization process. Both an 18x18 cm2 as well as a large area 30x40 cm2 flat panel detector are used for studying the various phenomena. Technical measurements were obtained using complex imaging sequences representing the most demanding application conditions. Studies on subtraction test objects were performed and vascular applications have been carried out in order to confirm earlier findings. The basis for comparison of DSA is, still, the existing and mature IITV technology. The results of this investigation show that the latest generation of dynamic flat detectors is capable of handling this kind of demanding application. Not only the risk areas and their solutions and points of attention will be addressed, but also the benefits of present FD technology with respect to state

  17. Development of CRID (Cerenkov Ring Imaging Detector) single electron wire detector

    SciTech Connect

    Aston, D.; Bean, A.; Bienz, T.; Bird, F.; Caldwell, D.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Dasu, S.; Dunwoodie, W.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 /mu/m and 33 /mu/m diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs.

  18. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  19. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  20. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  1. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  2. High Resolution Emission and Transmission Imaging Using the Same Detector.

    PubMed

    Panse, Ashish S; Jain, A; Wang, W; Yao, R; Bednarek, D R; Rudin, S

    2010-10-30

    We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.

  3. Two-dimensional Detector for High Resolution Soft X-ray Imaging

    SciTech Connect

    Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki

    2010-06-23

    A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

  4. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  5. Performance Characterization of the Atmospheric Velocity Imaging Detector (AVID)

    NASA Astrophysics Data System (ADS)

    Gardiner, J. D.

    2015-12-01

    Central to the improvement of upper atmospheric models is a dramatic expansion in current understanding of the coupling and dynamics within the Ionosphere / Thermosphere (IT) system. Conventional in situ measurement techniques using energy scanning and analog current detection are limited by poor sensitivity and have produced incomplete datasets. The Atmospheric Velocity Imaging Detector (AVID) overcomes the limitations of current instruments through the use of two orthogonally mounted Imaging Dispersive Energy Analyzers (IDEAs) which share a single pulse-counting ion detector. The second-generation IDEA design uses inexpensive and lightweight printed circuit boards, with parallel exposed copper traces connected via resistors to generate a highly uniform deflection field. This arrangement allows AVID to make accurate and sensitive in situ measurements of neutral wind / ion drift velocities, temperature, density, and composition, with no voltage scanning required. We present results from the development progress of AVID, through laboratory testing and characterization of an individual IDEA unit when exposed to angle-resolved hypervelocity ion beams emulating 4.7 eV O and 8.2 eV N2. Through these measurements, the projected performance of the AVID system and recently developed image processing algorithms are compared against SIMION ion trajectory calculations and Monte Carlo simulations.

  6. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  7. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  8. Development and construction of the SLD Cerenkov Ring Imaging Detector

    SciTech Connect

    Aston, D.; Bean, A.; Bienz, T.; Bird, F.; Caldwell, D.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Dasu, S.; Dunwoodie, W.

    1989-06-01

    We report on the development and construction of the Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC linear collider. In particular, we outline recent progress in the construction, and results from testing the first components of the barrel CRID, including the drift boxes, liquid radiator trays and mirror system. We also review progress in the construction of the barrel CRID gas radiator vessel, the liquid radiator recirculator system, and the electronic readout system. The development of a comprehensive monitor and control system -- upon which the stable operation and physics efficacy of the CRID depend -- is also described. 19 refs., 9 figs.

  9. The SLD Cerenkov Ring Imaging Detector: Progress report

    SciTech Connect

    Ashford, V.; Bienz, T.; Bird, F.; Crawford, G.; Gaillard, M.; Hallewell, G.; Leith, D.; McShurley, D.; Nuttall, A.; Oxoby, G.

    1986-10-01

    We describe test beam results from a prototype Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider (SLC). The system includes both liquid and gas radiators, a long drift box containing gaseous TMAE and a proportional wire chamber with charge division readout. Measurements of the multiplicity and detection resolution of Cerenkov photons, from both radiators are presented. Various design aspects of a new engineering prototype, currently under construction, are discussed and recent R and D results relevant to this effort are reported.

  10. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  11. Development of a neutron imager based on superconducting detectors

    NASA Astrophysics Data System (ADS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-11-01

    We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a 10B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a 10B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with 10B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  12. Characterization and optimization of a thin direct electron detector for fast imaging applications

    NASA Astrophysics Data System (ADS)

    Dourki, I.; Westermeier, F.; Schopper, F.; Richter, R. H.; Andricek, L.; Ninkovic, J.; Treis, J.; Koffmane, C.; Wassatsch, A.; Peric, I.; Epp, S. W.; Miller, R. J. D.

    2017-03-01

    Direct electron detectors are increasingly used to explore the dynamics of macromolecules in real space and real time using transmission electron microscopy. The purpose of this work is to optimize the most suitable detector configuration of a thin silicon detector by Monte Carlo Simulations. Several simulations were performed to achieve an advanced detector geometry that reduces significantly the background signal due to backscattered electrons resulting in an enhanced imaging performance of the detector. Utilizing DEPFET (DEpleted P-channel Field Effect Transistor) technology and the novel ideas for the optimized detector geometry, a unique direct hit electron detector is currently being produced.

  13. Multilayer fluorescence imaging on a single-pixel detector

    PubMed Central

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-01-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  14. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

  15. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  16. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  17. A piecewise-focused high DQE detector for MV imaging

    PubMed Central

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-01-01

    Purpose: Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam’s eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated “strip” CWO detector. Methods: A 361  ×  52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm2 gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work

  18. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  19. X-Ray Detector for Digital Fluoroscopy and Digital Radiography in Medical Imaging

    NASA Astrophysics Data System (ADS)

    Saito, Keiichi

    Recently digital X-ray detectors are developed for medical imaging. By comparison with the structure of X-ray image intensifier system and X-ray flat panel detector (FPD), the dynamic of digital images is more superior and would result in enhanced diagnosis. Moreover the difference from the detective quantum efficiency (DQE) of X-ray image intensifier and FPD is shown as the significant index of X-ray image quality.

  20. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  1. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  2. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  3. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  4. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  5. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  6. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Dangendorf, V.; Zboray, R.; Prasser, H.-M.

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  7. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  8. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging.

    PubMed

    Tashima, Hideaki; Yamaya, Taiga

    2016-10-07

    For dedicated brain PET, we can significantly improve sensitivity for the cerebrum region by arranging detectors in a compact hemisphere. The geometrical sensitivity for the top region of the hemisphere is increased compared with conventional cylindrical PET consisting of the same number of detectors. However, the geometrical sensitivity at the center region of the hemisphere is still low because the bottom edge of the field-of-view is open, the same as for the cylindrical PET. In this paper, we proposed a helmet PET with add-on detectors for high sensitivity brain PET imaging for both center and top regions. The key point is the add-on detectors covering some portion of the spherical surface in addition to the hemisphere. As the location of the add-on detectors, we proposed three choices: a chin detector, ear detectors, and a neck detector. For example, the geometrical sensitivity for the region-of-interest at the center was increased by 200% by adding the chin detector which increased the size by 12% of the size of the hemisphere detector. The other add-on detectors gave almost the same increased sensitivity effect as the chin detector did. Compared with standard whole-body-cylindrical PET, the proposed geometries can achieve 2.6 times higher sensitivity for brain region even with less than 1/4 detectors. In addition, we conducted imaging simulations for geometries with a diameter of 250 mm and with high resolution depth-of-interaction detectors. The simulation results showed that the proposed geometries increased image quality, and all of the add-on detectors were equivalently effective. In conclusion, the proposed geometries have high potential for widespread applications in high-sensitivity, high-resolution, and low-cost brain PET imaging.

  9. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yamaya, Taiga

    2016-10-01

    For dedicated brain PET, we can significantly improve sensitivity for the cerebrum region by arranging detectors in a compact hemisphere. The geometrical sensitivity for the top region of the hemisphere is increased compared with conventional cylindrical PET consisting of the same number of detectors. However, the geometrical sensitivity at the center region of the hemisphere is still low because the bottom edge of the field-of-view is open, the same as for the cylindrical PET. In this paper, we proposed a helmet PET with add-on detectors for high sensitivity brain PET imaging for both center and top regions. The key point is the add-on detectors covering some portion of the spherical surface in addition to the hemisphere. As the location of the add-on detectors, we proposed three choices: a chin detector, ear detectors, and a neck detector. For example, the geometrical sensitivity for the region-of-interest at the center was increased by 200% by adding the chin detector which increased the size by 12% of the size of the hemisphere detector. The other add-on detectors gave almost the same increased sensitivity effect as the chin detector did. Compared with standard whole-body-cylindrical PET, the proposed geometries can achieve 2.6 times higher sensitivity for brain region even with less than 1/4 detectors. In addition, we conducted imaging simulations for geometries with a diameter of 250 mm and with high resolution depth-of-interaction detectors. The simulation results showed that the proposed geometries increased image quality, and all of the add-on detectors were equivalently effective. In conclusion, the proposed geometries have high potential for widespread applications in high-sensitivity, high-resolution, and low-cost brain PET imaging.

  10. Fast readout of GEM detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Bucciantonio, M.; Amaldi, U.; Kieffer, R.; Malakhov, N.; Sauli, F.; Watts, D.

    2013-08-01

    We describe the design and implementation of a fast data acquisition (DAQ) system for Gas Electron Multiplier (GEM) trackers applied to imaging and dosimetry in hadrontherapy. Within the AQUA project of the TERA foundation a prototype of Proton Range Radiography of 30×30 cm2 active area has been designed and built to provide in-beam integrated density images of the patient before treatment. It makes use of a pair of GEMs to record position and direction of protons emerging from the target. A fast data acquisition rate close to 1 MHz will allow obtaining a good resolution in-beam proton radiography in a few seconds. A dedicated fast front-end circuit for GEM detectors (GEMROC by AGH-Crakow University) is read by the FPGA based DAQ card (GR_DAQ), developed by the AQUA group. The same system is under evaluation (within the ENVISION European project) to realize the in-vivo dosimetry, based on detecting secondary light particles during the treatment of the patient.

  11. A prototype of radiation imaging detector using silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  12. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.

    PubMed

    Cowen, A R; Kengyelics, S M; Davies, A G

    2008-05-01

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  13. The capacitive division image readout: a novel imaging device for microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Conneely, T. M.; Leach, S. A.; Moore, L.

    2013-09-01

    The Capacitive Division Image Readout (C-DIR) is a simple and novel image readout for photon counting detectors offering major performance advantages. C-DIR is a charge centroiding device comprising three elements; (i) a resistive anode providing event charge localization, event current return path and electrical isolation from detector high voltage, (ii) a dielectric substrate which capacitively couples the event transient signal to the third element, (iii) the readout device; an array of capacitively coupled electrodes which divides the signal among the readout charge measurement nodes. The resistive anode and dielectric substrate constitute the rear interface of the detector and capacitively couple the signal to the external C-DIR readout device. The C-DIR device is a passive, multilayer printed circuit board type device comprising a matrix of isolated electrodes whose geometries define the capacitive network. C-DIR is manufactured using conventional PCB geometries and is straightforward and economical to construct. C-DIR's robustness and simplicity belie its performance advantages. Its capacitive nature avoids partition noise, the Poisson noise associated with collection of discrete charges. The dominant noise limiting position resolution is electronic noise. However C-DIR also presents a low input capacitance to the readout electronics, minimising this noise component thus maximising spatial resolution. Optimisation of the C-DIR pattern-edge geometry can provide ~90% linear dynamic range. We present data showing image resolution and linearity of the C-DIR device in a microchannel plate detector and describe various electronic charge measurement scheme designed to exploit the full performance potential of the C-DIR device.

  14. Method for growing a back surface contact on an imaging detector used in conjunction with back illumination

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana (Inventor); Hoenk, Michael Eugene (Inventor); Nikzad, Shouleh (Inventor)

    2010-01-01

    A method is provided for growing a back surface contact on an imaging detector used in conjunction with back illumination. In operation, an imaging detector is provided. Additionally, a back surface contact (e.g. a delta-doped layer, etc.) is grown on the imaging detector utilizing a process that is performed at a temperature less than 450 degrees Celsius.

  15. Three-dimensional photoacoustic imaging using fiber-based line detectors

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Berer, Thomas; Burgholzer, Peter; Nuster, Robert; Paltauf, Günther

    2010-03-01

    For photoacoustic imaging, usually point-like detectors are used. As a special sensing technology for photoacoustic imaging, integrating detectors have been investigated that integrate the acoustic pressure over an area or line that is larger than the imaged object. Different kinds of optical fiber-based detectors are compared regarding their sensitivity and resolution in three-dimensional photoacoustic tomography. In the same type of interferometer, polymer optical fibers yielded much higher sensitivity than glass fibers. Fabry-Pérot glass-fiber interferometers in turn gave higher sensitivity than Mach-Zehnder-type interferometers. Regarding imaging resolution, the single-mode glass fiber showed the best performance. Last, three-dimensional images of phantoms and insects using a glass-fiber-based Fabry-Pérot interferometer as integrating line detector are presented.

  16. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  17. Terahertz and Millimetre Wave Imaging with a Broadband Josephson Detector Working above 77 K

    NASA Astrophysics Data System (ADS)

    Du, Jia; Hellicar, A. D.; Hanham, S. M.; Li, L.; Macfarlane, J. C.; Leslie, K. E.; Foley, C. P.

    2011-05-01

    A high-Tc superconducting (HTS) broadband Josephson detector has been developed and applied to millimetre wave (mm-wave) and terahertz (THz) imaging. The detector is based on a YBa2Cu3O7-x (YBCO) step-edge Josephson junction, which is coupled to a thin-film log-periodic antenna, designed for operation at 200-600 GHz, and a hemispheric silicon lens. The junction parameters have been optimised to achieve a high IcRn value so that the detector responds well to the specified frequencies at liquid nitrogen temperature (77 K). Images at ˜200 GHz and ˜600 GHz were acquired with the same detector; each demonstrated their unique properties. The results demonstrate the potential of achieving a cheaper, compact and portable multi-spectral imager based on a HTS detector.

  18. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  19. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  20. DIRC, the internally reflecting ring imaging Cerenkov detector for BABAR: Properties of the quartz radiators

    SciTech Connect

    Schwiening, Jochen

    1998-02-01

    A description of DIRC, a particle identification detector for the BABAR experiment at the Standard Linear Collider B Factory is given. It is the barrel region of the detector and its name is an acronym for detection of internally reflected Cherenkov radiation. It is a Cherenkov ring imaging device which utilizes totally internally reflected Cherenkov light in the visible and ultraviolet regions.

  1. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  2. Velocity map photoelectron-photoion coincidence imaging on a single detector.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Janssen, Maurice H M

    2012-09-01

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  3. Velocity map photoelectron-photoion coincidence imaging on a single detector

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.

    2012-09-15

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  4. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  5. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector

    PubMed Central

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present state-of-the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 µm pixels and an active area of 12 cm × 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/µR and 0.55 µR in high sensitivity mode, while they were 9.87 DN/µR and 2.77 µR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors. PMID:25300571

  6. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present stateof- the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 μm pixels and an active area of 12 cm x 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/μR and 0.55 μR in high sensitivity mode, while they were 9.87 DN/μR and 2.77 μR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors.

  7. Experimental and theoretical performance analysis for a CMOS-based high resolution image detector.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2014-03-19

    Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present state-of-the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 µm pixels and an active area of 12 cm × 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/µR and 0.55 µR in high sensitivity mode, while they were 9.87 DN/µR and 2.77 µR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector's imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors.

  8. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  9. Development of a cold-neutron imaging detector based on thick gaseous electron multiplier.

    PubMed

    Cortesi, M; Zboray, R; Kaestner, A; Prasser, H-M

    2013-02-01

    We present the results of our recent studies on a cold-neutron imaging detector prototype based on THick Gaseous Electron Multiplier (THGEM). The detector consists of a thin Boron layer, for neutron-to-charged particle conversion, coupled to two THGEM electrodes in cascade for charge amplification and a position-sensitive charge-readout anode. The detector operates in Ne∕(5%)CF4, at atmospheric pressure, in a stable condition at a gain of around 10(4). Due to the geometrical structure of the detector elements (THGEM geometry and charge read-out anode), the image of detector active area shows a large inhomogeneity, corrected using a dedicated flat-filed correction algorithm. The prototype provides a detection efficiency of 5% and an effective spatial resolution of the order of 1.3 mm.

  10. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  11. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    SciTech Connect

    Niimura, Nobuo

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  12. Photoconductive HgCdTe detector assemblies for the GOES imager and sounder instruments

    NASA Astrophysics Data System (ADS)

    Hartley, Jeanne M.; Reine, Marion B.; Terzis, C. L.; Verrilli, Anthony J.; Hassler, Richard A.; Lesondak, Edward P.

    1996-10-01

    The GOES Imager and Sounder instruments each utilize several HgCdTe photoconductive (PC) detectors and detector arrays for detection over the 6.5 to 14.7 micrometers region. These high performance detectors are integrated with germanium aplanat lenses and mounted in miniature hermetically sealed housings. There are demanding requirements on the radiometric performance of these detector assemblies. For LW Sounder detectors, the highest possible sensitivity achievable by a practical HgCdTe photoconductor at the operating temperatures of 100 to 105 K was required. Lockheed Martin designed, fabricated, tested, packaged, qualified, and delivered 7 of the 11 HgCdTe PC detector assemblies for GOES-8, and 9 of the 11 assemblies for GOES- 9. All the n-type HgCdTe starting material was grown at Lockheed Martin.

  13. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    PubMed

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  14. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    SciTech Connect

    Ryan, C. G.; Siddons, D. P.; Kuczewski, A.; Kirkham, R.; Dunn, P. A.; Hough, R. M.; Lintern, M. J.; Cleverley, J.; Moorhead, G.; De Geronimo, G.; Paterson, D. J.; Jonge, M. D. de; Howard, D. L.; Kappen, P.

    2010-04-06

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  15. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  16. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  17. Simple method for modulation transfer function determination of digital imaging detectors from edge images

    NASA Astrophysics Data System (ADS)

    Buhr, Egbert; Guenther-Kohfahl, Susanne; Neitzel, Ulrich

    2003-06-01

    A simple variant of the edge method to determine the presampled modulation transfer function (MTF) of digital imaging detectors has been developed that produces sufficiently accurate MTF values for frequencies up to the Nyquist frequency limit of the detector with only a small amount of effort for alignment and computing. An oversampled edge spread function (ESF) is generated from the image of a slanted edge by rearranging the pixel data of N consecutive lines that correspond to a lateral shift of the edge of one pixel. The original data are used for the computational analysis without further data preprocessing. Since the number of lines leading to an edge shift of one pixel is generally a fractional number rather than an integer, a systematic error may be introduced in the MTF obtained. Simulations and theoretical investigations show that for all frequencies up to the Nyquist limit the relative error ΔMTF/MTF is below 1/(2N) and can thus be kept below a given threshold by a suitable choice of N. The method is especially useful for applications where the MTF is needed for frequencies up to the Nyquist frequency limit, like the determination of the detective quantum efficiency (DQE).

  18. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  19. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  20. Vision 20/20: Single photon counting x-ray detectors in medical imaging.

    PubMed

    Taguchi, Katsuyuki; Iwanczyk, Jan S

    2013-10-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs.

  1. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  2. Continuous Scintillator Detector Blocks for Simultaneous Pet-Mr Imaging of the Human Brain

    NASA Astrophysics Data System (ADS)

    Rato Mendes, Pedro

    2010-04-01

    Continuous scintillator detector blocks have several advantages over pixelated designs, presenting a larger active volume and a lower cost with comparable or better energy and spatial resolutions. In this paper we describe the operation of continuous detector blocks for positron emission tomography (PET) and their suitability for multimodality imaging operating inside a magnetic resonance (MR) scanner. This detector technology is being used on a full-scale clinical scanner for human brain PET studies presently under development at Ciemat. Results will be presented on the laboratory characterization of monolithic scintillators coupled to APD matrices with ASIC readout, including images of point sources from a prototype dual-head demonstrator illustrating the potential of continuous scintillator detector blocks for high-resolution PET-MR imaging.

  3. Megapixel digital InSb detector for midwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Shkedy, Lior; Markovitz, Tuvy; Calahorra, Zipi; Hirsh, Itay; Shtrichman, Itay

    2011-06-01

    Since the late 1990s Semiconductor devices (SCDs) has developed and manufactured a variety of InSb two-dimensional (2D) focal plane arrays (FPAs) that were implemented in many infrared (IR) systems and applications. SCD routinely manufactures both analog and digital InSb FPAs with array formats of 320×256, 480×384, and 640×512 elements, and pitch size in the range 15 to 30 μm. These FPAs are available in many packaging configurations, including fully integrated detector-Dewar-cooler-assembly, with either closed-cycle Stirling or open-loop Joule-Thomson coolers. In response to a need for very high resolution midwave IR (MWIR) detectors and systems, SCD has developed a large format 2D InSb detector with 1280×1024 elements and pixel size of 15 μm. A digital readout integrated circuit (ROIC) is coupled by flip-chip bonding to the megapixel InSb array. The ROIC is fabricated in CMOS 0.18-μm technology, that enables the small pixel circuitry and relatively low power generation at the focal plane. The digital ROIC has an analog to digital (A/D) converter per-channel and allows for full frame readout at a rate of 100 Hz. Such on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The digital readout, together with the InSb detector technology, lead to a wide linear dynamic range and low residual nonuniformity, which is stable over a long period of time following a nonuniformity correction procedure. A special Dewar was designed to withstand harsh environmental conditions while minimizing the contribution to the heat load of the detector. The Dewar together with the low power ROIC, enable a megapixel detector with overall low size, weight, and power with respect to comparable large format detectors. A variety of applications with this detector make use of different cold shields with different f-number and spectral filters. In this paper we present actual performance characteristics of the

  4. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector

    NASA Astrophysics Data System (ADS)

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  5. Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware.

    PubMed

    Vande Berg, Bruno; Malghem, Jacques; Maldague, Baudouin; Lecouvet, Frederic

    2006-12-01

    Multi-detector CT imaging (MDCT) becomes routine imaging modality in the assessment of the postoperative orthopedic patients with metallic instrumentation that degrades image quality at MR imaging. This article reviews the physical basis and CT appearance of such metal-related artifacts. It also addresses the clinical value of MDCT in postoperative orthopedic patients with emphasis on fracture healing, spinal fusion or arthrodesis, and joint replacement. MDCT imaging shows limitations in the assessment of the bone marrow cavity and of the soft tissues for which MR imaging remains the imaging modality of choice despite metal-related anatomic distortions and signal alteration.

  6. Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics Based Detector for Hyperspectral Images.

    PubMed

    Du, Bo; Zhang, Yuxiang; Zhang, Liangpei; Tao, Dacheng

    2016-08-18

    Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on the linear mixing model and the sparsity model. However, the former type of model cannot deal well with spectral variability in limited endmembers, and the latter type of model usually treats the target detection as a simple classification problem and pays less attention to the low target probability. In this case, can we find an efficient way to utilize both the high-dimension features behind hyperspectral images and the limited target information to extract small targets? This paper proposes a novel sparsitybased detector named the hybrid sparsity and statistics detector (HSSD) for target detection in hyperspectral imagery, which can effectively deal with the above two problems. The proposed algorithm designs a hypothesis-specific dictionary based on the prior hypotheses for the test pixel, which can avoid the imbalanced number of training samples for a class-specific dictionary. Then, a purification process is employed for the background training samples in order to construct an effective competition between the two hypotheses. Next, a sparse representation based binary hypothesis model merged with additive Gaussian noise is proposed to represent the image. Finally, a generalized likelihood ratio test is performed to obtain a more robust detection decision than the reconstruction residual based detection methods. Extensive experimental results with three hyperspectral datasets confirm that the proposed HSSD algorithm clearly outperforms the stateof- the-art target detectors.

  7. Dead-time effects in microchannel-plate imaging detectors

    NASA Technical Reports Server (NTRS)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  8. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  9. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  10. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  11. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.

  12. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  13. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  14. Millimeter-wave narrow-gap uncooled hot-carrier detectors for active imaging

    NASA Astrophysics Data System (ADS)

    Sizov, Fedir F.; Zabudsky, Vyacheslav V.; Golenkov, Aleksandr G.; Shevchik-Shekera, Ann

    2013-03-01

    It is shown that electron heating by electromagnetic radiation in mercury-cadmium-telluride (MCT) layers can be used for designing of uncooled terahertz (THz)/sub-THz detectors with appropriate for active imaging characteristics (noise equivalent power ˜2.6×10-10 W/Hz at ν˜140 GHz) and these detectors can be manufactured within well established MCT technologies. This narrow-gap semiconductor can be considered as a material for THz/sub-THz detectors with possibility to be assembled into arrays. The characteristics of those detectors can be controlled and improved by selection of parameters of initial layers, substrate properties, and antenna configuration. For field effect transistor detectors, even for transistors with rather long channels (˜1 μm), rather similar characteristics at ν˜140 GHz can also be obtained.

  15. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  16. Progress of NUV and FUV MCP-based photon-counting imaging detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yong'an; Zhao, Bao-sheng; Wei, Yong-lin; Sai, Xiao-feng; Yan, Qiu-rong; Sheng, Li-zhi

    2011-08-01

    In the World Space Observatory-Ultraviolet (WSO-UV) mission, the Long Slit Spectrograph (LSS) instrument will provide low resolution spectra in the range 102-320nm. Both the NUV (160-320nm) and the FUV (102-170nm) channels of LSS use microchannel plates (MCP) working in photon-counting modes as detectors. In this paper, the progress and parameters of NUV and FUV photon-counting imaging detectors were described. For the NUV detector, we developed the detector based on a sealed MCP-image intensifier which comprises input window, photocathode, MCP stack, Ge-layer and its ceramic substrate. To maximize the quantum efficiency, we adopted a Caesium Telluride (Cs2Te) photocathode, which was deposited on input window and mounted close to the MCP. For the FUV detector, because of the lower cut-off wavelength, there are no suitable window materials in this band and the open-faced design should be used to meet the requirements of the detection. Therefore, a Caesium Iodide (CsI) photocathode deposited on the input surface of the MCP was used to optimize detector efficiency. By using an existing wedge and strip anode (WSA), the imaging performance of the NUV and FUV detectors was tested respectively. Experimental results show that the quantum efficiency of Cs2Te is 12.1% (at 230nm), the spatial resolution of NUV and FUV detectors is better than 110μm, the dark count rate of NUV and FUV detectors is about 10.5- and 2.3-counts/s*cm2 respectively.

  17. Non-volatile resistive photo-switches for flexible image detector arrays

    NASA Astrophysics Data System (ADS)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J. W.

    2015-09-01

    The increasing quest to find lightweight, conformable or flexible image detectors for machine vision or medical imaging brings organic electronics into the spotlight for these fields of application. Here were we introduce a unique imaging device concept and its utilization in an organic, flexible detector array with simple passive matrix wiring. We present a flexible organic image detector array built up from non-volatile resistive multi-bit photo-switchable elements. This unique realization is based on an organic photodiode combined with an organic resistive memory device wired in a simple crossbar configuration. The presented concept exhibits significant advantages compared to present organic and inorganic detector array technologies, facilitating the detection and simultaneous storage of the image information in one detector pixel, yet also allowing for simple read-out of the information from a simple passive-matrix crossbar wiring. This concept is demonstrated for single photo-switchable pixels as well as for arrays with sizes up to 32 by 32 pixels (1024 bit). The presented results pave the way for a versatile flexible and easy-to-fabricate sensor array technology. In a final step, the concept was expanded to detection of x-rays.

  18. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  19. Monte Carlo Simulations of Background Spectra in Integral Imager Detectors

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    Predictions of the expected gamma-ray backgrounds in the ISGRI (CdTe) and PiCsIT (Csl) detectors on INTEGRAL due to cosmic-ray interactions and the diffuse gamma-ray background have been made using a coupled set of Monte Carlo radiation transport codes (HETC, FLUKA, EGS4, and MORSE) and a detailed, 3-D mass model of the spacecraft and detector assemblies. The simulations include both the prompt background component from induced hadronic and electromagnetic cascades and the delayed component due to emissions from induced radioactivity. Background spectra have been obtained with and without the use of active (BGO) shielding and charged particle rejection to evaluate the effectiveness of anticoincidence counting on background rejection.

  20. Development of bi-spectral InAs/GaSb type II superlattice image detectors

    NASA Astrophysics Data System (ADS)

    Stadelmann, T.; Wörl, A.; Wauro, M.; Daumer, V.; Niemasz, J.; Luppold, W.; Simon, T.; Riedel, M.; Rehm, R.; Walther, M.

    2014-06-01

    InAs/GaSb superlattices are characterized by a broken-gap type II band alignment. Their effective band gap can be engineered to match mid to long wavelength infrared (IR) photon energies. Fraunhofer IAF has developed image detectors for threat warning systems based on this material system that are capable of spatially and temporally coincident detection in two mid-IR wavelength ranges. We review the present status of the processing technology, report continuous improvements achieved in key areas of detector performance, including defect density and noise behavior, and present initial results for statistical characterization of ensembles of detector elements with respect to diode characteristics and noise.

  1. A comparison of x-ray detectors for mouse CT imaging

    NASA Astrophysics Data System (ADS)

    Goertzen, Andrew L.; Nagarkar, Vivek; Street, Robert A.; Paulus, Michael J.; Boone, John M.; Cherry, Simon R.

    2004-12-01

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm-1) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm-1. For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm-1). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  2. A comparison of x-ray detectors for mouse CT imaging.

    PubMed

    Goertzen, Andrew L; Nagarkar, Vivek; Street, Robert A; Paulus, Michael J; Boone, John M; Cherry, Simon R

    2004-12-07

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm(-1)) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm(-1). For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm(-1)). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  3. Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems

    SciTech Connect

    Gruenzweig, C.; Frei, G.; Lehmann, E.; Kuehne, G.; David, C.

    2007-05-15

    We report on the fabrication and application of a novel neutron imaging test device made of gadolinium. It is designed for a real time evaluation of the spatial resolution, resolution direction, and distortions of a neutron imaging detector system. Measurements of the spatial resolution of {sup 6}LiF doped ZnS scintillator screens with different thicknesses and of imaging plates were performed. The obtained results are in good agreement with comparison measurements using the standard knife edge detection method.

  4. Simultaneous x-ray fluorescence and K-edge CT imaging with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Chen, Zhiqiang

    2016-10-01

    Rapid development of the X-ray phonon-counting detection technology brings tremendous research and application opportunities. In addition to improvements in conventional X-ray imaging performance such as radiation dose utilization and beam hardening correction, photon-counting detectors allows significantly more efficient X-ray fluorescence (XRF) and K-edge imaging, and promises a great potential of X-ray functional, cellular and molecular imaging. XRF is the characteristic emission of secondary X-ray photons from a material excited by initial X-rays. The phenomenon is widely used for chemical and elemental analysis. K-edge imaging identifies a material based on its chemically-specific absorption discontinuity over X-ray photon energy. In this paper, we try to combine XRF and K-edge signals from the contrast agents (e.g., iodine, gadolinium, gold nanoparticles) to simultaneously realize XFCT and K-edge CT imaging for superior image performance. As a prerequisite for this dual-modality imaging, the accurate energy calibration of multi-energy-bin photon-counting detectors is critically important. With the measured XRF data of different materials, we characterize the energy response function of a CZT detector for energy calibration and spectrum reconstruction, which can effectively improve the energy resolution and decrease the inconsistence of the photon counting detectors. Then, a simultaneous K-edge and X-ray fluorescence CT imaging (SKYFI) experimental setup is designed which includes a cone-beam X-ray tube, two separate photon counting detector arrays, a pin-hole collimator and a rotation stage. With a phantom containing gold nanoparticles the two types of XFCT and K-edge CT datasets are collected simultaneously. Then, XFCT and K-edge CT images are synergistically reconstructed in a same framework. Simulation results are presented and quantitative analyzed and compared with the separate XFCT and K-edge CT results.

  5. Application and Design of Satellite Infrared Spectral Imaging Radiometers with Uncooled Microbolometer Array Detectors

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Lancaster, Regie; Maschhoff, Kevin; Starr, David OC (Technical Monitor)

    2001-01-01

    Uncooled infrared microbolometer array detectors have application for space borne spectral imaging radiometer of several types to lower size, power and cost and provide improved performance. Other advantages of eliminating cooling requirement are simplified systems, simplified satellite integration and improved reliability. A prototype microbolometer instrument for cloud observations was flown on the STS-85 space shuttle mission. Extensive data were acquired at_km resolution at four thermal infrared wavelength bands. From the 320x280 detector array both spectral and angular information can be used to advantage in cloud retrievals and has been demonstrated. An engineering model Compact Visible and Infrared Imaging Radiometer (COVIR) for small satellite missions has been developed. Application of advanced microbolometer array detectors for three axis stabilized GOES thermal imagers has been studied.

  6. Standoff passive video imaging at 350 GHz with 251 superconducting detectors

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Gentry, Cale; Smirnov, Ilya; Ade, Peter; Beall, James; Cho, Hsiao-Mei; Dicker, Simon; Duncan, William; Halpern, Mark; Hilton, Gene; Irwin, Kent; Li, Dale; Paulter, Nicholas; Reintsema, Carl; Schwall, Robert; Tucker, Carole

    2014-06-01

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them ideal for passive imaging of thermal signals at these wavelengths. We have built a 350 GHz video-rate imaging system using a large-format array of feedhorn-coupled TES bolometers. The system operates at a standoff distance of 16m to 28m with a spatial resolution of 1:4 cm (at 17m). It currently contains one 251-detector subarray, and will be expanded to contain four subarrays for a total of 1004 detectors. The system has been used to take video images which reveal the presence of weapons concealed beneath a shirt in an indoor setting. We present a summary of this work.

  7. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images

    PubMed Central

    Cunefare, David; Cooper, Robert F.; Higgins, Brian; Katz, David F.; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-01-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. PMID:27231641

  8. Digital X-ray imaging using silicon microstrip detectors: a design study

    NASA Astrophysics Data System (ADS)

    Speller, R. D.; Royle, G. J.; Triantis, F. A.; Manthos, N.; Van der Stelt, P. F.; di Valentin, M.

    2001-01-01

    This paper considers the basic design parameters for using silicon microstrip detectors for 2-D medical imaging. In particular, mammographic and dental imaging are considered. Monte Carlo modeling techniques have been used to investigate detector efficiency, strip pitch, image quality, imaging geometry and signal processing requirements. Different phantoms are used for each part of the study. It is shown that signal processing times are a major factor in the operation of a clinical detector system if ambiguities are to be avoided in a double-sided strip detector. However, the use of the models allows conclusions to be made that alleviate the timing requirements. It has been shown that using a strip structure of 50-100 μm provides appropriate image resolution and image quality can be maintained with pixel counts of 50-100 in both dental and mammographic work. Under these conditions current front-end electronics designs can provide the signal processing times with an acceptably small number of multihit events (<5%).

  9. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  10. Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors

    NASA Astrophysics Data System (ADS)

    Park, Sang-June; Rogers, W. Leslie; Huh, Sam; Kagan, Harris; Honscheid, Klaus; Burdette, Don; Chesi, Enrico; Lacasta, Carlos; Llosa, Gabriela; Mikuz, Marko; Studen, Andrej; Weilhammer, Peter; Clinthorne, Neal H.

    2007-05-01

    A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm × 1.4 mm pads arranged in a 32 × 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 µm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter 18F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.

  11. Workflow for the use of a high-resolution image detector in endovascular interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, R.; Loughran, B.; Swetadri Vasan, S. N.; Pope, L.; Ionita, C. N.; Siddiqui, A.; Lin, N.; Bednarek, D. R.; Rudin, S.

    2014-03-01

    Endovascular image-guided intervention (EIGI) has become the primary interventional therapy for the most widespread vascular diseases. These procedures involve the insertion of a catheter into the femoral artery, which is then threaded under fluoroscopic guidance to the site of the pathology to be treated. Flat Panel Detectors (FPDs) are normally used for EIGIs; however, once the catheter is guided to the pathological site, high-resolution imaging capabilities can be used for accurately guiding a successful endovascular treatment. The Micro-Angiographic Fluoroscope (MAF) detector provides needed high-resolution, high-sensitivity, and real-time imaging capabilities. An experimental MAF enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Using the automatic controls, the MAF detector can be moved to the deployed position, in front of a standard FPD, whenever higher resolution is needed during angiographic or interventional vascular imaging procedures. To minimize any possible negative impact to image guidance with the two detector systems, it is essential to have a well-designed workflow that enables smooth deployment of the MAF at critical stages of clinical procedures. For the ultimate success of this new imaging capability, a clear understanding of the workflow design is essential. This presentation provides a detailed description and demonstration of such a workflow design.

  12. Workflow for the use of a high-resolution image detector in endovascular interventional procedures

    PubMed Central

    Rana, R.; Loughran, B.; Swetadri Vasan, S. N.; Pope, L.; Ionita, C. N.; Siddiqui, A.; Lin, N.; Bednarek, D. R.; Rudin, S.

    2014-01-01

    Endovascular image-guided intervention (EIGI) has become the primary interventional therapy for the most widespread vascular diseases. These procedures involve the insertion of a catheter into the femoral artery, which is then threaded under fluoroscopic guidance to the site of the pathology to be treated. Flat Panel Detectors (FPDs) are normally used for EIGIs; however, once the catheter is guided to the pathological site, high-resolution imaging capabilities can be used for accurately guiding a successful endovascular treatment. The Micro-Angiographic Fluoroscope (MAF) detector provides needed high-resolution, high-sensitivity, and real-time imaging capabilities. An experimental MAF enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Using the automatic controls, the MAF detector can be moved to the deployed position, in front of a standard FPD, whenever higher resolution is needed during angiographic or interventional vascular imaging procedures. To minimize any possible negative impact to image guidance with the two detector systems, it is essential to have a well-designed workflow that enables smooth deployment of the MAF at critical stages of clinical procedures. For the ultimate success of this new imaging capability, a clear understanding of the workflow design is essential. This presentation provides a detailed description and demonstration of such a workflow design. PMID:25302003

  13. Advances in capillary-based gaseous UV imaging detectors

    NASA Astrophysics Data System (ADS)

    Iacobaeus, C.; Breskin, A.; Danielsson, M.; Francke, T.; Mörmann, D.; Ostling, J.; Peskov, V.

    2004-06-01

    We studied gain and position resolution of gaseous UV-photon detectors combining single- and cascaded- glass capillary-plate multipliers and CsI photocathodes. Two modes of operation were investigated: a conventional one, where the main amplification occurs within capillary holes and a parallel-plate amplification mode, where the main amplification occurs between the capillary plate and the readout anode. Results of these studies demonstrate that in the parallel-plate amplification mode one can reach both high gains (>10 5) and good position resolutions (˜100 μm) even with a single-element multiplier. This offers a compact amplification structure, which can be used in many applications.

  14. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging

    PubMed Central

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  15. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  16. Gamma-ray imaging with a Si/CsI(Tl) Compton detector.

    PubMed

    Hoover, A S; Sullivan, J P; Baird, B; Brumby, S P; Kippen, R M; McCluskey, C W; Rawool-Sullivan, M W; Sorensen, E B

    2006-12-01

    We present results from Compton imaging of gamma-ray sources using an instrument constructed from thin silicon scattering detectors and CsI(Tl) absorbing detectors. We have successfully imaged single and double point sources for several common radioactive isotopes ((137)Cs, (60)Co, (22)Na, (54)Mn). The measured angular resolution is 11.6( composite function) FWHM at 662keV. In parallel with the hardware effort, a GEANT4-based simulation code was developed. Comparisons between real and simulated data are discussed.

  17. Performance of an X-ray imaging detector based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Svenonius, Olof; Sahlholm, Anna; Wiklund, Per; Linnros, Jan

    2009-08-01

    Structured scintillator plates have been fabricated by filling thallium-doped caesium iodide (CsI) into a silicon pore array. Their X-ray imaging properties have been characterized using a standard dental X-ray source and a charge coupled device (CCD) detector. Results indicate that finer structured pore arrays provide superior imaging resolution while their light output is lower. Direct absorption of X-ray quanta in the CCD is a significant contributor of detector noise. This can be avoided by using a thick fibre optic plate or, in certain cases, by using a hot-pixel software algorithm.

  18. Realtime hand detection system using convex shape detector in sequential depth images

    NASA Astrophysics Data System (ADS)

    Tai, Chung-Li; Li, Chia-Chang; Liao, Duan-Li

    2013-12-01

    In this paper, a real-time hand detection and tracking system is proposed. A calibrated stereo vision system is used to obtain disparity images and real world coordinates are available by geometry transformation. Unlike other pixel-based shape detector that edge information is necessary, the proposed convex shape detector, which is based on real world coordinates, is applied directly in depth images to detect hands regardless of distance. Around waving gesture recognition and simple hand tracking are also implemented in this work. The acceptable accuracy of the proposed system is examined in verification process. Experimental results of hand detection and tracking prove the robustness and the feasibility of the proposed method.

  19. First Results of Small Animal Imaging Spect Detector for Cardiovascular Disease Studies on Mice

    NASA Astrophysics Data System (ADS)

    Magliozzi, M. L.; Ballerini, M.; Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Torrioli, S.; Veneroni, P.; Majewsky, S.; Mok, S. P. G.; Tsui, B. M. W.; Wang, Y.; Marano, G.; Musumeci, M.; Palazzesi, S.; Ciccariello, G.; de Vincentis, G.; Accorsi, R.

    2008-06-01

    We have developed a compact, open, Dual Head pinhole SPECT system for high resolution molecular imaging with radionuclides of mice, dedicated mainly to preclinical study of stem cells capability to recover myocardial infarction. The gamma detector is made of pinhole tungsten collimators, pixellated scintillators, matrix of multi-anode PMTs and individual channel readout. Measurements have been performed on phantoms and live mice devoted initially to test and calibrate the system and to optimize protocols. The implemented system and the first results will be presented, demonstrating the effectiveness of our dedicated SPECT detector for small animal imaging.

  20. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  1. Optimization-based image reconstruction from sparse-view data in offset-detector CBCT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Wang, Jiong; Han, Xiao; Sidky, Emil Y.; Shao, Lingxiong; Pan, Xiaochuan

    2013-01-01

    The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.

  2. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  3. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  4. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    SciTech Connect

    Joshi, S; Kaye, W; Jaworski, J; He, Z

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinhole camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for

  5. Positional calibrations of the germanium double sided strip detectors for the Compton spectrometer and imager

    NASA Astrophysics Data System (ADS)

    Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.

    2016-08-01

    The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.

  6. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    SciTech Connect

    Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  7. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS

    SciTech Connect

    FISHER,RK

    2002-10-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial resolution of 5 to 30 {micro}, are a promising approach to high-resolution imaging of NIF target plasmas. Gel bubble detectors were used in successful proof-of-principle imaging experiments on OMEGA. Until recently, bubble detectors appeared to be the only approach capable of achieving neutron images of NIF targets with the desired 5 {micro} spatial resolution in the target plane. In 2001, NIF reduced the required standoff distance from the target, so that diagnostic components can now be placed as close as 10 cm to the target plasma. This will allow neutron imaging with higher magnification and may make it possible to obtain 5 {micro}m resolution images on NIF using deuterated scintillators. Having accomplished all that they can hope to on OMEGA using gel detectors, they suggested that the 2002 NLUF shots be used to allow experimental tests of the spatial resolution of the CEA-built deuterated scintillators. The preliminary CEA data from the June 2002 run appears to show the spatial resolution using the deuterated scintillator detector array is improved over that obtained in earlier experiments using the proton-based scintillators. Gel detectors, which consist of {approx} 10 {micro}m diameter drops of bubble detector liquid suspended in an inactive support gel that occupies {approx} 99% of the detector volume, were chosen for the initial tests on OMEGA since they are easy to use. The bubbles could be photographed several hours after the neutron exposure. Imaging NIF target plasmas at neutron yields of 10{sup 15} will require a higher detection efficiency detector. Using a liquid bubble chamber detector should result in {approx} 1000 times higher neutron detection efficiency which is comparable to that possible using scintillation detectors. A pressure-cycled liquid bubble detector will require a light

  8. Fourier synthesis image reconstruction by use of one-dimensional position-sensitive detectors.

    PubMed

    Kotoku, Jun'ichi; Makishima, Kazuo; Okada, Yuu; Negoro, Hitoshi; Terada, Yukikatsu; Kaneda, Hidehiro; Oda, Minoru

    2003-07-10

    An improvement of Fourier synthesis optics for hard x-ray imaging is described, and the basic performance of the new optics is confirmed through numerical simulations. The original concept of the Fourier synthesis imager utilizes nonposition-sensitive hard x-ray detectors coupled to individual bigrid modulation collimators. The improved concept employs a one-dimensional position-sensitive detector (such as a CdTe strip detector) instead of the second grid layer of each bigrid modulation collimator. This improves the imaging performance in several respects over the original design. One performance improvement is a two-fold increase in the average transmission, from 1/4 to 1/2. The second merit is that both the sine and cosine components can be derived from a single grid-detector module, and hence the number of imaging modules can be halved. Furthermore, it provides information along the depth direction simultaneously. This in turn enables a three-dimensional imaging hard x-ray microscope for medical diagnostics, incorporating radioactive tracers. A conceptual design of such a microscope is presented, designed to provide a field of view of 4 mm and a spatial resolution of 400 microm.

  9. Evaluation Of Algorithms For A Squid Detector Neuromagnetic Imaging System

    NASA Astrophysics Data System (ADS)

    Leahy, Richard; Jeffe, Brian; Singh, Manbir; Brechner, Ricardo

    1987-01-01

    The SQUID based biomagnetometer has been widely used to measure the external magnetic field produced by neural activity. In this paper we consider the viability of using this data to reconstruct three dimensional neuromagnetic images (NMI) of an equivalent electrical current distribution within the brain which would produce the measured magnetic field. The fundamental limitations on this mode of imaging are evaluated and possible physical models and mathematical formulations of the problem are proposed. Several algorithms often used in medical image reconstruction are applied to the problem and their performance evaluated. We conclude that the reconstruction problem is highly ill-posed, and that conventional image reconstruction algorithms are inadequate for 3-D NMI. A class of solutions we call 'minimum dipole' is shown to provide more accurate reconstructions of simple current distributions.

  10. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1995-12-31

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.

  11. Recent results of the forward ring imaging Cherenkov detector of the DELPHI experiment at LEP

    SciTech Connect

    Adam, W.; Albrecht, E. ); Augustinus, A. )

    1994-08-01

    The Forward Ring Imaging Cherenkov detector covers both end-cap regions of the DELPHI experiment at LEP in the polar angel 15[degree] < [theta] < 35[degree] and 145[degree] < [theta] < 165[degree]. The detector combines a layer of liquid C[sub 6]F[sub 14] and a volume of gaseous C[sub 4]F[sub 10] into a single assembly. Ultraviolet photons from both radiators are converted in a single plane of photosensitive Time Projection Chambers. Identification of charged particles is provided for momenta up to 40 GeV/c. The design of the detector is briefly described. The detector is now fully installed in DELPHI and has participated in the 1993 data taking. The overall performance will be presented together with the expectations from Monte Carlo simulations. Results close to design values are obtained.

  12. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  13. Full Volume Imaging Gamma-Ray Detectors for Enhanced Sensitivity

    SciTech Connect

    Ziock, K; Kammeraad, J; Dougan, A; Archer, D; Blair, J; Knapp, D; Luke, S J; Schmid, G

    2001-03-09

    One of the problems faced by the post-cold-war world is the control of fissile materials. With the deterioration of the command and control structure inside the Former Soviet Union, there is an increased threat that fissile materials will be diverted from a legitimate use to production of weapons of mass destruction by rogue states and or terrorist organizations. The goal of this project was to study and build prototypes of a new class of highly sensitive detectors which could significantly enhance the remote detection of hidden fissile materials. Such an instrument would have a broad applicability in national security applications including nuclear smuggling, arms control, treaty inspections, and safeguards. Additional applications in the non-defense arenas of nuclear medicine, environmental restoration and basic science provide even more reasons to study this technology.

  14. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, D. W.; Kim, S. H.; Yun, S.; Youn, H.; Jeon, H.; Kim, H. K.

    2017-01-01

    For single-shot dual-energy (DE) imaging, a sandwich detector typically consists of a thin front detector and a thick rear detector. Therefore, the spatial-resolution characteristics of the two detectors are different, and as a result, weighted subtraction of the corresponding two images gives rise to edge-enhancement characteristics in the resulting DE images. This is a unique characteristic of single-shot DE imaging compared to the conventional dual-shot DE imaging which uses the same detector to acquire low- and high-energy images. Using a linear-systems theory, in this paper, we show that the modulation-transfer function (MTF) of a sandwich detector is a weighted average of contributions from each MTF characteristic of two detector layers forming the sandwich detector. The MTF results obtained using the developed model are validated with those measured directly from single-shot DE images for an edge-knife phantom. Weighting larger than at least 0.5 in DE reconstruction gives an enhancement in DE MTF at mid and high spatial frequencies compared to the MTFs obtained from each detector layer. The behavior of the linear model as a function of weighting factor used for DE reconstruction is discussed in comparisons with numerical simulations.

  15. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.

    PubMed

    Shikhaliev, Polad M

    2006-09-07

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  16. Feasibility study of a gas electron multiplier detector as an X-Ray image sensor

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Jung, Jaehoon; Lee, Soonhyouk

    2015-07-01

    For its ease of manufacture, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an X-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of using a GEM detector as an X-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of an A225 charge sensitive preamp, an A206 discriminator, and a MCA8000D multichannel analyzer. For the gas system, argon gas was mixed with CO2 in a ratio of 8:2, and for the negative 2,000 volts, a 3106D power supply was used. A CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an X-ray source, and the relative efficiency was acquired by using the ratio of the efficiency of the GEM detector to that of the CdTe detector. The total count method and the energy spectrum method were used to calculate the relative efficiency. The relative detection efficiency of the GEM detector for Fe-55 by using total count method was 32%, and the relative detection efficiencies were 5, 43, 33, 37, 35, and 36%, respectively, for 2-, 3-, 4-, 5-, 6-, and 7- keV energy spectrum by using the energy spectrum method. In conclusion, we found that the detection efficiency of the two-layered GEM detector is insufficient for use as an X-ray image sensor, so we suggest a CsI-coated GEM foil to increase the efficiency, with resulting value being increased to 41%.

  17. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  18. Wideband optical detector of ultrasound for medical imaging applications.

    PubMed

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis

    2014-05-11

    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions.

  19. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  20. Development of EXITE3, Imaging Detectors and a Long Duration Balloon Gondola

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In this Report we summarize the work conducted for the EXITE program under grant NAG5-5103. This grant supported the ongoing EXITE program at Harvard for the development of imaging hard x-ray detectors and telescopes over the 3 year period 1997-2000 with a one year extension to 2001 to transition to the next SR&T grant in this program. Work was conducted in three major parts: analysis of the EXITE2 balloon flight data (from our May 1997 flight); development of pixellated imaging Cd-Zn-Te detector arrays and readout systems for the proposed EXITE3 detector and telescope; and development of systems for a Long Duration Balloon (LDB) gondola. Progress on all three major aspects of this research is summarized for each of the years of this grant.

  1. Design and optimization of resistive anode for a two-dimensional imaging GEM detector

    NASA Astrophysics Data System (ADS)

    Ju, Xu-Dong; Dong, Ming-Yi; Zhao, Yi-Chen; Zhou, Chuan-Xing; Qun, Ou-Yang

    2016-08-01

    A resistive anode for two-dimensional imaging detectors, which consists of a series of high resistivity pads surrounded by low resistivity strips, can provide good spatial resolution while reducing the number of electronics channels required. The optimization of this kind of anode has been studied by both numerical simulations and experimental tests. It is found that to obtain good detector performance, the resistance ratio of the pads to the strips should be larger than 5, the nonuniformity of the pad surface resistivity should be less than 20%, a smaller pad width leads to a smaller spatial resolution, and when the pad width is 6 mm, the spatial resolution (σ) can reach about 105 μm. Based on the study results, a 2-D GEM detector prototype with optimized resistive anode is constructed and a good imaging performance is achieved. Supported by National Natural Science Foundation of China (11375219) and CAS Center for Excellence in Particle Physics (CCEPP)

  2. A novel optical detector concept for dedicated and multi-modality in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Schulz, Ralf B.; Unholtz, Daniel; Semmler, Wolfhard

    2007-07-01

    An optical detector suitable for inclusion in tomographic arrangements for non-contact in vivo bioluminescence and fluorescence imaging applications is proposed. It consists of a microlens array (MLA) intended for field-of-view definition, a large-field complementary metal-oxide-semiconductor (CMOS) chip for light detection, a septum mask for cross-talk suppression, and an exchangeable filter to block excitation light. Prototype detector units with sensitive areas of 2.5 cm x 5 cm each were assembled. The CMOS sensor constitutes a 512 x 1024 photodiode matrix at 48 μm pixel pitch. Refractive MLAs with plano-convex lenses of 480 μm in diameter and pitch were selected resulting in a 55 x 105 lens matrix. The CMOS sensor is aligned on the focal plane of the MLA at 2.15mm distance. To separate individual microlens images an opaque multi-bore septum mask of 2.1mm in thickness and bore diameters of 400 μm at 480 μm pitch, aligned with the lens pattern, is placed between MLA and CMOS. Intrinsic spatial detector resolution and sensitivity was evaluated experimentally as a function of detector-object distance. Due to its small overall dimensions such detectors can be favorably packed for tomographic imaging (optical diffusion tomography, ODT) yielding complete 2 π field-of-view coverage. We also present a design study of a device intended to simultaneously image positron labeled substrates (positron emission tomography, PET) and optical molecular probes in small animals such as mice and rats. It consists of a cylindrical allocation of optical detector units which form an inner detector ring while PET detector blocks are mounted in radial extension, those gaining complementary information in a single, intrinsically coregistered experimental data acquisition study. Finally, in a second design study we propose a method for integrated optical and magnetic resonance imaging (MRI) which yields in vivo functional/molecular information that is intrinsically registered with the

  3. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  4. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  5. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  6. Development of a detector based on Silicon Drift Detectors for gamma-ray spectroscopy and imaging applications

    NASA Astrophysics Data System (ADS)

    Busca, P.; Butt, A. D.; Fiorini, C.; Marone, A.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Bombelli, L.; Giacomini, G.; Piemonte, C.; Camera, F.; Giaz, A.; Million, B.; Nelms, N.; Shortt, B.

    2014-05-01

    This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 × 3 units, each one of an active area of 8 mm × 8 mm (overall area of 26 mm × 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1'' × 1'' LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20°C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1 mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.

  7. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  8. Multipixel characterization of imaging CZT detectors for hard x-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Vadawale, Santosh V.; Hong, Jae Sub; Grindlay, Jonathan E.; Williams, Peter; Zhang, Minhua; Bellm, Eric C.; Narita, Tomohiko; Craig, William W.; Parker, Bradford H.; Stahle, Carl M.; Yan, Feng

    2004-10-01

    We report our in-depth study of Cd-Zn-Te (CZT) crystals to determine an optimum pixel and guard band configuration for Hard X-ray imaging and spectroscopy. We tested 20x20x5mm crystals with 8x8 pixels on a 2.46mm pitch. We have studied different types of cathode / anode contacts and different pixel pad sizes. We present the measurements of leakage current as well as spectral response for each pixel. Our I-V measurement setup is custom designed to allow automated measurements of the I-V curves sequentially for all 64 pixels, whereas the radiation properties measurement setup allows for interchangeable crystals with the same XAIM3.2 ASIC readout from IDEAS. We have tested multiple crystals of each type, and each crystal in different positions to measure the variation between individual crystals and variation among the ASIC channels. We also compare the same crystals with and without a grounded guard band deposited on the crystal side walls vs. a floating guard band and compare results to simulations. This study was carried out to find the optimum CZT crystal configuration for prototype detectors for the proposed Black-Hole Finder mission, EXIST.

  9. [Digital radiography using light-emitting detectors. Operative principles and characteristics of images].

    PubMed

    Salvini, E

    1988-12-01

    This paper briefly describes the technical features of a digital radiographic system based on the principle of scanning laser stimulated luminescence. Such aspects as the physics of the stimulable phosphor detector are dealt with, and image acquisition, processing, and hard-copy output. Automatic analysis of pixel histograms is described, in a qualitative way, together with contrast modifications and spatial filtering. Physical image characteristics are reported. The overall performance of digital radiography is examined, together with the current requirements and its eventual developments.

  10. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors

    NASA Astrophysics Data System (ADS)

    Rana, R.; Singh, V.; Jain, A.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 x 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR.

  11. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors

    PubMed Central

    Rana, R.; Singh, V.; Jain, A.; Bednarek, D.R.; Rudin, S.

    2015-01-01

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 × 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR. PMID:26877578

  12. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors.

    PubMed

    Rana, R; Singh, V; Jain, A; Bednarek, D R; Rudin, S

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 × 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR.

  13. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    NASA Astrophysics Data System (ADS)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  14. The use of nuclear physics and high energy physics detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Del Guerra, Alberto; Bisogni, Maria Giuseppina

    2013-06-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late '70 with the invention of the CT scanners. The massive use in Nuclear Physics and High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this paper we will try to present how Nuclear Physics/High Energy Physics and Medical Imaging have both benefited by the cross-fertilization of research activities between the two fields and how much they will take advantage in the future.

  15. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  16. A scintillating plastic fiber tracking detector for neutron and proton imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Castaneda, C. M.; Holslin, D.; Macri, J. R.; McConnell, M. L.; Romero, J. L.; Wunderer, C. B.

    1999-02-01

    We report on a prototype detector system designed to perform imaging and spectroscopy on 20-250MeV neutrons. The detection techniques employed can be applied to measurements in a variety of disciplines including solar and atmospheric physics, radiation therapy and nuclear materials monitoring. The detector measures the energy and direction of neutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. The scintillation tracks are detected and imaged by photomultipliers and image intensifier/CCD camera optics. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal-to-noise measurement. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with 14-65MeV neutrons, 20-67.5MeV protons, and with cosmic-ray muons. Preliminary results of phantom imaging measurements using a proton beam are also presented. We discuss several applications for this detector technique and outline future development work.

  17. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    NASA Astrophysics Data System (ADS)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  18. Imaging of Ra-223 with a small-pixel CdTe detector

    NASA Astrophysics Data System (ADS)

    Scuffham, J. W.; Pani, S.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.; Cernik, R. J.

    2015-01-01

    Ra-223 Dichloride (Xofigo™) is a promising new radiopharmaceutical offering survival benefit and palliation of painful bone metastases in patients with hormone-refractory prostate cancer [1]. The response to radionuclide therapy and toxicity are directly linked to the absorbed radiation doses to the tumour and organs at risk respectively. Accurate dosimetry necessitates quantitative imaging of the biodistribution and kinetics of the radiopharmaceutical. Although primarily an alpha-emitter, Ra-223 also has some low-abundance X-ray and gamma emissions, which enable imaging of the biodistribution in the patient. However, the low spectral resolution of conventional gamma camera detectors makes in-vivo imaging of Ra-223 challenging. In this work, we present spectra and image data of anthropomorphic phantoms containing Ra-223 acquired with a small-pixel CdTe detector (HEXITEC) [2] with a pinhole collimator. Comparison is made with similar data acquired using a clinical gamma camera. The results demonstrate the advantages of the solid state detector in terms of scatter rejection and quantitative accuracy of the images. However, optimised collimation is needed in order for the sensitivity to rival current clinical systems. As different dosage levels and administration regimens for this drug are explored in current clinical trials, there is a clear need to develop improved imaging technologies that will enable personalised treatments to be designed for patients.

  19. Imaging performance of a clinical selenium flat-panel detector for advanced applications in full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Loustauneau, Vincent; Bissonnette, Michel; Cadieux, Sebastien; Hansroul, Marc; Masson, E.; Savard, Serge; Polischuk, Brad T.; Lehtimauki, Mari J.

    2003-06-01

    The advent of digital detectors will enable several advanced imaging applications to be used in the fight against breast cancer. For example, dynamic imaging applications such as tomosynthesis, contrast enhanced and dual energy mammography have demonstrated promising results. In this paper, we will assess the suitability of this detector for these advanced applications. MTF and DQE measurements were performed on a selenium FFDM detector to assess image quality. Ghosting properties of a digital detector are also an important factor, since it can strongly degrade image quality. In this paper, we will also report on the ghosting characteristics of the selenium detector, using typical exposures envisioned to be used in tomosynthesis exams. The physical mechanisms that create ghost images will be discussed and will be quantified.

  20. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging

    PubMed Central

    Chen, Sung-Liang; Ling, Tao; Guo, L. Jay

    2011-01-01

    Small size polymer microring resonators have been exploited for photoacoustic (PA) imaging. To demonstrate the advantages of the wide acceptance angle of ultrasound detection of small size microrings, photoacoustic tomography (PAT), and delay-and-sum beamforming PA imaging was conducted. In PAT, we compared the imaging quality using different sizes of detectors with similar noise-equivalent pressures and the same wideband response: 500 μm hydrophone and 100, 60, and 40 μm microrings. The results show significantly improved imaging contrast and high resolution over the whole imaging region using smaller size detectors. The uniform high resolution in PAT imaging using 40 μm microrings indicates the potential to resolve microvasculature over a large imaging region. The improved lateral resolution of two-dimensional and three-dimensional delay-and-sum beamforming PA imaging using a synthetic array demonstrate another advantageous application of small microrings. The small microrings can also be applied to other ultrasound-related imaging applications. PMID:21639569

  1. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  2. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  3. Design considerations for soft X-ray television imaging detectors

    NASA Technical Reports Server (NTRS)

    Kalata, Kenneth; Golub, Leon

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed.

  4. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  7. Quantum noise in digital x-ray image detectors with optically coupled scintillators

    SciTech Connect

    Flynn, M.J.; Hames, S.M. |; Wilderman, S.J.; Ciarelli, J.J.

    1996-08-01

    Digital x-ray imaging detectors designed to soft x-ray (1 to 50 keV) are significant for medical mammography, dental radiography, microradiography, and microtomography. Detector designs involve either direct absorption of x-rays in solid state devices or thin scintillator screens optically coupled to solid state sensors. Well designed scintillator systems produce 10 or more electrons per detected x-ray and, used with charge coupled devices (CCD), detect 100,000 x-rays per pixel before saturation. However, if the scintillator is directly coupled to the detector, radiation can penetrate to the semiconductor detector with a small number of events producing large charge and noise. The authors have investigated the degradation of image noise by these direct absorption events using numerical models for a laboratory detector system consisting of a 60 {micro}m CsI scintillator optically coupled to a scientific CCD. Monte Carlo methods were used to estimate the charge deposition signal and noise for both the CsI and the semiconductor. Without a fiber optic coupler, direct absorptions dominate the signal and increase the signal variance by a factor of about 30 at energies above 10 keV. With a 3 mm fiber optic coupler, no significant degradation is observed for input energies below 45 keV.

  8. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  9. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    PubMed

    Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Kim, Jin Sung; Park, Justin C

    2016-01-01

    The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  10. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy

    PubMed Central

    Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Park, Justin C.

    2016-01-01

    The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy. PMID:27243822

  11. Anamorphic preclinical SPECT imaging with high-resolution silicon double-sided strip detectors

    NASA Astrophysics Data System (ADS)

    Durko, Heather L.

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnications are not constrained to be equal. We incorporated a 60 mm x 60 mm, millimeter-thick megapixel silicon double-sided strip detector that permits ultrahigh-resolution imaging. While the stopping power of silicon is low for many common clinical radioisotopes, its performance is sufficient in the range of 20-60 keV to allow practical imaging experiments. The low-energy emissions of 125I fall within this energy window, and the 60-day half life provides an advantage for longitudinal studies. The flexible nature of this system allows the future application of adaptive imaging techniques. We have demonstrated ˜225-mum axial and ˜175-mum transaxial resolution across a 2.65 cm3 cylindrical field of view, as well as the capability for simultaneous multi-isotope acquisitions. We describe the key advancements that have made this system operational, including bringing up a new detector readout ASIC, development of detector control software and data-processing algorithms, and characterization of operating characteristics. We describe design and fabrication of the adjustable slit aperture platform, as well as the development of an accurate imaging forward model and its application in a novel geometric calibration technique and a GPU-based ultrahigh-resolution reconstruction code.

  12. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  13. Design and development of hard x-ray imaging detector using scintillator and Si photomultiplier

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Naik, Amisha P.; Mithun, N. P. S.; Vadawale, S. V.; Acharya, Y. B.; Patel, A. R.; Ladiya, T.; Devashrayee, Niranjan M.

    2016-07-01

    There are various astrophysical phenomena which are of great importance and interest such as stellar explosions, Gamma ray bursts etc. There is also a growing interest in exploring the celestial sources in hard X-rays. High sensitive instruments are essential to perform the detailed studies of these cosmic accelerators and explosions. Hard X-ray imaging detectors having high absorption efficiency and mm spatial resolution are the key requirements to locate the generation of these astrophysical phenomenon. We hereby present a detector module which consists of a single CsI scintillation detector of size 15 x 15 x 3 mm3. The photon readout is done using an array of Silicon Photomultipliers (SiPMs). SiPM is a new development in the field of photon detection and can be described as 2D array of small (hundreds of μm2) avalanche photodiodes. We have achieved a spatial resolution of 0.5 mm with our initial setup. By using the array of these detector modules, we can build the detector with a large sensitive area with a very high spatial resolution. This paper presents the experimental details for single detector module using CsI (Tl) scintillator and SiPM and also presents the preliminary results of energy and position measurement. The GEANT4 simulation has also been carried out for the same geometry.

  14. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    NASA Astrophysics Data System (ADS)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Gernhäuser, R.; Hess, H.; Lewandowski, L.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M.

    2017-02-01

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8° and 19.1°, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6° was determined for the same γ-ray energy.

  15. Image performance of a new amorphous selenium flat panel x-ray detector designed for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Cheung, L. K.; Jing, Z.; Bogdanovich, S.; Golden, K.; Robinson, S.; Beliaevskaia, E.; Parikh, S.

    2005-04-01

    The purpose of this work is to report the performance of an amorphous selenium (a-Se) based flat-panel x-ray imager under development for application in digital breast tomosynthesis. This detector is designed to perform both in the conventional Full Field Digital Mammography (FFDM) mode and the tomosynthesis mode. The large area 24 x 29 cm detector achieves rapid image acquisition rates of up to 4 frames per second with minimal trapped charge induced effects such as ghost or lag images of previously acquired objects. In this work, a new a-Se/TFT detector layer structure is evaluated. The design uses a top conductive layer in direct contact with the a-Se x-ray detection layer. The simple structure has few layers and minimal hole and electron trapping effects. Prototype detectors were built to investigate the basic image performance of this new a-Se/TFT detector. Image signal generation, image ghosting, image lag, and detector DQE were studied. For digital mammography applications, the residual image ghosting was less than 1% at 30 seconds elapsed time. DQE, measured at a field of 5.15 V/um, showed significantly higher values over previously reported data, especially at low exposure levels. For digital breast tomosynthesis, the image lag at dynamic readout rate was < 0.6 % at 0.5-second elapsed time. A prototype tomosynthesis system is being developed utilizing this new a-Se/TFT detector.

  16. Design, construction, and evaluation of new high resolution medical imaging detector/systems

    NASA Astrophysics Data System (ADS)

    Jain, Amit

    Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the

  17. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier

    NASA Astrophysics Data System (ADS)

    Ducote, Justin L.; Xu, Tong; Molloi, Sabee

    2007-01-01

    This study presents a comparison of dual-energy imaging with an x-ray image intensifier and flat-panel detector for cardiac imaging. It also investigates if the wide dynamic range of the flat-panel detector can improve dual-energy image quality while reducing patient dose. Experimental contrast-to-noise (CNR) measurements were carried out in addition to simulation studies. Patient entrance exposure and system tube loading were also recorded. The studied contrast objects were calcium and iodine. System performance was quantified with a figure-of-merit (FOM) defined as the image CNR2 over patient entrance exposure. The range of thickness studied was from 10 to 30 cm of Lucite (PMMA). Detector dose was initially set to 140 nGy (16 µR)/frame. The high-energy 120 kVp beam was filtered by an additional 0.8 mm silver filter. Keeping the same filament current, the kVp for the low-energy beam was adjusted as a function of thickness until 140 nGy was achieved. System performance was found to be similar for both systems, with the x-ray image intensifier performing better at lower thicknesses and the flat-panel detector performing better at higher thicknesses. This requirement of fixed detector entrance exposure was then relaxed and the kVp for the low-energy beam was allowed to vary while the mAs of the x-ray tube remained fixed to study changes in dual-energy image quality, patient dose and FOM with the flat-panel detector. It was found that as the kVp for the low-energy beam was reduced, system performance would rise until reaching a maximum while simultaneously lowering patient exposure. Suggested recommendations for optimal dual-energy imaging implementation are also provided.

  18. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier.

    PubMed

    Ducote, Justin L; Xu, Tong; Molloi, Sabee

    2007-01-07

    This study presents a comparison of dual-energy imaging with an x-ray image intensifier and flat-panel detector for cardiac imaging. It also investigates if the wide dynamic range of the flat-panel detector can improve dual-energy image quality while reducing patient dose. Experimental contrast-to-noise (CNR) measurements were carried out in addition to simulation studies. Patient entrance exposure and system tube loading were also recorded. The studied contrast objects were calcium and iodine. System performance was quantified with a figure-of-merit (FOM) defined as the image CNR(2) over patient entrance exposure. The range of thickness studied was from 10 to 30 cm of Lucite (PMMA). Detector dose was initially set to 140 nGy (16 microR)/frame. The high-energy 120 kVp beam was filtered by an additional 0.8 mm silver filter. Keeping the same filament current, the kVp for the low-energy beam was adjusted as a function of thickness until 140 nGy was achieved. System performance was found to be similar for both systems, with the x-ray image intensifier performing better at lower thicknesses and the flat-panel detector performing better at higher thicknesses. This requirement of fixed detector entrance exposure was then relaxed and the kVp for the low-energy beam was allowed to vary while the mAs of the x-ray tube remained fixed to study changes in dual-energy image quality, patient dose and FOM with the flat-panel detector. It was found that as the kVp for the low-energy beam was reduced, system performance would rise until reaching a maximum while simultaneously lowering patient exposure. Suggested recommendations for optimal dual-energy imaging implementation are also provided.

  19. Coded Mask Imaging of High Energy X-rays with CZT Detectors

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Dowkontt, P. F.; Duttweiler, F.; Heindl, W. A.; Hink, P. L.; Huszar, G. L.; Kalemci, E.; Leblanc, P. C.; Rothschild, R. E.; Skelton, R. T.; Slavis, K. R.; Stephan, E. A.

    1998-12-01

    Coded mask imagers are appropriate for important objectives of high energy X-ray astronomy, e.g., gamma- ray burst localization, all-sky monitors and surveys, and deep surveys of limited regions. We report results from a coded mask imager developed to establish the proof-of-concept for this technique with CZT detectors. The detector is 2 mm thick with orthogonal crossed strip readout and an advanced electrode design to improve the energy resolution. Each detector face has 22 strip electrodes, and the strip pitch and pixel size are 500 microns. ASIC readout is used and the energy resolution varies from 3 to 6 keV FWHM over the 14 to 184 keV keV range. A coded mask with 2 x 2 cycles of a 23 x 23 MURA pattern (860 micron unit cell) was built from 600 micron thick tantalum to provide good X-ray modulation up to 200 keV. The detector, mask, and a tiny Gd-153 source of 41 keV X-rays were positioned with a spacing that caused the mask cells in the shadowgram to have a projected size of 1300 microns at the detector. Multiple detector positions were used to measure the shadowgram of a full mask cycle and this was recorded with 100 percent modulation transfer by the detector, due to its factor of 2.6 oversampling of the mask unit cell, and very high strip-to-strip selectivity and spatial accuracy. Deconvolution of the shadowgram produced a correlation image in which the source was detected as a 76-sigma peak with the correct FWHM and base diameter. Off-source image pixels had gaussian fluctuations that agree closely with the measurement statistics. Off-source image defects such as might be produced by systematic effects were too small to be seen and limited to <0.5 percent of the source peak. These results were obtained with the "raw" shadowgram and image; no "flat fielding" corrections were used.

  20. Prospects of functional magnetic resonance imaging as lie detector

    PubMed Central

    Rusconi, Elena; Mitchener-Nissen, Timothy

    2013-01-01

    conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts. PMID:24065912

  1. Limitations of anti-scatter grids when used with high resolution image detectors

    PubMed Central

    Singh, V.; Jain, A.; Bednarek, D. R.; Rudin, S.

    2014-01-01

    Anti-scatter grids are used in fluoroscopic systems to improve image quality by absorbing scattered radiation. A stationary Smit Rontgen X-ray grid (line density: 70 lines/cm, grid ratio: 13:1) was used with a flat panel detector (FPD) of pixel size 194 micron and a high-resolution CMOS detector, the Dexela 1207 with pixel size of 75 microns. To investigate the effectiveness of the grid, a simulated artery block was placed in a modified uniform frontal head phantom and imaged with both the FPD and the Dexela for an approximately 15 × 15 cm field of view (FOV). The contrast improved for both detectors with the grid. The contrast-to-noise ratio (CNR) does not increase as much in the case of the Dexela as it improves in the case of the FPD. Since the total noise in a single frame increases substantially for the Dexela compared to the FPD when the grid is used, the CNR is degraded. The increase in the quantum noise per frame would be similar for both detectors when the grid is used due to the attenuation of radiation, but the fixed pattern noise caused by the grid was substantially higher for the Dexela compared to the FPD and hence caused a severe reduction of CNR. Without further corrective methods this grid should not be used with high-resolution fluoroscopic detectors because the CNR does not improve significantly and the visibility of low contrast details may be reduced. Either an anti-scatter grid of different design or an additional image processing step when using a similar grid would be required to deal with the problem of scatter for high resolution detectors and the structured noise of the grid pattern. PMID:25309101

  2. Limitations of anti-scatter grids when used with high resolution image detectors

    NASA Astrophysics Data System (ADS)

    Singh, V.; Jain, A.; Bednarek, D. R.; Rudin, S.

    2014-03-01

    Anti-scatter grids are used in fluoroscopic systems to improve image quality by absorbing scattered radiation. A stationary Smit Rontgen X-ray grid (line density: 70 lines/cm, grid ratio: 13:1) was used with a flat panel detector (FPD) of pixel size 194 micron and a high-resolution CMOS detector, the Dexela 1207 with pixel size of 75 microns. To investigate the effectiveness of the grid, a simulated artery block was placed in a modified uniform frontal head phantom and imaged with both the FPD and the Dexela for an approximately 15 x 15 cm field of view (FOV). The contrast improved for both detectors with the grid. The contrast-to-noise ratio (CNR) does not increase as much in the case of the Dexela as it improves in the case of the FPD. Since the total noise in a single frame increases substantially for the Dexela compared to the FPD when the grid is used, the CNR is degraded. The increase in the quantum noise per frame would be similar for both detectors when the grid is used due to the attenuation of radiation, but the fixed pattern noise caused by the grid was substantially higher for the Dexela compared to the FPD and hence caused a severe reduction of CNR. Without further corrective methods this grid should not be used with high-resolution fluoroscopic detectors because the CNR does not improve significantly and the visibility of low contrast details may be reduced. Either an anti-scatter grid of different design or an additional image processing step when using a similar grid would be required to deal with the problem of scatter for high resolution detectors and the structured noise of the grid pattern.

  3. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Aulchenko, V.; Pruuel, E.; Shekhtman, L.; Ten, K.; Tolochko, B.; Zhulanov, V.

    2017-02-01

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1-10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 106 photons/channel where channel area is 0.05×0.5 mm2 and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 106 photons/channel, with signal to noise ratio of ∼103, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 104 or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  4. Improving x-ray image resolution using subpixel shifts of the detector

    NASA Astrophysics Data System (ADS)

    Bruandet, Jean-Pierre; Dinten, Jean-Marc

    1999-05-01

    The resolution of digitized images is linked to the detector array pixel size. Aliasing effects result from a non- adequation between the detector sampling and the signal bandwidths. The aim of this study is to develop a super- resolution algorithm for X-ray images. Our technique uses controlled horizontal and vertical subpixel shifts. Generalized sampling theorem of Papoulis, based on a multichannel approach, is the theoretical justification for the recovery of a high resolution image thanks to a set of low resolution ones. A higher resolution image is recovered by a minimization of a quadratic criterion. An iterative relaxation method is used to compute the minimum. To regularize, a priori data about the signal are introduced in order to fight against noise effects. Because of the opposite effects of regularization and super-resolution an adapted regularization that preserves discontinuities has to be used. Results obtained show that our algorithm recovers high frequency components on X-ray images without noise amplification. An analysis of real acquisitions in terms of modulation transfer function (MTF) shows that we obtain, thanks to this method, a 'virtual' detector better than a low resolution one, and equivalent to a real high resolution one.

  5. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  6. Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Schyns, L. E. J. R.; Ludwig, D.; Jakubek, J.; Le Pape, A.; Sefc, L.; Lotte, S.; Sykora, V.; Turecek, D.; Uher, J.; Verhaegen, F.

    2017-01-01

    The tissue type resolving X-ray radiography and tomography can be performed even without contrast agents. The differences between soft tissue types such as kidney, muscles, fat, liver, brain and spleen were measured based on their spectral response. The Timepix based X-ray imaging detector WidePIX2×5 with 300 μm thick silicon sensors was used for most of the measurements presented in this work. These promising results are used for further optimizations of the detector technology and radiographic methods.

  7. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  8. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  9. Material specific X-ray imaging using an energy-dispersive pixel detector

    NASA Astrophysics Data System (ADS)

    Egan, Christopher K.; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Jacques, Simon D. M.; Cernik, Robert J.

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  10. Noninvasive imaging of coronary arteries: current and future role of multi-detector row CT.

    PubMed

    Schoenhagen, Paul; Halliburton, Sandra S; Stillman, Arthur E; Kuzmiak, Stacie A; Nissen, Steven E; Tuzcu, E Murat; White, Richard D

    2004-07-01

    While invasive imaging techniques, especially selective conventional coronary angiography, will remain vital to planning and guiding catheter-based and surgical treatment of significantly stenotic coronary lesions, the comprehensive and serial assessment of asymptomatic or minimally symptomatic stages of coronary artery disease (CAD) for preventive purposes will eventually need to rely on noninvasive imaging techniques. Cardiovascular imaging with tomographic modalities, including computed tomography (CT) and magnetic resonance imaging, has great potential for providing valuable information. This review article will describe the current and future role of cardiac CT, and in particular that of multi-detector row CT, for imaging of atherosclerotic and other pathologic changes of the coronary arteries. It will describe how tomographic coronary imaging may eventually supplement traditional angiographic techniques in understanding the patterns of atherosclerotic CAD development.

  11. A generic FPGA-based detector readout and real-time image processing board

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.

  12. Development of a novel radiation imaging detector system for in vivo gene imaging in small animal studies

    SciTech Connect

    Weisenberger, A.G. |; Bradley, E.L.; Saha, M.S.; Majewski, S.

    1998-06-01

    The authors report preliminary results from a prototype of radiation imaging technology which takes advantage of the emission properties of the radioisotope iodine 125 ({sup 125}I) as the probe. The detector system utilizes crystal scintillators and a position sensitive photomultiplier tube. Iodine 125 decays via electron capture emitting a 35-keV gamma ray with the prompt emission of several 27-32-keV {Kappa} {alpha} and {Kappa} {beta} shell X rays. Because of this, a coincidence condition can be set to detect the {sup 125}I decay, thus reducing background radiation contribution to the image. The prototype detector the authors report has a limited sensitivity and detection area because of the size of the scintillators and photomultiplier tubes, yet it performed well enough to demonstrate the viability of this method for imaging {sup 125}I in a mouse. Mouse imaging studies of iodine uptake by the thyroid and melatonin binding have been done with this detector system using doses of {sup 125}I alone or attached to the melatonin. Many studies in molecular biology follow the expression and regulation of a gene at different stages of an organism`s development or under different physiological conditions. Molecular biology research could benefit from this detection system by utilizing {sup 125}I-labeled gene probes.

  13. Design and First Results of the CoDeX Liquid-Xenon Compton-Imaging Detector

    NASA Astrophysics Data System (ADS)

    Tennyson, Brian; Cahn, Sidney; Bernard, Ethan; Boulton, Elizabeth; Destefano, Nicholas; Edwards, Blair; Hackenburg, Ariana; Horn, Markus; Larsen, Nicole; Nikkel, James; Wahl, Christopher; Gai, Moshe; McKinsey, Daniel

    2016-03-01

    CoDeX (Compton-imaging Detector in Xenon) is an R&D Compton gamma-ray imaging detector that uses 30 kg of xenon in a two-phase time projection chamber. Time projection relative to the initial scintillation signal provides the vertical interaction positions, and either PMT-sensed gas electroluminescence or a charge-sensitive amplifier quantifies the drifted ionization signal. Detector features to enable Compton imaging are a pair of instrumented wire grids added to sense the horizontal position of clouds of drifted electrons that traverse the detector. Each wire is individually amplified in the cold xenon environment. Design choices addressing the thermodynamic and xenon purity constraints of this system will be discussed. We will also discuss the mechanical designs, engineering challenges, and performance of this Compton-imaging detector.

  14. Preliminary Performance of CdZnTe Imaging Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Ramsey, B.; Sharma, D. P.; Meisner, J.; Gostilo, V.; Ivanov, V.; Loupilov, A.; Sokolov, A.; Sipila, H.

    1999-01-01

    The promise of good energy and spatial resolution coupled with high efficiency and near-room-temperature operation has fuelled a large International effort to develop Cadmium-Zinc-Telluride (CdZnTe) for the hard-x-ray region. We present here preliminary results from our development of small-pixel imaging arrays fabricated on 5x5x1-mm and 5x5x2-mm spectroscopy and discriminator-grade material. Each array has 16 (4x4) 0.65-mm gold readout pads on a 0.75-mm pitch, with each pad connected to a discrete preamplifier via a pulse-welded gold wire. Each array is mounted on a 3-stage Peltier cooler and housed in an ion-pump-evacuated housing which also contains a hybrid micro-assembly for the 16 channels of electronics. We have investigated the energy resolution and approximate photopeak efficiency for each pixel at several energies and have used an ultra-fine beam x-ray generator to probe the performance at the pixel boundaries. Both arrays gave similar results, and at an optimum temperature of -20 C we achieved between 2 and 3% FWHM energy resolution at 60 keV and around 15% at 5.9 keV. We found that all the charge was contained within 1 pixel until very close to the pixels edge, where it would start to be shared with its neighbor. Even between pixels, all the charge would be appropriately shared with no apparently loss of efficiency or resolution. Full details of these measurements will be presented, together with their implications for future imaging-spectroscopy applications.

  15. The iQID camera: An ionizing-radiation quantum imaging detector.

    PubMed

    Miller, Brian W; Gregory, Stephanie J; Fuller, Erin S; Barrett, Harrison H; Barber, H Bradford; Furenlid, Lars R

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  16. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  17. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    SciTech Connect

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.

  18. The iQID camera: An ionizing-radiation quantum imaging detector

    NASA Astrophysics Data System (ADS)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R.

    2014-12-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  19. Elemental contrast imaging with a polychromatic laboratory x-ray source using energy-discriminating detectors

    NASA Astrophysics Data System (ADS)

    Yokhana, Viona S. K.; Arhatari, Bendicta D.; Gureyev, Timur E.; Abbey, Brian

    2016-11-01

    Determining the specific spatial distributions of elements within compound samples is of critical importance to a range of applied research fields. The usual approaches to obtaining elemental contrast involve measurement of the characteristic peaks associated with x-ray fluorescence or measuring the x-ray transmission as a function of energy. In the laboratory these measurements are challenging due to the polychromaticity and lack of tunability of the source. Here we demonstrate how newly developed, high-resolution, energy-discriminating area detector technology can be exploited to enhance elemental contrast. The detector we employ here is the Pixirad area detector which can simultaneously have up to four separate colour channels. We also discuss the potential of this new technology in the context of tomographic imaging of soft tissue.

  20. Biomedical imaging with the Medipix2 semiconductor detector at UniAndes

    NASA Astrophysics Data System (ADS)

    Caicedo, I.; Avila, C.; Gomez, B.; Bula, C.; Roa, C.; Sanabria, J.

    2012-02-01

    A set-up for X-Ray Imaging was developed using a Medipix2 MXR detector, a PHYWE X-Ray Unit, and a Step Motor as sample holder. An equalization and raw acquisitions were also performed. As the Beam Hardening effect arose in the radiographies, it was necessary to correct the images through a Direct Thickness Calibration. The result was the acquisition of high resolution (~μm) images from 10 to 35 keV with small exposure times. After the characterization of the set-up, it was used to image motionless and living tissue. Its feasibility to image samples bigger than its sensitive part and to use it for vascular imaging was also studied. Some of the tests were validated using Monte Carlo simulations (ROSI). The high granularity of the detector makes it suitable for micro-CT. Medipix2 has a very fast response (~ hundreds of nanoseconds) and high sensibility. These features allow obtaining nearly in-vivo high resolution (55μm* 55μm) images.

  1. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector

    PubMed Central

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M.; Hobson, Peter A.; Gibson, Graham M.; Padgett, Miles J.; Hendry, Euan

    2016-01-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm2) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging. PMID:27386577

  2. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  3. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  4. Diagnostic and quality-assurance tools for low-contrast images obtained from array detectors

    NASA Technical Reports Server (NTRS)

    Hatfield, D. B.; Sandel, Bill R.

    1993-01-01

    We investigate methods of estimating a background image frame for subtraction from a data frame for use when a more suitable measured background frame is not available. We define background as any signal component that is not attributable to the phenomenon currently under investigation. We describe a technique that is based on pixel-by-pixel least-squares regression of images for computing a background frame from available data. We argue that the same technique can be a useful quality-assurance tool for evaluating instrument performance. For example, it can help to separate image structure resulting from the reading process from structure resulting from the characteristics of the detector itself. We demonstrate that background estimation can be nontrivial by comparing the results of different background estimation procedures by using data obtained from a CCD array detector. We investigate the temperature-dependent contributions of the detector and readout electronics to the total signal as a demonstration of the diagnostic capabilities of least-squares image regression.

  5. Soft x-ray submicron imaging detector based on point defects in LiF

    SciTech Connect

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.; Flora, F.; Di Lazzaro, P.; Lai, A.; Marolo, T.; Montereali, R.M.; Murra, D.; Faenov, A.; Pikuz, T.; Nichelatti, E.; Tomassetti, G.; Reale, A.; Reale, L.; Ritucci, A.; Limongi, T.; Palladino, L.; Francucci, M.; Martellucci, S.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. This high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.

  6. New design of a gamma camera detector with reduced edge effect for breast imaging

    NASA Astrophysics Data System (ADS)

    Yeon Hwang, Ji; Lee, Seung-Jae; Baek, Cheol-Ha; Hyun Kim, Kwang; Hyun Chung, Yong

    2011-05-01

    In recent years, there has been a growing interest in developing small gamma cameras dedicated to breast imaging. We designed a new detector with trapezoidal shape to expand the field of view (FOV) of camera without increasing its dimensions. To find optimal parameters, images of point sources at the edge area as functions of the angle and optical treatment of crystal side surface were simulated by using a DETECT2000. Our detector employs monolithic CsI(Tl) with dimensions of 48.0×48.0×6.0 mm coupled to an array of photo-sensors. Side surfaces of crystal were treated with three different surface finishes: black absorber, metal reflector and white reflector. The trapezoidal angle varied from 45° to 90° in steps of 15°. Gamma events were generated on 15 evenly spaced points with 1.0 mm spacing in the X-axis starting 1.0 mm away from the side surface. Ten thousand gamma events were simulated at each location and images were formed by calculating the Anger-logic. The results demonstrated that all the 15 points could be identified only for the crystal with trapezoidal shape having 45° angle and white reflector on the side surface. In conclusion, our new detector proved to be a reliable design to expand the FOV of small gamma camera for breast imaging.

  7. Using compressive sensing to recover images from PET scanners with partial detector rings

    SciTech Connect

    Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama

    2015-01-15

    Purpose: Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors’ aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. Methods: A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CS model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 °, 90 °, 180 °, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images

  8. A multi-stage image charge detector made from printed circuit boards.

    PubMed

    Barney, Brandon L; Daly, R Terik; Austin, Daniel E

    2013-11-01

    We present the first reported instance of an image-charge detector for charged particles in which detection elements are patterned onto printed circuit boards. In contrast to conventional techniques involving separately machined and positioned segments of metal tubing, this technique is much simpler to assemble, align, and connect to electrical wiring, with no loss in sensitivity. The performance of single-stage and 5-stage charge detectors is demonstrated using electrospray-charged, micrometer-size polystyrene spheres. Both velocity and charge of each particle are measured. Multiple detection stages--which require no extra effort to pattern or setup compared with a single stage--result in an ensemble averaging effect, improving the detection limit over what can be achieved with a single-stage detector. A comparison is made between the printed circuit board detector and a conventional tubular charge detector and found to be statistically equivalent. These results demonstrate and illustrate that devices for detection, analysis, and/or manipulation of charged particles and ions can be made using printed circuit boards rather than using separately fabricated metal electrodes.

  9. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  10. Entrance window design parameters for high-pressure gas x-ray imaging detectors.

    PubMed

    Jordan, L M; Dibianca, F A

    1995-01-01

    Gas ionization x-ray detectors operating at pressures up to 100 atm offer inherently high spatial and contrast resolution. However, incorporating the detector x-ray entrance window in a conventional pressure vessel designed for such pressures can result in high primary beam loss in the window and a much reduced overall detective quantum efficiency. The design of a gas chamber cover plate for a strip beam detector which mechanically isolates the x-ray entrance window from the lateral tensile stresses in the chamber body is described. A number of test windows of this design, varying in three geometric parameters-thickness, window curvature, and fillet radius-were fabricated from wrought aluminum [6061-T651 ] and subjected to pressures of up to 400 atm for the purpose of selecting an optimum window for a prototype digital x-ray imaging detector. The experimental data indicate that windows can be designed for a detector admitting a 1.0 cm wide x-ray beam that have rupture pressures exceeding 500 atm while maintaining x-ray transmittances of as much as 93.4% for a 120 kVp tungsten anode spectrum.

  11. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    PubMed Central

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-01

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast. PMID:28146088

  12. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector.

    PubMed

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-30

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast.

  13. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  14. The Belle II imaging Time-of-Propagation (iTOP) detector

    DOE PAGES

    Fast, J.

    2017-02-16

    High precision flavor physics measurements are an essential complement to the direct searches for new physics at the LHC ATLAS and CMS experiments. We will perform these measurements using the upgraded Belle II detector that will take data at the SuperKEKB accelerator. With 40x the luminosity of KEKB, the detector systems must operate efficiently at much higher rates than the original Belle detector. A central element of the upgrade is the barrel particle identification system. Belle II has built and installed an imaging-Time-of-Propagation (iTOP) detector. The iTOP uses quartz optics as Cherenkov radiators. The photons are transported down the quartzmore » bars via total internal reflection with a spherical mirror at the forward end to reflect photons to the backward end where they are imaged onto an array of segmented Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMTs). The system is read out using giga-samples per second waveform sampling Application-Specific Integrated Circuits (ASICs). Furthermore, we used the combined timing and spatial distribution of the photons for each event to determine particle species. This paper provides an overview of the iTOP system.« less

  15. Research on infrared-image denoising algorithm based on the noise analysis of the detector

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli

    2005-01-01

    Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.

  16. Micro-pattern gas detectors for digital radiography

    NASA Astrophysics Data System (ADS)

    Altunbas, Mustafa Cem

    The gas proportional counter technology has seen vast changes in the last decade and has lead to the introduction of micro-pattern gas detectors that offer much more improved x-ray counting rate capability and better position resolution than traditional wire chambers. In this study, we investigated the Gas Electron Multiplier, a member of micro-pattern gas detector generation, as an energy sensitive, single photon-counting x-ray detector for digital radiography. We built a high pressure detector with two cascaded Gas Electron Multipliers to evaluate its performance characteristics in Neon, Argon, Krypton and Xenon mixtures. The determination of detector gain as a function of pressure and the filling gas formed the major part of this evaluation. In the second part of the study, we employed position sensitive electronics to demonstrate the imaging capability of the detector. For the first time, we acquired 2D images and examined the spatial resolution of the detector for Krypton and Xenon mixtures as a function of gas pressure using double and quadruple GEM configurations up to 7 atmospheres gas pressure. Besides the experimental studies, we constructed a theoretical model based on the Cascaded Linear Systems approach to study the imaging performance of single photon counting gas detectors. In the model, we gave the emphasis to the intrinsic properties of the gas absorber; therefore we considered the contribution of quantum efficiency, primary electron range and reabsorption of K fluorescence photons on detector MTF and DQE.

  17. LiF crystals as high spatial resolution neutron imaging detectors

    NASA Astrophysics Data System (ADS)

    Matsubayashi, M.; Faenov, A.; Pikuz, T.; Fukuda, Y.; Kato, Y.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.

    2011-09-01

    Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.

  18. Multiple-image encryption scheme with a single-pixel detector

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Liu, Xuemei; Zhou, Xin; Li, Zhongyang

    2016-08-01

    A multiple-image encryption (MIE) scheme with a single-pixel detector has been proposed according to the principle of ghost imaging. In this scheme, each of the spatially coherent laser beams is modified by a set of phase-mask keys and illuminates on a secret image. All of the transmitted lights are recorded together by a single-pixel (bucket) detector to obtain a ciphertext, but anyone of the secret images can be decrypted from the ciphertext independently without any mutually overlapped despite some noise in them. The MIE scheme will bring convenience for data storage and transmission, especially in the case that different secret images need to be distributed to different authorized users, because the ciphertext is a real-valued function and this scheme can effectively avoid the secret images being extracted mutually. The basic principle of the MIE scheme is described theoretically and verified by computer simulations. Finally, the feasibility, robustness and encryption capacity are also tested numerically.

  19. Using image simulation to test the effect of detector type on breast cancer detection

    NASA Astrophysics Data System (ADS)

    Mackenzie, Alistair; Warren, Lucy M.; Dance, David R.; Chakraborty, Dev P.; Cooke, Julie; Halling-Brown, Mark D.; Looney, Padraig T.; Wallis, Matthew G.; Given-Wilson, Rosalind M.; Alexander, Gavin G.; Young, Kenneth C.

    2014-03-01

    Introduction: The effect that the image quality associated with different image receptors has on cancer detection in mammography was measured using a novel method for changing the appearance of images. Method: A set of 270 mammography cases (one view, both breasts) was acquired using five Hologic Selenia and two Hologic Dimensions X-ray sets: 160 normal cases, 80 cases with subtle real non-calcification malignant lesions and 30 cases with biopsy proven benign lesions. Simulated calcification clusters were inserted into half of the normal cases. The 270 cases (Arm 1) were converted to appear as if they had been acquired on three other imaging systems: caesium iodide detector (Arm 2), needle image plate computed radiography (CR) (Arm 3) and powder phosphor CR (Arm 4). Five experienced mammography readers marked the location of suspected cancers in the images and classified the degree of visibility of the lesions. Statistical analysis was performed using JAFROC. Results: The differences in the visibility of calcification clusters between all pairs of arms were statistically significant (p<0.05), except between Arms 1 and 2. The difference in the visibility of non-calcification lesions was smaller than for calcification clusters, but the differences were still significant except between Arms 1 and 2 and between Arms 3 and 4. Conclusion: Detector type had a significant impact on the visibility of all types of subtle cancers, with the largest impact being on the visibility of calcification clusters.

  20. [Physical imaging properties of a flat panel X-ray detector system].

    PubMed

    Yoshida, Akira; Nakamura, Satoru; Nishihara, Sadamitsu; Kohama, Chiyuki; Takahata, Akira; Fujikawa, Kouichi

    2002-01-01

    We report the physical imaging properties of a flat panel detector (FPD) designed for radiographic imaging applications (Revolution XQ/i digital chest imaging system, G.E. Medical Systems). The imaging properties of the detector were evaluated through measurements of the characteristic curve, modulation transfer function (MTF), and Wiener spectrum. The digital characteristic curves of the FPD system were measured for the two tube voltages (80 kV and 120 kV). They showed that the correlation between the pixel values of FPD and the incident exposure to the FPD was a linear correlation. The dynamic range of characteristic curves had a range from about 0.003 to 2 microC/kg at the exposure. The presampling MTFs for different tube voltage were almost the same, when we measured the MTFs at 80 kV and 120 kV. And also, there was no significant difference between the MTFs measured with the slit in the direction parallel to the horizontal direction and with the slit in the perpendicular direction. The relative resolution of the FPD system was a 46% higher than that of ST-V imaging plate of FCR (Fuji Computed Radiography) system at 2 cycles/mm. The digital Wiener spectrum of the FPD system was about 1/10 lower than that of the CR system. Thus the FPD system can provide superior imaging performance due to both high resolution and low noise.

  1. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  2. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  3. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

    NASA Astrophysics Data System (ADS)

    Ballabriga, R.; Alozy, J.; Campbell, M.; Frojdh, E.; Heijne, E. H. M.; Koenig, T.; Llopart, X.; Marchal, J.; Pennicard, D.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.; Zuber, M.

    2016-01-01

    Semiconductor detector readout chips with pulse processing electronics have made possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and, in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this contribution we review the state of the art in semiconductor-detector readout ASICs for spectroscopic X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power consumption density) are addressed by the various ASICs. In order to understand the fundamental limits of the technology, the physics of the interaction of radiation with the semiconductor detector and the process of signal induction in the input electrodes of the readout circuit are described. Simulations of the process of signal induction are presented that reveal the importance of making use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the measured spectrum with relatively short values of the shaper peaking time. Simulations also show, on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3 ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam can be recovered by the implementation in hardware of an algorithm whereby the signal from a single photon is reconstructed and allocated to the pixel with the largest deposition.

  4. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  5. Comparison of LSO and BGO block detectors for prompt gamma imaging in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Biegun, A. K.; Dendooven, P.; Enghardt, W.; Fiedler, F.; Golnik, C.; Heidel, K.; Kormoll, T.; Petzoldt, J.; Römer, K. E.; Schwengner, R.; Wagner, A.; Pausch, G.

    2015-09-01

    A major weakness of ion beam therapy is the lack of tools for verifying the particle range in clinical routine. The application of the Compton camera concept for the imaging of prompt gamma rays, a by-product of the irradiation correlated to the dose distribution, is a promising approach for range assessment and even three-dimensional in vivo dosimetry. Multiple position sensitive gamma ray detectors arranged in scatter and absorber planes, together with an imaging algorithm, are required to reconstruct the prompt gamma emission density map. Conventional block detectors deployed in Positron Emission Tomography (PET), which are based on Lu2SiO5:Ce (LSO) and Bi4Ge3O12 (BGO) scintillators, are suitable candidates for the absorber of a Compton camera due to their high density and absorption efficiency with respect to the prompt gamma energy range (several MeV). We compare experimentally LSO and BGO block detectors in clinical-like radiation fields in terms of energy, spatial and time resolution. The high energy range compensates for the low light yield of the BGO material and boosts significantly its performance compared to the PET scenario. Notwithstanding the overall superiority of LSO, BGO catches up in the field of prompt gamma imaging and can be considered as a competitive alternative to LSO for the absorber plane due to its lower price and the lack of intrinsic radioactivity.

  6. High Spatial Resolution Investigations of Microchannel Plate Imaging Properties for UV Detectors

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald

    1996-01-01

    Microchannel plate (MCP) photon counting detectors are currently being used with great success on many of the recent NASA/ESA ultraviolet (UV) astrophysics missions that make observations in the 1OO A - 1600 A range. These include HUT, the Wide Field Camera on ROSAT, EUVE, ALEXIS, ORFEUS, and SOHO. These devices have also been chosen to fly on future UV astrophysics missions such as FUSE, FUVITA, IMAGE, and both the HST STIS and Advanced Camera instruments. During the period of this award we have fabricated a dual-chamber vacuum test facility to carry out laboratory testing of detector resolution, image stability and linearity, and flat field performance to enable us to characterize the performance of MCPs and their associated read-out architectures. We have also fabricated and tested a laboratory 'test-bed' delay line detector, which can accommodate MCP's with a wide range of formats and run at high data rates, to continue our studies of MCP image fixed pattern noise, and particularly for new small pore MCP's which have recently come onto the market. These tests were mainly focussed on the assessment of cross delay-line (XDL) and double delay line (DDL) anode read-out schemes, with particular attention being focussed on flat-field and spatial resolution performance.

  7. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation.

    PubMed

    Ning, R; Chen, B; Yu, R; Conover, D; Tang, X; Ning, Y

    2000-09-01

    Preliminary evaluation of recently developed large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high detective quantum efficiency (DQE), high frame rate and high dynamic range, small image lag (< 1%), and excellent linearity (approximately 1%). The advantages of the new FPD make it a promising candidate for cone-beam volume computed tomography (CT) angiography (CBVCTA) imaging. The purpose of this study is to characterize a prototype FPD-based imaging system for CBVCTA applications. A prototype FPD-based CBVCTA imaging system has been designed and constructed around a modified GE 8800 CT scanner. This system is evaluated for a CBVCTA imaging task in the head and neck using four phantoms and a frozen rat. The system is first characterized in terms of linearity and dynamic range of the detector. Then, the optimal selection of kVps for CBVCTA is determined and the effect of image lag and scatter on the image quality of the CBVCTA system is evaluated. Next, low-contrast resolution and high-contrast spatial resolution are measured. Finally, the example reconstruction images of a frozen rat are presented. The results indicate that the FPD-based CBVCT can achieve 2.75-lp/mm spatial resolution at 0% modulation transfer function (MTF) and provide more than enough low-contrast resolution for intravenous CBVCTA imaging in the head and neck with clinically acceptable entrance exposure level. The results also suggest that to use an FPD for large cone-angle applications, such as body angiography, further investigations are required.

  8. A quantitative study of the orientation bias of some edge detector schemes. [in ERTS satellite image processing

    NASA Technical Reports Server (NTRS)

    Deutsch, E. S.; Fram, J. R.

    1978-01-01

    The article discusses the orientational biases of various edge detection methods. On the basis of ERTS satellite images, three methods are compared: (1) Heuckel's local visual operator (1973), (2) Macleod's Gaussian edge mask detector (1972), and (3) Rosenfeld's local difference calculations (1971). The results yielded by these techniques are compared to the method for quantifying edge detector performance developed by Herskovits (1970).

  9. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.

    PubMed

    Cowen, A R; Davies, A G; Sivananthan, M U

    2008-10-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design.

  10. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    PubMed

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  11. A new pad-based neutron detector for stereo coded aperture thermal neutron imaging

    NASA Astrophysics Data System (ADS)

    Dioszegi, I.; Yu, B.; Smith, G.; Schaknowski, N.; Fried, J.; Vanier, P. E.; Salwen, C.; Forman, L.

    2014-09-01

    A new coded aperture thermal neutron imager system has been developed at Brookhaven National Laboratory. The cameras use a new type of position-sensitive 3He-filled ionization chamber, in which an anode plane is composed of an array of pads with independent acquisition channels. The charge is collected on each of the individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The new design has several advantages for coded-aperture imaging applications in the field, compared to the previous generation of wire-grid based neutron detectors. Among these are its rugged design, lighter weight and use of non-flammable stopping gas. The pad-based readout occurs in parallel circuits, making it capable of high count rates, and also suitable to perform data analysis and imaging on an event-by-event basis. The spatial resolution of the detector can be better than the pixel size by using a charge sharing algorithm. In this paper we will report on the development and performance of the new pad-based neutron camera, describe a charge sharing algorithm to achieve sub-pixel spatial resolution and present the first stereoscopic coded aperture images of thermalized neutron sources using the new coded aperture thermal neutron imager system.

  12. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging.

    PubMed

    Uche, C Z; Round, W H; Cree, M J

    2012-09-01

    We present a study on the effects of detector material, radionuclide source and source position on the Compton camera aimed at realistic characterization of the camera's performance in multitracer imaging as it relates to brain imaging. The GEANT4 Monte Carlo simulation software was used to model the physics of radiation transport and interactions with matter. Silicon (Si) and germanium (Ge) detectors were evaluated for the scatterer, and cadmium zinc telluride (CZT) and cerium-doped lanthanum bromide (LaBr(3):Ce) were considered for the absorber. Image quality analyses suggest that the use of Si as the scatterer and CZT as the absorber would be preferred. Nevertheless, two simulated Compton camera models (Si/CZT and Si/LaBr(3):Ce Compton cameras) that are considered in this study demonstrated good capabilities for multitracer imaging in that four radiotracers within the nuclear medicine energy range are clearly visualized by the cameras. It is found however that beyond a range difference of about 2 cm for (113m)In and (18)F radiotracers in a brain phantom, there may be a need to rotate the Compton camera for efficient brain imaging.

  13. Threshold contrast detail detectability measurement of the fluoroscopic image quality of a dynamic solid-state digital x-ray image detector.

    PubMed

    Davies, A G; Cowen, A R; Kengyelics, S M; Bury, R F; Bruijns, T J

    2001-01-01

    Solid-state digital x-ray imaging detectors of flat-panel construction will play an increasingly important role in future medical imaging facilities. Solid-state detectors that will support both dynamic (including fluoroscopic) and radiographic image recording are under active development. The image quality of an experimental solid-state digital x-ray image detector operating in a continuous fluoroscopy mode has been investigated. The threshold contrast detail detectability (TCDD) technique was used to compare the fluoroscopic imaging performance of an experimental dynamic solid-state digital x-ray image detector with that of a reference image intensifier television (IITV) fluoroscopy system. The reference system incorporated Plumbicon TV. Results were presented as a threshold detection index, or H(T)(A), curves. Measurements were made over a range of mean entrance air kerma (EAK) rates typically used in conventional IITV fluoroscopy. At the upper and mid EAK rate range (440 and 220 nGy/s) the solid-state detector outperformed the reference IITV fluoroscopy system as measured by TCDD performance. At the lowest measured EAK rate (104 nGy/s), the solid-state detector produces slightly inferior TCDD performance compared with the reference system. Although not statistically significant at this EAK rate, the difference will increase as EAK is lowered further. Overall the TCDD results and early clinical experiences support the proposition that a current design of dynamic solid-state detector produces image quality competitive with that of modern IITV fluoroscopy systems. These findings encourage the development of compact and versatile universal x-ray imaging systems based upon solid-state detector technology to support R & F and vascular/interventional applications.

  14. Image quality of a prototype direct conversion detector for digital mammography

    NASA Astrophysics Data System (ADS)

    Mainprize, James G.; Ford, Nancy L.; Yin, Shi; Tumer, Tumay O.; Yaffe, Martin J.

    1999-05-01

    A digital mammography system in which the x-ray sensitive device is a solid-state direct conversion detector is under development. This detector is a 1 mm thick silicon photodiode array hybridized to a CCD read-out, with a 50 micrometer pixel pitch. The detector is designed to be used in a slot-scanned system using time-delay integration (TDI) for signal acquisition. To handle the large signal generated in the photodiode, a novel read-out technique was used, in which charge was integrated 'on-chip' over a small number of rows, and the output of each of these sections was digitally summed 'off-chip' to produce the total integrated signal for each pixel in the image. This two-stage integration process not only allows easy acquisition of large signals, it effectively increases bit depth from 12 bits (for a single section) to approximately 16 (for the total integrated signal). The image quality of the device has been measured and compared to predictions based on cascaded linear systems theory. The resolution of the new detector was determined from the modulation transfer function (MTF) which was obtained from over-sampled edge spread functions (ESF). The ESF was measured in both the scan and slot directions from four repeated images of a tantalum edge. Noise power spectra (NPS) were determined from 40 repeated flat-field images at each of several x-ray exposures. By combining the MTF and NPS measurements, the detective quantum efficiency (DQE) was also determined. The MTF in the non-scanned direction was found to greater than 20% at 10 mm-1 and slightly lower in the scanned direction (approximately equals 10% at 10 mm-1). In all cases, the DQE was at least comparable to film-screen mammography receptors. The DQE at 120 mR detector exposure at zero spatial frequency ranged from 0.4 to 0.6 depending on the sample tested. Electronic noise was fairly low, contributing to less than plus or minus 7 ADU (out of a possible 98304 ADU). Future work will involve re-designing the

  15. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging

    SciTech Connect

    Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre; Guise, Jacques A. de

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected by the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.

  16. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging.

    PubMed

    Després, Philippe; Beaudoin, Gilles; Gravel, Pierre; de Guise, Jacques A

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected by the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm(-1)) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 microGy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.

  17. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    SciTech Connect

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-05-15

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

  18. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  19. The iQID camera: An ionizing-radiation quantum imaging detector

    PubMed Central

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2015-01-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector’s response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications. PMID:26166921

  20. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity

  1. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  2. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  3. Wavelength-Shifting-Fiber Scintillation Detectors for Thermal Neutron Imaging at SNS

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Lowell; Diawara, Yacouba; Ellis, E Darren; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A; Wang, Cai-Lin

    2012-01-01

    We have developed wavelength-Shifting-fiber Scintillator Detector (SSD) with 0.3 m2 area per module. Each module has 154 x 7 pixels and a 5 mm x 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme was used to record the neutron events. A channel read-out-card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using pulse-shape discrimination (PSD). A sandwich flat-scintillator detector can have detection efficiency close to He-3 tubes (about 10 atm). A single layer flat-scintillator detector has count rate capability of 6,500 cps/cm2, which is acceptable for powder diffractometers at SNS.

  4. Atmospheric measurements by Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    2010-05-01

    Results of the first two experiments using semiconductor pixel detectors of the Medipix family for cosmic ray imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an "active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of similar duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere below 24km altitude on 11th October 2009. This balloon platform is quite ideal for such in-situ measurements. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eurolaunch - Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, also testing proper detector calibration by detecting fluxes of ionizing radiation, while evaluating instrumentation endurance and performance.

  5. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    SciTech Connect

    Otte, A. N.; Williams, D. A.; Byrum, K.; Drake, G.; Horan, D.; Smith, A.; Wagner, R. G.; Falcone, A.; Funk, S.; Tajima, H.; Mukherjee, R.

    2008-12-24

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  6. A space qualified thermal imaging system using a Pt Si detector array

    NASA Technical Reports Server (NTRS)

    Astheimer, Robert W.

    1989-01-01

    EDO Corporation, Barnes Engineering Division designed and constructed a high resolution thermal imaging system on contract to Lockheed for use in the SDI Star Lab. This employs a Pt Si CCD array which is sensitive in the spectral range of 3 to 5 microns. Star Lab will be flown in the Shuttle bay and consists basically of a large, reflecting, tracking telescope with associated sensors and electronics. The thermal imaging system is designed to operate in the focal plane of this telescope. The configuration of the system is illustrated. The telescope provides a collimated beam output which is focussed onto the detector array by a silicon objective lens. The detector array subtends a field of view of 1.6 degrees x 1.22 degrees. A beam switching mirror permits bypassing the large telescope to give a field of 4 degrees x 3 degrees. Two 8 position filter wheels are provided, and background radiation is minimized by Narcissus mirrors. The detector is cooled with a Joule-Thompson cryostat fed from a high pressure supply tank. This was selected instead of a more convenient closed-cycle system because of concern with vibration. The latter may couple into the extremely critical Starlab tracking telescope. The electronics produce a digitized video signal for recording. Offset and responsivity correction factors are stored for all pixels and these corrections are made to the digitized output in real time.

  7. Paediatric interventional cardiology: flat detector versus image intensifier using a test object

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.

    2010-12-01

    Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.

  8. Medical image registration using machine learning-based interest point detector

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Zhao, Yang; Linguraru, Marius George; Okada, Kazunori

    2012-02-01

    This paper presents a feature-based image registration framework which exploits a novel machine learning (ML)-based interest point detection (IPD) algorithm for feature selection and correspondence detection. We use a feed-forward neural network (NN) with back-propagation as our base ML detector. Literature on ML-based IPD is scarce and to our best knowledge no previous research has addressed feature selection strategy for IPD purpose with cross-validation (CV) detectability measure. Our target application is the registration of clinical abdominal CT scans with abnormal anatomies. We evaluated the correspondence detection performance of the proposed ML-based detector against two well-known IPD algorithms: SIFT and SURF. The proposed method is capable of performing affine rigid registrations of 2D and 3D CT images, demonstrating more than two times better accuracy in correspondence detection than SIFT and SURF. The registration accuracy has been validated manually using identified landmark points. Our experimental results shows an improvement in 3D image registration quality of 18.92% compared with affine transformation image registration method from standard ITK affine registration toolkit.

  9. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  10. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    NASA Astrophysics Data System (ADS)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  11. Optimised Post-Exposure Image Sharpening Code for L3-CCD Detectors

    SciTech Connect

    Harding, Leon K.; Butler, Raymond F.; Redfern, R. Michael; Sheehan, Brendan J.; McDonald, James

    2008-02-22

    As light from celestial bodies traverses Earth's atmosphere, the wavefronts are distorted by atmospheric turbulence, thereby lowering the angular resolution of ground-based imaging. Rapid time-series imaging enables Post-Exposure Image Sharpening (PEIS) techniques, which employ shift-and-add frame registration to remove the tip-tilt component of the wavefront error--as well as telescope wobble, thus benefiting all observations. Further resolution gains are possible by selecting only frames with the best instantaneous seeing--a technique sometimes calling 'Lucky Imaging'. We implemented these techniques in the 1990s, with the TRIFFID imaging photon-counting camera, and its associated data reduction software. The software was originally written for time-tagged photon-list data formats, recorded by detectors such as the MAMA. This paper describes our deep re-structuring of the software to handle the 2-d FITS images produced by Low Light Level CCD (L3-CCD) cameras, which have sufficient time-series resolution (>30 Hz) for PEIS. As before, our code can perform straight frame co-addition, use composite reference stars, perform PEIS under several different algorithms to determine the tip/tilt shifts, store 'quality' and shift information for each frame, perform frame selection, and generate exposure-maps for photometric correction. In addition, new code modules apply all 'static' calibrations (bias subtraction, dark subtraction and flat-fielding) to the frames immediately prior to the other algorithms. A unique feature of our PEIS/Lucky Imaging code is the use of bidirectional wiener-filtering. Coupled with the far higher sensitivity of the L3-CCD over the previous TRIFFID detectors, much fainter reference stars and much narrower time windows can be used.

  12. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  13. Detector system comparison using relative CNR for specific imaging tasks related to neuro-endovascular image-guided interventions (neuro-EIGIs)

    NASA Astrophysics Data System (ADS)

    Loughran, Brendan; Swetadri Vasan, S. N.; Singh, Vivek; Ionita, Ciprian N.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Neuro-EIGIs require visualization of very small endovascular devices and small vessels. A Microangiographic Fluoroscope (MAF) x-ray detector was developed to improve on the standard flat panel detector's (FPD's) ability to visualize small objects during neuro-EIGIs. To compare the performance of FPD and MAF imaging systems, specific imaging tasks related to those encountered during neuro-EIGIs were used to assess contrast to noise ratio (CNR) of different objects. A bar phantom and a stent were placed at a fixed distance from the x-ray focal spot to mimic a clinical imaging geometry and both objects were imaged by each detector system. Imaging was done without anti-scatter grids and using the same conditions for each system including: the same x-ray beam quality, collimator position, source to imager distance (SID), and source to object distance (SOD). For each object, relative contrasts were found for both imaging systems using the peak and trough signals. The relative noise was found using mean background signal and background noise for varying detector exposures. Next, the CNRs were found for these values for each object imaged and for each imaging system used. A relative CNR metric is defined and used to compare detector imaging performance. The MAF utilizes a temporal filter to reduce the overall image noise. The effects of using this filter with the MAF while imaging the clinical object's CNRs are reported. The relative CNR for the detectors demonstrated that the MAF has superior CNRs for most objects and exposures investigated for this specific imaging task.

  14. Detector system comparison using relative CNR for specific imaging tasks related to neuro-endovascular image-guided interventions (neuro-EIGIs).

    PubMed

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2014-03-19

    Neuro-EIGIs require visualization of very small endovascular devices and small vessels. A Microangiographic Fluoroscope (MAF) x-ray detector was developed to improve on the standard flat panel detector's (FPD's) ability to visualize small objects during neuro-EIGIs. To compare the performance of FPD and MAF imaging systems, specific imaging tasks related to those encountered during neuro-EIGIs were used to assess contrast to noise ratio (CNR) of different objects. A bar phantom and a stent were placed at a fixed distance from the x-ray focal spot to mimic a clinical imaging geometry and both objects were imaged by each detector system. Imaging was done without anti-scatter grids and using the same conditions for each system including: the same x-ray beam quality, collimator position, source to imager distance (SID), and source to object distance (SOD). For each object, relative contrasts were found for both imaging systems using the peak and trough signals. The relative noise was found using mean background signal and background noise for varying detector exposures. Next, the CNRs were found for these values for each object imaged and for each imaging system used. A relative CNR metric is defined and used to compare detector imaging performance. The MAF utilizes a temporal filter to reduce the overall image noise. The effects of using this filter with the MAF while imaging the clinical object's CNRs are reported. The relative CNR for the detectors demonstrated that the MAF has superior CNRs for most objects and exposures investigated for this specific imaging task.

  15. An investigation of the performance of a coaxial HPGe detector operating in a magnetic resonance imaging field

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cole, P.; Cresswell, J. R.; Filmer, F.; Jones, M.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Sampson, J. A.; Scraggs, D. P.; Slee, M. J.; Bimson, W. E.; Kemp, G. J.; Groves, J.; Headspith, J.; Lazarus, I.; Simpson, J.; Cooper, R. J.

    2011-05-01

    Nuclear medical imaging modalities such as positron emission tomography and single photon emission computed tomography are used to probe physiological functions of the body by detecting gamma rays emitted from biologically targeted radiopharmaceuticals. A system which is capable of simultaneous data acquisition for nuclear medical imaging and magnetic resonance imaging is highly sought after by the medical imaging community. Such a device could provide a more complete medical insight into the functions of the body within a well-defined structural context. However, acquiring simultaneous nuclear/MRI sequences are technically challenging due to the conventional photomultiplier tube readout employed by most existing scintillator detector systems. A promising solution is a nuclear imaging device composed of semiconductor detectors that can be operated with a standard MRI scanner. However, the influence of placing a semiconductor detector such as high purity germanium (HPGe) within or close to the bore of an MRI scanner, where high magnetic fields are present, is not well understood. In this paper, the performance of a HPGe detector operating in a high strength static ( BS) MRI field along with fast switching gradient fields and radiofrequency from the MRI system has been assessed. The influence of the BS field on the energy resolution of the detector has been investigated for various positions and orientations of the detector within the magnetic field. The results have then been interpreted in terms of the influence of the BS field on the charge collection properties. MRI images have been acquired with the detector situated at the entrance of the MRI bore to investigate the effects of simultaneous data acquisition on detector performance and MRI imaging.

  16. A binary readout chip for silicon microstrip detector in proton imaging application

    NASA Astrophysics Data System (ADS)

    Sipala, V.; Bruzzi, M.; Bondì, M.; Bonanno, D.; Cadeddu, S.; Carpinelli, M.; Cirrone, G. A. P.; Civinini, C.; Cuttone, G.; Lai, A.; Leonora, E.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Talamonti, C.; Tesi, M.; Vanzi, E.

    2017-01-01

    The mixed-signal PRIMA-chip has been developed for sensitive-position silicon detector in proton imaging application. The chip is based upon the binary readout architecture which, providing fully parallel signal processing, is a good solution for high intensity radiation application. It includes 32-front-end channels with a charge preamplifier, a shaper and a comparator. In order to adjust the comparator thresholds, each channel contains a 8-bit DAC, programmed using an I2C like interface. The PRIMA-chip has been fabricated using the AMS 0.35 μm standard CMOS process and its performances have been tested coupling it to the detectors used in the tracker assembled for the pCT (proton Computed Tomography) apparatus.

  17. Study of imaging plate detector sensitivity to 5-18 MeV electrons

    SciTech Connect

    Boutoux, G. Rabhi, N.; Batani, D.; Ducret, J.-E.; Binet, A.; Nègre, J.-P.; Reverdin, C.; Thfoin, I.; Jakubowska, K.

    2015-11-15

    Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.

  18. Large Area Flat Panel Imaging Detectors for Astronomy and Night Time Sensing

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2013-09-01

    Sealed tube photo-sensing detectors for optical/IR detection have applications in astronomy, nighttime remote reconnaissance, and airborne/space situational awareness. The potential development of large area photon counting, imaging, timing detectors has significance for these applications and a number of other areas (High energy particle detection (RICH), biological single-molecule fluorescence lifetime imaging microscopy, neutron imaging, time of flight mass spectroscopy, diffraction imaging). We will present details of progress towards the development of a 20 cm sealed tube optical detector with nanoengineered microchannel plates for photon counting, imaging and sub-ns event time stamping. In the operational scheme of the photodetector incoming light passes through an entrance window and interacts with a semitransparent photocathode on the inside of the window. The photoelectrons emitted are accelerated across a proximity gap and are detected by an MCP pair. The pair of novel borosilicate substrate MCPs are functionalized by atomic layer deposition (ALD), and amplify the signal and the resulting electron cloud is detected by a conductive strip line anode for determination of the event positions and the time of arrival. The physical package is ~ 25 x 25 cm but only 1.5 cm thick. Development of such a device in a square 20 cm format presents challenges: hermetic sealing to a large entrance window, a 20 cm semitransparent photocathode with good efficiency and uniformity, 20 cm MCPs with reasonable cost and performance, robust construction to preserve high vacuum and withstand an atmosphere pressure differential. We will discuss the schemes developed to address these issues and present the results for the first test devices. The novel microchannel plates employing borosilicate micro-capillary arrays provide many performance characteristics typical of conventional MCPs, but have been made in sizes up to 20 cm, have low intrinsic background (0.08 events cm2 s-1) and

  19. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  20. Large Area Imaging Detector for Long-Range, Passive Detection of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2003-10-29

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  1. Large Area Imaging Detector for Long-Range, Passive Detection Of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2004-07-30

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  2. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  3. Imaging characterization of a new gamma ray detector based on CRY019 scintillation crystal for PET and SPECT applications

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-02-01

    In the last 40 years, in the field of Molecular Medicine imaging there has been a huge growth in the employment and in the improvement of detectors for PET and SPECT applications in order to reach accurate diagnosis of the diseases. The most important feature required to these detectors is an high quality of images that is usually obtained benefitting from the development of a wide number of new scintillation crystals with high imaging performances. In this contest, features like high detection efficiency, short decay time, great spectral match with photodetectors, absence of afterglow and low costs are surely attractive. However, there are other factors playing an important role in the realization of high quality images such as energy and spatial resolutions, position linearity and contrast resolution. With the aim to realize an high performace gamma ray detector for PET and SPECT applications, this work is focused on the evaluation of the imaging characteristics of a recently developed scintillation crystal, CRY019.

  4. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

    NASA Astrophysics Data System (ADS)

    Conover, David L.; Ning, Ruola; Yu, Yong; Lu, Xianghua; Wood, Ronald W.; Reeder, Jay E.; Johnson, Aimee M.

    2005-04-01

    Flat panel detector-based cone beam CT (FPD-CBCT) imaging system prototypes have been constructed based on modified clinical CT scanners (a modified GE 8800 CT system and a modified GE HighSpeed Advantage (HSA) spiral CT system) each with a Varian PaxScan 2520 imager. The functions of the electromechanical and radiographic subsystems of the CT system were controlled through specially made hardware, software and data acquisition modules to perform animal cone beam CT studies. Small animal (mouse) imaging studies were performed to demonstrate the feasibility of an optimized CBCT imaging system to have the capability to perform longitudinal studies to monitor the progression of cancerous tumors or the efficacy of treatments. Radiographic parameters were optimized for fast (~10 second) scans of live mice to produce good reconstructed image quality with dose levels low enough to avoid any detectable radiation treatment to the animals. Specifically, organs in the pelvic region were clearly imaged and contrast studies showed the feasibility to visualize small vasculature and space-filling bladder tumors. In addition, prostate and mammary tumors were monitored in volume growth studies.

  5. Developing imaging capabilities of multi-channel detectors comparable to traditional x-ray detector technology for industrial and security applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Collins, Noelle M.; Holswade, Erica A.; Devonshire, Madison L.; Thompson, Kyle R.

    2016-10-01

    This work will investigate the imaging capabilities of the Multix multi-channel linear array detector and its potential suitability for big-data industrial and security applications versus that which is currently deployed. Multi-channel imaging data holds huge promise in not only finer resolution in materials classification, but also in materials identification and elevated data quality for various radiography and computed tomography applications. The potential pitfall is the signal quality contained within individual channels as well as the required exposure and acquisition time necessary to obtain images comparable to those of traditional configurations. This work will present results of these detector technologies as they pertain to a subset of materials of interest to the industrial and security communities; namely, water, copper, lead, polyethylene, and tin.

  6. Development of a large-area CMOS-based detector for real-time x-ray imaging

    NASA Astrophysics Data System (ADS)

    Heo, Sung Kyn; Park, Sung Kyu; Hwang, Sung Ha; Im, Dong Ak; Kosonen, Jari; Kim, Tae Woo; Yun, Seungman; Kim, Ho Kyung

    2010-04-01

    Complementary metal-oxide-semiconductor (CMOS) active pixel sensors (APSs) with high electrical and optical performances are now being attractive for digital radiography (DR) and dental cone-beam computed tomography (CBCT). In this study, we report our prototype CMOS-based detectors capable of real-time imaging. The field-of-view of the detector is 12 × 14.4 cm. The detector employs a CsI:Tl scintillator as an x-ray-to-light converter. The electrical performance of the CMOS APS, such as readout noise and full-well capacity, was evaluated. The x-ray imaging characteristics of the detector were evaluated in terms of characteristic curve, pre-sampling modulation transfer function, noise power spectrum, detective quantum efficiency, and image lag. The overall performance of the detector is demonstrated with phantom images obtained for DR and CBCT applications. The detailed development description and measurement results are addressed. With the results, we suggest that the prototype CMOS-based detector has the potential for CBCT and real-time x-ray imaging applications.

  7. Experimental study on the 3D image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector and its image characteristics

    NASA Astrophysics Data System (ADS)

    Hong, Daeki; Cho, Heemoon; Cho, Hyosung; Choi, Sungil; Je, Uikyu; Park, Yeonok; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho

    2015-11-01

    In this work, we performed a feasibility study on the three-dimensional (3D) image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector for application to high-accurate, cost-effective dental x-ray imaging. Here an x-ray tube and a detector rotate together around the rotational axis several times and, concurrently, the detector moves horizontally in the detector coordinate at a constant speed to cover the whole imaging volume during the projection data acquisition. We established a table-top setup which mainly consists of an x-ray tube (60 kVp, 5 mA), a narrow CMOS-type detector (198-μm pixel resolution, 184 (W)×1176 (H) pixel dimension), and a rotational stage for sample mounting and performed a systematic experiment to demonstrate the viability of the proposed approach to volumetric dental imaging. For the image reconstruction, we employed a compressed-sensing (CS)-based algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate reconstruction. We successfully reconstructed 3D images of considerably high quality and investigated the image characteristics in terms of the image value profile, the contrast-to-noise ratio (CNR), and the spatial resolution.

  8. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  9. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    PubMed

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  10. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  11. Flare star monitoring with a new photon-counting imaging detector

    SciTech Connect

    Casperson, D.

    1997-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A search for faint time-varying optical signals from the nighttime sky has been conducted in parallel with the programmatic development of a new type of imaging detector. This detector combines high spatial and high temporal resolution with single-photon-counting sensitivity over a 40-mm diameter large-area format. It is called a microchannel plate with crossed delay line readout, or MCP/CDL, and is placed in the focal plane of a telescope to collect time-resolved images from objects such as flaring stars and other astrophysical transient sources. A short-lived prototype MCP/CDL was used to provide the initial stellar images for this project, but the author could not generate any extended database with which to characterize flare star populations. Consequently, a supplementary experimental search for optical transients was begun, utilizing the NASA 3-meter-aperture Liquid Mirror Telescope (LMT) facility in Cloudcroft, NM.

  12. An investigation of the Eigenvalue Calibration Method (ECM) using GASP for non-imaging and imaging detectors

    NASA Astrophysics Data System (ADS)

    Kyne, Gillian; Lara, David; Hallinan, Gregg; Redfern, Michael; Shearer, Andrew

    2016-02-01

    Polarised light from astronomical targets can yield a wealth of information about their source radiation mechanisms, and about the geometry of the scattered light regions. Optical observations, of both the linear and circular polarisation components, have been impeded due to non-optimised instrumentation. The need for suitable observing conditions and the availability of luminous targets are also limiting factors. The science motivation of any instrument adds constraints to its operation such as high signal-to-noise (SNR) and detector readout speeds. These factors in particular lead to a wide range of sources that have yet to be observed. The Galway Astronomical Stokes Polarimeter (GASP) has been specifically designed to make observations of these sources. GASP uses division of amplitude polarimeter (DOAP) (Compain and Drevillon Appl. Opt. 37, 5938-5944, 1998) to measure the four components of the Stokes vector (I, Q, U and V) simultaneously, which eliminates the constraints placed upon the need for moving parts during observation, and offers a real-time complete measurement of polarisation. Results from the GASP calibration are presented in this work for both a 1D detector system, and a pixel-by-pixel analysis on a 2D detector system. Following Compain et al. (Appl. Opt. 38, 3490-3502 1999) we use the Eigenvalue Calibration Method (ECM) to measure the polarimetric limitations of the instrument for each of the two systems. Consequently, the ECM is able to compensate for systematic errors introduced by the calibration optics, and it also accounts for all optical elements of the polarimeter in the output. Initial laboratory results of the ECM are presented, using APD detectors, where errors of 0.2 % and 0.1° were measured for the degree of linear polarisation (DOLP) and polarisation angle (PA) respectively. Channel-to-channel image registration is an important aspect of 2-D polarimetry. We present our calibration results of the measured Mueller matrix of each sample

  13. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  14. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging.

    PubMed

    Campbell, D L; Peterson, T E

    2014-11-21

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  15. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    PubMed Central

    Campbell, DL; Peterson, TE

    2014-01-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140-keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. PMID:25360792

  16. The fluid systems for the SLD Cherenkov ring imaging detector. [01

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw,

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C[sub 2]H[sub 6] + TMAE), radiator gas (C[sub 5]F[sub 12] + N[sub 2]) and radiator liquid (C[sub 6]F[sub 14]). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  17. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors.

    PubMed

    Plaud-Ramos, K O; Freeman, M S; Wei, W; Guardincerri, E; Bacon, J D; Cowan, J; Durham, J M; Huang, D; Gao, J; Hoffbauer, M A; Morley, D J; Morris, C L; Poulson, D C; Wang, Zhehui

    2016-11-01

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a (90)Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  18. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    NASA Astrophysics Data System (ADS)

    Rihl, M.

    2017-02-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam-gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam-beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam-gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam-gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  19. The development of new X-ray still image detector "XTV-PROM".

    NASA Astrophysics Data System (ADS)

    Osugi, Y.; Honda, A.; Tange, S.; Toyoda, S.; Minemoto, T.

    1993-12-01

    A new type X-ray real time image detector named "X-ray to Visible Light PROM (XTV-PROM)" has been developed. XTV-PROM consists of a thin Bi12SiO20 (BSO) single crystal plate, transparent insulating layers and two electrodes on both faces of the crystal plate. The XTV-PROM with large active area (18×18 mm2) and high resolution (25 μm) has a good response for bremsstrahlung X-rays higher than 30 keV.

  20. Casa-Blanca: A Large non-imaging Cerenkov Detector at Casa-Mia

    NASA Astrophysics Data System (ADS)

    Cassidy, M.; Fortson, L. F.; Fowler, J. W.; Jui, C. H.; Kieda, D. B.; Loh, E. C.; Ong, R. A.; Sommers, P.

    The lateral distribution of Cherenkov light at ground level records important information on the development of the cosmic ray air shower which produces it. We have constructed an array of 144 non-imaging Cherenkov detectors at the CASA-MIA experiment site in Dugway, Utah. The various arrays can sample simultaneously the lateral distributions of electrons, muons, and Cherenkov light at many locations. We describe the design and operation of the CASA-BLANCA experiment and its potential to address the composition of primary cosmic rays between 300 and 30,000 TeV.

  1. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Fernandez, F.; Hallewell, G.; Kawahara, H.; Korff, P.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Rabinowitz, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'Vra, J.; Williams, S.; Whitaker, J.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; McHugh, S.; Mathys, L.; Morriso

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs.

  2. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    DOE PAGES

    Plaud-Ramos, Kenie Omar; Freeman, Matthew Stouten; Wei, Wanchun; ...

    2016-08-03

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a 90Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Furthermore, noise reduction in CIS is nevertheless important for the indirect approach.

  3. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    SciTech Connect

    Plaud-Ramos, Kenie Omar; Freeman, Matthew Stouten; Wei, Wanchun; Guardincerri, Elena; Bacon, Jeffrey Darnell; Cowan, Joseph Sarno; Durham, J. Matthew; Huang, Di; Gao, Jun; Hoffbauer, Mark Arles; Morley, Deborah Jean; Morris, Christopher L.; Poulson, Daniel Cris; Wang, Zhehui

    2016-08-03

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a 90Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Furthermore, noise reduction in CIS is nevertheless important for the indirect approach.

  4. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  5. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.

    PubMed

    Woehl, Taylor; Keller, Robert

    2016-12-01

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses.

  6. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    SciTech Connect

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A.; Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G.; Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O.; Burwitz, V.; Burkert, W.; and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  7. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    SciTech Connect

    Dioszegi I.; Vanier P.E.; Salwen C.; Chichester D.L.; Watson S.M.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of the individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.

  8. Detector system comparison using relative CNR for specific imaging tasks related to neuro-endovascular image-guided interventions (neuro-EIGIs)

    PubMed Central

    Loughran, Brendan; Swetadri Vasan, S. N.; Singh, Vivek; Ionita, Ciprian N.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Neuro-EIGIs require visualization of very small endovascular devices and small vessels. A Microangiographic Fluoroscope (MAF) x-ray detector was developed to improve on the standard flat panel detector’s (FPD’s) ability to visualize small objects during neuro-EIGIs. To compare the performance of FPD and MAF imaging systems, specific imaging tasks related to those encountered during neuro-EIGIs were used to assess contrast to noise ratio (CNR) of different objects. A bar phantom and a stent were placed at a fixed distance from the x-ray focal spot to mimic a clinical imaging geometry and both objects were imaged by each detector system. Imaging was done without anti-scatter grids and using the same conditions for each system including: the same x-ray beam quality, collimator position, source to imager distance (SID), and source to object distance (SOD). For each object, relative contrasts were found for both imaging systems using the peak and trough signals. The relative noise was found using mean background signal and background noise for varying detector exposures. Next, the CNRs were found for these values for each object imaged and for each imaging system used. A relative CNR metric is defined and used to compare detector imaging performance. The MAF utilizes a temporal filter to reduce the overall image noise. The effects of using this filter with the MAF while imaging the clinical object’s CNRs are reported. The relative CNR for the detectors demonstrated that the MAF has superior CNRs for most objects and exposures investigated for this specific imaging task. PMID:25301999

  9. Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Allec, Nicholas; Wang, Kai; Chen, Feng; Karim, Karim S.

    2011-03-01

    Previously, metal-semiconductor-metal (MSM) lateral amorphous selenium (a-Se) detectors have been proposed for indirect detector medical imaging applications. These detectors have raised interest due to their high-speed and photogain. The gain measured from these devices was assumed to have been photoconductive gain; however the origin of this gain was not fully understood. In addition, whether or not there was any presence of photocurrent multiplication gain was not investigated. For integration-type applications photocurrent multiplication gain is desirable since the total collected charge can be greater than the total number of absorbed photons. In order to fully appreciate the value of MSM devices and their benefit for different applications, whether it is counting or integration applications, we need to investigate the responsible mechanisms of the observed response. In this paper, we systematically study, through experimental and theoretical means, the nature of the photoresponse and its responsible mechanisms. This study also exposes the possible means to increase the performance of the device and under what conditions it will be most beneficial.

  10. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  11. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    SciTech Connect

    Ulbricht, Gerhard Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  12. Characterization of an ultraviolet imaging detector with high event rate ROIC (HEROIC) readout

    NASA Astrophysics Data System (ADS)

    Nell, Nicholas; France, Kevin; Harwit, Alex; Bradley, Scott; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2016-07-01

    We present characterization results from a photon counting imaging detector consisting of one microchannel plate (MCP) and an array of two readout integrated circuits (ROIC) that record photon position. The ROICs used in the position readout are the high event rate ROIC (HEROIC) devices designed to handle event rates up to 1 MHz per pixel, recently developed by the Ball Aerospace and Technologies Corporation in collaboration with the University of Colorado. An opaque cesium iodide (CsI) photocathode sensitive in the far-ultraviolet (FUV; 122-200 nm), is deposited on the upper surface of the MCP. The detector is characterized in a chamber developed by CU Boulder that is capable of illumination with vacuum-ultraviolet (VUV) monochromatic light and measurement of absolute ux with a calibrated photodiode. Testing includes investigation of the effects of adjustment of internal settings of the HEROIC devices including charge threshold, gain, and amplifier bias. The detector response to high count rates is tested. We report initial results including background, uniformity, and quantum detection efficiency (QDE) as a function of wavelength.

  13. Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments

    NASA Astrophysics Data System (ADS)

    Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.

    2016-10-01

    Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques

  14. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  15. Scatter reduction for high resolution image detectors with a region of interest attenuator

    PubMed Central

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Compton scatter is the main interaction of x-rays with objects undergoing radiographic and fluoroscopic imaging procedures. Such scatter is responsible for reducing image signal to noise ratio which can negatively impact object detection especially for low contrast objects. To reduce scatter, possible methods are smaller fields-of-view, larger air gaps and the use of an anti-scatter grid. Smaller fields of view may not be acceptable and scanned-beam radiography is not practical for real-time imaging. Air gaps can increase geometric unsharpness and thus degrade image resolution. Deployment of an anti-scatter grid is not well suited for high resolution imagers due to the unavailability of high line density grids needed to prevent grid-line artifacts. However, region of interest (ROI) imaging can be used not only for dose reduction but also for scatter reduction in the ROI. The ROI region receives unattenuated x-rays while the peripheral region receives x-rays reduced in intensity by an ROI attenuator. The scatter within the ROI part of the image originates from both the unattenuated ROI and the attenuated peripheral region. The scatter contribution from the periphery is reduced in intensity because of the reduced primary x-rays in that region and the scatter fraction in the ROI is thus reduced. In this study, the scatter fraction for various kVp’s, air-gaps and field sizes was measured for a uniform head equivalent phantom. The scatter fraction in the ROI was calculated using a derived scatter fraction formula, which was validated with experimental measurements. It is shown that use of a ROI attenuator can be an effective way to reduce both scatter and patient dose while maintaining the superior image quality of high resolution detectors. PMID:25302000

  16. Scatter reduction for high resolution image detectors with a region of interest attenuator.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2014-03-19

    Compton scatter is the main interaction of x-rays with objects undergoing radiographic and fluoroscopic imaging procedures. Such scatter is responsible for reducing image signal to noise ratio which can negatively impact object detection especially for low contrast objects. To reduce scatter, possible methods are smaller fields-of-view, larger air gaps and the use of an anti-scatter grid. Smaller fields of view may not be acceptable and scanned-beam radiography is not practical for real-time imaging. Air gaps can increase geometric unsharpness and thus degrade image resolution. Deployment of an anti-scatter grid is not well suited for high resolution imagers due to the unavailability of high line density grids needed to prevent grid-line artifacts. However, region of interest (ROI) imaging can be used not only for dose reduction but also for scatter reduction in the ROI. The ROI region receives unattenuated x-rays while the peripheral region receives x-rays reduced in intensity by an ROI attenuator. The scatter within the ROI part of the image originates from both the unattenuated ROI and the attenuated peripheral region. The scatter contribution from the periphery is reduced in intensity because of the reduced primary x-rays in that region and the scatter fraction in the ROI is thus reduced. In this study, the scatter fraction for various kVp's, air-gaps and field sizes was measured for a uniform head equivalent phantom. The scatter fraction in the ROI was calculated using a derived scatter fraction formula, which was validated with experimental measurements. It is shown that use of a ROI attenuator can be an effective way to reduce both scatter and patient dose while maintaining the superior image quality of high resolution detectors.

  17. Scatter reduction for high resolution image detectors with a region of interest attenuator

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Compton scatter is the main interaction of x-rays with objects undergoing radiographic and fluoroscopic imaging procedures. Such scatter is responsible for reducing image signal to noise ratio which can negatively impact object detection especially for low contrast objects. To reduce scatter, possible methods are smaller fields-of-view, larger air gaps and the use of an anti-scatter grid. Smaller fields of view may not be acceptable and scanned-beam radiography is not practical for real-time imaging. Air gaps can increase geometric unsharpness and thus degrade image resolution. Deployment of an anti-scatter grid is not well suited for high resolution imagers due to the unavailability of high line density grids needed to prevent grid-line artifacts. However, region of interest (ROI) imaging can be used not only for dose reduction but also for scatter reduction in the ROI. The ROI region receives unattenuated x-rays while the peripheral region receives x-rays reduced in intensity by an ROI attenuator. The scatter within the ROI part of the image originates from both the unattenuated ROI and the attenuated peripheral region. The scatter contribution from the periphery is reduced in intensity because of the reduced primary x-rays in that region and the scatter fraction in the ROI is thus reduced. In this study, the scatter fraction for various kVp's, air-gaps and field sizes was measured for a uniform head equivalent phantom. The scatter fraction in the ROI was calculated using a derived scatter fraction formula, which was validated with experimental measurements. It is shown that use of a ROI attenuator can be an effective way to reduce both scatter and patient dose while maintaining the superior image quality of high resolution detectors.

  18. Development of an X-ray imaging system with SOI pixel detectors

    NASA Astrophysics Data System (ADS)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  19. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  20. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector.

    PubMed

    Wang, Yi; Li, Chunhui; Wang, Ruikang K

    2011-10-15

    We report on a noncontact photoacoustic imaging (PAI) technique in which a low-coherence interferometer [(LCI), optical coherence tomography (OCT) hardware] is utilized as the acoustic detector. A synchronization approach is used to lock the LCI system at its highly sensitive region for photoacoustic detection. The technique is experimentally verified by the imaging of a scattering phantom embedded with hairs and the blood vessels within a mouse ear in vitro. The system's axial and lateral resolutions are evaluated at 60 and 30 μm, respectively. The experimental results indicate that PAI in a noncontact detection mode is possible with high resolution and high bandwidth. The proposed approach lends itself to a natural integration of PAI with OCT, rather than a combination of two separate and independent systems.

  1. Microstructured boron foil scintillating G-GEM detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeshi; Bautista, Unico; Mitsuya, Yuki; Takahashi, Hiroyuki; Yamada, Norifumi L.; Otake, Yoshie; Taketani, Atsushi; Uesaka, Mitsuru; Toyokawa, Hiroyuki

    2016-12-01

    In this study, a new simple neutron imaging gaseous detector was successfully developed by combining a micro-structured 10B foil, a glass gas electron multiplier (G-GEM), and a mirror-lens-charge-coupled device (CCD)-camera system. The neutron imaging system consists of a chamber filled with Ar/CF4 scintillating gas mixture. Inside this system, the G-GEM is mounted for gas multiplication. The neutron detection in this system is based on the reaction between 10B and neutrons. A micro-structured 10B is developed to overcome the issue of low detection efficiency. Secondary electrons excite Ar/CF4 gas molecules, and high-yield visible photons are emitted from those excited gas molecules during the gas electron multiplication process in the G-GEM holes. These photons are easily detected by a mirror-lens-CCD-camera system. A neutron radiograph is then simply formed. We obtain the neutron images of different materials with a compact accelerator-driven neutron source. We confirm that the new scintillating G-GEM-based neutron imager works properly with low gamma ray sensitivity and exhibits a good performance as a new simple digital neutron imaging device.

  2. Development of new x-ray still-image detector 'XTV-PROM'

    NASA Astrophysics Data System (ADS)

    Osugi, Yukihisa; Honda, Akihiko; Tange, Shoji; Toyoda, Shuhei; Minemoto, Takumi

    1993-02-01

    A new type of x-ray real time still image detector named `X ray to Visible Light PROM (XTV-PROM)' has been developed. XTV-PROM consists of a thin Bi(subscript 12)SiO(subscript 20) (BSO) single crystal plate, transparent insulating layers, and two electrodes on both faces of the crystal plate. One electrode is transparent and the other refracts readout lights and lets in x rays. Several tens of keV x rays generate electron-hole pairs in the crystal and an x-ray image is recorded as a charge pattern. A voltage pattern generated from the charge pattern causes the Pockels effect and the recorded x-ray image is converted to the visible light image using the effect of the crystal. The recorded image can be erased and the device can be used repeatedly. The XTV-PROM with a large active area (18 X 18 mm(superscript 2)) and high resolution (25 micrometers ) has been made by a new process for polishing BSO crystal thinly. The XTV-PROM has a good response for bremsstrahlung x rays higher than 30 keV.

  3. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  4. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  5. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  6. Flat panel detector-based cone beam CT for dynamic imaging: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Yang, Dong; Lu, Xianghua

    2006-03-01

    The purpose of this study is to characterize a newly built flat panel detector (FPD)-based cone beam CT (CBCT) prototype for dynamic imaging. A CBCT prototype has been designed and constructed by completely modifying a GE HiSpeed Advantage (HSA) CT gantry, incorporating a newly acquired large size real-time FPD (Varian PaxScan 4030CB), a new x-ray generator and a dual focal spot angiography x-ray tube that allows the full coverage of the detector. During data acquisition, the x-ray tube and the FPD can be rotated on the gantry over Nx360 degrees due to integrated slip ring technology with the rotation speed of one second/revolution. With a single scan time of up to 40 seconds , multiple sets of reconstructions can be performed for dynamic studies. The upgrade of this system has been completed. The prototype was used for a series of preliminary phantom studies: different sizes of breast phantoms, a Humanoid chest phantom and scatter correction studies. The results of the phantom studies demonstrate that good image quality can be achieved with this newly built prototype.

  7. Fast X-ray/γ-ray imaging using electron multiplying CCD-based detector

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Shestakova, Irina; Gaysinskiy, Valeriy; Singh, Bipin; Miller, Brian W.; Bradford Barber, H.

    2006-07-01

    New designs of electron multiplying charge coupled devices (EMCCDs) combine superior spatial resolution and low noise of a conventional CCD with the internal gain of an avalanche photodiode (APD). The presence of internal gain not only enhances the device sensitivity, but virtually eliminates the read noise associated with current CCDs, even when the device is read at very high frame rates of 100 frames per second or higher. Thus, the EMCCDs can simultaneously provide very high sensitivity and a high signal-to-noise ratio (SNR). At RMD we are exploiting these properties of EMCCD for use in radionuclide and X-ray imaging. Specifically, we have developed a system that makes use of an EMCCD with 512 × 512, 16 × 16 μm pixels. Special fiberoptic reducers have been designed to enhance the detector sensitive area. The system gain is software selectable and may be varied from 1 to 1000. This paper describes the detector design along with its γ-ray/X-ray imaging performance.

  8. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  9. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  10. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (<10^6), substantially increasing local counting rate capabilities and the overall tube lifetime. XS tubes with updated electronics can encode event rates of >5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most

  11. Image-based spectral distortion correction for photon-counting x-ray detectors

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  12. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    SciTech Connect

    Duan, X; Guild, J; Arbique, G; Anderson, J; Dhanantwari, A; Yagil, Y

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEE corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.

  13. Detector Technologies for Sub-500um High-Sensitivity PET Imaging via a Novel PET Insert Approach

    SciTech Connect

    Tai, Yuan-Chuan

    2011-12-21

    The objective of this project was to develop detector technologies that would enable an ultrahigh resolution Virtual Pinhole (VP) PET insert device to provide sub-500 um resolution high-sensitivity PET imaging of a mouse in the future. To achieve this goal, we proposed to develop and characterize finely pixellated cadmium zinc telluride (CZT) detectors and the associated readout electronics with the following specific aims: 1. Develop pixellated CZT detectors with 350um pitches using 2-5 mm substrates; characterize their spatial, energy and timing performance through experiments; and optimize the anode design with steering grid if found necessary. 2. Develop a high-bandwidth readout system using a novel ASIC that can be directly bonded to CZT detectors with 2048 anodes of 350um pitches; optimize its overall performance for VP-PET applications considering the tradeoffs between spatial resolution (in 3D), count rate capability, timing and energy resolutions. 3. Evaluate the performance of a VP-PET insert based on the proposed detector technology through Monte Carlo simulation and experimental validation. Overall, we have completed all three specific aims and demonstrated that pixelated CZT detectors of 350um pitches, combined with VP-PET geometry, can provide PET image resolution of ~460 um FWHM for small animal imaging applications.

  14. Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images

    SciTech Connect

    Dai, Xiubin; Gao, Yaozong; Shen, Dinggang

    2015-05-15

    Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmark-guided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as a detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors’ proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation

  15. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  16. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    SciTech Connect

    Leach, R R; Conder, A; Edwards, O; Kroll, J; Kozioziemski, B; Mapoles, E; McGuigan, D; Wilhelmsen, K

    2010-12-14

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  17. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  18. Programmable scan/read circuitry for charge coupled device imaging detectors. [spcecraft attitude control and star trackers

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Smilowitz, K.

    1984-01-01

    A circuit for scanning and outputting the induced charges in a solid state charge coupled device (CCD) image detector is disclosed in an image detection system for use in a spacecraft attitude control system. The image detection system includes timing control circuitry for selectively controlling the output of the CCD detector so that video outputs are provided only with respect to induced charges corresponding to predetermined sensing element lines of the CCD detector. The timing control circuit and the analog to digital converter are controlled by a programmed microprocessor which defines the video outputs to be converted and further controls the timing control circuit so that no video outputs are provided during the delay associated with analog to digital conversion.

  19. Application of a-Si:H radiation detectors in medical imaging

    SciTech Connect

    Lee, Hyoung-Koo

    1995-06-01

    Monte Carlo simulations of a proposed a-Si:H-based current-integrating gamma camera were performed. The analysis showed that the intrinsic resolution of such a camera was 1 ~2.5 mm, which is somewhat better than that of a conventional gamma camera, and that the greater blurring, due to the detection of scattered γ-rays, could be reduced considerably by image restoration techniques. This proposed gamma camera would be useful for imaging shallow organs such as the thyroid. Prototype charge-storage a-Si:H pixel detectors for such a camera were designed, constructed and tested. The detectors could store signal charge as long as 5 min at -26C. The thermal generation current in reverse biased a-Si:H p-i-n photodetectors was investigated, and the Poole-Frenkel effect was found to be the most significant source of the thermal generation current. Based on the Poole-Frenkel effect, voltage- and time-dependent thermal generation current was modeled. Using the model, the operating conditions of the proposed a-Si:H gamma camera, such as the operating temperature, the operating bias and the γ-scan period, could be predicted. The transient photoconductive gain mechanism in various a-Si:H devices was investigated for applications in digital radiography. Using the a-Si:H photoconductors in n-i-n configuration in pixel arrays, enhancement in signal collection (more than 200 times higher signal level) can be achieved in digital radiography, compared to the ordinary p-i-n type a-Si:H x-ray imaging arrays.

  20. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    NASA Astrophysics Data System (ADS)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  1. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    SciTech Connect

    Peng, J.; Tuemer, T.O.; Petrini, B.M.; Kravis, S.D.; Yin, S.; Parnham, K.B.; Glick, B.; Willson, P.D.

    1996-12-31

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using {sup 57}Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging.

  2. Development of a novel radiation imaging detector system for in vivo gene imaging in small animal studies

    SciTech Connect

    Weisenberger, A.G.; Majewski, S.; Bradley, E.L.

    1996-12-31

    Many studies in molecular biology deal with following the expression and regulation of a gene at different stages of an organism`s development or under different physiological conditions. Presently in situ hybridization and immunochemical assays are available to follow the gene expression at a single moment in time for one organism. One must sacrifice the organism to make a measurement, essentially taking a snap shot of the state of expression of the gene of interest. We have made progress on a new type of gene imaging technology which takes advantage of the emission properties of the radioisotope iodine 125 ({sup 125}I) as the probe and utilizes crystal scintillators and a position sensitive photomultiplier tube. Iodine 125 decays via electron capture emitting a 35 keV gamma-ray with the prompt emission of several 27-32 keV K{alpha} and K{beta} shell X-rays. Because of this a coincidence condition can be set to detect the {sup 125}I decays thus reducing background radiation contribution to the image. Mouse imaging studies of iodine uptake by the thyroid and melatonin receptor binding have been done with this detector system using low doses of {sup 125}I.

  3. ⁶Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications.

    PubMed

    Tanaka, H K M; Watanabe, H

    2014-04-24

    Despite the latent and unique benefits of imaging uranium and thorium's distribution in the earth's interior, previously proposed experimental techniques used to identify the incoming geo-neutrino's direction are not applicable to practical imaging due to the high miss-identification in a neutrino's track reconstruction. After performing experimental studies and Monte-Carlo simulations, we confirmed that a significant improvement is possible in neutrino tracking identification with a (6)Li-loaded neutrino detector. For possible imaging applications, we also explore the feasibility of producing geo-neutrinographic images of gigantic magmatic reservoirs and deep structure in the mantle. We anticipate and plan to apply these newly designed detectors to radiographic imaging of the Earth's interior, monitoring of nuclear reactors, and tracking astrophysical sources of neutrinos.

  4. 6Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications

    PubMed Central

    Tanaka, H. K. M.; Watanabe, H.

    2014-01-01

    Despite the latent and unique benefits of imaging uranium and thorium's distribution in the earth's interior, previously proposed experimental techniques used to identify the incoming geo-neutrino's direction are not applicable to practical imaging due to the high miss-identification in a neutrino's track reconstruction. After performing experimental studies and Monte-Carlo simulations, we confirmed that a significant improvement is possible in neutrino tracking identification with a 6Li-loaded neutrino detector. For possible imaging applications, we also explore the feasibility of producing geo-neutrinographic images of gigantic magmatic reservoirs and deep structure in the mantle. We anticipate and plan to apply these newly designed detectors to radiographic imaging of the Earth's interior, monitoring of nuclear reactors, and tracking astrophysical sources of neutrinos. PMID:24759616

  5. Nonlinearity and image persistence of P-20 phosphor-based intensified photodiode array detectors used in CARS spectroscopy.

    PubMed

    Snelling, D R; Smallwood, G J; Sawchuk, R A

    1989-08-01

    Several self-scanning photodiode arrays (IPDA) used for CARS spectroscopy are shown to exhibit a greater image persistence than has generally been realized, and to exhibit a falloff in sensitivity that is logarithmic with decreasing output signal. These effects are attributed to the P-20 phosphor based intensifiers used in the IPDAs and are probably generic to all such detectors. A strategy for minimizing the image persistence in CARS spectroscopy is presented. A prototype detector incorporating a much faster rare earth phosphor is evaluated and shown to be more suited to single pulse CARS measurements in turbulent combustion than the IPDAs incorporating P-20 phosphors.

  6. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  7. Application of scintillating fiber gamma-ray detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Chaney, Roy C.; Fenyves, Ervin J.; Nelson, Gregory S.; Anderson, Jon A.; Antich, Peter P.; Atac, Muzaffer

    1993-02-01

    The recently developed plastic scintillating fiber technology started the development of a new generation of high spatial and time resolution gamma ray detectors for medical imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). A scintillating fiber PET module consisting of two 5 X 5 X 2.5 cm(superscript 3) detector stacks made of parallel 1.0 mm diameter fiber, separated by 20 cm, each viewed by a Hamamatsu R2486 position sensitive photomultiplier was developed and tested. The time resolution of the coincidence system is 10 nsec. The spatial resolution and efficiency of this module turned out to be 2.3 mm (FWHM) and 2.0%, respectively, and independent of the location of the (superscript 22)Na testing source inside a sphere of 2 cm radius around the center of the two fiber stacks. The effect of gammas scattered in a 15 cm diameter water filled glass cylinder into which the (superscript 22)Na was immersed did not change the spatial resolution of the system.

  8. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    SciTech Connect

    Hu, Yue-Houng Zhao, Wei

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  9. Near UV imager with an MCP-based photon counting detector

    NASA Astrophysics Data System (ADS)

    Ambily, S.; Mathew, Joice; Sarpotdar, Mayuresh; Sreejith, A. G.; Nirmal, K.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We are developing a compact UV Imager using light weight components, that can be own on a small CubeSat or a balloon platform. The system has a lens-based optics that can provide an aberration-free image over a wide field of view. The backend instrument is a photon counting detector with off-the-shelf MCP, CMOS sensor and electronics. We are using a Z-stack MCP with a compact high voltage power supply and a phosphor screen anode, which is read out by a CMOS sensor and the associated electronics. The instrument can be used to observe solar system objects and detect bright transients from the upper atmosphere with the help of CubeSats or high altitude balloons. We have designed the imager to be capable of working in direct frame transfer mode as well in the photon-counting mode for single photon event detection. The identification and centroiding of each photon event are done using an FPGA-based data acquisition and real-time processing system.

  10. Novel large format sealed tube microchannel plate detectors for Cherenkov timing and imaging

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J. B.; Vallerga, J. V.; Tremsin, A. S.; Jelinsky, S. R.; Frisch, H. J.; Lappd Collaboration

    2011-05-01

    Large area (20×20 cm 2) sealed tube detectors using novel borosilicate glass microchannel plates, with bialkali photocathodes and strip-line readouts are being developed for Cherenkov light detection. Designs based on conventional sealed tubes with alumina brazed body construction and hot indium seals have been developed. Borosilicate glass substrates with 20 and 40 μm holes have been processed using atomic layer deposition to produce functional microchannel plates. Initial results for these in a 33 mm format show gain, imaging performance, pulse shape and lifetime characteristics that are similar to standard glass microchannel plates. Large area (20×20 cm 2) borosilicate glass substrates with 20 μm pores have also been made.

  11. Effect of detector nonlinearity and image persistence on CARS derived temperatures.

    PubMed

    Snelling, D R; Smallwood, G J; Parameswaran, T

    1989-08-01

    The image persistence of self-scanning photodiode arrays (IPDA) incorporating P-20 phosphor-based intensifiers is shown to make them unsuitable for single-pulse CARS temperature measurements in turbulent combustion. Correcting CARS flame spectra for the nonlinear response of the IPDA detectors increases CARS derived temperatures approximately 3-6%. This error is partially offset by correcting for the perturbations in the N(2) vibrational population resulting from stimulated Raman pumping. The effect of these population perturbations on CARS-derived temperatures is determined. CARS flame spectra obtained with uncorrelated pump beams that are corrected for IPDA nonlinearity and stimulated Raman pumping are shown to give temperatures in good agreement with combined thermocouple/sodium line-reversal measurements.

  12. Observations of barium ion jets in the magnetosphere using Doppler imaging systems and very sensitive imaging systems using imaging photon detectors

    NASA Technical Reports Server (NTRS)

    Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.

    1985-01-01

    Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.

  13. Multi-Band and Broad-Band Infrared Detectors Based on III-V Materials for Spectral Imaging Instruments

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Rafol, S. B.; Hill, C. J.; Ting, D. Z.; Mumolo, J. M.; Trinh, T. Q.

    2005-01-01

    Quantum well infrared photodetector technology has shown remarkable success by realizing large-format focal plane arrays in both broad-bands and in multi-bands. The spectral response of these detectors based on the III-V material system are tailorable within the mid and long wavelength IR bands (similar to 3-25 mu m) and possibly beyond. Multi-band and broad-band detector arrays have been developed by vertically integrating stacks of multi quantum wells tailored for response in different wavelengths bands. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission other photons, thus efficiently permitting multiband detection. Flexibility in many design parameters of these detectors allows for tuning and tailoring the spectral shape according to application requirements, specifically for spectral imaging instruments.

  14. Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays.

    PubMed

    Withington, Stafford; Thomas, Christopher N

    2009-06-01

    Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector's optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.

  15. Fundamental x-ray interaction limits in diagnostic imaging detectors: Frequency-dependent Swank noise

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    A frequency-dependent x-ray Swank factor based on the ''x-ray interaction'' modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI{sub 2}) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI{sub 2}, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  16. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  17. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (<0.7 mW/pixel) ASIC. The prototype also provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  18. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  19. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  20. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors

    SciTech Connect

    Hajdok, G.; Yao, J.; Battista, J. J.; Cunningham, I. A.

    2006-10-15

    Image quality in diagnostic x-ray imaging is ultimately limited by the statistical properties governing how, and where, x-ray energy is deposited in a detector. This in turn depends on the physics of the underlying x-ray interactions. In the diagnostic energy range (10-100 keV), most of the energy deposited in a detector is through photoelectric interactions. We present a theoretical model of the photoelectric effect that specifically addresses the statistical nature of energy absorption by photoelectrons, K and L characteristic x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure of parallel cascades to describe signal and noise transfer through the photoelectric effect in terms of the modulation transfer function, Wiener noise power spectrum, and detective quantum efficiency (DQE). The model was evaluated by comparing results with Monte Carlo calculations for x-ray converters based on amorphous selenium (a-Se) and lead (Pb), representing both low and high-Z materials. When electron transport considerations can be neglected, excellent agreement (within 3%) is obtained for each metric over the entire diagnostic energy range in both a-Se and Pb detectors up to 30 cycles/mm, the highest frequency tested. The cascaded model overstates the DQE when the electron range cannot be ignored. This occurs at approximately two cycles/mm in a-Se at an incident photon energy of 80 keV, whereas in Pb, excellent agreement is obtained for the DQE over the entire diagnostic energy range. However, within the context of mammography (20 keV) and micro-computed tomography (40 keV), the effects of electron transport on the DQE are negligible compared to fluorescence reabsorption, which can lead to decreases of up to 30% and 20% in a-Se and Pb, respectively, at 20 keV; and 10% and 5%, respectively, at 40 keV. It is shown that when Swank noise is identified in a Fourier model, the Swank factor must be frequency dependent. This factor decreases

  1. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors.

    PubMed

    Hajdok, G; Yao, J; Battista, J J; Cunningham, I A

    2006-10-01

    Image quality in diagnostic x-ray imaging is ultimately limited by the statistical properties governing how, and where, x-ray energy is deposited in a detector. This in turn depends on the physics of the underlying x-ray interactions. In the diagnostic energy range (10-100 keV), most of the energy deposited in a detector is through photoelectric interactions. We present a theoretical model of the photoelectric effect that specifically addresses the statistical nature of energy absorption by photoelectrons, K and L characteristic x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure of parallel cascades to describe signal and noise transfer through the photoelectric effect in terms of the modulation transfer function, Wiener noise power spectrum, and detective quantum efficiency (DQE). The model was evaluated by comparing results with Monte Carlo calculations for x-ray converters based on amorphous selenium (a-Se) and lead (Pb), representing both low and high-Z materials. When electron transport considerations can be neglected, excellent agreement (within 3%) is obtained for each metric over the entire diagnostic energy range in both a-Se and Pb detectors up to 30 cycles/mm, the highest frequency tested. The cascaded model overstates the DQE when the electron range cannot be ignored. This occurs at approximately two cycles/mm in a-Se at an incident photon energy of 80 keV, whereas in Pb, excellent agreement is obtained for the DQE over the entire diagnostic energy range. However, within the context of mammography (20 keV) and micro-computed tomography (40 keV), the effects of electron transport on the DQE are negligible compared to fluorescence reabsorption, which can lead to decreases of up to 30% and 20% in a-Se and Pb, respectively, at 20 keV; and 10% and 5%, respectively, at 40 keV. It is shown that when Swank noise is identified in a Fourier model, the Swank factor must be frequency dependent. This factor decreases

  2. Imaging and quantitative analysis of tritium-labelled cells in lymphocyte proliferation assays using microchannel plate detectors originally developed for X-ray astronomy.

    PubMed

    Lees, J E; Hales, J M

    2001-01-01

    Microchannel plate detectors have been used in many astronomical X-ray telescopes. Recently we have begun to use similar detectors to image electron emission from radiolabelled biological assays. Here we show how a microchannel plate (MCP) detector can be used to image tritium uptake in T lymphocyte proliferation assays. Quantitative analysis using the MCP detector has the same sensitivity and speed as conventional liquid scintillation counter (LSC) analysis whilst obviating the need for scintillation fluid. In addition the system permits the imaging of whole plate harvests from a range of plate sizes. Here we present data obtained with 96-well plates and Terasaki plates.

  3. Performance of the front end electronics and data acquisition system for the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Hoeflich, J.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Stiles, P.; Toge, N.; Va'vra, J

    1991-11-01

    The front end electronics and data acquisition system for the SLD barrel Cherenkov Ring Imaging Detector (CRID) are described. This electronics must provide a 1% charge division measurement with a maximum acceptable noise level of 2000 electrons (rms). Noise and system performance results are presented for the initial SLD engineering run data.

  4. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  5. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    NASA Astrophysics Data System (ADS)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  6. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

    PubMed

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H

    2016-08-21

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  7. Review of medical imaging with emphasis on X-ray detectors

    NASA Astrophysics Data System (ADS)

    Hoheisel, Martin

    2006-07-01

    Medical imaging can be looked at from two different perspectives, the medical and the physical. The medical point of view is application-driven and involves finding the best way of tackling a medical problem through imaging, i.e. either to answer a diagnostic question, or to facilitate a therapy. For this purpose, industry offers a broad spectrum of radiographic, fluoroscopic, and angiographic equipment. The requirements depend on the medical problem: which organs have to be imaged, which details have to be made visible, how to deal with the problem of motion if any, and so forth. In radiography, for instance, large detector sizes of up to 43 cm×43 cm and relatively high energies are needed to image a whole chest. In mammography, pixel sizes between 25 and 70 μm are favorable for good spatial resolution, which is essential for detecting microcalcifications. In cardiology, 30-60 images per second are required to follow the heart's motion. In computed tomography, marginal contrast differences down to one Hounsfield unit have to be resolved. In all cases, but especially in pediatrics, the required radiation dose must be kept as low as reasonably achievable. Moreover, three-dimensional(3D) reconstruction of image data allows much better orientation in the body, permitting a more accurate diagnosis, precise treatment planning, and image-guided therapy. Additional functional information from different modalities is very helpful, information such as perfusion, flow rate, diffusion, oxygen concentration, metabolism, and receptor affinity for specific molecules. To visualize, functional and anatomical information are fused into one combined image. The physical point of view is technology-driven. A choice of different energies from the electromagnetic spectrum is available for imaging; not only X-rays in the range of 10-150 keV, but also γ rays, which are used in nuclear medicine, X-rays in the MeV range, which are used in portal imaging to monitor radiation therapy

  8. Combining transverse field detectors and color filter arrays to improve multispectral imaging systems.

    PubMed

    Martínez, Miguel A; Valero, Eva M; Hernández-Andrés, Javier; Romero, Javier; Langfelder, Giacomo

    2014-05-01

    This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies.

  9. Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, T. E.; Davis, S.; Green, J. L.; Guillen, J. L. L.; Myre, W.

    2001-08-01

    This paper presents an overview of the coordinated observation of optical lightning from space using the photodiode detector (PDD) and CCD-based imager known as the Lightning Location System (LLS) aboard the Fast On-Orbit Recording of Transient Events (FORTE) satellite. PDD/LLS coincidence statistics are presented and show that both the detected energy density and the detected peak irradiance of optical lightning events are proportional to the number of LLS pixels (pixel multiplicity) which are activated during the event. The inference is that LLS pixel multiplicity is more a function of the detected intensity and horizontal extent of the optical event rather than a direct indicator of the degree of scattering. PDD/LLS event coincidence is also used to improve upon traditional recurrence/clustering algorithms that discriminate against false LLS events due to energetic particles and glint. Energy density measurements of coincident events show that about 4% of the optical energy detected by the broadband PDD appears in the narrowband LLS. This is in general agreement with ground-based measurements and with assumptions incorporated into the design of current and planned CCD-imaging sensors.

  10. Evaluation of flat panel detector cone beam CT breast imaging with different sizes of breast phantoms

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Lu, Xianghua; Zhang, Yan; Yu, Yong; Schiffhauer, Linda; Cullinan, Jeanne

    2005-04-01

    The sensitivity to detect small breast cancers and the specificity of conventional mammography (CM) remain limited owing to an overlap in the appearances of lesions and surrounding structure. We propose to address the limitations accompanying CM using flat panel detector (FPD)-based cone beam CT breast imaging (CBCTBI). The purpose of the study is to determine optimal x-ray operation ranges for different sizes of normal breasts and corresponding glandular dose levels. The current CBCT prototype consists of a modified GE HighSpeed Advantage CT gantry, an x-ray tube, a Varian PaxScan 4030CB FPD, a CT table and a PC. Two uncompressed breast phantoms, with the diameters of 10.8 and 13.8 cm, consist of three inserts: a layer of silicone jell simulating a background structure, a lucite plate on which five simulated carcinomas are mounted, and a plate on which six calcifications are attached. With a single scan, 300 projections were acquired for all phantom scans. The optimal x-ray techniques for different phantom sizes were determined. The total mean glandular doses for different size phantoms were measured using a CT pencil ionization chamber. With the optimal x-ray techniques that result in the maximal dose efficiency for the different tissue thickness, the image quality with two different phantoms was evaluated. The results demonstrate that the CBCTBI can detect a few millimeter-size simulated carcinoma and ~ 0.2 mm calcification with clinically acceptable mean glandular doses for different size breasts.

  11. Enhancement of Real-Time THz Imaging System Based on 320 × 240 Uncooled Microbolometer Detector

    NASA Astrophysics Data System (ADS)

    Zheng, Xing; Wu, Zhiming; Gou, Jun; Liu, Ziji; Wang, Jun; Zheng, Jie; Luo, Zhenfei; Chen, Weiqing; Que, Longcheng; Jiang, Yadong

    2016-10-01

    A real-time terahertz (THz) imaging system was demonstrated based on a 320 × 240 uncooled microbolometer detector combined with a 2.52 THz far-infrared CO2 laser. On the top of micro-bridge structure (35 × 35 μm2), a 10 nm nickel-chromium (NiCr) thin film was deposited to enhance THz absorption, which was fabricated by a combined process of magnetron sputtering and reactive ion etching (RIE). By mechanical simulation using design of experiment (DOE) method, the minimum deformation was optimized to 0.0385 μm, and a measured deformation of 0.097 μm was achieved in the fabrication. The fabricated micro-bridge pixel was used for THz detection, and a responsivity of 1235 V/W was achieved with a noise equivalent power (NEP) of 87.4 pW/Hz1/2. THz imaging of metal gasket covered by label paper, paper clip in an envelope, and watermark of a banknote was demonstrated by a combination of histogram equalization (HE) and linear enhancement algorithm.

  12. Boron imaging with a microstrip silicon detector for applications in BNCT

    NASA Astrophysics Data System (ADS)

    Mattera, A.; Basilico, F.; Bolognini, D.; Borasio, P.; Cappelletti, P.; Chiari, P.; Conti, V.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mascagna, V.; Mauri, P.; Monti, A. F.; Mozzanica, A.; Ostinelli, A.; Prest, M.; Scazzi, S.; Vallazza, E.; Zanini, A.

    2009-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique exploiting the α particles produced after the irradiation of the isotope 10 of boron with thermal neutrons in the capture reaction B(n,α)710Li. It is used to treat tumours that for their features (radioresistance, extension, localization near vital organs) cannot be treated through conventional photon-beams radiotherapy. One of the main limitations of this technique is the lack of specificity (i.e. the ability of localizing in tumour cells, saving the healthy tissues) of the compounds used to carry the 10B isotope in the organs to be treated. This work, developed in the framework of the INFN PhoNeS project, describes the possibility of boron imaging performed exploiting the neutrons photoproduced by a linac (the Clinac 2100C/D of the S. Anna Hospital Radiotherapy Unit in Como, Italy) and detecting the α s with a non-depleted microstrip silicon detector: the result is a 1D scan of the boron concentration. Several boron doped samples have been analysed, from solutions of H3BO3 (reaching a minimum detectable amount of 25 ng of 10B) to biological samples of urine containing BPA and BSH (the two molecules currently used for the clinical trials in BNCT) in order to build kinetic curves (showing the absolute 10B concentration as a function of time). Further measurements are under way to test the imaging system with 10BPA-Fructose complex perfused human lung samples.

  13. SU-E-I-51: Quantitative Assessment of X-Ray Imaging Detector Performance in a Clinical Setting - a Simple Approach Using a Commercial Instrument

    SciTech Connect

    Sjoeberg, J; Bujila, R; Omar, A; Nowik, P; Mobini-Kesheh, S; Lindstroem, J

    2015-06-15

    Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices over the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.

  14. A CMOS visible silicon imager hybridized to a Rockwell 2RG multiplexer as a new detector for ground based astronomy

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Eschbaumer, Siegfried; Finger, Gert; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Joerg

    2006-06-01

    For the past 25 years Charge Coupled Devices (CCDs) have been used as the preferred detector for ground based astronomy to detect visible photons. As an alternative to CCDs, silicon-based hybrid CMOS focal plane array technology is evolving rapidly. Visible hybrid detectors have a close synergy with IR detectors and are operated in a similar way. This paper presents recent test results for a Rockwell 2K x 2K silicon PIN diode array hybridized to a Hawaii-2RG multiplexer, the Hybrid Visible Silicon Imager (HyViSI). Since the capacitance of the integrating node of Si-PIN diodes is at least a factor of two smaller than the capacitance of the Hawaii-2RG IR detector pixel, lower noise was expected. However, those detectors suffer from interpixel capacitance which introduces an error to the value of the conversion factor measured with the photon transfer method. Therefore QE values have been overestimated by almost a factor of two in the past. Detailed test results on QE, noise, dark current, and other basic performance values as well as a discussion how to interpret the measured values will be presented. Two alternative methods, direct measurement of the nodal capacity and the use of Iron-55 X-rays to determine the actual nodal capacitance and hence the conversion factor will be briefly presented. PSF performance of this detector was analyzed in detail with an optical spot and single pixel reset measurement.

  15. New developed DR detector performs radiographs of hand, pelvic and premature chest anatomies at a lower radiation dose and/or a higher image quality.

    PubMed

    Precht, Helle; Tingberg, Anders; Waaler, Dag; Outzen, Claus Bjørn

    2014-02-01

    A newly developed Digital Radiography (DR) detector has smaller pixel size and higher fill factor than earlier detector models. These technical advantages should theoretically lead to higher sensitivity and higher spatial resolution, thus making dose reduction possible without scarifying image quality compared to previous DR detector versions. To examine whether the newly developed Canon CXDI-70C DR detector provides an improved image quality and/or allows for dose reductions in hand and pelvic bone examinations as well as premature chest examinations, compared to the previous (CXDI-55C) DR detector version. A total of 450 images of a technical Contrast-Detail phantom were imaged on a DR system employing various kVp and mAs settings, providing an objective image quality assessment. In addition, 450 images of anthropomorphic phantoms were taken and analyzed by three specialized radiologists using Visual Grading Analysis (VGA). The results from the technical phantom studies showed that the image quality expressed as IQFINV values was on average approximately 45 % higher with the CXDI-70C detector compared to the CXDI-55C detector. Consistently, the VGA results from the anatomical phantom studies indicated that by using the CXDI-70C detector, diagnostic image quality could be maintained at a dose reduction of in average 30 %, depending on anatomy and kVp level. This indicates that the CXDI-70C detector is significantly more sensitive than the previous model, and supports a better clinical image quality. By using the newly developed DR detector a significant dose reduction is possible while maintaining image quality.

  16. R&D on a novel spectro-imaging polarimeter with Micromegas detectors and a Caliste readout system

    NASA Astrophysics Data System (ADS)

    Attié, D.; Blondel, C.; Boilevin-Kayl, L.; Desforges, D.; Ferrer-Ribas, E.; Giomataris, I.; Gevin, O.; Jeanneau, F.; Limousin, O.; Meuris, A.; Papaevangelou, T.; Peyaud, A.

    2015-07-01

    Micromegas detectors, part of the Micro-Pattern Gaseous Detectors (MPGD) family, are used in a very wide range of applications in the High Energy Physics community but also in astroparticle and neutrino physics. In most of the Micromegas applications the design of the detector vessel and the readout plane is extremely coupled. A way of dissociating these two components would be by separating the amplification structure and the detector volume from the readout plane and electronics. This is achieved with the so called piggyback Micromegas detectors. They open up new possibilities of applications in terms of adaptability to new electronics. In particular piggyback resistive Micromegas can be easily coupled to modern pixel array electronic ASICs. First tests have been carried out with a Medipix chip where the protection of the resistive layer has been proved. The results of very recent tests coupling piggyback Micromegas with the readout module of Caliste are presented. Caliste is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV in the context of a spatial micro spectro-imaging polarimetrer. In the current application, with the Piggyback Micromegas, we use the readout module only as the sensitive detector. We benefit of the good spatial resolution thanks to the high density readout pixels ( 600 μm pixel pitch), to the low noise, to the low power and to the radiation hard integrated front-end IDEF-X electronics. The advantage of such a device is to have a high gain, low noise, low threshold, and robust detector operating at room temperature. This would be very attractive for spatial applications, for instance X-ray polarisation.

  17. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  18. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  19. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    SciTech Connect

    Abdullah, J.; Yahya, R.

    2007-05-09

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  20. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Anastasios C.; Szafraniec, Magdalena B.; Speller, Robert D.; Olivo, Alessandro

    2012-10-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors (APS) have been introduced recently in many scientific applications. This work reports on the performance (in terms of signal and noise transfer) of an X-ray detector that uses a novel CMOS APS which was developed for medical X-ray imaging applications. For a full evaluation of the detector's performance, electro-optical and X-ray characterizations were carried out. The former included measuring read noise, full well capacity and dynamic range. The latter, which included measuring X-ray sensitivity, presampling modulation transfer function (pMTF), noise power spectrum (NPS) and the resulting detective quantum efficiency (DQE), was assessed under three beam qualities (28 kV, 50 kV (RQA3) and 70 kV (RQA5) using W/Al) all in accordance with the IEC standard. The detector features an in-pixel option for switching the full well capacity between two distinct modes, high full well (HFW) and low full well (LFW). Two structured CsI:Tl scintillators of different thickness (a “thin” one for high resolution and a thicker one for high light efficiency) were optically coupled to the sensor array to optimize the performance of the system for different medical applications. The electro-optical performance evaluation of the sensor results in relatively high read noise (∼360 e-), high full well capacity (∼1.5×106 e-) and wide dynamic range (∼73 dB) under HFW mode operation. When the LFW mode is used, the read noise is lower (∼165) at the expense of a reduced full well capacity (∼0.5×106 e-) and dynamic range (∼69 dB). The maximum DQE values at low frequencies (i.e. 0.5 lp/mm) are high for both HFW (0.69 for 28 kV, 0.71 for 50 kV and 0.75 for 70 kV) and LFW (0.69 for 28 kV and 0.7 for 50 kV) modes. The X-ray performance of the studied detector compares well to that of other mammography and general radiography systems, obtained under similar experimental conditions. This demonstrates the suitability

  1. Image features for misalignment correction in medical flat-detector CT

    SciTech Connect

    Wicklein, Julia; Kunze, Holger; Kalender, Willi A.; Kyriakou, Yiannis

    2012-08-15

    Purpose: Misalignment artifacts are a serious problem in medical flat-detector computed tomography. Generally, the geometrical parameters, which are essential for reconstruction, are provided by preceding calibration routines. These procedures are time consuming and the later use of stored parameters is sensitive toward external impacts or patient movement. The method of choice in a clinical environment would be a markerless online-calibration procedure that allows flexible scan trajectories and simultaneously corrects misalignment and motion artifacts during the reconstruction process. Therefore, different image features were evaluated according to their capability of quantifying misalignment. Methods: Projections of the FORBILD head and thorax phantoms were simulated. Additionally, acquisitions of a head phantom and patient data were used for evaluation. For the reconstruction different sources and magnitudes of misalignment were introduced in the geometry description. The resulting volumes were analyzed by entropy (based on the gray-level histogram), total variation, Gabor filter texture features, Haralick co-occurrence features, and Tamura texture features. The feature results were compared to the back-projection mismatch of the disturbed geometry. Results: The evaluations demonstrate the ability of several well-established image features to classify misalignment. The authors elaborated the particular suitability of the gray-level histogram-based entropy on identifying misalignment artifacts, after applying an appropriate window level (bone window). Conclusions: Some of the proposed feature extraction algorithms show a strong correlation with the misalignment level. Especially, entropy-based methods showed very good correspondence, with the best of these being the type that uses the gray-level histogram for calculation. This makes it a suitable image feature for online-calibration.

  2. Dose assessment during the commissioning of flat detector imaging systems for cardiology.

    PubMed

    Vano, Eliseo; Ubeda, Carlos; Fernandez, Jose Miguel; Sanchez, Roberto M; Prieto, Carlos

    2009-08-01

    Incident air kerma (IAK) and entrance surface air kerma (ESAK) have been measured for a range of copper (Cu) absorbers (1-10 mm) and polymethylmethacrylate (PMMA) slabs (12-28 cm) with kilovolt values ranging from 61 to 120 during the commissioning of an X-ray system equipped with a flat detector used in interventional cardiology procedures. Numerical parameters on image quality have also been measured for different X-ray beam qualities using the plastic wall of the ionisation chamber. When moving from 1 to 10 mm of Cu, IAK per frame increased to a factor of 38 for cine and 27 for fluoroscopy. A cine frame requires 60-116 times more IAK than a fluoroscopy frame. As for PMMA, when the backscatter factor is included (simulating real conditions with patients), and when moving from 12 to 28 cm, the increases in ESAK are 16 times for cine and 10 times for fluoroscopy. Because of the differences in X-ray beam quality for cine and fluoroscopy modes, the Cu thicknesses necessary to drive the generator to equivalent kilovolts resulted in the following values (cine and fluoroscopy, respectively): 12 cm of PMMA (1 and 1.5 mm Cu), 20 PMMA (2.5 and 3.5 mm Cu) and 28 cm PMMA (4.5 and 8.5 mm Cu). With the analysis of IAK, ESAK and image quality, one can verify the appropriate settings of the X-ray system and obtain baseline information for constancy checks and help cardiologists in the management of patient doses by knowing the dose increase factors and image quality changes when increasing patient thickness or using different C-arm projections.

  3. CZT strip detectors for imaging and spectroscopy: collimated beam and ASIC readout experiments.

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Krizmanic, J. F.; Stahle, C. M.; Parsons, A.; Palmer, D. M.; Bartlett, L. M.; Barthelmy, S. D.; Birsa, F.; Gehrels, N.; Odom, J.; Hanchak, C.; Shu, P.; Teegarden, B. J.; Tueller, J.; Barbier, L. M.

    The authors report the status of ongoing investigations into Cadmium Zinc Telluride (CZT) strip detectors for application in hard X-ray astronomy. They have instrumented a nine strip by nine strip region of a two sided strip detector. In order to measure the position resolution of the detectors, they have implemented a collimated beam that concentrates radiation to a spot size less than the strip width of the detector. The detectors exhibited excellent strip uniformity in terms of photon count rate and spectroscopic information.

  4. High-resolution STEM imaging with a quadrant detector--conditions for differential phase contrast microscopy in the weak phase object approximation.

    PubMed

    Majert, S; Kohl, H

    2015-01-01

    Differential phase contrast is a contrast mechanism that can be utilized in the scanning transmission electron microscope (STEM) to determine the distribution of magnetic or electric fields. In practice, several different detector geometries can be used to obtain differential phase contrast. As recent high resolution differential phase contrast experiments with the STEM are focused on ring quadrant detectors, we evaluate the contrast transfer characteristics of different quadrant detector geometries, namely two ring quadrant detectors with different inner detector angles and a conventional quadrant detector, by calculating the corresponding phase gradient transfer functions. For an ideal microscope and a weak phase object, this can be done analytically. The calculated phase gradient transfer functions indicate that the barely illuminated ring quadrant detector setup used for imaging magnetic fields in the specimen reduces the resolution limit to about 2.5Å for an aberration corrected STEM. Our results show that the resolution can be drastically improved by using a conventional quadrant detector instead.

  5. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  6. The impact of the semiconductor emitting diode brightness distribution on the energy sensitivity of the opto-electronic system with the optical equisignal zone

    NASA Astrophysics Data System (ADS)

    Nekrylov, Ivan S.; Timofeev, Alexander N.; Kleshchenok, Maksim A.

    2016-04-01

    The research of the influence of the LED radiation brightness distribution on the energy sensitivity of optical-electronic systems with optical equal zone is provided. Mathematical modeling of the radiation field on a matrix receiver, considering lens spherical aberration, is provided. The possibility of forming a uniform illumination on the photo-detector matrix, changing the shape of the distribution of the brightness of the LED at a predetermined invariable spherical aberration of the lens is provided.

  7. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGES

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  8. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    SciTech Connect

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; Murfitt, Matthew F.; Jones, Lewys; Nellist, Peter D.

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

  9. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  10. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    PubMed

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random.

  11. A high-resolution CMOS imaging detector for the search of neutrinoless double β decay in 82Se

    NASA Astrophysics Data System (ADS)

    Chavarria, A. E.; Galbiati, C.; Li, X.; Rowlands, J. A.

    2017-03-01

    We introduce high-resolution solid-state imaging detectors for the search of neutrinoless double β decay. Based on the present literature, imaging devices from amorphous 82Se evaporated on a complementary metal-oxide-semiconductor (CMOS) active pixel array could have the energy and spatial resolution to produce two-dimensional images of ionizing tracks of utmost quality, effectively akin to an electronic bubble chamber in the double β decay energy regime. Still to be experimentally demonstrated, a detector consisting of a large array of these devices could have very low backgrounds, possibly reaching 1 × 10‑7/(kgy) in the neutrinoless decay region of interest (ROI), as it may be required for the full exploration of the neutrinoless double β decay parameter space in the most unfavorable condition of a strongly quenched nucleon axial coupling constant.

  12. Optimized acquisition time for x-ray fluorescence imaging of gold nanoparticles: a preliminary study using photon counting detector

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Liu, Hong

    2016-03-01

    X-ray fluorescence (XRF) is a promising spectroscopic technique to characterize imaging contrast agents with high atomic numbers (Z) such as gold nanoparticles (GNPs) inside small objects. Its utilization for biomedical applications, however, is greatly limited to experimental research due to longer data acquisition time. The objectives of this study are to apply a photon counting detector array for XRF imaging and to determine an optimized XRF data acquisition time, at which the acquired XRF image is of acceptable quality to allow the maximum level of radiation dose reduction. A prototype laboratory XRF imaging configuration consisting of a pencil-beam X-ray and a photon counting detector array (1 × 64 pixels) is employed to acquire the XRF image through exciting the prepared GNP/water solutions. In order to analyze the signal to noise ratio (SNR) improvement versus the increased exposure time, all the XRF photons within the energy range of 63 - 76KeV that include two Kα gold fluorescence peaks are collected for 1s, 2s, 3s, and so on all the way up to 200s. The optimized XRF data acquisition time for imaging different GNP solutions is determined as the moment when the acquired XRF image just reaches a quality with a SNR of 20dB which corresponds to an acceptable image quality.

  13. A method for total x-ray imaging system evaluation: Application to a microangiographic detector for neurovascular procedures

    NASA Astrophysics Data System (ADS)

    Kyprianou, Iacovos S.

    Detector characterization with the Modulation Transfer Function (MTF) and Detective Quantum Efficiency (DQE) inadequately predicts image quality when the imaging system includes focal spot unsharpness and patient scatter. The concepts of the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS), Noise Equivalent Quanta (NEQ) and Detective Quantum Efficiency (DQE) were referenced to the object plane and generalized to include the effect of geometric unsharpness due to the finite size of the focal spot, the geometric configuration, and the effect of the spatial distribution and magnitude of x-ray scatter due to the patient. The generalized quantities provide performance characteristics that consider the complete imaging system, but reduce to a description of the detector properties for no magnification or scatter. We evaluate a new neurovascular angiography imaging system based on a region of interest (ROI) microangiographic detector using these generalized quantities. A uniform head-equivalent phantom was used as a filter and x-ray scatter source. This allowed the study of all properties of the system under clinically relevant x-ray spectra and x-ray scatter conditions. Realistic focal spots, beam energies, and detector exposures were used, and the effects of different scatter fractions resulting from changing the beam size or the detector-to-patient airgap were investigated. The ideal detectability and the detection probability for a 2 Alternative Forced Choice Experiment (2-AFC) were calculated under the same conditions, for clinically relevant objects, such as small blood vessels, and stent struts. The objects were simulated inside the uniform human head equivalent phantom. The patient (or phantom) entrance Dose Area Product (DAP) required for a 75% object detection probability was calculated, taking into account the system parameters and limitations.

  14. Scatter estimation and removal of anti-scatter grid-line artifacts from anthropomorphic head phantom images taken with a high resolution image detector

    NASA Astrophysics Data System (ADS)

    Rana, R.; Jain, A.; Shankar, A.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    In radiography, one of the best methods to eliminate image-degrading scatter radiation is the use of anti-scatter grids. However, with high-resolution dynamic imaging detectors, stationary anti-scatter grids can leave grid-line shadows and moiré patterns on the image, depending upon the line density of the grid and the sampling frequency of the x-ray detector. Such artifacts degrade the image quality and may mask small but important details such as small vessels and interventional device features. Appearance of these artifacts becomes increasingly severe as the detector spatial resolution is improved. We have previously demonstrated that, to remove these artifacts by dividing out a reference grid image, one must first subtract the residual scatter that penetrates the grid; however, for objects with anatomic structure, scatter varies throughout the FOV and a spatially differing amount of scatter must be subtracted. In this study, a standard stationary Smit-Rontgen X-ray grid (line density - 70 lines/cm, grid ratio - 13:1) was used with a high-resolution CMOS detector, the Dexela 1207 (pixel size - 75 micron) to image anthropomorphic head phantoms. For a 15 x 15cm FOV, scatter profiles of the anthropomorphic head phantoms were estimated then iteratively modified to minimize the structured noise due to the varying grid-line artifacts across the FOV. Images of the anthropomorphic head phantoms taken with the grid, before and after the corrections, were compared demonstrating almost total elimination of the artifact over the full FOV. Hence, with proper computational tools, antiscatter grid artifacts can be corrected, even during dynamic sequences.

  15. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    SciTech Connect

    Deshpande, Shrikant; McNamara, Aimee L.; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2015-04-15

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detector’s response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All

  16. Changing from image intensifier to flat detector technology for interventional cardiology procedures: a practical point of view.

    PubMed

    Bokou, C; Schreiner-Karoussou, A; Breisch, R; Beissel, J

    2008-01-01

    A small-scale internal audit has been used to evaluate the impact of the use of a dynamic flat panel detector in the clinical routine in the National Interventional Cardiology Centre in Luxembourg. The parameters tested during commissioning and constancy control of an X-ray system, the introduction of new clinical protocols, the patient and the personal staff dosimetry were considered. The technical parameters tested by the hospital physicist stay the same as for the image intensifier. No innovative protocols have been adopted due to the existence of the flat panel detector. A reduction in dose was noted after the installation of a flat detector, due mostly to the continuing education of the interventional cardiologists as well as the initial calibration of the radiological system. The understanding of the X-ray system and its possibilities is vital for the optimisation of clinical procedures in patient and staff exposure.

  17. Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Park, Su-Jin; Lee, Seung-Wan; Kim, Dae-Hong; Kim, Ye-Seul; Kim, Hee-Joung

    2013-05-01

    The photon counting detector based on cadmium telluride (CdTe) or cadmium zinc telluride (CZT) is a promising imaging modality that provides many benefits compared to conventional scintillation detectors. By using a pinhole collimator with the photon counting detector, we were able to improve both the spatial resolution and the sensitivity. The purpose of this study was to evaluate the photon counting and conventional scintillation detectors in a pinhole single-photon emission computed tomography (SPECT) system. We designed five pinhole SPECT systems of two types: one type with a CdTe photon counting detector and the other with a conventional NaI(Tl) scintillation detector. We conducted simulation studies and evaluated imaging performance. The results demonstrated that the spatial resolution of the CdTe photon counting detector was 0.38 mm, with a sensitivity 1.40 times greater than that of a conventional NaI(Tl) scintillation detector for the same detector thickness. Also, the average scatter fractions of the CdTe photon counting and the conventional NaI(Tl) scintillation detectors were 1.93% and 2.44%, respectively. In conclusion, we successfully evaluated various pinhole SPECT systems for small animal imaging.

  18. The Gas Pixel Detector as a solar X-ray polarimeter and imager

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio; Bellazzini, Ronaldo; Brez, Alessandro; di Cosimo, Sergio; Lazzarotto, Francesco; Muleri, Fabio; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    The sun is the nearest astrophysical source with an interesting emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in literature numerous studies published about polarization predictions, for a wide range of solar flare models. All these models involve emission from thermal and/or nonthermal processes. Furthermore, results of flare observations in the X-ray band have never been exhaustive. We want to present a new kind of instrument with polarimetric and imaging capabilities in the X-ray band. This instrument is the Gas Pixel Detector (GPD). It has been developed by the INFN and the IASF-Roma / INAF Italian research institutes. The GPD was born to achieve X-ray polarimetric measurements as well as X-ray images for astrophysical sources. It has a good spectroscopic sensitivity thanks to an energy resolution of some per cent and it allows also to perform timing measurements. Differently from all the other kinds of today's polarimeters, it doesn't need rotation! The GPD exploits the dependence of photoelectric cross section to photon polarization direction to the aim of measuring polarization. This instrument is essentially a ionization chamber: a cell filled by gas into which radiation enters through a window of 1.5 cm x 1.5 cm. The cell has a depth of some centimeters: typically from 1 to 2 cm. Every time that a photon is absorbed by the gas, a photoelectron is emitted with more probability in the direction of the electric vector of the photon absorbed. The photoelectron propagates and produces a track of ionization that is drifted, amplified and actually collected on a fine sub-divided pixeled detector, whose pixels have a dimension of 50 µm. At the present the chip integrates more than 16.5 millions of transistors. It has an active area of 105600 pixels organized in a honeycomb matrix 300x352. It is a self triggered system able to select itself the

  19. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  20. Grating-based interferometry and hybrid photon counting detectors: Towards a new era in X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Gkoumas, Spyridon; Wang, Zhentian; Abis, Matteo; Arboleda, Carolina; Tudosie, George; Donath, Tilman; Brönnimann, Christian; Schulze-Briese, Clemens; Stampanoni, Marco

    2016-02-01

    Progress in X-ray medical imaging and advances in detector developments have always been closely related. Similarly, a strong connection exists between innovations in synchrotron imaging and their implementation on table-top X-ray tube setups. The transfer of phase-based imaging to X-ray tubes can provide table-top setups with improved contrast between areas of low attenuation differences, by exploiting the unit decrement of the real part of the refractive index. Medical imaging is a potential application for such a system. Originally developed for synchrotron experiments, the novel generation of hybrid photon counting detectors is becoming increasingly popular due to their unique characteristics, such as small pixel size, negligible dark noise, fast counting and adjustable energy thresholds. Furthermore, novel room temperature semiconductor materials such as Cd(Zn)Te can provide higher quantum efficiency. In the first part of this article we review phase-contrast techniques and recent research towards medical applications. In the second part we present results and evaluate the potential of combining a table-top Talbot grating interferometry system with latest generation hybrid photon counting detectors.

  1. Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST

    NASA Technical Reports Server (NTRS)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-01-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  2. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William

    2006-01-01

    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.

  3. Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    2000-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.

  4. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging

    NASA Astrophysics Data System (ADS)

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Hye Cho, Myung; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-01

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 × 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:Tl (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 × 100 × 200 µm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 lp/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 lp/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented.

  5. Image acquisition, geometric correction and display of images from a 2×2 x-ray detector array based on Electron Multiplying Charge Coupled Device (EMCCD) technology.

    PubMed

    Vasan, S N Swetadri; Sharma, P; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2013-03-06

    A high resolution (up to 11.2 lp/mm) x-ray detector with larger field of view (8.5 cm × 8.5 cm) has been developed. The detector is a 2 × 2 array of individual imaging modules based on EMCCD technology. Each module outputs a frame of size 1088 × 1037 pixels, each 12 bits. The frames from the 4 modules are acquired into the processing computer using one of two techniques. The first uses 2 CameraLink communication channels with each carrying information from two modules, the second uses a application specific custom integrated circuits, the Multiple Module Multiplexer Integrated Circuit (MMMIC), 3