Sample records for energy-sensitive imaging detector

  1. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  2. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  3. Dual-energy imaging using a photon counting detector with electronic spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Lundqvist, Mats

    2006-03-01

    This paper presents a dual-energy imaging technique optimized for contrast-enhanced mammography using a photon counting detector. Each photon pulse is processed separately in the detector and the addition of an electronic threshold near the middle of the energy range of the x-ray spectrum allows discrimination of high and low energy photons. This effectively makes the detector energy sensitive, and allows the acquisition of high- and low-energy images simultaneously. These high- and low-energy images can be combined to dual-energy images where the anatomical clutter has been suppressed. By setting the electronic threshold close to 33.2 keV (the k-edge of iodine) the system is optimized for dual-energy contrast-enhanced imaging of breast tumors. Compared to other approaches, this method not only eliminates the need for separate exposures that might lead to motion artifacts, it also eliminates the otherwise deteriorating overlap between high- and low-energy spectra. We present phantom dual-energy images acquired on a prototype system to illustrate that the technique is already operational, albeit in its infancy. We also present a theoretical estimation of the potential gain in tumor signal-difference-to-noise ratio when using this electronic spectrum-splitting method as opposed to acquiring the high- and low-energy images separately with double exposures with separate x-ray spectra. Assuming ideal energy sensitive photon counting detectors, we arrive at the conclusion that the signal-difference-to-noise ratio could be increased by 145% at constant dose. We also illustrate our results on synthetic images.

  4. Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging

    NASA Astrophysics Data System (ADS)

    Turecek, Daniel; Jakubek, Jan; Trojanova, Eliska; Sefc, Ludek; Kolarova, Vera

    2018-07-01

    Positron emission tomography (PET) is a nuclear medicine functional imaging technique. It is used in clinical oncology (medical imaging of tumors and the search for metastases), and pre-clinical studies using animals. PET uses small amounts of radioactive materials (radiotracers) and a special photon sensitive camera. Most of these cameras use scintillators with photomultipliers as detectors. However, these detectors have limited energy sensitivity and large pixels. Therefore, the false signal caused by a scattering poses a significant problem. In this work we study properties of position, energy and time sensitive semiconductor detector of Timepix3 type and its applicability for PET measurements. This work presents an initial study and evaluation of two Timepix3 detectors with 2 mm thick CdTe sensors used in simplified geometry for PET imaging. The study is performed on 2 samples - a capillary tube and a cylindrical plexiglass phantom with cavities. Both samples are filled with fluodeoxyglucose (FDG) solution that is used as a radiotracer. The Timepix3 offers better properties compared to conventional detectors - high granularity (55 μm pixel pitch), good energy resolution (1 keV at 60 keV) and sufficient time resolution (1.6 ns). The spectral sensitivity of Timepix3 together with coincidence/anticoincidence technique allows for significant reduction of background signal caused by Compton scattering and internal X-ray fluorescence of Cd and Te.

  5. Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging

    PubMed Central

    Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh

    2017-01-01

    The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method. PMID:28553175

  6. Advanced energy-resolving imaging detectors for applications at pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, Bruce; White, Brian

    NOVA Scientific herein reports results from the DOE SBIR Phase IIB project. We continue to move forward to enhance the effectiveness of very high spatial and timing resolution MCP position-sensitive detectors into the epithermal or “above-thermal” neutron energy range – where NOVA’s neutron-sensitive NeuViewTM MCPs are already widely acknowledged as highly effective for cold and thermal neutron energies. As a result of these developments, these increasingly accepted neutron detection devices will be better able to perform energy-resolved neutron detection and imaging at the growing number of highly advanced pulsed neutron sources internationally, detecting individual neutrons with a spatial resolution ofmore » down to ~25 µm, and able to uniquely provide simultaneous ultrafast timing resolution of ~100 ns, for cold, thermal, and now into the epithermal range. The pulsed structure of the new and more powerful neutron beams, enables measurement of neutron energies through the time-of-flight (TOF) method. Moreover, these recent new pulsed sources have increasingly made available intense fluxes of epithermal neutrons - something previously unavailable with reactor-based neutron sources. The unique capability of MCP detectors to measure the energy of each detected neutron provides a capability to conduct experiments across a very broad neutron energy range simultaneously – encompassing cold up into the epithermal range of energies. Simultaneous detection of multiple Bragg edges, for example, can enable highly useful measurements in crystallographic structure, strain, phase, texture, and compositional distribution. Enhancement of the MCP epithermal neutron response resulting from this program, combined with an earlier and separate DOE-funded SBIR/STTR program to commercialize larger area (>100 cm 2) format cold and thermal neutron-sensitive MCP imaging detectors, has potential utility in being employed as large array detectors, replacing what is currently

  7. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  8. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  9. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of

  10. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  11. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  12. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dioszegi I.; Vanier P.E.; Salwen C.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less

  13. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  15. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  16. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  17. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  18. Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation

    PubMed Central

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong

    2014-01-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916

  19. Order of magnitude sensitivity increase in X-ray Fluorescence Computed Tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation.

    PubMed

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei

    2014-05-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.

  20. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  1. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging.

    PubMed

    Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  2. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    PubMed Central

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-01-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  3. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  4. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  5. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  6. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  7. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  8. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  9. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Kaye, W; Jaworski, J

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinholemore » camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired

  10. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  11. Pulse pileup statistics for energy discriminating photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir

    Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The

  12. Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40-300 kVp energy range.

    PubMed

    Poirier, Yannick; Kuznetsova, Svetlana; Villarreal-Barajas, Jose Eduardo

    2018-01-01

    To investigate empirically the energy dependence of the detector response of two in vivo luminescence detectors, LiF:Mg,Cu,P (MCP-N) high-sensitivity TLDs and Al 2 O 3 :C OSLDs, in the 40-300-kVp energy range in the context of in vivo surface dose measurement. As these detectors become more prevalent in clinical and preclinical in vivo measurements, knowledge of the variation in the empirical dependence of the measured response of these detectors across a wide spectrum of beam qualities is important. We characterized a large range of beam qualities of three different kilovoltage x-ray units: an Xstrahl 300 Orthovoltage unit, a Precision x-Ray X-RAD 320ix biological irradiator, and a Varian On-Board Imaging x-ray unit. The dose to water was measured in air according to the AAPM's Task Group 61 protocol. The OSLDs and TLDs were irradiated under reference conditions on the surface of a water phantom to provide full backscatter conditions. To assess the change in sensitivity in the long term, we separated the in vivo dosimeters of each type into an experimental and a reference group. The experimental dosimeters were irradiated using the kilovoltage x-ray units at each beam quality used in this investigation, while the reference group received a constant 10 cGy irradiation at 6 MV from a Varian clinical linear accelerator. The individual calibration of each detector was verified in cycles where both groups received a 10 cGy irradiation at 6 MV. The nanoDot OSLDs were highly reproducible, with ±1.5% variation in response following >40 measurement cycles. The TLDs lost ~20% of their signal sensitivity over the course of the study. The relative light output per unit dose to water of the MCP-N TLDs did not vary with beam quality for beam qualities with effective energies <50 keV (~150 kVp/6 mm Al). At higher energies, they showed a reduced (~75-85%) light output per unit dose relative to 6 MV x rays. The nanoDot OSLDs exhibited a very strong (120

  13. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    PubMed

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  14. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  15. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  16. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  17. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  18. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  19. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    NASA Astrophysics Data System (ADS)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  20. Detector and energy analyzer for energetic-hydrogen in beams and plasmas

    DOEpatents

    Bastasz, Robert J.; Hughes, Robert C.; Wampler, William R.

    1988-01-01

    A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicondioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies.

  1. Detector and energy analyzer for energetic-hydrogen in beams and plasmas

    DOEpatents

    Bastasz, R.J.; Hughes, R.C.; Wampler, W.R.

    1988-11-01

    A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicon-dioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies. 4 figs.

  2. Distributed imaging for liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Dalmasson, J.; Gratta, G.; Jamil, A.; Kravitz, S.; Malek, M.; Wells, K.; Bentley, J.; Steven, S.; Su, J.

    2018-03-01

    We discuss a novel paradigm in the optical readout of scintillation radiation detectors. In one common configuration, such detectors are homogeneous and the scintillation light is collected and recorded by external photodetectors. It is usually assumed that imaging in such a photon-starved and large-emittance regime is not possible. Here we show that the appropriate optics, matched with highly segmented photodetector coverage and dedicated reconstruction software, can be used to produce images of the radiation-induced events. In particular, such a "distributed imaging" system can discriminate between events produced as a single cluster and those resulting from more delocalized energy depositions. This is crucial in discriminating many common backgrounds at MeV energies. With the use of simulation, we demonstrate the performance of a detector augmented with a practical, if preliminary, set of optics. Finally, we remark that this new technique lends itself to be adapted to different detector sizes and briefly discuss the implications for a number of common applications in science and technology.

  3. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  4. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  5. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    PubMed

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  6. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  7. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  8. Comparison of morphological and conventional edge detectors in medical imaging applications

    NASA Astrophysics Data System (ADS)

    Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.

    1991-06-01

    Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.

  9. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV detector response function at six photon energies. The 12 parameters are obtained by non-linear least-square fitting with the measured detector response functions at the six energies. The correlations of the 12 parameters with energy are also investigated with the measured data. The analytical model generally describes the detector response function and is in good agreement with the measured data. The trend lines of the 12 parameters indicate higher energies tend to cause grater spectrum distortion. The spectrum distortion caused by the detector response function on spectral CT reconstruction is analyzed theoretically, and a solution to correct this spectrum distortion is also proposed. In spectral and fluorescence CT, the spectrum distortion caused by detector response function poses a problem and cannot be ignored in any quantitative analysis. The detector response function of a CdTe detector can be obtained by a semi-analytical method.

  10. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  11. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  12. Position-Sensitive CZT Detectors for High Energy X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Matteson, J.; Coburn, W.; Heindl, W.; Peterson, L.; Pelling, M.; Rothschild, R.; Skelton, R.; Hink, P.; Slavis, K.

    1998-05-01

    We report recent progress on CZT (Cadmium Zinc Telluride) detectors by the UCSD/WU collaboration. CZT, a room- temperature semiconductor, is a very promising detector material for high energy X-ray astronomy. It can operate from <10 keV to >200 keV, and give sub-keV energy resolution and sub-mm spatial resolution. We have developed an advanced CZT detector that uses two innovations to improve spectral response, give it 3-D localization of energy loss events, and reduce background at high altitudes and in space. The detector measures 12 x 12 x 2 mm(3) and was manufactured by eV Products. Each face has a strip readouts with 500 micron pitch electrodes. The 2 faces' strips are orthogonal, which provides x-y localization into 500 micron pixels. One innovation is "steering electrodes", which are located between the anode strips. They improve the anode charge collection and energy resolution, and tailing due to hole trapping is nearly totally eliminated. The energy resolution at 60 keV is 4 keV and the peak to valley ratio is 50. The other innovation is 3-D localization of energy losses. This is done by comparing the signals from the anode strips, cathode strips, and steering electrodes. There is a strong depth of interaction signature, which can be used to accept events which interact close to the cathode strips (where X-rays of interest are incident) and reject deeper interactions (which are likely to be background). The detector was tested in a balloon flight at 108,000 feet in October 1997. Background was reduced by passive shielding, consisting of lead graded with tin and copper. The lead thickness was changed by command during the flight, and was 7, 2, and 0 mm thick. With the 2 mm thickness the 20 - 40 keV background for the central 30 pixels was 8x10(-4) c/cm(2) -s-keV when the depth of interaction signature was used to reject background, and 7 times greater when this information was not used. The lower background is 12 times less than other workers have obtained

  13. Probing infrared detectors through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.

    2017-08-01

    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  14. The radiation gas detectors with novel nanoporous converter for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zarei, H.; Saramad, S.

    2018-02-01

    For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.

  15. Fine-Pitch CdTe Detector for Hard X-Ray Imaging and Spectroscopy of the Sun with the FOXSI Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'lchiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Bultrago-Casas, Juan Camilo; Krucker, Sam; hide

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires less than 100 micrometers position resolution (to take advantage of the angular resolution of the optics) and approximately equals 1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (greater than -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 micrometers for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 micrometers and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of approximately equals 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  16. Fine-pitch CdTe detector for hard X-ray imaging and spectroscopy of the Sun with the FOXSI rocket experiment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'ichiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Buitrago-Casas, Juan Camilo; Krucker, Säm.; Christe, Steven

    2016-07-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires <100μm position resolution (to take advantage of the angular resolution of the optics) and ≈1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (>-30°C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 μm for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 μm and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm × 7.67 mm, corresponding to the field of view of 791'' × 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of ≈4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  17. Study of imaging plate detector sensitivity to 5-18 MeV electrons

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Rabhi, N.; Batani, D.; Binet, A.; Ducret, J.-E.; Jakubowska, K.; Nègre, J.-P.; Reverdin, C.; Thfoin, I.

    2015-11-01

    Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.

  18. THCOBRA X-ray imaging detector operating in pure Kr

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Silva, A. L. M.; Azevedo, C. D. R.; Fortes, I.; Monteiro, S. G.; Sousa, S.; Ribeiro, F. M.; De Francesco, S.; Covita, D. S.; Veloso, J. F. C. A.

    2017-05-01

    MicroPattern Gaseous Detectors (MPGD) have been explored for X-ray imaging, namely for photon counting imaging which allows the improvement of image quality and the collection of more information than the conventional commercial systems. A 2D-THCOBRA based detector was developed, studied and used to acquire X-ray transmission images. The 2D-THCOBRA structure used has an active area of 2.8 × 2.8 cm2 and allows obtaining the position and energy information of each single photon that interacts with the detector. It is filled with pure Kr at 1 bar operating in a sealed mode. Within this work the performance of the detector is evaluated in terms of charge gain, count rate, time stability, energy and spatial resolutions. The detector presents a charge gain of 2 × 104 and an energy resolution of 23% for 5.9 keV, showing gain stability along time for a count rate of about 1 × 105 Hz/mm2. It presents a spatial resolution of 600 μm (σ = 255 μm) and 500 μm (σ = 213 μm) for x and y directions, respectively, and, considering energy bins about 650 μm (σ = 277 μm) for approximately 16.5 keV. X-ray transmission images of some samples presented here show good prospects for X-ray imaging applications.

  19. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  20. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  1. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  2. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  3. Sensitivity of a low threshold directional detector to CNO-cycle solar neutrinos

    NASA Astrophysics Data System (ADS)

    Bonventre, R.; Orebi Gann, G. D.

    2018-06-01

    A first measurement of neutrinos from the CNO fusion cycle in the Sun would allow a resolution to the current solar metallicity problem. Detection of these low-energy neutrinos requires a low-threshold detector, while discrimination from radioactive backgrounds in the region of interest is significantly enhanced via directional sensitivity. This combination can be achieved in a water-based liquid scintillator target, which offers enhanced energy resolution beyond a standard water Cherenkov detector. We study the sensitivity of such a detector to CNO neutrinos under various detector and background scenarios, and draw conclusions about the requirements for such a detector to successfully measure the CNO neutrino flux. A detector designed to measure CNO neutrinos could also achieve a few-percent measurement of pep neutrinos.

  4. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  5. Observations of barium ion jets in the magnetosphere using Doppler imaging systems and very sensitive imaging systems using imaging photon detectors

    NASA Technical Reports Server (NTRS)

    Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.

    1985-01-01

    Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.

  6. Biological tissue imaging with a position and time sensitive pixelated detector.

    PubMed

    Jungmann, Julia H; Smith, Donald F; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2012-10-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512 × 512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to biomolecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiologic concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740 × 740 nm(2) on the sample surface) and a spatial resolving power of 6 μm with a microscope mode laser field of view of 100-335 μm. Automated, large-area imaging is demonstrated and the Timepix' potential for fast, large-area image acquisition is highlighted.

  7. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  8. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  9. Optimization of the K-edge imaging for vulnerable plaques using gold nanoparticles and energy-resolved photon counting detectors: a simulation study

    PubMed Central

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee

    2014-01-01

    We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector

  10. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  11. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  12. Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study.

    PubMed

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q; Ducote, Justin; Molloi, Sabee

    2014-01-06

    We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal

  13. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  14. Image Accumulation in Pixel Detector Gated by Late External Trigger Signal and its Application in Imaging Activation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, J.; Cejnarova, A.; Platkevic, M.

    Single quantum counting pixel detectors of Medipix type are starting to be used in various radiographic applications. Compared to standard devices for digital imaging (such as CCDs or CMOS sensors) they present significant advantages: direct conversion of radiation to electric signal, energy sensitivity, noiseless image integration, unlimited dynamic range, absolute linearity. In this article we describe usage of the pixel device TimePix for image accumulation gated by late trigger signal. Demonstration of the technique is given on imaging coincidence instrumental neutron activation analysis (Imaging CINAA). This method allows one to determine concentration and distribution of certain preselected element in anmore » inspected sample.« less

  15. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  16. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  17. Electron imaging with an EBSD detector.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis

    2015-01-01

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Design, construction, and evaluation of new high resolution medical imaging detector/systems

    NASA Astrophysics Data System (ADS)

    Jain, Amit

    comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.

  19. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  20. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  1. Dark matter sensitivity of multi-ton liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvementsmore » in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.« less

  2. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  3. Position Sensitive Proximity Charge Sensing Readout of HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Priest, Anders Peterson

    Electrode segmentation is a necessity to achieve position sensitivity in semicon- ductor radiation detectors. Traditional segmentation requires decreasing electrode sizes while increasing channel numbers to achieve very fine position resolution. These electrodes can be complicated to fabricate, and many electrodes with individual electronic channels are required to instrument large detector areas. To simplify the fabrication process, we have moved the readout electrodes onto a printed circuit board that is positioned above the ionization type detection material. In this scheme, charge from radiation interactions will be shared amongst several electrodes, allowing for position interpolation. Because events can be reconstructed in between electrodes, fewer electrodes are needed to instrument large detector areas. The proximity charge sensing method of readout promises to simplify detector fabrication while maintaining the position resolution that is required by fields such as homeland security, astrophysics, environmental remediation, nuclear physics, and medical imaging. We performed scanning measurements on a proof of principle detector that we fabricated at Lawrence Berkeley National Laboratory (LBNL). These measurements showed that position resolution much finer than the strip pitch was achievable using the proximity charge readout method. We performed analytic calculations and Monte Carlo modeling to optimize the readout electrode geometry for a larger detector to test the limits of this technology. We achieved an average position resolution of 288 microm with eight proximity electrodes at a 5 mm pitch and 1 mm strip width, set 100 microm away from the detector surface by a Kapton spacer. To achieve this resolution using standard technologies, 300 microm pitch strips are necessary, and would require 100 channels to instrument the same area. Through our optimization calculations, we found that there is a trade-off between position resolution and energy resolution

  4. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  5. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-07

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  6. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  7. Observation and analysis of microcirculation using high-spatial-resolution image detectors and synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa

    2000-04-01

    A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3

  8. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  9. Characterization of a neutron sensitive MCP/Timepix detector for quantitative image analysis at a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenichi; Minniti, Triestino; Kockelmann, Winfried; Dalgliesh, Robert; Burca, Genoveva; Tremsin, Anton S.

    2017-07-01

    The uncertainties and the stability of a neutron sensitive MCP/Timepix detector when operating in the event timing mode for quantitative image analysis at a pulsed neutron source were investigated. The dominant component to the uncertainty arises from the counting statistics. The contribution of the overlap correction to the uncertainty was concluded to be negligible from considerations based on the error propagation even if a pixel occupation probability is more than 50%. We, additionally, have taken into account the multiple counting effect in consideration of the counting statistics. Furthermore, the detection efficiency of this detector system changes under relatively high neutron fluxes due to the ageing effects of current Microchannel Plates. Since this efficiency change is position-dependent, it induces a memory image. The memory effect can be significantly reduced with correction procedures using the rate equations describing the permanent gain degradation and the scrubbing effect on the inner surfaces of the MCP pores.

  10. Low Dose High Energy X-ray In-Line Phase Sensitive Imaging Prototype: Investigation of Optimal Geometric Conditions and Design Parameters

    PubMed Central

    Ghani, Muhammad. U.; Yan, Aimin; Wong, Molly. D.; Li, Yuhua; Ren, Liqiang; Wu, Xizeng; Liu, Hong

    2016-01-01

    The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 µm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 µm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 µm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This

  11. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  12. Imaging detectors and electronics—a view of the future

    NASA Astrophysics Data System (ADS)

    Spieler, Helmuth

    2004-09-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  13. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  14. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  15. Gamma-ray detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  16. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging.

    PubMed

    Walker, Katherine L; Judenhofer, Martin S; Cherry, Simon R; Mitchell, Gregory S

    2015-01-07

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With (99m)Tc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system's linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using (99m)Tc MAG-3 and a thyroid scan with (123)I) and one plant study (a (99m)TcO4(-) xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies

  17. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    DOE PAGES

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; ...

    2014-12-12

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. Furthermore, such high-resolution systems have relatively poor sensitivity (typically 0.01% to 0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatialmore » resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO 4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. In conclusion, UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake

  18. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.

    2015-01-01

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor

  19. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  20. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    PubMed Central

    Hu, Yue-Houng; Zhao, Wei

    2014-01-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (dSe) of the a-Se layer. Increasing the dSe will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of dSe on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing dSe for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing dSe causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a-Se introduces additional image blur

  1. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.

    PubMed

    Hu, Yue-Houng; Zhao, Wei

    2014-11-01

    Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (dSe) of the a-Se layer. Increasing the dSe will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of dSe on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d', which is used as a figure-of-merit to determine the total effect of increasing dSe for CE-DM and CE-DBT. The results of the CLSM show that increasing dSe causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a-Se introduces additional image blur. The reduced MTF and DQE at

  2. Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Levin, Craig

    2017-03-01

    Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.

  3. Medical imaging: Material change for X-ray detectors

    NASA Astrophysics Data System (ADS)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  4. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    NASA Astrophysics Data System (ADS)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  5. a-Si:H TFT-silicon hybrid low-energy x-ray detector

    DOE PAGES

    Shin, Kyung -Wook; Karim, Karim S.

    2017-03-15

    Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less

  6. ⁶Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications.

    PubMed

    Tanaka, H K M; Watanabe, H

    2014-04-24

    Despite the latent and unique benefits of imaging uranium and thorium's distribution in the earth's interior, previously proposed experimental techniques used to identify the incoming geo-neutrino's direction are not applicable to practical imaging due to the high miss-identification in a neutrino's track reconstruction. After performing experimental studies and Monte-Carlo simulations, we confirmed that a significant improvement is possible in neutrino tracking identification with a (6)Li-loaded neutrino detector. For possible imaging applications, we also explore the feasibility of producing geo-neutrinographic images of gigantic magmatic reservoirs and deep structure in the mantle. We anticipate and plan to apply these newly designed detectors to radiographic imaging of the Earth's interior, monitoring of nuclear reactors, and tracking astrophysical sources of neutrinos.

  7. 6Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications

    PubMed Central

    Tanaka, H. K. M.; Watanabe, H.

    2014-01-01

    Despite the latent and unique benefits of imaging uranium and thorium's distribution in the earth's interior, previously proposed experimental techniques used to identify the incoming geo-neutrino's direction are not applicable to practical imaging due to the high miss-identification in a neutrino's track reconstruction. After performing experimental studies and Monte-Carlo simulations, we confirmed that a significant improvement is possible in neutrino tracking identification with a 6Li-loaded neutrino detector. For possible imaging applications, we also explore the feasibility of producing geo-neutrinographic images of gigantic magmatic reservoirs and deep structure in the mantle. We anticipate and plan to apply these newly designed detectors to radiographic imaging of the Earth's interior, monitoring of nuclear reactors, and tracking astrophysical sources of neutrinos. PMID:24759616

  8. A Thermal Imaging Instrument with Uncooled Detectors

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  9. An efficient computational approach to model statistical correlations in photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian; Maier, Joscha; Sawall, Stefan

    2016-07-15

    Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel

  10. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

    PubMed

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-21

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  11. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  12. CZT drift strip detectors for high energy astrophysics

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Caroli, E.; Auricchio, N.

    2010-12-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions. We report on experimental investigations on the CZT drift detector developed DTU Space. It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector configuration. The CZT drift strip detector (10 mm×10 mm×2.5 mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher efficiency in agreement with calculations. The detector energy resolution was found to be the same (3 keV FWHM at 122 keV) in both in PPF and PTF . The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the detector using a collimated photon beam of 57Co radiation in PTF configuration. The width (300μm FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size. However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90μm FWHM at 122 keV and that it is determined by the electronic noise from the setup.

  13. A new imaging method for understanding chemical dynamics: efficient slice imaging using an in-vacuum pixel detector.

    PubMed

    Jungmann, J H; Gijsbertsen, A; Visser, J; Visschers, J; Heeren, R M A; Vrakking, M J J

    2010-10-01

    The implementation of the Timepix complementary metal oxide semiconductor pixel detector in velocity map slice imaging is presented. This new detector approach eliminates the need for gating the imaging detector. In time-of-flight mode, the detector returns the impact position and the time-of-flight of charged particles with 12.5 ns resolution and a dynamic range of about 100 μs. The implementation of the Timepix detector in combination with a microchannel plate additionally allows for high spatial resolution information via center-of-mass centroiding. Here, the detector was applied to study the photodissociation of NO(2) at 452 nm. The energy resolution observed in the experiment was ΔE/E=0.05 and is limited by the experimental setup rather than by the detector assembly. All together, this new compact detector assembly is well-suited for slice imaging and is a promising tool for imaging studies in atomic and molecular physics research.

  14. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-11-07

    Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm  ×  3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180  ±  2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm  ×  3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204  ±  1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.

  15. Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes.

    PubMed

    Raylman, R R; Wahl, R L

    1996-11-01

    The continuing development of probes for use with beta (positron and electron) emitting radionuclides may result in more complete excision of tracer-avid tumors. Perhaps one of the most promising radiopharmaceuticals for this task is 18F-labeled-Fluoro-2-Deoxy-D-Glucose (FDG). This positron-emitting agent has been demonstrated to be avidly and rapidly absorbed by many human cancers. We have investigated the use of ion-implanted-silicon detectors in intraoperative positron-sensitive surgical probes for use with FDG. These detectors possess very high positron detection efficiency, while the efficiency for 511 keV photon detection is low. The spatial resolution, as well as positron and annihilation photon detection sensitivity, of an ion-implanted-silicon detector used with 18F was measured at several energy thresholds. In addition, the ability of the device to detect the presence of relatively small amounts of FDG during surgery was evaluated by simulating a surgical field in which some tumor was left intact following lesion excision. The performance of the ion-implanted-silicon detector was compared to the operating characteristics of a positron-sensitive surgical probe which utilizes plastic scintillator. In all areas of performance the ion-implanted-silicon detector proved superior to the plastic scintillator-based probe. At an energy threshold of 14 keV positron sensitivity measured for the ion-implanted-silicon detector was 101.3 cps/kBq, photon sensitivity was 7.4 cps/kBq. In addition, spatial resolution was found to be relatively unaffected by the presence of distant sources of annihilation photon flux. Finally, the detector was demonstrated to be able to localize small amounts of FDG in a simulated tumor bed; indicating that this device has promise as a probe to aid in FDG-guided surgery.

  16. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  17. Sensitivity of an imaging space infrared interferometer.

    PubMed

    Nakajima, T; Matsuhara, H

    2001-02-01

    We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.

  18. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  19. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.

    PubMed

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-01

    The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  20. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  1. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  2. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  3. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  4. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-07

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  5. Performance evaluation of a novel high performance pinhole array detector module using NEMA NU-4 image quality phantom for four head SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2015-03-01

    Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.

  6. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, X; Guild, J; Arbique, G

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEEmore » corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.« less

  7. Prospective PET image quality gain calculation method by optimizing detector parameters.

    PubMed

    Theodorakis, Lampros; Loudos, George; Prassopoulos, Vasilios; Kappas, Constantine; Tsougos, Ioannis; Georgoulias, Panagiotis

    2015-12-01

    Lutetium-based scintillators with high-performance electronics introduced time-of-flight (TOF) reconstruction in the clinical setting. Let G' be the total signal to noise ratio gain in a reconstructed image using the TOF kernel compared with conventional reconstruction modes. G' is then the product of G1 gain arising from the reconstruction process itself and (n-1) other gain factors (G2, G3, … Gn) arising from the inherent properties of the detector. We calculated G2 and G3 gains resulting from the optimization of the coincidence and energy window width for prompts and singles, respectively. Both quantitative and image-based validated Monte Carlo models of Lu2SiO5 (LSO) TOF-permitting and Bi4Ge3O12 (BGO) TOF-nonpermitting detectors were used for the calculations. G2 and G3 values were 1.05 and 1.08 for the BGO detector and G3 was 1.07 for the LSO. A value of almost unity for G2 of the LSO detector indicated a nonsignificant optimization by altering the energy window setting. G' was found to be ∼1.4 times higher for the TOF-permitting detector after reconstruction and optimization of the coincidence and energy windows. The method described could potentially predict image noise variations by altering detector acquisition parameters. It could also further contribute toward a long-lasting debate related to cost-efficiency issues of TOF scanners versus the non-TOF ones. Some vendors re-engage nowadays to non-TOF product line designs in an effort to reduce crystal costs. Therefore, exploring the limits of image quality gain by altering the parameters of these detectors remains a topical issue.

  8. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  9. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  10. Fine-Pitch Semiconductor Detector for the FOXSI Mission

    NASA Astrophysics Data System (ADS)

    Ishikawa, S.; Saito, S.; Tajima, H.; Tanaka, T.; Watanabe, S.; Odaka, H.; Fukuyama, T.; Kokubun, M.; Takahashi, T.; Terada, Y.; Krucker, S.; Christe, S.; McBride, S.; Glesener, L.

    2011-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA sounding rocket mission which will study particle acceleration and coronal heating on the Sun through high sensitivity observations in the hard X-ray energy band (5-15 keV). Combining high-resolution focusing X-ray optics and fine-pitch imaging sensors, FOXSI will achieve superior sensitivity; two orders of magnitude better than that of the RHESSI satellite. As the focal plane detector, a Double-sided Si Strip Detector (DSSD) with a front-end ASIC (Application Specific Integrated Circuit) will fulfill the scientific requirements of spatial and energy resolution, low energy threshold and time resolution. We have designed and fabricated a DSSD with a thickness of 500 μm and a dimension of 9.6 mm × 9.6 mm, containing 128 strips with a pitch of 75 μm, which corresponds to 8 arcsec at the focal length of 2 m. We also developed a low-noise ASIC specified to FOXSI. The detector was successfully operated in the laboratory at a temperature of -20°C and with an applied bias voltage of 300 V. Extremely good energy resolutions of 430 eV for the p-side and 1.6 keV for the n-side at a 14 keV line were achieved for the detector. We also demonstrated fine-pitch imaging successfully by obtaining a shadow image. Hence the implementation of scientific requirements was confirmed.

  11. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    NASA Technical Reports Server (NTRS)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  12. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    NASA Astrophysics Data System (ADS)

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  13. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    PubMed

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  14. Investigation of Energy-Dispersive X-ray Computed Tomography System with CdTe Scan Detector and Comparing-Differentiator and Its Application to Gadolinium K-Edge Imaging

    NASA Astrophysics Data System (ADS)

    Chiba, Hiraku; Sato, Yuichi; Sato, Eiichi; Maeda, Tomoko; Matsushita, Ryo; Yanbe, Yutaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging by selecting optimal energy photons. CT is performed by repeated linear scans and rotations of an object. X-ray photons from the object are detected by the cadmium telluride (CdTe) detector, and event pulses of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator, and the maximum photon energy of 70 keV corresponds to the tube voltage. Logical pulses from the comparator are counted by a counter card through a differentiator to reduce pulse width and rise time. In the ED-CT system, tube voltage and current were 70 kV and 0.30 mA, respectively, and X-ray intensity was 18.2 µGy/s at 1.0 m from the source at a tube voltage of 70 kV. Demonstration of gadolinium K-edge CT for cancer diagnosis was carried out by selecting photons with energies ranging from 50.4 to 70 keV, and photon-count energy subtraction imaging from 30 to 50.3 keV was also performed.

  15. A Sensitive, Reliable Inexpensive Touch Detector

    ERIC Educational Resources Information Center

    Anger, Douglas; Schachtman, Todd R.

    2007-01-01

    Research in a laboratory required a sensitive, reliable, inexpensive touch detector for use with rats to test the reinforcement of inhibition. A small touch detector was also desirable so that the detector could be mounted on the rat's cage close to the object being touched by the rat, whose touches in turn were being detected by current passing…

  16. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  17. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  18. Velocity map imaging using an in-vacuum pixel detector.

    PubMed

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  19. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  20. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector

    NASA Astrophysics Data System (ADS)

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  1. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector.

    PubMed

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  2. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  3. High-Energy 3D Calorimeter for Use in Gamma-Ray Astronomy Based on Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.

    2017-01-01

    We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.

  4. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  5. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE PAGES

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...

    2017-12-19

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  6. Electron imaging with Medipix2 hybrid pixel detector.

    PubMed

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  7. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of themore » data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.« less

  8. Single crystal CVD diamond membranes as Position Sensitive X-ray Detector

    NASA Astrophysics Data System (ADS)

    Desjardins, K.; Menneglier, C.; Pomorski, M.

    2017-12-01

    Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.

  9. Properties of GaAs:Cr-based Timepix detectors

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Bergmann, B.; Chelkov, G.; Kotov, S.; Kruchonak, U.; Kozhevnikov, D.; Mora Sierra, Y.; Stekl, I.; Zhemchugov, A.

    2018-02-01

    The hybrid pixel detector technology brought to the X-ray imaging a low noise level at a high spatial resolution, thanks to the single photon counting. However, silicon as the most widespread detector material is marginally sensitive to photons with energies above 30 keV. Therefore, the high-Z alternatives to silicon such as gallium arsenide and cadmium telluride are increasingly attracting attention of the community for the development of X-ray imaging systems. The results of our investigations of the Timepix detectors bump bonded to sensors made of gallium arsenide compensated by chromium (GaAs:Cr) are presented in this work. The following properties are most important from the practical point of view: the IV characteristics, the charge transport characteristics, photon detection efficiency, operational stability, homogeneity, temperature dependence, as well as energy and spatial resolution are considered. The applicability of these detectors for spectroscopic X-ray imaging is discussed.

  10. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition.

    PubMed

    Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian

    2018-01-01

    Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.

  11. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  12. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  13. Standoff passive video imaging at 350 GHz with 251 superconducting detectors

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Gentry, Cale; Smirnov, Ilya; Ade, Peter; Beall, James; Cho, Hsiao-Mei; Dicker, Simon; Duncan, William; Halpern, Mark; Hilton, Gene; Irwin, Kent; Li, Dale; Paulter, Nicholas; Reintsema, Carl; Schwall, Robert; Tucker, Carole

    2014-06-01

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them ideal for passive imaging of thermal signals at these wavelengths. We have built a 350 GHz video-rate imaging system using a large-format array of feedhorn-coupled TES bolometers. The system operates at a standoff distance of 16m to 28m with a spatial resolution of 1:4 cm (at 17m). It currently contains one 251-detector subarray, and will be expanded to contain four subarrays for a total of 1004 detectors. The system has been used to take video images which reveal the presence of weapons concealed beneath a shirt in an indoor setting. We present a summary of this work.

  14. Photon-counting CT with silicon detectors: feasibility for pediatric imaging

    NASA Astrophysics Data System (ADS)

    Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats

    2009-02-01

    X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.

  15. Multi-energy x-ray detector calibration for T e and impurity density (n Z) measurements of MCF plasmas

    DOE PAGES

    Maddox, J.; Pablant, N.; Efthimion, P.; ...

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n 2 eZ eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emittedmore » from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.« less

  16. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  17. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  18. Velocity map imaging using an in-vacuum pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less

  19. Single photon detector with high polarization sensitivity.

    PubMed

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  20. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  1. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  2. Basis material decomposition method for material discrimination with a new spectrometric X-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.

    2017-08-01

    Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show

  3. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  4. Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST

    NASA Technical Reports Server (NTRS)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-01-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  5. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  6. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    PubMed

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Development and characterization of a dual-energy subtraction imaging system for chest radiography based on CsI:Tl amorphous silicon flat-panel technology

    NASA Astrophysics Data System (ADS)

    Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III

    2001-06-01

    Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  9. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  10. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  11. Evaluation of cassette‐based digital radiography detectors using standardized image quality metrics: AAPM TG‐150 Draft Image Detector Tests

    PubMed Central

    Greene, Travis C.; Nishino, Thomas K.; Willis, Charles E.

    2016-01-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region‐of‐interest (ROI)‐based techniques to measure nonuniformity, minimum signal‐to‐noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX‐1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG‐150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG‐150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG‐150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG

  12. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  13. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  14. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  15. Dual-Energy CT: New Horizon in Medical Imaging

    PubMed Central

    Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151

  16. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  17. A piecewise-focused high DQE detector for MV imaging.

    PubMed

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-09-01

    lightweight edge phantom to generate MTF measurements at MV energies and shows its functional equivalence to the more cumbersome slit-based method. Measured and simulated DQE(0)'s of the pixelated CWO detector were 22% and 26%, respectively. The average measured and simulated ratios of CWO DQE(f) to Cu-GOS DQE(f) across the frequency range of 0.0-0.62 mm(-1) were 23 and 29, respectively. 2D and 3D imaging studies confirmed the large dose efficiency improvement and that focus was maintained across the field of view. In the CWO CBCT images, the measured spatial resolution was 7 lp/cm. The contrast-to-noise ratio was dramatically improved reflecting a 22 × sensitivity increase relative to Cu-GOS. The CWO scintillator material showed significantly higher stability and light yield than the BGO material. An efficient piecewise-focused pixelated strip scintillator for MV imaging is described that offers more than a 20-fold dose efficiency improvement over Cu-GOS.

  18. A piecewise-focused high DQE detector for MV imaging

    PubMed Central

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-01-01

    also introduces the use of a lightweight edge phantom to generate MTF measurements at MV energies and shows its functional equivalence to the more cumbersome slit-based method. Results: Measured and simulated DQE(0)’s of the pixelated CWO detector were 22% and 26%, respectively. The average measured and simulated ratios of CWO DQE(f) to Cu-GOS DQE(f) across the frequency range of 0.0–0.62 mm−1 were 23 and 29, respectively. 2D and 3D imaging studies confirmed the large dose efficiency improvement and that focus was maintained across the field of view. In the CWO CBCT images, the measured spatial resolution was 7 lp/cm. The contrast-to-noise ratio was dramatically improved reflecting a 22 × sensitivity increase relative to Cu-GOS. The CWO scintillator material showed significantly higher stability and light yield than the BGO material. Conclusions: An efficient piecewise-focused pixelated strip scintillator for MV imaging is described that offers more than a 20-fold dose efficiency improvement over Cu-GOS. PMID:26328960

  19. Total rate imaging with x-rays (TRIX)--a simple method of forming a non-projection x-ray image in the SEM using an energy dispersive detector and its application to biological specimens.

    PubMed

    Ingram, P; Shelburne, J D

    1980-01-01

    X-ray images can be formed in a conventional scanning electron microscope equipped with a Si(Li) energy dispersive spectrometer. All the x-ray events generated in the electron beam scanning process are synchronously displayed in the same manner as for dot maps. The quasi-digital image formed using Total Rate Imaging with X-rays (TRIX) exhibits good gray scale contrast and is dependent on topography, orientation and atomic number. Although this latter dependence is complex, it has been found useful in locating several types of inclusions in lung tissue (silicosis), human alveolar macrophages and cigarette smoke condensate. This is because of the greater depth of penetration of x-rays than backscattered electrons (BSE) usually used for such localizations in a matrix, and the negligible sensitivity of the Si(Li) detector to x-rays from an organic biological matrix. The optimum procedure is to use a combination of TRIX and BSE to investigate such specimens.

  20. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  1. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  2. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    PubMed

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  3. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  4. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  5. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    NASA Astrophysics Data System (ADS)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  6. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  7. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  8. New application of superconductors: High sensitivity cryogenic light detectors

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  9. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  10. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    NASA Astrophysics Data System (ADS)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  11. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  12. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  13. Multi-energy x-ray detectors to improve air-cargo security

    NASA Astrophysics Data System (ADS)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  14. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  15. Evaluation of Timepix silicon detector for the detection of 18F positrons

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Tous, J.; Liu, Z.; Ziegler, S.; Shi, K.

    2014-05-01

    Timepix is an evolving energy and position sensitive pixel detector. It consists of a silicon detector (sensitive layer 300 μm thick) bump-bonded to the Timepix readout chip developed by the Medipix2 collaboration. This study aims to test the feasibility of using the acquired energy and position signals from Timepix for positron imaging. The signals of the commonly used fluorine-18 PET (positron emission tomography) tracer [18F]FDG were measured using Timepix operated both in single particle counting (Medipix) and in time over threshold (TOT) modes. The spatial resolution (SR) was measured using the absorber edge method (AEM) and was calculated from the over-sampled line spread function. The track of a positron in the Timepix detector was characterized as a cluster and the energy weighted centroid of each cluster was considered as readout for the position of the positron incidence. The measurement results were compared with theoretical predictions using Monte-Carlo simulations. In addition, imaging of a tissue slice of a mouse heart was analysed with reference to standard phosphor plate imaging. Our results show that the SR was improved from 177.1±4.1 μm (centroid without energy weighting) to 155.5±3.1 μm μm (centroid with energy weighting). About 12% enhancement of SR was achieved with energy information in TOT mode. The sensitivity of Timepix was 0.35 cps/Bq based on the measurements. The measuring background and the ratio between detected positrons and gamma rays were also evaluated and were found to be consistent with theoretical predictions. A small enhancement of image quality was also achieved by applying energy information to the data of the measured tissue sample. Our results show that the inclusion of energy information could slightly enhance the positron measurement compared to without energy information and the Timepix provides a high SR and sensitivity for positron detection. Thus, Timepix is a potentially effective tool for 2D positron imaging.

  16. Positional calibrations of the germanium double sided strip detectors for the Compton spectrometer and imager

    NASA Astrophysics Data System (ADS)

    Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.

    2016-08-01

    The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.

  17. A novel optical detector concept for dedicated and multi-modality in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Schulz, Ralf B.; Unholtz, Daniel; Semmler, Wolfhard

    2007-07-01

    An optical detector suitable for inclusion in tomographic arrangements for non-contact in vivo bioluminescence and fluorescence imaging applications is proposed. It consists of a microlens array (MLA) intended for field-of-view definition, a large-field complementary metal-oxide-semiconductor (CMOS) chip for light detection, a septum mask for cross-talk suppression, and an exchangeable filter to block excitation light. Prototype detector units with sensitive areas of 2.5 cm x 5 cm each were assembled. The CMOS sensor constitutes a 512 x 1024 photodiode matrix at 48 μm pixel pitch. Refractive MLAs with plano-convex lenses of 480 μm in diameter and pitch were selected resulting in a 55 x 105 lens matrix. The CMOS sensor is aligned on the focal plane of the MLA at 2.15mm distance. To separate individual microlens images an opaque multi-bore septum mask of 2.1mm in thickness and bore diameters of 400 μm at 480 μm pitch, aligned with the lens pattern, is placed between MLA and CMOS. Intrinsic spatial detector resolution and sensitivity was evaluated experimentally as a function of detector-object distance. Due to its small overall dimensions such detectors can be favorably packed for tomographic imaging (optical diffusion tomography, ODT) yielding complete 2 π field-of-view coverage. We also present a design study of a device intended to simultaneously image positron labeled substrates (positron emission tomography, PET) and optical molecular probes in small animals such as mice and rats. It consists of a cylindrical allocation of optical detector units which form an inner detector ring while PET detector blocks are mounted in radial extension, those gaining complementary information in a single, intrinsically coregistered experimental data acquisition study. Finally, in a second design study we propose a method for integrated optical and magnetic resonance imaging (MRI) which yields in vivo functional/molecular information that is intrinsically registered with the

  18. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    NASA Astrophysics Data System (ADS)

    Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.; Guardincerri, E.; Bacon, J. D.; Cowan, J.; Durham, J. M.; Huang, D.; Gao, J.; Hoffbauer, M. A.; Morley, D. J.; Morris, C. L.; Poulson, D. C.; Wang, Zhehui

    2016-11-01

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that 10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a 90Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  19. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    DOE PAGES

    Plaud-Ramos, Kenie Omar; Freeman, Matthew Stouten; Wei, Wanchun; ...

    2016-08-03

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a 90Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Furthermore, noise reduction in CIS is nevertheless important for the indirect approach.

  20. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a {sup 90}Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  1. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaud-Ramos, Kenie Omar; Freeman, Matthew Stouten; Wei, Wanchun

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a 90Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Furthermore, noise reduction in CIS is nevertheless important for the indirect approach.

  2. High resolution CsI(Tl)/Si-PIN detector development for breast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tull, C.R.

    High resolution multi-element (8x8) imaging arrays with collimators, size matched to discrete CsI(Tl) scintillator arrays and Si-PIN photodetector arrays (PDA`s) were developed as prototypes for larger arrays for breast imaging. Photodetector pixels were each 1.5 {times} 1.5 mm{sup 2} with 0.25 mm gaps. A 16-element quadrant of the detector was evaluated with a segmented CsI(Tl) scintillator array coupled to the silicon array. The scintillator thickness of 6 mm corresponds to >85% total gamma efficiency at 140 keV. Pixel energy resolution of <8% FWHM was obtained for Tc-99m. Electronic noise was 41 e{sup {minus}} RMS corresponding to a 3% FWHM contributionmore » to the 140 keV photopeak. Detection efficiency uniformity measured with a Tc-99m flood source was 4.3% for an {approximately}10% energy photopeak window. Spatial resolution was 1.53 mm FWHM and pitch was 1.75 mm as measured from the Co-57 (122 keV) line spread function. Signal to background was 34 and contrast was 0.94. The energy resolution and spatial characteristics of the new imaging detector exceed those of other scintillator based imaging detectors. A camera based on this technology will allow: (1) Improved Compton scatter rejection; (2) Detector positioning in close proximity to the breast to increase signal to noise; (3) Improved spatial resolution; and (4) Improved efficiency compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries.« less

  3. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  4. The Cadmium Zinc Telluride Imager on AstroSat

    NASA Astrophysics Data System (ADS)

    Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  5. Development of a three-layer phoswich alpha-beta-gamma imaging detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ishibashi, Hiroyuki

    2015-06-01

    For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: 5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was 1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.

  6. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  7. The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study.

    PubMed

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Koffeman, E N; Nakaji, T; Takatsu, J; Visser, J; Brandenburg, S

    2017-09-01

    Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150MeV, 190MeV and 230MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton's direction and position. A scattering angle cut of 8.7mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  9. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  10. Detectability comparison between a high energy x-ray phase sensitive and mammography systems in imaging phantoms with varying glandular-adipose ratios

    NASA Astrophysics Data System (ADS)

    Ghani, Muhammad U.; Wong, Molly D.; Wu, Di; Zheng, Bin; Fajardo, Laurie L.; Yan, Aimin; Fuh, Janis; Wu, Xizeng; Liu, Hong

    2017-05-01

    The objective of this study was to demonstrate the potential benefits of using high energy x-rays in comparison with the conventional mammography imaging systems for phase sensitive imaging of breast tissues with varying glandular-adipose ratios. This study employed two modular phantoms simulating the glandular (G) and adipose (A) breast tissue composition in 50 G-50 A and 70 G-30 A percentage densities. Each phantom had a thickness of 5 cm with a contrast detail test pattern embedded in the middle. For both phantoms, the phase contrast images were acquired using a micro-focus x-ray source operated at 120 kVp and 4.5 mAs, with a magnification factor (M) of 2.5 and a detector with a 50 µm pixel pitch. The mean glandular dose delivered to the 50 G-50 A and 70 G-30 A phantom sets were 1.33 and 1.3 mGy, respectively. A phase retrieval algorithm based on the phase attenuation duality that required only a single phase contrast image was applied. Conventional low energy mammography images were acquired using GE Senographe DS and Hologic Selenia systems utilizing their automatic exposure control (AEC) settings. In addition, the automatic contrast mode (CNT) was also used for the acquisition with the GE system. The AEC mode applied higher dose settings for the 70 G-30 A phantom set. As compared to the phase contrast images, the dose levels for the AEC mode acquired images were similar while the dose levels for the CNT mode were almost double. The observer study, contrast-to-noise ratio and figure of merit comparisons indicated a large improvement with the phase retrieved images in comparison to the AEC mode images acquired with the clinical systems for both density levels. As the glandular composition increased, the detectability of smaller discs decreased with the clinical systems, particularly with the GE system, even at higher dose settings. As compared to the CNT mode (double dose) images, the observer study also indicated that the phase retrieved images provided

  11. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  12. Active terahertz imaging with Ne indicator lamp detector arrays

    NASA Astrophysics Data System (ADS)

    Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.

    2009-08-01

    The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the detector. Bolometers and pyroelectric detectors can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law detectors, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.

  13. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    NASA Astrophysics Data System (ADS)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  14. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  15. Diamond detector in absorbed dose measurements in high‐energy linear accelerator photon and electron beams

    PubMed Central

    Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452

  16. Energy deposition measurements of single 1H, 4He and 12C ions of therapeutic energies in a silicon pixel detector

    NASA Astrophysics Data System (ADS)

    Gehrke, T.; Burigo, L.; Arico, G.; Berke, S.; Jakubek, J.; Turecek, D.; Tessonnier, T.; Mairani, A.; Martišíková, M.

    2017-04-01

    In the field of ion-beam radiotherapy and space applications, measurements of the energy deposition of single ions in thin layers are of interest for dosimetry and imaging. The present work investigates the capability of a pixelated detector Timepix to measure the energy deposition of single ions in therapeutic proton, helium- and carbon-ion beams in a 300 μm-thick sensitive silicon layer. For twelve different incident beams, the measured energy deposition distributions of single ions are compared to the expected energy deposition spectra, which were predicted by detailed Monte Carlo simulations using the FLUKA code. A methodology for the analysis of the measured data is introduced in order to identify and reject signals that are either degraded or caused by multiple overlapping ions. Applying a newly proposed linear recalibration, the energy deposition measurements are in good agreement with the simulations. The twelve measured mean energy depositions between 0.72 MeV/mm and 56.63 MeV/mm in a partially depleted silicon sensor do not deviate more than 7% from the corresponding simulated values. Measurements of energy depositions above 10 MeV/mm with a fully depleted sensor are found to suffer from saturation effects due to the too high per-pixel signal. The utilization of thinner sensors, in which a lower signal is induced, could further improve the performance of the Timepix detector for energy deposition measurements.

  17. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.

    PubMed

    Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M

    2012-03-01

    In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system

  18. Energy-discrimination x-ray computed tomography system utilizing a scanning cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-04-01

    An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.

  19. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  20. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  1. Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Schyns, L. E. J. R.; Dubois, L.; Jakubek, J.; Le Pape, A.; Sefc, L.; Sykora, V.; Turecek, D.; Uher, J.; Verhaegen, F.

    2017-01-01

    The tissue type resolving X-ray radiography and tomography can be performed even without contrast agents. The differences between soft tissue types such as kidney, muscles, fat, liver, brain and spleen were measured based on their spectral response. The Timepix based X-ray imaging detector WidePIX2×5 with 300 μm thick silicon sensors was used for most of the measurements presented in this work. These promising results are used for further optimizations of the detector technology and radiographic methods.

  2. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  3. Time-resolved imaging of the MALDI linear-TOF ion cloud: direct visualization and exploitation of ion optical phenomena using a position- and time-sensitive detector.

    PubMed

    Ellis, Shane R; Soltwisch, Jens; Heeren, Ron M A

    2014-05-01

    In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage (E(V)), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11–16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.

  4. Elemental X-ray Imaging Using the Maia Detector Array: The Benefits and Challenges of Large Solid-Angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C.G.; De Geronimo, G.; Kirkham, R.

    2009-11-13

    The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less

  5. Data processing and analysis for 2D imaging GEM detector system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Linczuk, M.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2014-11-01

    The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas [1]. Multi-channel measurement system and essential data processing for X-ray energy and position recognition is consider. Several modes of data acquisition are introduced depending on processing division for hardware and software components. Typical measuring issues aredeliberated for enhancement of data quality. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference X-ray source and tokamak plasma are demonstrated.

  6. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  7. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-07-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [18F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  8. Characterization of the VEGA ASIC coupled to large area position-sensitive Silicon Drift Detectors

    NASA Astrophysics Data System (ADS)

    Campana, R.; Evangelista, Y.; Fuschino, F.; Ahangarianabhari, M.; Macera, D.; Bertuccio, G.; Grassi, M.; Labanti, C.; Marisaldi, M.; Malcovati, P.; Rachevski, A.; Zampa, G.; Zampa, N.; Andreani, L.; Baldazzi, G.; Del Monte, E.; Favre, Y.; Feroci, M.; Muleri, F.; Rashevskaya, I.; Vacchi, A.; Ficorella, F.; Giacomini, G.; Picciotto, A.; Zuffa, M.

    2014-08-01

    Low-noise, position-sensitive Silicon Drift Detectors (SDDs) are particularly useful for experiments in which a good energy resolution combined with a large sensitive area is required, as in the case of X-ray astronomy space missions and medical applications. This paper presents the experimental characterization of VEGA, a custom Application Specific Integrated Circuit (ASIC) used as the front-end electronics for XDXL-2, a large-area (30.5 cm2) SDD prototype. The ASICs were integrated on a specifically developed PCB hosting also the detector. Results on the ASIC noise performances, both stand-alone and bonded to the large area SDD, are presented and discussed.

  9. High-Resolution Detector For X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  10. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54

  11. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  12. Image-based spectral distortion correction for photon-counting x-ray detectors

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  13. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    NASA Astrophysics Data System (ADS)

    Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.

    2018-03-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.

  14. Fast neutron sensitivity of neutron detectors based on Boron-10 converter layers

    NASA Astrophysics Data System (ADS)

    Mauri, G.; Messi, F.; Kanaki, K.; Hall-Wilton, R.; Karnickis, E.; Khaplanov, A.; Piscitelli, F.

    2018-03-01

    In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternative technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the γ-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.

  15. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  16. Microwave Kinetic Inductance Detectors: Large Format X-ray Spectral Imagers for the Next Generation of X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Eckart, Megan E.; Mazin, B. A.; Bumble, B.; Golwala, S. R.; Zmuidzinas, J.; Day, P. K.; Harrison, F. A.

    2006-09-01

    Microwave Kinetic Inductance Detectors (MKIDs) have the potential to provide megapixel imagers with few eV spectral resolution for future X-ray missions such as Gen-X. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed, so that arrays with many thousand pixels are readily achievable. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. MKIDs exploit the dependence of surface impedance of a superconductorwith the quasiparticle density. Quasiparticles are created by absorption of X-rays, with number proportional to the X-ray energy. The impedance change may be sensitively measured using a thin-film resonant circuit. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To apply the MKID scheme to X-ray detection we pattern tantalum strips with aluminum MKIDs attached at each end. An incident X-ray is absorbed in the Ta and creates millions of quasiparticle excitations, which diffuse to each end of the strip, finally entering the Al resonators where they are trapped and sensed. Simultaneous monitoring of the signal at both ends of the strip allow position and energy determination for each photon. We have demonstrated working strip detectors in the laboratory, and will present our measurements of the quasiparticle diffusion constant and the quasiparticle lifetime in tantalum, the aluminum quasiparticle lifetime, and the energy resolution of the detector. We will also discuss ideas for future detector designs and suggest ultimate performance goals for X-ray astronomy applications.

  17. Sensitivity of the DANSS detector to short range neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Danilov, Mikhail; DANSS Collaboration

    2016-04-01

    DANSS is a highly segmented 1 m3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7 m to 12.2 m from the reactor core. PMTs and SiPMs collect about 30 photo electrons per MeV distributed approximately equally between two types of the readout. Light collection non-uniformity across and along the strip is about ±13% from maximum to minimum. The resulting energy resolution is modest, σ / E = 15% at 5 MeV. This leads to a smearing of the oscillation pattern comparable with the smearing due to the large size of the reactor core. Nevertheless because of the large counting rate (˜10000/day), small background (< 1%) and good control of systematic uncertainties due to frequent changes of positions, the DANSS is quite sensitive to reactor antineutrino oscillations to hypothetical sterile neutrinos with a mass in eV ballpark suggested recently to explain a so-called reactor anomaly. DANSS will have an elaborated calibration system. The high granularity of the detector allows calibration of every strip with about 40 thousand cosmic muons every day. The expected systematic effects do not reduce much the sensitivity region. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (4% of DANSS), it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector.

  18. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  19. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  20. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  1. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; hide

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  2. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  3. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE PAGES

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-08-22

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  4. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  5. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  6. A micropixelated ion-imaging detector for mass resolution enhancement of a QMS instrument.

    PubMed

    Syed, Sarfaraz U A H; Eijkel, Gert B; Maher, Simon; Kistemaker, Piet; Taylor, Stephen; Heeren, Ron M A

    2015-03-01

    An in-vacuum position-sensitive micropixelated detector (Timepix) is used to investigate the time-dependent spatial distribution of different charge state (and hence different mass-to-charge (m/z)) ions exiting an electrospray ionization (ESI)-based quadrupole mass spectrometer (QMS) instrument. Ion images obtained from the Timepix detector provide a detailed insight into the positions of stable and unstable ions of the mass peak as they exit the QMS. With the help of image processing algorithms and by selecting areas on the ion images where more stable ions impact the detector, an improvement in mass resolution by a factor of 5 was obtained for certain operating conditions. Moreover, our experimental approach of mass resolution enhancement was confirmed by in-house-developed novel QMS instrument simulation software. Utilizing the imaging-based mass resolution enhancement approach, the software predicts instrument mass resolution of ∼1,0000 for a single-filter QMS instrument with a 210-mm long mass filter and a low operating frequency (880 kHz) of the radio frequency (RF) voltage.

  7. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  8. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  9. Development of ultrahigh resolution alpha particle imaging detector using 1 mm channel size Si-PM array

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kawaguchi, Wataru

    2018-06-01

    For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.

  10. Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE

    DOE PAGES

    Borges, Nicholas; Losko, Adrian; Vogel, Sven

    2018-02-13

    The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less

  11. Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Nicholas; Losko, Adrian; Vogel, Sven

    The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less

  12. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    NASA Astrophysics Data System (ADS)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  13. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    DTIC Science & Technology

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  14. Dual Energy Tomosynthesis breast phantom imaging

    NASA Astrophysics Data System (ADS)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  15. Space imaging measurement system based on fixed lens and moving detector

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  16. Comparing performances of a CdTe X-ray spectroscopic detector and an X-ray dual-energy sandwich detector

    NASA Astrophysics Data System (ADS)

    Gorecki, A.; Brambilla, A.; Moulin, V.; Gaborieau, E.; Radisson, P.; Verger, L.

    2013-11-01

    Multi-energy (ME) detectors are becoming a serious alternative to classical dual-energy sandwich (DE-S) detectors for X-ray applications such as medical imaging or explosive detection. They can use the full X-ray spectrum of irradiated materials, rather than disposing only of low and high energy measurements, which may be mixed. In this article, we intend to compare both simulated and real industrial detection systems, operating at a high count rate, independently of the dimensions of the measurements and independently of any signal processing methods. Simulations or prototypes of similar detectors have already been compared (see [1] for instance), but never independently of estimation methods and never with real detectors. We have simulated both an ME detector made of CdTe - based on the characteristics of the MultiX ME100 and - a DE-S detector - based on the characteristics of the Detection Technology's X-Card 1.5-64DE model. These detectors were compared to a perfect spectroscopic detector and an optimal DE-S detector. For comparison purposes, two approaches were investigated. The first approach addresses how to distinguise signals, while the second relates to identifying materials. Performance criteria were defined and comparisons were made over a range of material thicknesses and with different photon statistics. Experimental measurements in a specific configuration were acquired to checks simulations. Results showed good agreement between the ME simulation and the ME100 detector. Both criteria seem to be equivalent, and the ME detector performs 3.5 times better than the DE-S detector with same photon statistics based on simulations and experimental measurements. Regardless of the photon statistics ME detectors appeared more efficient than DE-S detectors for all material thicknesses between 1 and 9 cm when measuring plastics with an attenuation signature close that of explosive materials. This translates into an improved false detection rate (FDR): DE

  17. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  18. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  19. High-performance dual-energy imaging with a flat-panel detector: imaging physics from blackboard to benchtop to bedside

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Shkumat, N. A.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Daly, M. J.; Paul, N. S.; Moseley, D. J.; Jaffray, D. A.; Yorkston, J.; Van Metter, R.

    2006-03-01

    The application of high-performance flat-panel detectors (FPDs) to dual-energy (DE) imaging offers the potential for dramatically improved detection and characterization of subtle lesions through reduction of "anatomical noise," with applications ranging from thoracic imaging to image-guided interventions. In this work, we investigate DE imaging performance from first principles of image science to preclinical implementation, including: 1.) generalized task-based formulation of NEQ and detectability as a guide to system optimization; 2.) measurements of imaging performance on a DE imaging benchtop; and 3.) a preclinical system developed in our laboratory for cardiac-gated DE chest imaging in a research cohort of 160 patients. Theoretical and benchtop studies directly guide clinical implementation, including the advantages of double-shot versus single-shot DE imaging, the value of differential added filtration between low- and high-kVp projections, and optimal selection of kVp pairs, filtration, and dose allocation. Evaluation of task-based NEQ indicates that the detectability of subtle lung nodules in double-shot DE imaging can exceed that of single-shot DE imaging by a factor of 4 or greater. Filter materials are investigated that not only harden the high-kVp beam (e.g., Cu or Ag) but also soften the low-kVp beam (e.g., Ce or Gd), leading to significantly increased contrast in DE images. A preclinical imaging system suitable for human studies has been constructed based upon insights gained from these theoretical and experimental studies. An important component of the system is a simple and robust means of cardiac-gated DE image acquisition, implemented here using a fingertip pulse oximeter. Timing schemes that provide cardiac-gated image acquisition on the same or successive heartbeats is described. Preclinical DE images to be acquired under research protocol will afford valuable testing of optimal deployment, facilitate the development of DE CAD, and support

  20. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-09-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  1. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; hide

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  2. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  3. Analysis of multilayer and single layer X-ray detectors for contrast-enhanced mammography using imaging task

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.

    2011-03-01

    A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.

  4. A fast 1-D detector for imaging and time resolved SAXS experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.

    1999-02-01

    A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.

  5. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    NASA Astrophysics Data System (ADS)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  6. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Alexey; De Geronimo, GianLuigi; Vernon, Emerson

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm 2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. Themore » 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.« less

  7. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  8. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  9. Study of a GaAs:Cr-based Timepix detector using synchrotron facility

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Kozhevnikov, D.; Bakina, O.; Chelkov, G.; Dedovich, D.; Kuper, K.; Leyva Fabelo, A.; Zhemchugov, A.

    2017-11-01

    High resistivity gallium arsenide compensated by chromium fabricated by Tomsk State University has demonstrated a good suitability as a sensor material for hybrid pixel detectors used in X-ray imaging systems with photon energies up to 60 keV. The material is available with a thickness up to 1 mm and due to its Z number a high absorption efficiency in this energy region is provided. However, the performance of thick GaAs:Cr-based detectors in spectroscopic applications is limited by readout electronics with relatively small pixels due to the charge sharing effect. In this paper, we present the experimental investigation of the charge sharing effect contribution in the GaAs:Cr-based Timepix detector. By means of scanning the detector with a pencil photon beam generated by the synchrotron facility, the geometrical mapping of pixel sensitivity is obtained, as well as the energy resolution of a single pixel. The experimental results are supported by numerical simulations. The observed limitation of the GaAs:Cr-based Timepix detector for the high flux X-ray imaging is discussed.

  10. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  11. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less

  12. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.

    PubMed

    Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M

    2016-06-01

    High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  13. Imaging performance of a Timepix detector based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Zápražný, Z.; Jakůbek, J.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Korytár, D.; Nečas, V.; Žemlička, J.; Mora, Y.; Pichotka, M.

    2018-01-01

    This work focused on a Timepix chip [1] coupled with a bulk semi-insulating GaAs sensor. The sensor consisted of a matrix of 256 × 256 pixels with a pitch of 55 μm bump-bonded to a Timepix ASIC. The sensor was processed on a 350 μm-thick SI GaAs wafer. We carried out detector adjustment to optimize its performance. This included threshold equalization with setting up parameters of the Timepix chip, such as Ikrum, Pream, Vfbk, and so on. The energy calibration of the GaAs Timepix detector was realized using a 241Am radioisotope in two Timepix detector modes: time-over-threshold and threshold scan. An energy resolution of 4.4 keV in FWHM (Full Width at Half Maximum) was observed for 59.5 keV γ-photons using threshold scan mode. The X-ray imaging quality of the GaAs Timepix detector was tested using various samples irradiated by an X-ray source with a focal spot size smaller than 8 μm and accelerating voltage up to 80 kV. A 700 μm × 700 μm gold testing object (X-500-200-16Au with Siemens star) fabricated with high precision was used for the spatial resolution testing at different values of X-ray image magnification (up to 45). The measured spatial resolution of our X-ray imaging system was about 4 μm.

  14. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  15. High-Sensitivity Fast Neutron Detector KNK-2-8M

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  16. Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.

    2017-03-01

    Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.

  17. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C. G.; School of Physics, University of Melbourne, Parkville VIC; CODES Centre of Excellence, University of Tasmania, Hobart TAS

    2010-04-06

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  18. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C.G.; Siddons, D.P.; Kirkham, R.

    2010-05-25

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  19. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Stephen

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator withmore » a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.« less

  20. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  1. A Thermal Imaging Instrument with Uncooled Detectors

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; Barrentine, E.; Brown, A.

    2018-01-01

    In this work, we performed an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We evaluated two different uncooled detector technologies uncooled microbolometers and thermopiles. We have also evaluated materials for use in in a uncooled thermopile detector concept.

  2. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian, E-mail: sebastian.faby@dkfz.de; Kuchenbecker, Stefan; Sawall, Stefan

    2015-07-15

    Purpose: To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task. Methods: The material decomposition performance of different energy-resolved CT acquisition techniques is assessed and compared in a simulation study of virtual non-contrast imaging and iodine quantification. The material-specific images are obtained via a statistically optimal image-based material decomposition. A projection-based maximum likelihood approach was used for comparison with the authors’ image-based method. The different dedicated dual energy CT techniques are simulated employing realistic noise models andmore » x-ray spectra. The authors compare dual source DECT with fast kV switching DECT and the dual layer sandwich detector DECT approach. Subsequent scanning and a subtraction method are studied as well. Further, the authors benchmark future MECT with novel photon counting detectors in a dedicated DECT application against the performance of today’s DECT using a realistic model. Additionally, possible dual source concepts employing photon counting detectors are studied. Results: The DECT comparison study shows that dual source DECT has the best performance, followed by the fast kV switching technique and the sandwich detector approach. Comparing DECT with future MECT, the authors found noticeable material image quality improvements for an ideal photon counting detector; however, a realistic detector model with multiple energy bins predicts a performance on the level of dual source DECT at 100 kV/Sn 140 kV. Employing photon counting detectors in dual source concepts can improve the performance again above the level of a single realistic photon counting detector and also above the level of dual source DECT. Conclusions: Substantial differences in the performance of today’s DECT approaches were found

  3. Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.

    2009-07-01

    We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.

  4. Direction sensitive neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-findingmore » to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.« less

  5. Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment

    NASA Astrophysics Data System (ADS)

    Weaver, Hannah; UCNTau Collaboration

    2016-09-01

    Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.

  6. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  7. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  8. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  9. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  10. Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.

    PubMed

    Fang, Yuan; Ito, Takaaki; Nariyuki, Fumito; Kuwabara, Takao; Badano, Aldo; Karim, Karim S

    2017-08-01

    This work studies the detective quantum efficiency (DQE) of a-Se-based solid state x-ray detectors for medical imaging applications using ARTEMIS, a Monte Carlo simulation tool for modeling x-ray photon, electron and charged carrier transport in semiconductors with the presence of applied electric field. ARTEMIS is used to model the signal formation process in a-Se. The simulation model includes x-ray photon and high-energy electron interactions, and detailed electron-hole pair transport with applied detector bias taking into account drift, diffusion, Coulomb interactions, recombination and trapping. For experimental validation, the DQE performance of prototype a-Se detectors is measured following IEC Testing Standard 62220-1-3. Comparison of simulated and experimental DQE results show reasonable agreement for RQA beam qualities. Experimental validation demonstrated within 5% percentage difference between simulation and experimental DQE results for spatial frequency above 0.25 cycles/mm using uniform applied electric field for RQA beam qualities (RQA5, RQA7 and RQA9). Results include two different prototype detectors with thicknesses of 240 μm and 1 mm. ARTEMIS can be used to model the DQE of a-Se detectors as a function of x-ray energy, detector thickness, and spatial frequency. The ARTEMIS model can be used to improve understanding of the physics of x-ray interactions in a-Se and in optimization studies for the development of novel medical imaging applications. © 2017 American Association of Physicists in Medicine.

  11. Liquid-Xe detector for contraband detection

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Coimbra, A. E.; Moleri, L.; Erdal, E.; Bar, D.; Rappaport, M.; Shchemelinin, S.; Caspi, E. N.; Aviv, O.; Breskin, A.

    2016-07-01

    We describe progress made with a liquid-Xe (LXe) detector coupled to a gaseous photomultiplier (GPM), for combined imaging and spectroscopy of fast neutrons and gamma-rays in the MeV range. The purpose of this detector is to enable the detection of hidden explosives and fissile materials in cargo and containers. The expected position resolution is about 2 m and 3.5 mm for fast neutrons and gamma-rays, respectively. Experimental results obtained using an 241Am source yielded energy and time resolutions of 11% and 1.2 ns RMS, respectively. Initial results obtained with the position-sensitive GPM are presented.

  12. Image charge multi-role and function detectors

    NASA Astrophysics Data System (ADS)

    Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon

    2009-06-01

    The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.

  13. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images.

    PubMed

    Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H

    2018-05-28

    The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.

  14. Hard x-ray imager for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke

    2006-06-01

    The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.

  15. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.

    PubMed

    Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi

    2017-06-01

    Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm 3 , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, 22 Na. Dual-radionuclide ( 18 F and 22 Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from 22 Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the edge of

  16. Applications of a micro-pixel chamber (μPIC) based, time-resolved neutron imaging detector at pulsed neutron beams

    NASA Astrophysics Data System (ADS)

    Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.

    2014-04-01

    The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.

  17. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong

    2016-05-01

    The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

  18. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  19. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  20. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  1. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  2. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  3. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  4. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors.

    PubMed

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  5. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  6. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  7. Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments

    NASA Astrophysics Data System (ADS)

    Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.

    2016-10-01

    Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques

  8. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  9. Inpainting approaches to fill in detector gaps in phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Brun, F.; Delogu, P.; Longo, R.; Dreossi, D.; Rigon, L.

    2018-01-01

    Photon counting semiconductor detectors in radiation imaging present attractive properties, such as high efficiency, low noise, and energy sensitivity. The very complex electronics limits the sensitive area of current devices to a few square cm. This disadvantage is often compensated by tiling a larger matrix with an adequate number of detector units but this usually results in non-negligible insensitive gaps between two adjacent modules. When considering the case of Computed Tomography (CT), these gaps lead to degraded reconstructed images with severe streak and ring artifacts. This work presents two digital image processing solutions to fill in these gaps when considering the specific case of synchrotron radiation x-ray parallel beam phase contrast CT. While not discussed with experimental data, other CT modalities, such as spectral, cone beam and other geometries might benefit from the presented approaches.

  10. Cargo Container Imaging with Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Forest, Tony

    2006-10-01

    The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.

  11. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2012-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical

  12. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical

  13. Development of a Scintillation Detector and the Influence on Clinical Imaging

    NASA Astrophysics Data System (ADS)

    Panetta, Joseph Vincent

    measurement uncertainty. This study shows that the improvements in CRC resulting from improved spatial resolution, measured using phantom studies in the simulations, are representative of improvements in quantitative accuracy in patient studies. While unmodified thick continuous detectors hold promise for both improved image quality and quantitation in whole-body imaging, excellent performance requires intensive hardware and computational solutions. Laser induced optical barriers offer the ability to modify the light spread within the scintillator to improve the intrinsic performance of the detector: while measurements with crystals etched with relatively transmissive etchings show a slight improvement in resolution, simulations show that the LIOBs may be fine-tuned to result in improved performance using relatively simple positioning algorithms. For systems in which DOI information is less important, and transverse resolution and sensitivity are paramount, etching thick detectors with this design, fine-tuned to the particular thickness of the crystal and application, is an interesting alternative to the standard detector design. (Abstract shortened by ProQuest.).

  14. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  15. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  16. A new detector for mass spectrometry: direct detection of low energy ions using a multi-pixel photon counter.

    PubMed

    Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire

    2012-01-01

    A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.

  17. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  18. A mower detector to judge soil sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlitt, E.T.; Johnson, N.R.

    1995-12-31

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detectionmore » sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina.« less

  19. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  20. Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1983-01-01

    Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.

  1. Design optimization for a wearable, gamma-ray and neutron sensitive, detector array with directionality estimation

    NASA Astrophysics Data System (ADS)

    Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.

    2017-10-01

    In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.

  2. The High Energy Detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Tauzin, G.; Hervé, S.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Authier, M.; Ferrando, P.

    2009-05-01

    The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.

  3. Effects of Detector Thickness on Geometric Sensitivity and Event Positioning Errors in the Rectangular PET/X Scanner

    NASA Astrophysics Data System (ADS)

    MacDonald, Lawrence R.; Hunter, William C. J.; Kinahan, Paul E.; Miyaoka, Robert S.

    2013-10-01

    We used simulations to investigate the relationship between sensitivity and spatial resolution as a function of crystal thickness in a rectangular PET scanner intended for quantitative assessment of breast cancers. The system had two 20 × 15-cm2 and two 10 × 15-cm2 flat detectors forming a box, with the larger detectors separated by 4 or 8 cm. Depth-of-interaction (DOI) resolution was modeled as a function of crystal thickness based on prior measurements. Spatial resolution was evaluated independent of image reconstruction by deriving and validating a surrogate metric from list-mode data ( dFWHM). When increasing crystal thickness from 5 to 40 mm, and without using DOI information, the dFWHM for a centered point source increased from 0.72 to 1.6 mm. Including DOI information improved dFWHM by 12% and 27% for 5- and 40-mm-thick crystals, respectively. For a point source in the corner of the FOV, use of DOI information improved dFWHM by 20% (5-mm crystal) and 44% (40-mm crystal). Sensitivity was 7.7% for 10-mm-thick crystals (8-cm object). Increasing crystal thickness on the smaller side detectors from 10 to 20 mm (keeping 10-mm crystals on the larger detectors) boosted sensitivity by 24% (relative) and degraded dFWHM by only 3%/8% with/without DOI information. The benefits of measuring DOI must be evaluated in terms of the intended clinical task of assessing tracer uptake in small lesions. Increasing crystal thickness on the smaller side detectors provides substantial sensitivity increase with minimal accompanying loss in resolution.

  4. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  5. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  6. Image-based deep learning for classification of noise transients in gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Razzano, Massimiliano; Cuoco, Elena

    2018-05-01

    The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.

  7. Curved position-sensitive detector for X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    1980-11-01

    A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.

  8. Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality.

    PubMed

    Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L

    2018-07-01

    To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (p< 0.0001). Processing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (p<0.0001). Visual grading analysis (VGA) identified a detector air kerma/image (DAK/image) of ~2.4 μGy as an ideal working point for NIP, DXD and DRX detectors. VGAS tracked IQ differences between detectors and dose levels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.

  9. Energy-selective Neutron Imaging for Three-dimensional Non-destructive Probing of Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.

    Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.

  10. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    PubMed

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. K-edge energy-based calibration method for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  12. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  13. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  14. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  15. Speckle imaging with the MAMA detector: Preliminary results

    NASA Technical Reports Server (NTRS)

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  16. Development of TlBr detectors for PET imaging.

    PubMed

    Ariño-Estrada, Gerard; Du, Junwei; Kim, Hadong; Cirignano, Leonard J; Shah, Kanai S; Cherry, Simon R; Mitchell, Gregory S

    2018-05-04

    Thallium bromide (TlBr) is a promising semiconductor detector material for positron emission tomography (PET) because it can offer very good energy resolution and 3-D segmentation capabilities, and it also provides detection efficiency surpassing that of commonly used scintillators. Energy, timing, and spatial resolution were measured for thin (<1 mm) TlBr detectors. The energy and timing resolution were measured simultaneously for the same planar 0.87 mm-thick TlBr device. An energy resolution of (6.41.3)% at 511 keV was achieved at -400 V bias voltage and at room temperature. A timing resolution of (27.84.1) ns FWHM was achieved for the same operating conditions when appropriate energy gating was applied. The intrinsic spatial resolution was measured to be 0.9 mm FWHM for a TlBr detector with metallic strip contacts of 0.5 mm pitch. As material properties improve, higher bias voltage should improve timing performance. A stack of thin detectors with finely segmented readout can create a modular detector with excellent energy and spatial resolution for PET applications. . © 2018 Institute of Physics and Engineering in Medicine.

  17. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  18. TU-E-BRA-05: Reverse Geometry Imaging with MV Detector for Improved Image Resolution.

    PubMed

    Ganguly, A; Abel, E; Sun, M; Fahrig, R; Virshup, G; Star-Lack, J

    2012-06-01

    Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher image contrast but are stopped near the scintillator entrance surface. They suffer the most scattering in the scintillator prior to detection in the photodiodes. Reversing the detector geometry, so that the incident x-ray beam passes through the photodiode array into the scintillator, allows the light to scatter less prior to detection. This also reduces the Swank noise since now higher and lower energy x-ray photons tend to produce similar electronic signals. In this work, we present simulations and measurements of detector MTF for the conventional/forward and reverse geometries to demonstrate this phenomenon. A tabletop system consisting of a Varian CX1 1MeV linear accelerator and a modified Varian Paxscan4030 with the readout electronics moved away from the incident the beam was used. A special holder was used to press a 2.5W×5.0L×2.0Hcm 3 pixellated Cesium Iodide (CsI:Tl) scintillator array on to the detector glass. The CsI array had a pitch of 0.784mm with plastic septa between pixels and the photodiode array pitch was 0.192 mm. The MTF in the forward and reverse geometries was measured using a 0.5mm thick Tantalum slanted edge. Geant4-based Monte Carlo simulations were performed for comparison. The measured and simulated MTFs matched to within 3.4(±3.7)% in the forward and 4.4(±1.5)% in reverse geometries. The reverse geometry MTF was higher than the forward geometry MTF at all spatial frequencies and doubled to .25 at 0.3lp/mm. A novel method of improving the image resolution at MV energies was demonstrated. The improvements should be more pronounced with increased scintillator thickness. Funding support provided

  19. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.

    PubMed

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M; Hobson, Peter A; Gibson, Graham M; Padgett, Miles J; Hendry, Euan

    2016-06-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm(2)) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging.

  20. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    NASA Astrophysics Data System (ADS)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  1. Development of a Broad High-Energy Gamma-Ray Telescope using Silicon Strip Detectors

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1998-01-01

    The research effort has led to the development and demonstration of technology to enable the design and construction of a next-generation high-energy gamma-ray telescope that operates in the pair-production regime (E greater than 10 MeV). In particular, the technology approach developed is based on silicon-strip detector technology. A complete instrument concept based on this technology for the pair-conversion tracker and the use of CsI(T1) crystals for the calorimeter is now the baseline instrument concept for the Gamma-ray Large Area Space Telescope (GLAST) mission. GLAST is NASA's proposed high-energy gamma-ray mission designed to operate in the energy range from 10 MeV to approximately 300 GeV. GLAST, with nearly 100 times the sensitivity of EGRET, operates through pair conversion of gamma-rays and measurement of the direction and energy of the resulting e (+) - e (-) shower. The baseline design, developed with support from NASA includes a charged particle anticoincidence shield, a tracker/converter made of thin sheets of high-Z material interspersed with Si strip detectors, a CsI calorimeter and a programmable data trigger and acquisition system. The telescope is assembled as an array of modules or towers. Each tower contains elements of the tracker, calorimeter, and anticoincidence system. As originally proposed, the telescope design had 49 modules. In the more optimized design that emerged at the end of the grant period the individual modules are larger and the total number in the GLAST array is 25. Also the calorimeter design was advanced substantially to the point that it has a self-contained imaging capability, albeit much cruder than the tracker.

  2. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  3. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  4. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  5. High signal-to-noise-ratio electro-optical terahertz imaging system based on an optical demodulating detector array.

    PubMed

    Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring

    2009-11-01

    We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.

  6. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  7. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  8. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it; Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey; Colantoni, I.

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patternedmore » on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.« less

  9. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  10. Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.

    PubMed

    Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel

    2013-12-01

    We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.

  11. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions.

    PubMed

    Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A

    2014-11-01

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  12. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    PubMed

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  13. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  14. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  15. ANTS — a simulation package for secondary scintillation Anger-camera type detector in thermal neutron imaging

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.

    2012-08-01

    A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.

  16. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  17. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  18. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  19. Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun

    2009-07-01

    The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.

  20. New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy

    PubMed Central

    Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.

    2011-01-01

    New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904

  1. New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.

    2006-03-01

    New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.

  2. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  3. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health.

    PubMed

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-05-17

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.

  4. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health

    PubMed Central

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-01-01

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933

  5. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  6. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  7. Prototypes of self-powered radiation detectors employing intrinsic high-energy current.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Briovio, Davide; Karellas, Andrew; Sajo, Erno

    2016-01-01

    The authors experimentally investigate the effect of direct energy conversion of x-rays via selfpowered Auger- and photocurrent, potentially suitable to practical radiation detection and dosimetry in medical applications. Experimental results are compared to computational predictions. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. This paper focuses on the experiments while a companion paper introduces the fundamental concepts of high-energy current (HEC) detectors. The energy of ionizing radiation is directly converted to detector signal via electric current induced by high-energy secondary electrons generated in the detector material by the incident primary radiation. The HEC electrons also ionize the dielectric and the resultant charge carriers are selfcollected due to the contact potential of the disparate electrodes. Thus, an electric current is induced in the conductors in two different ways without the need for externally applied bias voltage or amplification. Thus, generated signal in turn is digitized by a data acquisition system. To determine the fundamental properties of the HEC detector and to demonstrate its feasibility for medical applications, the authors used a planar geometry composed of multilayer microstructures. Various detectors with up to seven conducting layers with different combinations of materials (250 μm Al, 35 μm Cu, 100 μm Pb) and air gaps (100 μm) were exposed to nearly plane-parallel 60-120 kVp x-ray beams. For the experimental design and verification, the authors performed coupled electron-photon radiation transport computations. The detector signal was measured using a commercial data acquisition system with 24 bits dynamic range, 0.4 fC sensitivity, and 0.9 ms sampling time. Measured signals for the prototype detector varied depending on the number of layers, material type, and incident photon energy, and it was in the range

  8. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    PubMed

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  9. Modeling of microjoule and millijoule energy LIDARs with PMT/SiPM/APD detectors: a sensitivity analysis.

    PubMed

    Agishev, Ravil

    2018-05-10

    This paper demonstrates a renewed concept and applications of the generalized methodology for atmospheric light detection and ranging (LIDAR) capability prediction as a continuation of a series of our previous works, where the dimensionless parameterization appeared as a tool for comparing systems of a different scale, design, and applications. The modernized concept applied to microscale and milliscale LIDARs with relatively new silicon photomultiplier detectors and traditional photomultiplier tube and avalanche photodiode detectors allowed prediction of the remote sensing instruments' performance and limitations. Such a generalized, uniform, and objective concept is applied for evaluation of the increasingly popular class of limited-energy LIDARs using the best optical detectors, operating on different targets (back-scatter or topographic, static or dynamic) and under intense sky background conditions. It can be used in the LIDAR community to compare different instruments and select the most suitable and effective ones for specific applications.

  10. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    NASA Astrophysics Data System (ADS)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (<3%), and a response correlation coefficient (>0.995) with a response time of <4 ms to the inhomogeneous IR illumination. The presented hybrid configuration also benefits from a straightforward low-temperature fabrication process. These advantages of the PEDOT:PSS/n-Si heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  11. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors

    PubMed Central

    Taguchi, Katsuyuki; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Barber, William C.

    2010-01-01

    Purpose: Recently, novel CdTe photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed. When such detectors are operated under a high x-ray flux, however, coincident pulses distort the recorded energy spectrum. These distortions are called pulse pileup effects. It is essential to compensate for these effects on the recorded energy spectrum in order to take full advantage of spectral information PCXDs provide. Such compensation can be achieved by incorporating a pileup model into the image reconstruction process for computed tomography, that is, as a part of the forward imaging process, and iteratively estimating either the imaged object or the line integrals using, e.g., a maximum likelihood approach. The aim of this study was to develop a new analytical pulse pileup model for both peak and tail pileup effects for nonparalyzable detectors. Methods: The model takes into account the following factors: The bipolar shape of the pulse, the distribution function of time intervals between random events, and the input probability density function of photon energies. The authors used Monte Carlo simulations to evaluate the model. Results: The recorded spectra estimated by the model were in an excellent agreement with those obtained by Monte Carlo simulations for various levels of pulse pileup effects. The coefficients of variation (i.e., the root mean square difference divided by the mean of measurements) were 5.3%–10.0% for deadtime losses of 1%–50% with a polychromatic incident x-ray spectrum. Conclusions: The proposed pulse pileup model can predict recorded spectrum with relatively good accuracy. PMID:20879558

  12. Sci-Sat AM(1): Imaging-08: Small animal APD PET detector with submillimetric resolution for molecular imaging.

    PubMed

    Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R

    2008-07-01

    Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.

  13. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  14. Performance study of thin epitaxial silicon PIN detectors for thermal neutron measurements with reduced γ sensitivity

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Desai, Shraddha; Kumar, Arvind; Topkar, Anita

    2018-05-01

    A novel approach of using thin epitaxial silicon PIN detectors for thermal neutron measurements with reduced γ sensitivity has been presented. Monte Carlo simulations showed that there is a significant reduction in the gamma sensitivity for thin detectors with the thickness of 10- 25 μm compared to a detector of thickness of 300 μm. Epitaxial PIN silicon detectors with the thickness of 10 μm, 15 μm and 25 μm were fabricated using a custom process. The detectors exhibited low leakage currents of a few nano-amperes. The gamma sensitivity of the detectors was experimentally studied using a 33 μCi, 662 keV, 137Cs source. Considering the count rates, compared to a 300 μm thick detector, the gamma sensitivity of the 10 μm, 15 μm and 25 μm thick detectors was reduced by factors of 1874, 187 and 18 respectively. The detector performance for thermal neutrons was subsequently investigated with a thermal neutron beam using an enriched 10B film as a neutron converter layer. The thermal neutron spectra for all three detectors exhibited three distinct regions corresponding to the 4He and 7Li charge products released in the 10B-n reaction. With a 10B converter, the count rates were 1466 cps, 3170 cps and 2980 cps for the detectors of thicknesses of 10 μm, 25 μm and 300 μm respectively. The thermal neutron response of thin detectors with 10 μm and 25 μm thickness showed significant reduction in the gamma sensitivity compared to that observed for the 300 μm thick detector. Considering the total count rate obtained for thermal neutrons with a 10B converter film, the count rate without the converter layer were about 4%, 7% and 36% for detectors with thicknesses of 10 μm, 25 μm and 300 μm respectively. The detector with 10 μm thickness showed negligible gamma sensitivity of 4 cps, but higher electronic noise and reduced pulse heights. The detector with 25 μm thickness demonstrated the best performance with respect to electronic noise, thermal neutron response and

  15. Detectors for the gamma-ray resonant absorption (GRA) method of explosives detection in cargo: a comparative study

    NASA Astrophysics Data System (ADS)

    Vartsky, David; Goldberg, Mark B.; Engler, Gideon; Shor, Asher; Goldschmidt, Aharon; Feldman, Gennady; Bar, Doron; Orion, Itzhak; Wielopolski, Lucian

    2004-01-01

    Gamma-Ray Resonant Absorption (GRA) is an automatic-decision radiographic screening technique that combines high radiation penetration with very good sensitivity and specificity to nitrogenous explosives. The method is particularly well-suited to inspection of large, massive objects (since the resonant γ-ray probe is at 9.17 MeV) such as aviation and marine containers, heavy vehicles and railroad cars. Two kinds of γ-ray detectors have been employed to date in GRA systems: 1) Resonant-response nitrogen-rich liquid scintillators and 2) BGO detectors. This paper analyses and compares the response of these detector-types to the resonant radiation, in terms of single-pixel figures of merit. The latter are sensitive not only to detector response, but also to accelerator-beam quality, via the properties of the nuclear reaction that produces the resonant-γ-rays. Generally, resonant detectors give rise to much higher nitrogen-contrast sensitivity in the radiographic image than their non-resonant detector counterparts and furthermore, do not require proton beams of high energy-resolution. By comparison, the non-resonant detectors have higher γ-detection efficiency, but their contrast sensitivity is very sensitive to the quality of the accelerator beam. Implications of these detector/accelerator characteristics for eventual GRA field systems are discussed.

  16. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  17. Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV

    NASA Astrophysics Data System (ADS)

    Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Jakubowska, K.; Lantuejoul-Thfoin, I.; Nauraye, C.; Patriarca, A.; Saïd, A.; Semsoum, A.; Serani, L.; Thomas, B.; Vauzour, B.

    2017-11-01

    Responses of Fuji Imaging Plates (IPs) to proton have been measured in the range 1-200 MeV. Mono-energetic protons were produced with the 15 MV ALTO-Tandem accelerator of the Institute of Nuclear Physics (Orsay, France) and, at higher energies, with the 200-MeV isochronous cyclotron of the Institut Curie—Centre de Protonthérapie d'Orsay (Orsay, France). The experimental setups are described and the measured photo-stimulated luminescence responses for MS, SR, and TR IPs are presented and compared to existing data. For the interpretation of the results, a sensitivity model based on the Monte Carlo GEANT4 code has been developed. It enables the calculation of the response functions in a large energy range, from 0.1 to 200 MeV. Finally, we show that our model reproduces accurately the response of more complex detectors, i.e., stack of high-Z filters and IPs, which could be of great interest for diagnostics of Petawatt laser accelerated particles.

  18. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, S.

    2011-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload that will launch in early 2012. A larger sensitivity and dynamic range than currently available are needed in order to image faint X-rays from electron beams in the tenuous corona, particularly those near the coronal acceleration region and those that escape into interplanetary space. FOXSI combines nested, grazing-incidence replicated optics with double-sided silicon strip detectors to achieve a dynamic range of >100 and a sensitivity 100 times that of RHESSI. Advances in the fabrication and assembly of the optics at the NASA Marshall Space Flight Center provide a spatial resolution of 8 arcseconds (FWHM), while the silicon detectors, developed by the Astro-H team at ISAS/JAXA, offer an energy resolution of 0.4 keV. FOXSI's first flight will conduct a search for nonthermal electrons in the quiet Sun, possibly related to nanoflares. FOXSI will serve as a pathfinder for future space-based solar hard X-ray spectroscopic imagers, which will be able to image nonthermal electrons in flare acceleration sites and provide quantitative measurements such as energy spectra, densities, and energy content in accelerated electrons.

  19. Directional Sensitivity in Light-Mass Dark Matter Searches with Single-Electron-Resolution Ionization Detectors

    NASA Astrophysics Data System (ADS)

    Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura

    2018-03-01

    We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.

  20. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15

  1. Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.; hide

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  2. Using a flat-panel detector in high resolution cone beam CT for dental imaging.

    PubMed

    Baba, R; Ueda, K; Okabe, M

    2004-09-01

    Cone beam CT (CBCT) requires a two-dimensional X-ray detector. In the several CBCT systems developed for dental imaging, detection has been by the combination of an X-ray image intensifier and charge-coupled device (CCD) camera. In this paper, we propose a new CBCT system in which the detector is of the flat-panel type and evaluate its performance in dental imaging. We developed a prototype CBCT that has a flat-panel-type detector. The detector consists of a CsI scintillator screen and a photosensor array. First, the flat panel detector and image intensifier detector were compared in terms of the signal-to-noise ratio (SNR) of projected images. We then used these data and a theoretical formula to evaluate noise in reconstructed images. Second, reconstructed images of a bar pattern phantom were obtained as a way of evaluating the spatial resolution. Then, reconstructed images of a skull phantom were obtained. The SNR of the developed system was 1.6 times as high as that of a system with an image intensifier detector of equal detector pitch. The system was capable of resolving a 0.35 mm pattern and its field of view almost completely encompassed that of an image intensifier detector which is used in dentomaxillofacial imaging. The fine spatial resolution of the detector led to images in which the structural details of a skull phantom were clearly visible. The system's isotropically fine resolution will lead to improved precision in dental diagnosis and surgery. The next stage of our research will be the development of a flat panel detector system with a high frame acquisition rate.

  3. Photon-Counting H33D Detector for Biological Fluorescence Imaging

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2010-01-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  4. Energy reconstruction of an n-type segmented inverted coaxial point-contact HPGe detector

    DOE PAGES

    Salathe, M.; Cooper, R. J.; Crawford, H. L.; ...

    2017-06-27

    We have characterized, for the rst time, an n-type segmented Inverted Coaxial Point-Contact detector. This novel detector technology relys on a large variation in drift time of the majority charge carriers, as well as image and net charges observed on the segments, to achieve a potential -ray interaction position resolution of better than 1 mm. However, the intrinsic energy resolution in such a detector is poor (more than 20 keV at 1332 keV) because of charge (electron) trapping e ects. We propose an algorithm that enables restoration of the resolution to a value of 3.44 0.03 keV at 1332 keVmore » for events with a single interaction. The algorithm is based on a measurement of the azimuthal angle and the electron drift time of a given event; the energy of the event is corrected as a function of these two values.« less

  5. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  6. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  7. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  8. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers

    PubMed Central

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI. PMID:25006986

  9. A large area high resolution imaging detector for fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe

    2018-07-01

    We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.

  10. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  11. High-Energy Neutron Imaging Development at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. Themore » design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.« less

  12. The Python pit organ: imaging and immunocytochemical analysis of an extremely sensitive natural infrared detector.

    PubMed

    Grace, M S; Church, D R; Kelly, C T; Lynn, W F; Cooper, T M

    1999-01-01

    The Python infrared-sensitive pit organ is a natural infrared imager that combines high sensitivity, ambient temperature function, microscopic dimensions, and self-repair. We are investigating the spectral sensitivity and signal transduction process in snake infrared-sensitive neurons, neither of which is understood. For example, it is unknown whether infrared receptor neurons function on a thermal or a photic mechanism. We imaged pit organs in living Python molurus and Python regius using infrared-sensitive digital video cameras. Pit organs were significantly more absorptive and/or emissive than surrounding tissues in both 3-5 microns and 8-12 microns wavelength ranges. Pit organs exhibited greater absorption/emissivity in the 8-12 microns range than in the 3-5 microns range. To directly test the relationship between photoreceptors and pit organ infrared-sensitive neurons, we performed immunocytochemistry using antisera directed against retinal photoreceptor opsins. Retinal photoreceptors were labeled with antisera specific for retinal opsins, but these antisera failed to label terminals of infrared-sensitive neurons in the pit organ. Infrared-receptive neurons were also distinguished from retinal photoreceptors on the basis of their calcium-binding protein content. These results indicate that the pit organ absorbs infrared radiation in two major atmospheric transmission windows, one of which (8-12 microns) matches emission of targeted prey, and that infrared receptors are biochemically distinct from retinal photoreceptors. These results also provide the first identification of prospective biochemical components of infrared signal transduction in pit organ receptor neurons.

  13. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  14. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography.

    PubMed

    Hoerner, Matthew R; Stepusin, Elliott J; Hyer, Daniel E; Hintenlang, David E

    2015-03-01

    Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the

  15. In-vivo x-ray micro-imaging and micro-CT with the Medipix2 semiconductor detector at UniAndes

    NASA Astrophysics Data System (ADS)

    Caicedo, I.; Avila, C.; Gomez, B.; Bula, C.; Roa, C.; Sanabria, J.

    2012-02-01

    This poster contains the procedure to obtain micro-CTs and to image moving samples using the Medipix2 detector, with its corresponding results. The high granularity of the detector makes it suitable for micro-CT. We used commercial software (Octopus) to do the 3D reconstruction of the samples in the first place, and we worked on modifying free reconstruction software afterwards. Medipix has a very fast response ( ~ hundreds of nanoseconds) and high sensibility. These features allow obtaining nearly in-vivo high resolution (55m * 55m) images. We used an exposure time of 0.1 s for each frame, and the resulting images were animated. The High Energy Physics Group at UniAndes is a member of the Medipix3 collaboration. Its research activities are focused on developing set-ups for biomedical applications and particle tracking using the Medipix2 and Timepix detectors, and assessing the feasibility of the Medipix3 detector for future applications.

  16. Comparative evaluation of image quality among different detector configurations using area detector computed tomography.

    PubMed

    Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao

    2018-03-01

    The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.

  17. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  18. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  19. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  20. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  1. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  2. Design and Performance Testing of a Linear Array of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors for Uranium Enrichment Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Luis

    Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we

  3. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; Day, M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; O'Murchadha, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Unger, E; Usner, M; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-11-22

    We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4σ level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.

  4. A highly miniaturized and sensitive thermal neutron detector for space applications

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Holik, Michael; Kraus, Vaclav; Pospisil, Stanislav; Solc, Jaroslav; Turecek, Daniel

    2012-02-01

    Devices from the Medipix family prove to be an excellent tool for the measurement and characterization of complex radiation fields including neutrons. The use of a neutron detector in planetary remote sensing is an essential tool in the search for hydrogenous materials and specifically the presence of water which is the essential ingredient in the search for extraterrestrial life. In addition, high sensitivity neutron measurements used in combination with X-ray and gamma-ray measurements, improves the analysis of the atomic composition of regolith, which in turn, is used to interpret surface geology and ultimately planetary evolution. The high spatial resolution (a matrix of 256 × 256 pixels of 55 μm x 55 μm pitch) and sensitivity of the Medipix detector allows the direct visualization of the energy loss and charge collection processes in the sensor material (300 μm thick silicon in this case). The charge patterns of different radiation types have different characteristic shapes and it is possible to use this information for very effective background suppression. Since silicon itself is insensitive to thermal neutrons a thin 6Li layer in the form of 6LiF powder was used to convert thermal neutrons into alpha particles via the 6Li+n→α+3H reaction. The detection efficiency for thermal neutrons is 1.4%. In order to meet ESA communication standards for space equipment we have developed a compact, low power and lightweight FPGA based readout system, communicating via a SpaceWire interface. The dimension of the whole device including Medipix chipboard is 160 × 75 × 15 mm3 and its total weight is 70 g. The power consumption of the device is 1.4 W during measurement and 0.75 W when the detector is switched off. The readout speed is 7 fps with a single Medipix device which is sufficient for the target application. The whole detection system is very mass and power efficient in comparison with the gas proportional detectors which are commonly used in space

  5. PhytoBeta imager: a positron imager for plant biology

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.; Kross, Brian; Lee, Seungjoon; McKisson, John; McKisson, J. E.; Xi, Wenze; Zorn, Carl; Reid, Chantal D.; Howell, Calvin R.; Crowell, Alexander S.; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F.

    2012-07-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  6. PhytoBeta imager: a positron imager for plant biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus manymore » of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.« less

  7. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  8. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  9. Ring Imaging Cerenkov Detector for CLAS12

    NASA Astrophysics Data System (ADS)

    Muhoza, Mireille; Aaron, Elise; Smoot, Waymond; Benmokhtar, Fatiha

    2017-09-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the additions to this detector is a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) will be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Detector tests are taking place at Jefferson Lab, while analysis software development is ongoing at Duquesne. I will be summarizing the work done at Duquesne on the Database development and the analysis of the ADC and TDCs for the Hamamatsu Multi-Anode PMTs that are used for Cerenkov light radiation. National Science Foundation, Award 1615067.

  10. Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm

    NASA Astrophysics Data System (ADS)

    Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan

    2006-03-01

    Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.

  11. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier

    PubMed Central

    Kang, Jiqiang; Wei, Xiaoming; Li, Bowen; Wang, Xie; Yu, Luoqin; Tan, Sisi; Jinata, Chandra; Wong, Kenneth K. Y.

    2016-01-01

    We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems. PMID:27446655

  12. Detector with internal gain for short-wave infrared ranging applications

    NASA Astrophysics Data System (ADS)

    Fathipour, Vala; Mohseni, Hooman

    2017-09-01

    Abstarct.Highly <span class="hlt">sensitive</span> photon <span class="hlt">detectors</span> are regarded as the key enabling elements in many applications. Due to the low photon <span class="hlt">energy</span> at the short-wave infrared (SWIR), photon detection and <span class="hlt">imaging</span> at this band are very challenging. As such, many efforts in photon <span class="hlt">detector</span> research are directed toward improving the performance of the photon <span class="hlt">detectors</span> operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high <span class="hlt">sensitivity</span> at room temperature, a condition that is very difficult to achieve in conventional SWIR <span class="hlt">detectors</span>. An EI <span class="hlt">detector</span> offers an overall system-level <span class="hlt">sensitivity</span> enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI <span class="hlt">detectors</span>. The shortcomings of the first-generation devices were addressed in the second-generation <span class="hlt">detectors</span>. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI <span class="hlt">detectors</span> a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI <span class="hlt">detector</span> with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR <span class="hlt">images</span> obtained by our model show that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DNP.EA096B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DNP.EA096B"><span>The Hadron Blind Ring <span class="hlt">Imaging</span> Cherenkov <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom</p> <p>2013-10-01</p> <p>Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High <span class="hlt">energy</span> electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-<span class="hlt">imaging</span> Cerenkov <span class="hlt">detector</span> is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind <span class="hlt">Detector</span> (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006NIMPA.569..153D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006NIMPA.569..153D"><span>State-of-the-art radiation <span class="hlt">detectors</span> for medical <span class="hlt">imaging</span>: Demands and trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darambara, Dimitra G.</p> <p>2006-12-01</p> <p>Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical <span class="hlt">imaging</span> leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel <span class="hlt">imaging</span> <span class="hlt">detectors</span> and readout electronics has been critical to the advancement of medical <span class="hlt">imaging</span> allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality <span class="hlt">images</span> at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation <span class="hlt">imaging</span> <span class="hlt">detectors</span> imposed by the nature of the modality and the physics of the <span class="hlt">imaging</span> source. This is followed by a concise review and perspective on various types of state-of-the-art <span class="hlt">detector</span> technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future <span class="hlt">imaging</span> <span class="hlt">detectors</span> are also highlighted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6741811-energy-calibration-organic-scintillation-detectors-gamma-rays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6741811-energy-calibration-organic-scintillation-detectors-gamma-rays"><span><span class="hlt">Energy</span> calibration of organic scintillation <span class="hlt">detectors</span> for. gamma. rays</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gu Jiahui; Xiao Genlai; Liu Jingyi</p> <p>1988-10-01</p> <p>An experimental method of calibrating organic <span class="hlt">detectors</span> is described. A NaI(T1) <span class="hlt">detector</span> has some advantages of high detection efficiency, good <span class="hlt">energy</span> resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation <span class="hlt">detector</span> and the pulse of the back-scattering peak from NaI(T1) <span class="hlt">detector</span>. It can be used to calibrate various sizes and shapes of organic scintillation <span class="hlt">detectors</span> simply and reliably. The home-made plastic and organic liquid scintillation <span class="hlt">detectors</span> are calibrated and positions of the Compton edge as a function of ..gamma..-ray <span class="hlt">energies</span> aremore » obtained.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20634656-physical-characteristics-low-dose-gas-microstrip-detector-orthopedic-ray-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20634656-physical-characteristics-low-dose-gas-microstrip-detector-orthopedic-ray-imaging"><span>Physical characteristics of a low-dose gas microstrip <span class="hlt">detector</span> for orthopedic x-ray <span class="hlt">imaging</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre</p> <p>2005-04-01</p> <p>A new scanning slit gas <span class="hlt">detector</span> dedicated to orthopedic x-ray <span class="hlt">imaging</span> is presented and evaluated in terms of its fundamental <span class="hlt">imaging</span> characteristics. The system is based on the micromesh gaseous structure <span class="hlt">detector</span> and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for <span class="hlt">imaging</span> at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of <span class="hlt">imaging</span> an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected bymore » the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the <span class="hlt">images</span> contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal <span class="hlt">detectors</span> is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in <span class="hlt">sensitive</span> clientele undergoing intensive x-ray procedures, like young scoliotic women.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253492-fast-microchannel-plate-scintillator-detector-velocity-map-imaging-imaging-mass-spectrometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253492-fast-microchannel-plate-scintillator-detector-velocity-map-imaging-imaging-mass-spectrometry"><span>A fast microchannel plate-scintillator <span class="hlt">detector</span> for velocity map <span class="hlt">imaging</span> and <span class="hlt">imaging</span> mass spectrometry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Winter, B.; King, S. J.; Vallance, C., E-mail: claire.vallance@chem.ox.ac.uk</p> <p>2014-02-15</p> <p>The time resolution achievable using standard position-<span class="hlt">sensitive</span> ion <span class="hlt">detectors</span>, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map <span class="hlt">imaging</span> and microscope-mode <span class="hlt">imaging</span> mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photonmore » conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689332-poster-characterization-energy-dependence-high-sensitivity-mcp-tld-al2o3-osld-vivo-dosimetry-systems-kvp-energies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689332-poster-characterization-energy-dependence-high-sensitivity-mcp-tld-al2o3-osld-vivo-dosimetry-systems-kvp-energies"><span>Poster - 24: Characterization of the <span class="hlt">energy</span> dependence of high-<span class="hlt">sensitivity</span> MCP-N TLD and Al2O3:C OSLD in-vivo dosimetry systems for 40–100 kVp <span class="hlt">energies</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Poirier, Yannick; Kuznetsova, Svetlana; Barajas, E</p> <p></p> <p>Purpose: To characterize the <span class="hlt">energy</span> dependence of high-<span class="hlt">sensitivity</span> MCP-N TLD and Al{sub 2}O{sub 3}:C OSLD dosimetry systems at low (40–100 kVp) <span class="hlt">energies</span> for in-vivo dosimetry. Methods: We assessed the variation of response with <span class="hlt">energy</span> of two <span class="hlt">detectors</span> in the 40–100 kVp <span class="hlt">energy</span> range: high-<span class="hlt">sensitivity</span> MCP-N TLDs (LiF:Mg,Cu,P) and OSLDs (Al{sub 2}O{sub 3}:C). The <span class="hlt">detectors</span> were irradiated with an XRad 320ix biological irradiator under reference conditions. The delivered dose was 10 cGy for 7 beam qualities ranging from 40–100 kVp, 1.7–4.0 mm Al, and effective <span class="hlt">energies</span> 26.9–37.9 keV. Both sets of <span class="hlt">detectors</span> were also irradiated under reference conditions at 6 MVmore » using a Varian Clinac 21Ex to assess the change in response from high-<span class="hlt">energy</span> beams. Results: The MCP-N high-<span class="hlt">sensitivity</span> TLDs were relatively insensitive to <span class="hlt">energies</span> in the kV range, as their response varied by ±5%, i.e. well within the reproducibility limits of these <span class="hlt">detectors</span>. However, the OSLDs exhibited a linearly-decreasing response with <span class="hlt">energy</span> with a response 18.7% higher at 40 kVp than at 100 kVp for the same nominal dose. Compared to the 6 MV beams used in conventional radiotherapy, OSLDs responded 3.3–3.9 times higher depending on beam quality while the MCP-N TLD response was unchanged within experimental uncertainty. Conclusions: Unlike the more commonly used TLD-100, the high-<span class="hlt">sensitivity</span> MCP-N TLDs exhibit little to no <span class="hlt">energy</span> response. OSLDs are shown to be highly <span class="hlt">energy</span>-dependent, both from MV to kV and within the kV range.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPD....42.1511G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPD....42.1511G"><span>The Focusing Optics X-ray Solar <span class="hlt">Imager</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glesener, Lindsay; Krucker, S.; Christe, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Saito, S.</p> <p>2011-05-01</p> <p>The Focusing Optics X-ray Solar <span class="hlt">Imager</span> (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload that will launch in late 2011. A larger <span class="hlt">sensitivity</span> and dynamic range than currently available are needed in order to <span class="hlt">image</span> faint X-rays from electron beams in the tenuous corona, particularly those near any coronal acceleration region and those that escape into interplanetary space. FOXSI combines fast-replication, nested, grazing-incidence optics with double-sided silicon strip <span class="hlt">detectors</span> to achieve a dynamic range of >100 and a <span class="hlt">sensitivity</span> 100 times that of RHESSI. Advances in the fabrication and assembly of the optics at the NASA Marshall Space Flight Center provide a spatial resolution of 8 arcseconds, while the silicon <span class="hlt">detectors</span>, developed by the Astro-H team at ISAS/JAXA, offer an <span class="hlt">energy</span> resolution of 0.5 keV. FOXSI's first flight will be used to conduct a search for X-ray emission from nonthermal electron beams in quiet Sun nanoflares. In addition, FOXSI will serve as a pathfinder for future space-based solar hard X-ray spectroscopic <span class="hlt">imagers</span>, which will be able to <span class="hlt">image</span> nonthermal electrons in flare acceleration sites and provide quantitative measurements such as <span class="hlt">energy</span> spectra, densities, and <span class="hlt">energy</span> content in accelerated electrons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040074291','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040074291"><span>Progress Towards High-<span class="hlt">Sensitivity</span> Arrays of <span class="hlt">Detectors</span> of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.</p> <p>2004-01-01</p> <p>For high resolution <span class="hlt">imaging</span> and spectroscopy in the FIR and submillimeter, space observatories will demand <span class="hlt">sensitive</span>, fast, compact, low-power <span class="hlt">detector</span> arrays with 104 pixels and <span class="hlt">sensitivity</span> less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of <span class="hlt">sensitivity</span>, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for <span class="hlt">detector</span> arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22409620-mo-innovative-high-performance-pet-imaging-system-preclinical-imaging-translational-researches','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22409620-mo-innovative-high-performance-pet-imaging-system-preclinical-imaging-translational-researches"><span>MO-G-17A-01: Innovative High-Performance PET <span class="hlt">Imaging</span> System for Preclinical <span class="hlt">Imaging</span> and Translational Researches</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, X; Lou, K; Rice University, Houston, TX</p> <p></p> <p>Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved <span class="hlt">imaging</span> performance required for the advanced <span class="hlt">imaging</span> applications. Methods: Several key components of <span class="hlt">detector</span>, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged <span class="hlt">imaging</span> performance over a prototype animal PET we had developed. The new <span class="hlt">detector</span> module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other <span class="hlt">detector</span> performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new <span class="hlt">detector</span> module performance of <span class="hlt">energy</span>, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source <span class="hlt">image</span> was acquired with 2 rotating <span class="hlt">detectors</span> to assess the system <span class="hlt">imaging</span> capability. Results: No insensitive gaps at the <span class="hlt">detector</span> edge and thus it is capable for tiling to a large-scale <span class="hlt">detector</span> panel. All 64 crystals inside the <span class="hlt">detector</span> were clearly separated from a flood-source <span class="hlt">image</span>. Measured <span class="hlt">energy</span>, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source <span class="hlt">image</span> is acquired successfully without <span class="hlt">detector</span>/electronics calibration and data correction. Conclusion: Newly developed advanced <span class="hlt">detector</span> and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% <span class="hlt">sensitivity</span>, ∼1.3 mm uniform <span class="hlt">imaging</span> resolution, and fast acquisition counting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH43B2455L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH43B2455L"><span>Hard X-ray <span class="hlt">Detector</span> Calibrations for the FOXSI Sounding Rocket</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez, A.; Glesener, L.; Buitrago Casas, J. C.; Han, R.; Ishikawa, S. N.; Christe, S.; Krucker, S.</p> <p>2015-12-01</p> <p>In the study of high-<span class="hlt">energy</span> solar flares, detailed X-ray <span class="hlt">images</span> and spectra of the Sun are required. The Focusing Optics X-ray Solar <span class="hlt">Imager</span> (FOXSI) sounding rocket experiment is used to test direct-focusing X-ray telescopes and Double-sided Silicon Strip <span class="hlt">Detectors</span> (DSSD) for solar flare study and to further understand coronal heating. The measurement of active region differential emission measures, flare temperatures, and possible quiet-Sun emission requires a precisely calibrated spectral response. This poster describes recent updates in the calibration of FOXSI's DSSDs based on new calibration tests that were performed after the second flight. The gain for each strip was recalculated using additional radioactive sources. Additionally, the varying strip <span class="hlt">sensitivity</span> across the <span class="hlt">detectors</span> was investigated and based on these measurements, the flight <span class="hlt">images</span> were flatfielded. These improvements lead to more precise X-ray data for future FOXSI flights and show promise for these new technologies in <span class="hlt">imaging</span> the Sun.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012apra.prop..126G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012apra.prop..126G"><span>High Resolution Energetic X-ray <span class="hlt">Imager</span> (HREXI)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grindlay, Jonathan</p> <p></p> <p>We propose to design and build the first <span class="hlt">imaging</span> hard X-ray <span class="hlt">detector</span> system that incorporates 3D stacking of closely packed <span class="hlt">detector</span> readouts in finely-spaced <span class="hlt">imaging</span> arrays with their required data processing and control electronics. In virtually all <span class="hlt">imaging</span> astronomical <span class="hlt">detectors</span>, <span class="hlt">detector</span> readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel <span class="hlt">detectors</span> needed for high speed event-based X-ray <span class="hlt">imaging</span>, from low <span class="hlt">energy</span> applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new <span class="hlt">detector</span> development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area <span class="hlt">imaging</span> CZT <span class="hlt">detectors</span> and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray <span class="hlt">Imager</span> (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of <span class="hlt">detector</span> and readout/control system means that large area (>2m2) <span class="hlt">imaging</span> <span class="hlt">detector</span> planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced <span class="hlt">detector</span> gaps and ultimately with no gaps. This increases <span class="hlt">detector</span> area, efficiency, and simplicity of <span class="hlt">detector</span> integration. Thus higher <span class="hlt">sensitivity</span> wide-field <span class="hlt">imagers</span> will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher <span class="hlt">sensitivity</span> than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JInst..12C2034P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JInst..12C2034P"><span><span class="hlt">Imaging</span> characterization of a new gamma ray <span class="hlt">detector</span> based on CRY019 scintillation crystal for PET and SPECT applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.</p> <p>2017-02-01</p> <p>In the last 40 years, in the field of Molecular Medicine <span class="hlt">imaging</span> there has been a huge growth in the employment and in the improvement of <span class="hlt">detectors</span> for PET and SPECT applications in order to reach accurate diagnosis of the diseases. The most important feature required to these <span class="hlt">detectors</span> is an high quality of <span class="hlt">images</span> that is usually obtained benefitting from the development of a wide number of new scintillation crystals with high <span class="hlt">imaging</span> performances. In this contest, features like high detection efficiency, short decay time, great spectral match with photodetectors, absence of afterglow and low costs are surely attractive. However, there are other factors playing an important role in the realization of high quality <span class="hlt">images</span> such as <span class="hlt">energy</span> and spatial resolutions, position linearity and contrast resolution. With the aim to realize an high performace gamma ray <span class="hlt">detector</span> for PET and SPECT applications, this work is focused on the evaluation of the <span class="hlt">imaging</span> characteristics of a recently developed scintillation crystal, CRY019.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175510','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175510"><span>Biomedical nuclear and X-ray <span class="hlt">imager</span> using high-<span class="hlt">energy</span> grazing incidence mirrors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.</p> <p>2005-09-27</p> <p><span class="hlt">Imaging</span> of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form <span class="hlt">images</span> of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted <span class="hlt">image</span> of the radiation source onto a <span class="hlt">detector</span> possessing spatial and <span class="hlt">energy</span> resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27357946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27357946"><span>Simultaneous Tc-99m and I-123 dual-radionuclide <span class="hlt">imaging</span> with a solid-state <span class="hlt">detector</span>-based brain-SPECT system and <span class="hlt">energy</span>-based scatter correction.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara</p> <p>2016-12-01</p> <p>A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state <span class="hlt">detectors</span> was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide <span class="hlt">imaging</span> due to its fine <span class="hlt">energy</span> resolution (6.6 %). However, the problems of down-scatter and low-<span class="hlt">energy</span> tail due to the spectral characteristics of a pixelated solid-state <span class="hlt">detector</span> should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five <span class="hlt">energy</span> windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-<span class="hlt">energy</span> window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m <span class="hlt">images</span> for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9905E..0DS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9905E..0DS"><span>Ultraviolet <span class="hlt">imaging</span> <span class="hlt">detectors</span> for the GOLD mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.</p> <p>2016-07-01</p> <p>The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate <span class="hlt">detectors</span> operating in the 132 nm to 162 nm FUV bandpass with 2D <span class="hlt">imaging</span> cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The <span class="hlt">detectors</span> are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These <span class="hlt">detectors</span> with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the <span class="hlt">detectors</span> and their performance are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22413471-characterizing-energy-dependence-count-rate-performance-dual-scintillator-fiber-optic-detector-computed-tomography','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22413471-characterizing-energy-dependence-count-rate-performance-dual-scintillator-fiber-optic-detector-computed-tomography"><span>Characterizing <span class="hlt">energy</span> dependence and count rate performance of a dual scintillator fiber-optic <span class="hlt">detector</span> for computed tomography</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoerner, Matthew R., E-mail: mrh5038@ufl.edu; Stepusin, Elliott J.; Hyer, Daniel E.</p> <p></p> <p>Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV <span class="hlt">energy</span> range, even small differences in material composition can result in significant variations in the absorbed <span class="hlt">energy</span> between soft tissue and the <span class="hlt">detector</span>. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the <span class="hlt">detector</span>. This study investigated the feasibility of using a novel dual scintillator <span class="hlt">detector</span> and whether its response to changes in beam <span class="hlt">energy</span> from scatter and hardening is readily quantified. The <span class="hlt">detector</span> incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator,more » which has a higher <span class="hlt">sensitivity</span> to scatter x-rays. Methods: The <span class="hlt">detector</span> was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the <span class="hlt">sensitive</span> element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon <span class="hlt">energy</span>-absorption characteristics from free-in-air and in phantom measurements. The depth/<span class="hlt">energy</span> dependence of the <span class="hlt">detector</span> was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JInst..11C1073K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JInst..11C1073K"><span>High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel <span class="hlt">detector</span> array of 10 × 5 Timepix chips</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.</p> <p>2016-01-01</p> <p>State-of-the-art hybrid pixel semiconductor <span class="hlt">detectors</span> provide excellent <span class="hlt">imaging</span> properties such as unlimited dynamic range, high spatial resolution, high frame rate and <span class="hlt">energy</span> <span class="hlt">sensitivity</span>. Nevertheless, a limitation in the use of these devices for <span class="hlt">imaging</span> has been the small <span class="hlt">sensitive</span> area of a few square centimetres. In the field of microtomography we make use of a large area pixel <span class="hlt">detector</span> assembled from 50 Timepix edgeless chips providing fully <span class="hlt">sensitive</span> area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the <span class="hlt">sensitive</span> area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area <span class="hlt">detector</span> is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PMB....61.8180B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PMB....61.8180B"><span>Multiple <span class="hlt">energy</span> synchrotron biomedical <span class="hlt">imaging</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.</p> <p>2016-12-01</p> <p>A multiple <span class="hlt">energy</span> <span class="hlt">imaging</span> system that can extract multiple endogenous or induced contrast materials as well as water and bone <span class="hlt">images</span> would be ideal for <span class="hlt">imaging</span> of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple <span class="hlt">energy</span> x-ray <span class="hlt">imaging</span>. A novel multiple <span class="hlt">energy</span> x-ray <span class="hlt">imaging</span> system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical <span class="hlt">Imaging</span> and Therapy bend magnet beamline at the Canadian Light Source. The <span class="hlt">imaging</span> system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) <span class="hlt">detector</span>, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral <span class="hlt">energy</span> range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral <span class="hlt">energy</span> range 27 keV-43 keV was obtained. This spectral <span class="hlt">energy</span> range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed <span class="hlt">imaging</span> system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were <span class="hlt">imaged</span> and their projected concentrations successfully extracted. The estimated dose rate to test subjects <span class="hlt">imaged</span> at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per <span class="hlt">image</span>. Potential biomedical applications of the <span class="hlt">imaging</span> system will include projection <span class="hlt">imaging</span> that requires any of the extracted elements as a contrast agent and multi-contrast K-edge <span class="hlt">imaging</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97l2003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97l2003M"><span>Particle swarm optimization of the <span class="hlt">sensitivity</span> of a cryogenic gravitational wave <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michimura, Yuta; Komori, Kentaro; Nishizawa, Atsushi; Takeda, Hiroki; Nagano, Koji; Enomoto, Yutaro; Hayama, Kazuhiro; Somiya, Kentaro; Ando, Masaki</p> <p>2018-06-01</p> <p>Cryogenic cooling of the test masses of interferometric gravitational wave <span class="hlt">detectors</span> is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the <span class="hlt">sensitivity</span> of cryogenic gravitational wave <span class="hlt">detectors</span>. Here, we propose the use of particle swarm optimization to optimize the parameters of these <span class="hlt">detectors</span>. We apply it for designing the <span class="hlt">sensitivity</span> of the KAGRA <span class="hlt">detector</span>, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave <span class="hlt">detectors</span> with higher dimensionality in the parameter space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JInst..12P3001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JInst..12P3001M"><span>Characterisation of a CZT <span class="hlt">detector</span> for dosimetry of molecular radiotherapy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McAreavey, L. H.; Harkness-Brennan, L. J.; Colosimo, S. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Nolan, P. J.; Flux, G. D.; Denis-Bacelar, A. M.; Harris, B.; Radley, I.; Carroll, M.</p> <p>2017-03-01</p> <p>A pixelated cadmium zinc telluride (CZT) <span class="hlt">detector</span> has been characterised for the purpose of developing a quantitative single photon emission computed tomography (SPECT) system for dosimetry of molecular radiotherapy (MRT). This is the aim of the Dosimetric <span class="hlt">Imaging</span> with CZT (DEPICT) project, which is a collaboration between the University of Liverpool, The Royal Marsden Hospital, The Royal Liverpool and Broadgreen University Hospital, and the commercial partner Kromek. CZT is a direct band gap semiconductor with superior <span class="hlt">energy</span> resolution and stopping power compared to scintillator <span class="hlt">detectors</span> used in current SPECT systems. The inherent <span class="hlt">detector</span> properties have been investigated and operational parameters such as bias voltage and peaking time have been selected to optimise the performance of the system. Good <span class="hlt">energy</span> resolution is required to discriminate γ-rays that are scattered as they are emitted from the body and within the collimator, and high photon throughput is essential due to the high activities of isotopes administered in MRT. The system has an average measured electronic noise of 3.31 keV full width at half maximum (FWHM), determined through the use of an internal pulser. The <span class="hlt">energy</span> response of the system was measured across the <span class="hlt">energy</span> region of interest 59.5 keV to 364.5 keV and found to be linear. The reverse bias voltage and peaking time producing the optimum FWHM and maximum photon throughput were 600 V and 0.5 μs respectively. The average dead time of the system was measured as 4.84 μs and charge sharing was quantified to be 0.71 % at 59.5 keV . A pixel <span class="hlt">sensitivity</span> calibration map was created and planar <span class="hlt">images</span> of the medical <span class="hlt">imaging</span> isotopes 99mTc and 123I were acquired by coupling the device to a prototype collimator, thereby demonstrating the suitability of the <span class="hlt">detector</span> for the DEPICT project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22514165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22514165"><span><span class="hlt">Energy</span> resolution of the CdTe-XPAD <span class="hlt">detector</span>: calibration and potential for Laue diffraction measurements on protein crystals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre</p> <p>2012-05-01</p> <p>The XPAD3S-CdTe, a CdTe photon-counting pixel array <span class="hlt">detector</span>, has been used to measure the <span class="hlt">energy</span> and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the <span class="hlt">detector</span> in terms of <span class="hlt">energy</span>, allowing incident photon <span class="hlt">energy</span> measurement to high resolution (approximately 140 eV), opening up new possibilities in <span class="hlt">energy</span>-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray <span class="hlt">energy</span> spectra of diffracted spots were deduced from the indexed Laue patterns collected with an <span class="hlt">imaging</span>-plate <span class="hlt">detector</span> and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array <span class="hlt">detector</span>. The predicted and measured <span class="hlt">energy</span> of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88c3301K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88c3301K"><span>Techniques for precise <span class="hlt">energy</span> calibration of particle pixel <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.</p> <p>2017-03-01</p> <p>We demonstrate techniques to improve the accuracy of the <span class="hlt">energy</span> calibration of Timepix pixel <span class="hlt">detectors</span>, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited <span class="hlt">energy</span> in each pixel cannot be reconstructed unless the <span class="hlt">detector</span> is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low <span class="hlt">energy</span> X-rays. However, charge sharing effects still occur, resulting in part of the <span class="hlt">energy</span> being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the <span class="hlt">energy</span> measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected <span class="hlt">energy</span> calibration to be performed on several Timepix pixel <span class="hlt">detectors</span> and resulting in substantial improvement in <span class="hlt">energy</span> deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of <span class="hlt">energy</span> deposited per pixel which result in a nonlinear <span class="hlt">energy</span> response over the full range. We introduce a new method to characterize the non-linear response of the Timepix <span class="hlt">detectors</span> at high input <span class="hlt">energies</span>. We demonstrate improvement using a broad range of particle types and <span class="hlt">energies</span>, showing that the new method reduces the <span class="hlt">energy</span> measurement errors, in some cases by more than 90%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28372389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28372389"><span>Techniques for precise <span class="hlt">energy</span> calibration of particle pixel <span class="hlt">detectors</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A</p> <p>2017-03-01</p> <p>We demonstrate techniques to improve the accuracy of the <span class="hlt">energy</span> calibration of Timepix pixel <span class="hlt">detectors</span>, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited <span class="hlt">energy</span> in each pixel cannot be reconstructed unless the <span class="hlt">detector</span> is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low <span class="hlt">energy</span> X-rays. However, charge sharing effects still occur, resulting in part of the <span class="hlt">energy</span> being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the <span class="hlt">energy</span> measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected <span class="hlt">energy</span> calibration to be performed on several Timepix pixel <span class="hlt">detectors</span> and resulting in substantial improvement in <span class="hlt">energy</span> deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of <span class="hlt">energy</span> deposited per pixel which result in a nonlinear <span class="hlt">energy</span> response over the full range. We introduce a new method to characterize the non-linear response of the Timepix <span class="hlt">detectors</span> at high input <span class="hlt">energies</span>. We demonstrate improvement using a broad range of particle types and <span class="hlt">energies</span>, showing that the new method reduces the <span class="hlt">energy</span> measurement errors, in some cases by more than 90%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20726874-contrast-cancellation-technique-applied-digital-ray-imaging-using-silicon-strip-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20726874-contrast-cancellation-technique-applied-digital-ray-imaging-using-silicon-strip-detectors"><span>Contrast cancellation technique applied to digital x-ray <span class="hlt">imaging</span> using silicon strip <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Avila, C.; Lopez, J.; Sanabria, J. C.</p> <p>2005-12-15</p> <p>Dual-<span class="hlt">energy</span> mammographic <span class="hlt">imaging</span> experimental tests have been performed using a compact dichromatic <span class="hlt">imaging</span> system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon <span class="hlt">detector</span> equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. <span class="hlt">Images</span> have been collected with three different pairs of x-ray <span class="hlt">energies</span>: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated datamore » to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013amos.confE.105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013amos.confE.105S"><span>Large Area Flat Panel <span class="hlt">Imaging</span> <span class="hlt">Detectors</span> for Astronomy and Night Time Sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siegmund, O.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.</p> <p>2013-09-01</p> <p>Sealed tube photo-sensing <span class="hlt">detectors</span> for optical/IR detection have applications in astronomy, nighttime remote reconnaissance, and airborne/space situational awareness. The potential development of large area photon counting, <span class="hlt">imaging</span>, timing <span class="hlt">detectors</span> has significance for these applications and a number of other areas (High <span class="hlt">energy</span> particle detection (RICH), biological single-molecule fluorescence lifetime <span class="hlt">imaging</span> microscopy, neutron <span class="hlt">imaging</span>, time of flight mass spectroscopy, diffraction <span class="hlt">imaging</span>). We will present details of progress towards the development of a 20 cm sealed tube optical <span class="hlt">detector</span> with nanoengineered microchannel plates for photon counting, <span class="hlt">imaging</span> and sub-ns event time stamping. In the operational scheme of the photodetector incoming light passes through an entrance window and interacts with a semitransparent photocathode on the inside of the window. The photoelectrons emitted are accelerated across a proximity gap and are detected by an MCP pair. The pair of novel borosilicate substrate MCPs are functionalized by atomic layer deposition (ALD), and amplify the signal and the resulting electron cloud is detected by a conductive strip line anode for determination of the event positions and the time of arrival. The physical package is ~ 25 x 25 cm but only 1.5 cm thick. Development of such a device in a square 20 cm format presents challenges: hermetic sealing to a large entrance window, a 20 cm semitransparent photocathode with good efficiency and uniformity, 20 cm MCPs with reasonable cost and performance, robust construction to preserve high vacuum and withstand an atmosphere pressure differential. We will discuss the schemes developed to address these issues and present the results for the first test devices. The novel microchannel plates employing borosilicate micro-capillary arrays provide many performance characteristics typical of conventional MCPs, but have been made in sizes up to 20 cm, have low intrinsic background (0.08 events cm2 s-1) and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10391E..0QO','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10391E..0QO"><span><span class="hlt">Detector</span> response artefacts in spectral reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olsen, Ulrik L.; Christensen, Erik D.; Khalil, Mohamad; Gu, Yun; Kehres, Jan</p> <p>2017-09-01</p> <p><span class="hlt">Energy</span> resolved <span class="hlt">detectors</span> are gaining traction as a tool to achieve better material contrast. K-edge <span class="hlt">imaging</span> and tomography is an example of a method with high potential that has evolved on the capabilities of photon counting <span class="hlt">energy</span> dispersive <span class="hlt">detectors</span>. Border security is also beginning to see instruments taking advantage of <span class="hlt">energy</span> resolved <span class="hlt">detectors</span>. The progress of the field is halted by the limitations of the <span class="hlt">detectors</span>. The limitations include nonlinear response for both x-ray intensity and x-ray spectrum. In this work we investigate how the physical interactions in the <span class="hlt">energy</span> dispersive <span class="hlt">detectors</span> affect the quality of the reconstruction and how corrections restore the quality. We have modeled <span class="hlt">detector</span> responses for the primary detrimental effects occurring in the <span class="hlt">detector</span>; escape peaks, charge sharing/loss and pileup. The effect of the change in the measured spectra is evaluated based on the artefacts occurring in the reconstructed <span class="hlt">images</span>. We also evaluate the effect of a correction algorithm for reducing these artefacts on experimental data acquired with a setup using Multix ME-100 V-2 line <span class="hlt">detector</span> modules. The artefacts were seen to introduce 20% deviation in the reconstructed attenuation coefficient for the uncorrected <span class="hlt">detector</span>. We performed tomography experiments on samples with various materials interesting for security applications and found the SSIM to increase > 5% below 60keV. Our work shows that effective corrections schemes are necessary for the accurate material classification in security application promised by the advent of high flux <span class="hlt">detectors</span> for spectral tomography</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6266E..2AC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6266E..2AC"><span>A focal plane <span class="hlt">detector</span> design for a wide band Laue-lens telescope</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caroli, E.; Auricchio, N.; Bertuccio, G.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Frontera, F.; Quadrini, E.; Ubertini, P.; Ventura, G.</p> <p>2006-06-01</p> <p>The <span class="hlt">energy</span> range above 50 keV is important for the study of many open problems in high <span class="hlt">energy</span> astrophysics such as, non thermal mechanisms in SNR, the study of the high <span class="hlt">energy</span> cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. In the framework of the definition of a new mission concept for hard X and soft gamma ray (GRI- Gamma Ray <span class="hlt">Imager</span>) for the next decade, the use of Laue lenses with broad <span class="hlt">energy</span> band-passes from 100 to 1000 keV is under study. This kind of instruments will be used for deep study the hard X-ray continuum of celestial sources. This new telescope will require focal plane <span class="hlt">detectors</span> with high detection efficiency over the entire operative range, an <span class="hlt">energy</span> resolution of few keV at 500 keV and a <span class="hlt">sensitivity</span> to linear polarization. We describe a possible configuration for the focal plane <span class="hlt">detector</span> based on CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high <span class="hlt">energy</span>. Each layer can either operate as a separate position <span class="hlt">sensitive</span> <span class="hlt">detector</span> and a polarimeter or together with other layers in order to increase the overall full <span class="hlt">energy</span> efficiency. We report on the current state of art in high Z spectrometers development and on some activities undergoing. Furthermore we describe the proposed focal plane option with the required resources and an analytical summary of the achievable performance in terms of efficiency and polarimetry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AAS...21347508G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AAS...21347508G"><span>The Focusing Optics X-ray Solar <span class="hlt">Imager</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glesener, Lindsay; Krucker, S.; Christe, S.; Turin, P.; McBride, S.</p> <p>2009-01-01</p> <p>The Focusing Optics X-ray Solar <span class="hlt">Imager</span> (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload scheduled to fly in late 2010 to observe hard X-ray emission (HXR) from the quiet Sun. Particle acceleration in small "nanoflares" in the quiet Sun is thought to play an important role in the heating of the corona to millions of degrees Kelvin. FOXSI HXR observations of these flares will provide first estimates of the non-thermal <span class="hlt">energy</span> content in small flares from the quiet Sun. <span class="hlt">Imaging</span> nanoflares requires high <span class="hlt">energy</span> <span class="hlt">sensitivity</span> and a large dynamic range. To date, the most <span class="hlt">sensitive</span> HXR <span class="hlt">images</span> are made using a rotating modulating collimator aboard the Reuven Ramaty High <span class="hlt">Energy</span> Spectroscopic <span class="hlt">Imager</span> satellite (RHESSI). However, the rotating modulation technique is intrinsically limited in <span class="hlt">sensitivity</span> and dynamic range. The focusing optics of FOXSI will achieve a <span class="hlt">sensitivity</span> 100 times better than that of RHESSI at <span class="hlt">energies</span> around 10 keV. FOXSI uses nested-shell, grazing-angle optics and silicon strip <span class="hlt">detectors</span> to achieve an angular resolution of 12" (FWHM) and 1 keV <span class="hlt">energy</span> resolution. FOXSI will observe the quiet Sun in the 4 to 15 keV range for 5 minutes. The focusing optics technique developed by FOXSI will prove useful to future solar HXR observing missions, especially those interested in <span class="hlt">imaging</span> faint HXR emission from particle acceleration regions in the corona.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013InPhT..59..118B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013InPhT..59..118B"><span>Optimization of light polarization <span class="hlt">sensitivity</span> in QWIP <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berurier, Arnaud; Nedelcu, Alexandru</p> <p>2013-07-01</p> <p>The current development of QWIPs (Quantum Well Infrared Photodetectors) at III-V Lab led to the production of 20 μm pitch, mid-format and full TV-format LWIR starring arrays with excellent performances, uniformity and stability. At the present time III-V Lab, together with TOL (Thales Optronics Ltd.) and SOFRADIR (Société Française de Détecteurs Infrarouges), work on the demonstration of a 20 μm pitch, 640 × 512 LWIR focal plane array (FPA) which detects the incident IR light polarization. Manufactured objects present a strong linear polarization signature in thermal emission. It is of high interest to achieve a <span class="hlt">detector</span> able to measure precisely the degree of linear polarization, in order to distinguish artificial and natural objects in the observed scene. In this paper, we present a theoretical investigation of the optical coupling in polarization <span class="hlt">sensitive</span> pixels. The QWIP modeling is performed by the Finite Difference Time Domain (FDTD) method. The aim is to optimize the <span class="hlt">sensitivity</span> to light polarization as well as the performance of the <span class="hlt">detector</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........33Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........33Z"><span>Spectrum measurement with the Telescope Array Low <span class="hlt">Energy</span> Extension (TALE) fluorescence <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zundel, Zachary James</p> <p></p> <p>The Telescope Array (TA) experiment is the largest Ultra High <span class="hlt">Energy</span> cosmic ray observatory in the northern hemisphere and is designed to be <span class="hlt">sensitive</span> to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest <span class="hlt">energy</span> cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray <span class="hlt">energy</span> spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest <span class="hlt">energies</span>. The Telescope Array Low <span class="hlt">Energy</span> Extension (TALE) is designed to extend the <span class="hlt">energy</span> threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence <span class="hlt">detector</span>. A measurement of the flux of cosmic rays in the <span class="hlt">energy</span> range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence <span class="hlt">detector</span> observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11542590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11542590"><span>Characterisation of neutron-<span class="hlt">sensitive</span> bubble <span class="hlt">detectors</span> for application in the measurement of jet aircrew exposure to natural background radiation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tume, P; Lewis, B J; Bennett, L G; Cousins, T</p> <p>1998-01-01</p> <p>A survey of the natural background dose equivalent received by Canadian Forces aircrew was conducted using neutron-<span class="hlt">sensitive</span> bubble <span class="hlt">detectors</span> (BDs) as the primary detection tool. Since this study was a new application for these <span class="hlt">detectors</span>, the BD response to neutron dose equivalent (RD) was extended from thermal to 500 MeV in neutron <span class="hlt">energy</span>. Based upon the extended RD, it was shown that the manufacturer's calibration can be scaled by 1.5 +/- 0.5 to give a BD <span class="hlt">sensitivity</span> that takes into account recently recommended fluence-to-neutron dose equivalent conversion functions and the cosmogenic neutron spectrum encountered at jet altitudes. An investigation of the effects of systematic bias caused by the cabin environment (i.e., temperature, pressure and relative humidity) on the in-flight measurements was also conducted. Both simulated and actual aircraft climate tests indicated that the <span class="hlt">detectors</span> are insensitive to the pressure and relative humidity variations encountered during routine jet aircraft operations. Long term conditioning tests also confirmed that the BD-PND model of <span class="hlt">detector</span> is <span class="hlt">sensitive</span> to variations in temperature to within +/- 20%. As part of the testing process, the in-flight measurements also demonstrated that the neutron dose equivalent is distributed uniformly throughout a Boeing 707 jet aircraft, indicating that both pilots and flight attendants are exposed to the same neutron field intensity to within experimental uncertainty.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900000055&hterms=high+sensitivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhigh%2Bsensitivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900000055&hterms=high+sensitivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhigh%2Bsensitivity"><span>High-<span class="hlt">Sensitivity</span> Ionization Trace-Species <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernius, Mark T.; Chutjian, Ara</p> <p>1990-01-01</p> <p>Features include high ion-extraction efficiency, compactness, and light weight. Improved version of previous ionization <span class="hlt">detector</span> features in-line geometry that enables extraction of almost every ion from region of formation. Focusing electrodes arranged and shaped into compact system of space-charge-limited reversal electron optics and ion-extraction optics. Provides controllability of ionizing electron <span class="hlt">energies</span>, greater efficiency of ionization, and nearly 100 percent ion-collection efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22685126-noise-power-spectrum-fixed-pattern-noise-digital-radiography-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22685126-noise-power-spectrum-fixed-pattern-noise-digital-radiography-detectors"><span>Noise power spectrum of the fixed pattern noise in digital radiography <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Dong Sik, E-mail: dskim@hufs.ac.kr; Kim, Eun</p> <p></p> <p>Purpose: The fixed pattern noise in radiography <span class="hlt">image</span> <span class="hlt">detectors</span> is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform <span class="hlt">sensitivities</span> are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based <span class="hlt">detectors</span>, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial <span class="hlt">sensitivity</span> variations. These nonuniform gains or <span class="hlt">sensitivities</span> cause fixed pattern noise and degrade the <span class="hlt">detector</span> performance, evenmore » though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good <span class="hlt">detectors</span>, comparative analysis of the <span class="hlt">energy</span> spectrum of the fixed pattern noise is important. Methods: In order to observe the <span class="hlt">energy</span> spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure <span class="hlt">images</span>, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography <span class="hlt">detectors</span> were measured to analyze their fixed pattern noise properties. We notice that a direct <span class="hlt">detector</span>, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-<span class="hlt">detector</span> case, which is based on the CsI scintillator. By comparing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28531093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28531093"><span>Development of a low-<span class="hlt">energy</span> x-ray camera for the <span class="hlt">imaging</span> of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki</p> <p>2017-06-21</p> <p><span class="hlt">Imaging</span> of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-<span class="hlt">energy</span> x-ray camera and conducted <span class="hlt">imaging</span> of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-<span class="hlt">sensitive</span> photomultiplier tube to form an <span class="hlt">imaging</span> <span class="hlt">detector</span>. The <span class="hlt">imaging</span> <span class="hlt">detector</span> was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray <span class="hlt">imaging</span> was conducted during irradiation of the proton beams for three different proton <span class="hlt">energies</span>, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and <span class="hlt">sensitivity</span> of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could <span class="hlt">image</span> the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton <span class="hlt">energies</span> could be estimated from the <span class="hlt">images</span>. The measured ranges from the <span class="hlt">images</span> were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the <span class="hlt">imaging</span> of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPA.824..452R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPA.824..452R"><span>First results of a novel Silicon Drift <span class="hlt">Detector</span> array designed for low <span class="hlt">energy</span> X-ray fluorescence spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola</p> <p>2016-07-01</p> <p>We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift <span class="hlt">Detectors</span> (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables <span class="hlt">sensitivity</span> down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The <span class="hlt">energy</span> resolution of a single square cell, readout by the ultra-low noise SIRIO charge <span class="hlt">sensitive</span> preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total <span class="hlt">sensitive</span> area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The <span class="hlt">detector</span> was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low <span class="hlt">energy</span> X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete <span class="hlt">detector</span> at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present <span class="hlt">detector</span> configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21997918','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21997918"><span>In situ two-dimensional <span class="hlt">imaging</span> quick-scanning XAFS with pixel array <span class="hlt">detector</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi</p> <p>2011-11-01</p> <p>Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array <span class="hlt">detector</span> (PAD). The method can display a two-dimensional <span class="hlt">image</span> for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each <span class="hlt">energy</span> point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the <span class="hlt">energy</span> range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890041919&hterms=acetone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dacetone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890041919&hterms=acetone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dacetone"><span><span class="hlt">Sensitive</span> gas chromatographic detection of acetaldehyde and acetone using a reduction gas <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Hara, Dean; Singh, Hanwant B.</p> <p>1988-01-01</p> <p>The response of a newly available mercuric oxide Reduction Gas <span class="hlt">Detector</span> (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more <span class="hlt">sensitive</span> than an FID (Flame Ionization <span class="hlt">Detector</span>) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more <span class="hlt">sensitive</span> than an FID. The <span class="hlt">detector</span> is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872913','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872913"><span>Photoconducting positions monitor and <span class="hlt">imaging</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shu, Deming; Kuzay, Tuncer M.</p> <p>2000-01-01</p> <p>A photoconductive, high <span class="hlt">energy</span> photon beam <span class="hlt">detector</span>/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the <span class="hlt">detector</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1439463','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1439463"><span>First Dark Matter Constraints from SuperCDMS Single-Charge <span class="hlt">Sensitive</span> <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Agnese, R.; et al.</p> <p></p> <p>We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS <span class="hlt">detector</span> having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/more » $$\\mathrm{c^2}$$. We demonstrate a <span class="hlt">sensitivity</span> to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor <span class="hlt">detectors</span> that are <span class="hlt">sensitive</span> to single electronic excitations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471962-high-sensitivity-fast-neutron-detector-knk','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471962-high-sensitivity-fast-neutron-detector-knk"><span>High-<span class="hlt">sensitivity</span> fast neutron <span class="hlt">detector</span> KNK-2-7M</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.</p> <p>2015-12-15</p> <p>The construction of the fast neutron <span class="hlt">detector</span> KNK-2-7M is briefly described. The results of the study of the <span class="hlt">detector</span> in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-<span class="hlt">sensitive</span> section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the <span class="hlt">detector</span> in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the <span class="hlt">detector</span> in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the <span class="hlt">detector</span> arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RaPC..142..141W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RaPC..142..141W"><span>Impact of environmental factors on PADC radon <span class="hlt">detector</span> <span class="hlt">sensitivity</span> during long term storage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wasikiewicz, J. M.</p> <p>2018-01-01</p> <p>A broad set of data on poly-allyl diglycol carbonate (PADC) exposure to various environmental conditions has been collected for a period of 1 year in order to study the aging effect on the <span class="hlt">sensitivity</span> to radon detection. Aging is a phenomenon that occurs during long PADC storage resulting in a loss of <span class="hlt">sensitivity</span> and/or creation of false tracks. Conditions under investigation were storages under pure nitrogen or air atmospheres, in water solutions of different pHs, in a range of temperatures, humidity and exposure to UV, gamma and neutron radiations. It was found that PADC strongly responds to some external conditions through physical changes in the polymer material; for example, etching of UV exposed <span class="hlt">detectors</span> led to 10% loss of their thickness and the removal of the tracks layer. Performance of <span class="hlt">detectors</span> was compared with a control that was the <span class="hlt">sensitivity</span> of <span class="hlt">detectors</span> from the same sheet at the time of primary calibration - within 1 month of each sheet being manufactured. Substantial difference in performance was found between storage under pure, dry nitrogen and in the presence of water. The former preserves PADC radon detection properties for the period of one year without noticeable change. The latter, on the other hand significantly reduces its performance even after 3 months' storage. It was also established that storage under low temperature is not a suitable means to preserve PADC <span class="hlt">sensitivity</span> to radon detection due to significant loss in the <span class="hlt">detector</span> <span class="hlt">sensitivity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29621003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29621003"><span>Design and Performance of a 1 mm3 Resolution Clinical PET System Comprising 3-D Position <span class="hlt">Sensitive</span> Scintillation <span class="hlt">Detectors</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, David F C; Freese, David L; Reynolds, Paul D; Innes, Derek R; Levin, Craig S</p> <p>2018-04-01</p> <p>We are developing a 1-mm 3 resolution, high-<span class="hlt">sensitivity</span> positron emission tomography (PET) system for loco-regional cancer <span class="hlt">imaging</span>. The completed system will comprise two cm <span class="hlt">detector</span> panels and contain 4 608 position <span class="hlt">sensitive</span> avalanche photodiodes (PSAPDs) coupled to arrays of mm 3 LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of cm. The sub-system performance parameters, such as <span class="hlt">energy</span>, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have>99% crystal identification accuracy. The 511 keV photopeak <span class="hlt">energy</span> resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom <span class="hlt">images</span> shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........55K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........55K"><span>Single Photon Counting <span class="hlt">Detectors</span> for Low Light Level <span class="hlt">Imaging</span> Applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolb, Kimberly</p> <p>2015-10-01</p> <p>This dissertation presents the current state-of-the-art of semiconductor-based photon counting <span class="hlt">detector</span> technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD <span class="hlt">imaging</span> arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for <span class="hlt">Detectors</span>. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel <span class="hlt">sensitivity</span>. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical <span class="hlt">imaging</span> and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each <span class="hlt">detector</span> are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ITNS...64..735C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ITNS...64..735C"><span>An Information-Theoretical Approach to <span class="hlt">Image</span> Resolution Applied to Neutron <span class="hlt">Imaging</span> <span class="hlt">Detectors</span> Based Upon Individual Discriminator Signals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clergeau, Jean-François; Ferraton, Matthieu; Guérard, Bruno; Khaplanov, Anton; Piscitelli, Francesco; Platz, Martin; Rigal, Jean-Marie; Van Esch, Patrick; Daullé, Thibault</p> <p>2017-01-01</p> <p>1D or 2D neutron position <span class="hlt">sensitive</span> <span class="hlt">detectors</span> with individual wire or strip readout using discriminators have the advantage of being able to treat several neutron impacts partially overlapping in time, hence reducing global dead time. A single neutron impact usually gives rise to several discriminator signals. In this paper, we introduce an information-theoretical definition of <span class="hlt">image</span> resolution. Two point-like spots of neutron impacts with a given distance between them act as a source of information (each neutron hit belongs to one spot or the other), and the <span class="hlt">detector</span> plus signal treatment is regarded as an imperfect communication channel that transmits this information. The maximal mutual information obtained from this channel as a function of the distance between the spots allows to define a calibration-independent measure of position resolution. We then apply this measure to quantify the power of position resolution of different algorithms treating these individual discriminator signals which can be implemented in firmware. The method is then applied to different <span class="hlt">detectors</span> existing at the ILL. Center-of-gravity methods usually improve the position resolution over best-wire algorithms which are the standard way of treating these signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010NIMPA.624..392S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010NIMPA.624..392S"><span>A fast one-chip event-preprocessor and sequencer for the Simbol-X Low <span class="hlt">Energy</span> <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.</p> <p>2010-12-01</p> <p>We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the <span class="hlt">detector</span>. The device has been originally designed for the Simbol-X low <span class="hlt">energy</span> <span class="hlt">detector</span> (LED). The EPP operates on 64×64 pixel <span class="hlt">images</span> and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649064-su-evaluation-dose-perturbation-temperature-sensitivity-variation-accumulated-dose-mosfet-detector','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649064-su-evaluation-dose-perturbation-temperature-sensitivity-variation-accumulated-dose-mosfet-detector"><span>SU-F-T-474: Evaluation of Dose Perturbation, Temperature and <span class="hlt">Sensitivity</span> Variation With Accumulated Dose of MOSFET <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ganesan, B; Prakasarao, A; Singaravelu, G</p> <p></p> <p>Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET <span class="hlt">detector</span> in Co60,6MV and 15MV the <span class="hlt">detector</span> was placed on the surface of the phantom covered with the brass build up cap.more » To measure the effect of temperature the MOSFET <span class="hlt">detector</span> was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the <span class="hlt">sensitivity</span> variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter <span class="hlt">sensitivity</span> over different <span class="hlt">energy</span> is not well characterized. This work investigates the dual-bias MOSFET dosimeter <span class="hlt">sensitivity</span> response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of <span class="hlt">sensitivity</span> variation with accumulated dose MOSFET showed higher <span class="hlt">sensitivity</span> with dose accumulation for both the <span class="hlt">energies</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89e3301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89e3301C"><span>CVD diamond <span class="hlt">detector</span> with interdigitated electrode pattern for time-of-flight <span class="hlt">energy</span>-loss measurements of low-<span class="hlt">energy</span> ion bunches</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cayzac, W.; Pomorski, M.; Blažević, A.; Canaud, B.; Deslandes, D.; Fariaut, J.; Gontier, D.; Lescoute, E.; Marmouget, J. G.; Occelli, F.; Oudot, G.; Reverdin, C.; Sauvestre, J. E.; Sollier, A.; Soullié, G.; Varignon, C.; Villette, B.</p> <p>2018-05-01</p> <p>Ion stopping experiments in plasma for beam <span class="hlt">energies</span> of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-<span class="hlt">energy</span>-density physics research. For this purpose, a specific ion <span class="hlt">detector</span> on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion <span class="hlt">energy</span> loss. The electrode structure is interdigitated for maximizing its <span class="hlt">sensitivity</span> to low-<span class="hlt">energy</span> ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The <span class="hlt">detector</span> has been tested with α-particle bunches at a 500 keV per nucleon <span class="hlt">energy</span>, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam <span class="hlt">energy</span> resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm2 thick carbon foil as an <span class="hlt">energy</span>-loss target and a 2 m time-of-flight distance. This allows a highly precise beam <span class="hlt">energy</span> measurement of δE/E ≈ 0.04%-0.2% and a resolution on the <span class="hlt">energy</span> loss of 0.6%-2.5% for a fine testing of stopping-power models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JInst..10.4002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JInst..10.4002H"><span>Development of a fast multi-line x-ray CT <span class="hlt">detector</span> for NDT</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.</p> <p>2015-04-01</p> <p>Typical X-ray <span class="hlt">detectors</span> for non-destructive testing (NDT) are line <span class="hlt">detectors</span> or area <span class="hlt">detectors</span>, like e.g. flat panel <span class="hlt">detectors</span>. Multi-line <span class="hlt">detectors</span> are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel <span class="hlt">detectors</span>, line and multi-line <span class="hlt">detectors</span> can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved <span class="hlt">image</span> quality can be achieved due to reduced scattered radiation from object and <span class="hlt">detector</span> themselves. Another benefit of line and multi-line <span class="hlt">detectors</span> is that very wide <span class="hlt">detectors</span> can be assembled easily, while flat panel <span class="hlt">detectors</span> are usually limited to an <span class="hlt">imaging</span> field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line <span class="hlt">detectors</span> is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line <span class="hlt">detector</span> are much faster, but with almost similar <span class="hlt">image</span> quality. Due to the promising properties of multi-line <span class="hlt">detectors</span> their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line <span class="hlt">detectors</span> are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray <span class="hlt">energies</span>. For those non-medical applications we are developing a fast multi-line X-ray <span class="hlt">detector</span>.In the scope of this work, we present the current state of the development of the novel <span class="hlt">detector</span>, which includes several outstanding properties like an adjustable curved design for variable focus-<span class="hlt">detector</span>-distances, conserving nearly uniform perpendicular irradiation over the entire <span class="hlt">detector</span> width. Basis of the <span class="hlt">detector</span> is a specifically designed, radiation hard CMOS <span class="hlt">imaging</span> sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high <span class="hlt">sensitivity</span> and a wide dynamic range. The final <span class="hlt">detector</span> is planned to have 256 lines of</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5585566','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5585566"><span>The Edge <span class="hlt">Detectors</span> Suitable for Retinal OCT <span class="hlt">Image</span> Segmentation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Jing; Gao, Qian; Zhou, Sheng</p> <p>2017-01-01</p> <p>Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT <span class="hlt">images</span>. Here, we intended to search for the most suitable edge <span class="hlt">detectors</span> for the retinal OCT <span class="hlt">image</span> segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge <span class="hlt">detector</span>, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny <span class="hlt">detector</span> and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT <span class="hlt">images</span>. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT <span class="hlt">images</span> contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT <span class="hlt">images</span> for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPA.833...68N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPA.833...68N"><span>Broadband X-ray edge-enhancement <span class="hlt">imaging</span> of a boron fibre on lithium fluoride thin film <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.</p> <p>2016-10-01</p> <p>The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement <span class="hlt">imaging</span> tests on lithium fluoride radiation <span class="hlt">detectors</span>. The diffracted X-ray <span class="hlt">image</span> of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted <span class="hlt">images</span>. The tests demonstrated the excellent performances of lithium fluoride films as radiation <span class="hlt">detectors</span> at the investigated photon <span class="hlt">energies</span>. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern <span class="hlt">image</span> formation, storing and readout.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873631','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873631"><span>System to quantify gamma-ray radial <span class="hlt">energy</span> deposition in semiconductor <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kammeraad, Judith E.; Blair, Jerome J.</p> <p>2001-01-01</p> <p>A system for measuring gamma-ray radial <span class="hlt">energy</span> deposition is provided for use in conjunction with a semiconductor <span class="hlt">detector</span>. The <span class="hlt">detector</span> comprises two electrodes and a <span class="hlt">detector</span> material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The <span class="hlt">detector</span> produces a charge signal E(t) when a gamma-ray interacts with the <span class="hlt">detector</span>. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited <span class="hlt">energy</span> when interacting with the <span class="hlt">detector</span>. The computational means produces an output indicating the amount of <span class="hlt">energy</span> deposited by the gamma-ray in each of the plurality of zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.550...87K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.550...87K"><span>Printable organometallic perovskite enables large-area, low-dose X-ray <span class="hlt">imaging</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu</p> <p>2017-10-01</p> <p>Medical X-ray <span class="hlt">imaging</span> procedures require digital flat <span class="hlt">detectors</span> operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such <span class="hlt">sensitive</span> <span class="hlt">detectors</span>. However, such <span class="hlt">detectors</span> have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a <span class="hlt">detector</span> is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High <span class="hlt">sensitivities</span> of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the <span class="hlt">sensitivities</span> achieved with currently used amorphous selenium or thallium-doped cesium iodide <span class="hlt">detectors</span>. We demonstrate X-ray <span class="hlt">imaging</span> in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite <span class="hlt">detector</span> could enable low-dose X-ray <span class="hlt">imaging</span>, and could also be used in photoconductive devices for radiation <span class="hlt">imaging</span>, sensing and <span class="hlt">energy</span> harvesting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28980632','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28980632"><span>Printable organometallic perovskite enables large-area, low-dose X-ray <span class="hlt">imaging</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu</p> <p>2017-10-04</p> <p>Medical X-ray <span class="hlt">imaging</span> procedures require digital flat <span class="hlt">detectors</span> operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such <span class="hlt">sensitive</span> <span class="hlt">detectors</span>. However, such <span class="hlt">detectors</span> have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a <span class="hlt">detector</span> is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High <span class="hlt">sensitivities</span> of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the <span class="hlt">sensitivities</span> achieved with currently used amorphous selenium or thallium-doped cesium iodide <span class="hlt">detectors</span>. We demonstrate X-ray <span class="hlt">imaging</span> in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite <span class="hlt">detector</span> could enable low-dose X-ray <span class="hlt">imaging</span>, and could also be used in photoconductive devices for radiation <span class="hlt">imaging</span>, sensing and <span class="hlt">energy</span> harvesting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58.3791G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58.3791G"><span>NEMA NU-4 performance evaluation of PETbox4, a high <span class="hlt">sensitivity</span> dedicated PET preclinical tomograph</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Z.; Taschereau, R.; Vu, N. T.; Wang, H.; Prout, D. L.; Silverman, R. W.; Bai, B.; Stout, D. B.; Phelps, M. E.; Chatziioannou, A. F.</p> <p>2013-06-01</p> <p>PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high <span class="hlt">sensitivity</span> and high resolution <span class="hlt">imaging</span> of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of <span class="hlt">sensitivity</span>, spatial resolution, <span class="hlt">energy</span> resolution, scatter fraction, count-rate performance and <span class="hlt">image</span> quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type <span class="hlt">detectors</span> arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric <span class="hlt">images</span> for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized <span class="hlt">detector</span> response. With an <span class="hlt">energy</span> window of 150-650 keV, the peak absolute <span class="hlt">sensitivity</span> is approximately 18% at the center of FOV. The measured crystal <span class="hlt">energy</span> resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic <span class="hlt">detector</span> spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed <span class="hlt">image</span> spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the <span class="hlt">image</span> quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on <span class="hlt">sensitivity</span> and spatial resolution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1082887','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1082887"><span>Charged particle <span class="hlt">detectors</span> with active <span class="hlt">detector</span> surface for partial <span class="hlt">energy</span> deposition of the charged particles and related methods</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gerts, David W; Bean, Robert S; Metcalf, Richard R</p> <p>2013-02-19</p> <p>A radiation <span class="hlt">detector</span> is disclosed. The radiation <span class="hlt">detector</span> comprises an active <span class="hlt">detector</span> surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active <span class="hlt">detector</span> surface is further configured with a sufficient thickness for a partial <span class="hlt">energy</span> deposition of the charged particles to occur and permit the charged particles to pass through the active <span class="hlt">detector</span> surface. The radiation <span class="hlt">detector</span> further comprises a plurality of voltage leads coupled to the active <span class="hlt">detector</span> surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active <span class="hlt">detector</span> surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active <span class="hlt">detector</span> surface may comprise one or more graphene layers. Timing data between active <span class="hlt">detector</span> surfaces may be used to determine <span class="hlt">energy</span> of the incident radiation. Other apparatuses and methods are disclosed herein.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22349401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22349401"><span>3D elemental <span class="hlt">sensitive</span> <span class="hlt">imaging</span> using transmission X-ray microscopy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero</p> <p>2012-09-01</p> <p>Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution <span class="hlt">imaging</span> over a wide X-ray <span class="hlt">energy</span> range covering the absorption edges of many elements; combining elemental <span class="hlt">sensitive</span> <span class="hlt">imaging</span> with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental <span class="hlt">sensitive</span> <span class="hlt">imaging</span> with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...601A..89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...601A..89B"><span>A kilo-pixel <span class="hlt">imaging</span> system for future space based far-infrared observatories using microwave kinetic inductance <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.</p> <p>2017-05-01</p> <p>Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-<span class="hlt">sensitive</span> <span class="hlt">detectors</span> in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel <span class="hlt">imaging</span> array based upon Microwave Kinetic Inductance <span class="hlt">Detectors</span> (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of <span class="hlt">sensitivity</span>, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent <span class="hlt">sensitivity</span>, with an average <span class="hlt">detector</span> <span class="hlt">sensitivity</span> < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited <span class="hlt">detector</span> noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the <span class="hlt">detectors</span>. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10132E..0YL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10132E..0YL"><span>Ultra-high spatial resolution multi-<span class="hlt">energy</span> CT using photon counting <span class="hlt">detector</span> technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.</p> <p>2017-03-01</p> <p>Two ultra-high-resolution (UHR) <span class="hlt">imaging</span> modes, each with two <span class="hlt">energy</span> thresholds, were implemented on a research, whole-body photon-counting-<span class="hlt">detector</span> (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both <span class="hlt">energy</span> thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-<span class="hlt">energy</span> threshold and 0.5 mm for the high-<span class="hlt">energy</span> threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard <span class="hlt">imaging</span> mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-<span class="hlt">energy</span> capability. The low-<span class="hlt">energy</span> threshold <span class="hlt">images</span> of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-<span class="hlt">energy</span> analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution <span class="hlt">images</span>. However, UHR scans at higher dose showed improvement in multi-<span class="hlt">energy</span> analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-<span class="hlt">energy</span> analysis, either increased radiation dose, or application of noise reduction techniques, is needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NIMPA.702...88S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NIMPA.702...88S"><span>Silicon <span class="hlt">detectors</span> for combined MR-PET and MR-SPECT <span class="hlt">imaging</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.</p> <p>2013-02-01</p> <p>Silicon based devices can extend PET-MR and SPECT-MR <span class="hlt">imaging</span> to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent <span class="hlt">detector</span> material with numerous advantages, among others: excellent <span class="hlt">energy</span> and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in <span class="hlt">image</span> noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary <span class="hlt">detector</span> could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon <span class="hlt">energies</span> beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, <span class="hlt">detectors</span> with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JKPS...70..317L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JKPS...70..317L"><span>Comparative dosimetric characterization for different types of <span class="hlt">detectors</span> in high-<span class="hlt">energy</span> electron beams</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh</p> <p>2017-02-01</p> <p>The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-<span class="hlt">energy</span> electron beam <span class="hlt">detectors</span> to measure dose profiles and <span class="hlt">energy</span> property data. By analyzing the high-<span class="hlt">energy</span> electron beam data from each <span class="hlt">detector</span>, we determined the optimal <span class="hlt">detector</span> for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each <span class="hlt">detector</span> were measured to evaluate the dosimetry characteristics of high-<span class="hlt">energy</span> electron beams. The dose profile and the <span class="hlt">energy</span> characteristics of high-<span class="hlt">energy</span> electron beams were found to be different when measured by different <span class="hlt">detectors</span>. Through comparison with other <span class="hlt">detectors</span> based on the analyzed data, the microdiamond <span class="hlt">detector</span> was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this <span class="hlt">detector</span> has outstanding spatial resolution and is the optimal <span class="hlt">detector</span> for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam <span class="hlt">detectors</span> when measuring the electron beam dose.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13C3008A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13C3008A"><span>Design and evaluation of a SiPM-based large-area <span class="hlt">detector</span> module for positron emission <span class="hlt">imaging</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.</p> <p>2018-03-01</p> <p>The design and evaluation of a large-area <span class="hlt">detector</span> module for positron emission <span class="hlt">imaging</span> applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state <span class="hlt">detector</span> (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The <span class="hlt">detector</span> module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean <span class="hlt">energy</span> resolution for 511 keV annihilation photons was determined. The performance of the <span class="hlt">detector</span> using our own readout board was compared to that using two different commercially readout boards using the same <span class="hlt">detector</span> module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent <span class="hlt">energy</span> resolution and <span class="hlt">detector</span> uniformity and thus, can be used for positron emission <span class="hlt">imaging</span> applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9915E..2LN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9915E..2LN"><span>Characterization of an ultraviolet <span class="hlt">imaging</span> <span class="hlt">detector</span> with high event rate ROIC (HEROIC) readout</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nell, Nicholas; France, Kevin; Harwit, Alex; Bradley, Scott; Franka, Steve; Freymiller, Ed; Ebbets, Dennis</p> <p>2016-07-01</p> <p>We present characterization results from a photon counting <span class="hlt">imaging</span> <span class="hlt">detector</span> consisting of one microchannel plate (MCP) and an array of two readout integrated circuits (ROIC) that record photon position. The ROICs used in the position readout are the high event rate ROIC (HEROIC) devices designed to handle event rates up to 1 MHz per pixel, recently developed by the Ball Aerospace and Technologies Corporation in collaboration with the University of Colorado. An opaque cesium iodide (CsI) photocathode <span class="hlt">sensitive</span> in the far-ultraviolet (FUV; 122-200 nm), is deposited on the upper surface of the MCP. The <span class="hlt">detector</span> is characterized in a chamber developed by CU Boulder that is capable of illumination with vacuum-ultraviolet (VUV) monochromatic light and measurement of absolute ux with a calibrated photodiode. Testing includes investigation of the effects of adjustment of internal settings of the HEROIC devices including charge threshold, gain, and amplifier bias. The <span class="hlt">detector</span> response to high count rates is tested. We report initial results including background, uniformity, and quantum detection efficiency (QDE) as a function of wavelength.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27041789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27041789"><span>Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array <span class="hlt">Detector</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J</p> <p>2015-03-12</p> <p>Pixel-array array <span class="hlt">detectors</span> allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and <span class="hlt">detectors</span> in the array. Because the number of photoelectrons produced at the <span class="hlt">detector</span> surface depends on the photon <span class="hlt">energy</span>, these <span class="hlt">detectors</span> offer the possibility of spectral <span class="hlt">imaging</span>. In this work, a statistical model of the instrument response is used to calibrate the <span class="hlt">detector</span> on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-<span class="hlt">energy</span> diffraction measurements into two monochromatic <span class="hlt">images</span>. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction <span class="hlt">imaging</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9401E..09M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9401E..09M"><span>Spectral x-ray diffraction using a 6 megapixel photon counting array <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.</p> <p>2015-03-01</p> <p>Pixel-array array <span class="hlt">detectors</span> allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and <span class="hlt">detectors</span> in the array. Because the number of photoelectrons produced at the <span class="hlt">detector</span> surface depends on the photon <span class="hlt">energy</span>, these <span class="hlt">detectors</span> offer the possibility of spectral <span class="hlt">imaging</span>. In this work, a statistical model of the instrument response is used to calibrate the <span class="hlt">detector</span> on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-<span class="hlt">energy</span> diffraction measurements into two monochromatic <span class="hlt">images</span>. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction <span class="hlt">imaging</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940010564&hterms=etc+stock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Detc%2Bstock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940010564&hterms=etc+stock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Detc%2Bstock"><span>Microchannel Plate <span class="hlt">Imaging</span> <span class="hlt">Detectors</span> for the Ultraviolet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.</p> <p>1992-01-01</p> <p>There has been significant progress over the last few years in the development of technologies for microchannel plate <span class="hlt">imaging</span> <span class="hlt">detectors</span> in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance <span class="hlt">image</span> readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930019621','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930019621"><span>A Compact <span class="hlt">Imaging</span> <span class="hlt">Detector</span> of Polarization and Spectral Content</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rust, D. M.; Kumar, A.; Thompson, K. E.</p> <p>1993-01-01</p> <p>A new type of <span class="hlt">image</span> <span class="hlt">detector</span> will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual <span class="hlt">Imaging</span> <span class="hlt">Detector</span> (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the <span class="hlt">detector</span> are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22418217','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22418217"><span>3D scanning characteristics of an amorphous silicon position <span class="hlt">sensitive</span> <span class="hlt">detector</span> array system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel</p> <p>2012-02-13</p> <p>The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position <span class="hlt">sensitive</span> <span class="hlt">detectors</span> (PSD) were analyzed. The system was mounted on a platform for <span class="hlt">imaging</span> 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the <span class="hlt">image</span> displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88l3503L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88l3503L"><span>A fast-neutron detection <span class="hlt">detector</span> based on fission material and large <span class="hlt">sensitive</span> 4H silicon carbide Schottky diode <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping</p> <p>2017-12-01</p> <p>Silicon carbide radiation <span class="hlt">detectors</span> are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode <span class="hlt">detector</span> and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-<span class="hlt">energy</span> deuterium-tritium (D-T) fusion neutrons and continuous <span class="hlt">energy</span> fission neutrons were obtained. The <span class="hlt">detector</span> is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3021557','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3021557"><span>Least squares parameter estimation methods for material decomposition with <span class="hlt">energy</span> discriminating <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Le, Huy Q.; Molloi, Sabee</p> <p>2011-01-01</p> <p>Purpose: <span class="hlt">Energy</span> resolving <span class="hlt">detectors</span> provide more than one spectral measurement in one <span class="hlt">image</span> acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using <span class="hlt">energy</span> discriminating <span class="hlt">detectors</span> and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast <span class="hlt">imaging</span> tasks in the <span class="hlt">image</span> domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) <span class="hlt">detector</span> that could resolve the x-ray spectrum into five <span class="hlt">energy</span> bins. A postmortem breast specimen was <span class="hlt">imaged</span> with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JKPS...67..264J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JKPS...67..264J"><span><span class="hlt">Imaging</span> responses of on-site CsI and Gd2O2S flat-panel <span class="hlt">detectors</span>: Dependence on the tube voltage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung</p> <p>2015-07-01</p> <p>One of the emerging issues in radiography is low-dose <span class="hlt">imaging</span> to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel <span class="hlt">detectors</span> show a drastic change of X-ray photon absorption efficiency around their K-edge <span class="hlt">energies</span> that consequently affects <span class="hlt">image</span> quality. Using various tube voltages, we investigated the <span class="hlt">imaging</span> performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four <span class="hlt">detectors</span> installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S <span class="hlt">detectors</span> were normalized by those of CsI <span class="hlt">detectors</span> to exclude the effects of <span class="hlt">image</span> postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI <span class="hlt">detector</span> outperformed that of the Gd2O2S <span class="hlt">detector</span> over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S <span class="hlt">detectors</span> quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S <span class="hlt">detectors</span>, variations in the DQE performance of the CsI <span class="hlt">detectors</span> were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S <span class="hlt">detectors</span> are inappropriate for use in low-tube-voltage <span class="hlt">imaging</span> (e.g., extremities and pediatrics) with low patient exposure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InvPr..34g5004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InvPr..34g5004R"><span>3D Compton scattering <span class="hlt">imaging</span> and contour reconstruction for a class of Radon transforms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigaud, Gaël; Hahn, Bernadette N.</p> <p>2018-07-01</p> <p>Compton scattering <span class="hlt">imaging</span> is a nascent concept arising from the current development of high-<span class="hlt">sensitive</span> <span class="hlt">energy</span> <span class="hlt">detectors</span> and is devoted to exploit the scattering radiation to <span class="hlt">image</span> the electron density of the studied medium. Such <span class="hlt">detectors</span> are able to collect incoming photons in terms of <span class="hlt">energy</span>. This paper introduces potential 3D modalities in Compton scattering <span class="hlt">imaging</span> (CSI). The associated measured data are modeled using a class of generalized Radon transforms. The study of this class of operators leads to build a filtered back-projection kind algorithm preserving the contours of the sought-for function and offering a fast approach to partially solve the associated inverse problems. Simulation results including Poisson noise demonstrate the potential of this new <span class="hlt">imaging</span> concept as well as the proposed <span class="hlt">image</span> reconstruction approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850027698','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850027698"><span><span class="hlt">Energy</span> calibration of the fly's eye <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.</p> <p>1985-01-01</p> <p>The methods used to calibrate the Fly's eye <span class="hlt">detector</span> to evaluate the <span class="hlt">energy</span> of EAS are discussed. The <span class="hlt">energy</span> of extensive air showers (EAS) as seen by the Fly's Eye <span class="hlt">detector</span> are obtained from track length integrals of observed shower development curves. The <span class="hlt">energy</span> of the parent cosmic ray primary is estimated by applying corrections to account for undetected <span class="hlt">energy</span> in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29903933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29903933"><span>Performance evaluation of G8, a high <span class="hlt">sensitivity</span> benchtop preclinical PET/CT tomograph.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Zheng; Taschereau, Richard; Vu, Nam; Prout, David L; Silverman, Robert W; Lee, Jason; Chatziioannou, Arion F</p> <p>2018-06-14</p> <p>G8 is a bench top integrated PET/CT scanner dedicated to high <span class="hlt">sensitivity</span> and high resolution <span class="hlt">imaging</span> of mice. This work characterizes its National Electrical Manufacturers Association (NEMA) NU4-2008 performance where applicable and also provides an assessment of the basic <span class="hlt">imaging</span> performance of the CT subsystem. Methods: The PET subsystem in G8 consists of four flat-panel type <span class="hlt">detectors</span> arranged in a box like geometry. Each panel consists of two modules of a 26 × 26 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT consisting of a micro focus X-ray source and a Complementary Metal Oxide Semiconductor (CMOS) <span class="hlt">detector</span> provides anatomical information. <span class="hlt">Sensitivity</span>, spatial resolution, <span class="hlt">energy</span> resolution, scatter fraction, count-rate performance and the capability of phantom and mouse <span class="hlt">imaging</span> were evaluated for the PET subsystem. Noise, dose level, contrast and resolution were evaluated for the CT subsystem. Results: With an <span class="hlt">energy</span> window of 350-650 keV, the peak <span class="hlt">sensitivity</span> was measured to be 9.0% near the center of the field of view (CFOV). The crystal <span class="hlt">energy</span> resolution ranged from 15.0% to 69.6% full width at half maximum (FWHM), with a mean of 19.3 ± 3.7%. The average <span class="hlt">detector</span> intrinsic spatial resolution was 1.30 mm and 1.38 mm FWHM in the transverse and axial directions. The maximum likelihood expectation maximization (ML-EM) reconstructed <span class="hlt">image</span> of a point source in air, averaged 0.81 ± 0.11 mm FWHM. The peak noise equivalent count rate (NECR) for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi) and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function (MTF) at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high quality <span class="hlt">images</span> for molecular <span class="hlt">imaging</span> based</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970025858&hterms=PSD&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPSD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970025858&hterms=PSD&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPSD"><span>Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.</p> <p>1997-01-01</p> <p>Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) <span class="hlt">imaging</span> spectrometer (SPI) to improve the <span class="hlt">sensitivity</span> from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this <span class="hlt">energy</span> range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge <span class="hlt">detectors</span> due to the activation of Ge nuclei by cosmic rays. The <span class="hlt">sensitivity</span> of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge <span class="hlt">detectors</span> using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical <span class="hlt">detector</span>. Using PSD, a <span class="hlt">sensitivity</span> improvement factor of the order of 2.4 at 0.8 MeV is expected.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JInst..11C2015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JInst..11C2015B"><span>Proton <span class="hlt">energy</span> and scattering angle radiographs to improve proton treatment planning: a Monte Carlo study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biegun, A. K.; Takatsu, J.; Nakaji, T.; van Goethem, M. J.; van der Graaf, E. R.; Koffeman, E. N.; Visser, J.; Brandenburg, S.</p> <p>2016-12-01</p> <p>The novel proton radiography <span class="hlt">imaging</span> technique has a large potential to be used in direct measurement of the proton <span class="hlt">energy</span> loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) <span class="hlt">images</span>, should be minimized from 3-5% or higher to less than 1%, to make the treatment plan with proton beams more accurate, and thereby better treatment for the patient. With Geant4 we simulated a proton radiography detection system with two position-<span class="hlt">sensitive</span> and residual <span class="hlt">energy</span> <span class="hlt">detectors</span>. A complex phantom filled with various materials (including tissue surrogates), was placed between the position <span class="hlt">sensitive</span> <span class="hlt">detectors</span>. The phantom was irradiated with 150 MeV protons and the <span class="hlt">energy</span> loss radiograph and scattering angles were studied. Protons passing through different materials in the phantom lose <span class="hlt">energy</span>, which was used to create a radiography <span class="hlt">image</span> of the phantom. The multiple Coulomb scattering of a proton traversing different materials causes blurring of the <span class="hlt">image</span>. To improve <span class="hlt">image</span> quality and material identification in the phantom, we selected protons with small scattering angles. A good quality proton radiography <span class="hlt">image</span>, in which various materials can be recognized accurately, and in combination with xCT can lead to more accurate relative stopping powers predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S41B4491B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S41B4491B"><span><span class="hlt">Imaging</span> the Subsurface with Upgoing Muons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.</p> <p>2014-12-01</p> <p>We assess the feasibility of <span class="hlt">imaging</span> the subsurface using upgoing muons. Traditional muon <span class="hlt">imaging</span> focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to <span class="hlt">image</span> the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target <span class="hlt">detectors</span>. For aboveground objects like a volcano, the <span class="hlt">detector</span> is placed at the volcano's base and the top portion of the volcano is <span class="hlt">imaged</span>. For underground targets like tunnels, the <span class="hlt">detector</span> would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods <span class="hlt">sensitive</span> to density variations would be ideal. High-<span class="hlt">energy</span> cosmic ray muons are more <span class="hlt">sensitive</span> to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and <span class="hlt">detector</span>, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of <span class="hlt">Energy</span>'s National Nuclear Security Administration under contract DE-AC04-94AL85000.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20197603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20197603"><span>The spatial resolution of silicon-based electron <span class="hlt">detectors</span> in beta-autoradiography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cabello, Jorge; Wells, Kevin</p> <p>2010-03-21</p> <p>Thin tissue autoradiography is an <span class="hlt">imaging</span> modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low <span class="hlt">energy</span> radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based <span class="hlt">imaging</span> technologies have demonstrated higher <span class="hlt">sensitivity</span> compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low <span class="hlt">energy</span> uncollimated beta <span class="hlt">imaging</span>. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and <span class="hlt">detector</span> noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal <span class="hlt">detector</span> geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25378898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25378898"><span>Design Studies of a CZT-based <span class="hlt">Detector</span> Combined with a Pixel-Geometry-Matching Collimator for SPECT <span class="hlt">Imaging</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho</p> <p>2013-10-01</p> <p>Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and <span class="hlt">image</span> quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the <span class="hlt">detector</span>'s and the center of each pixel in the collimator is a one-to-one correspondence to that in the <span class="hlt">detector</span>. The <span class="hlt">detector</span> is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good <span class="hlt">energy</span> resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The <span class="hlt">detector</span> is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT <span class="hlt">detector</span> combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising <span class="hlt">imaging</span> characteristics in terms of spatial resolution, detection efficiency, and <span class="hlt">energy</span> resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003779&hterms=hodge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhodge','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003779&hterms=hodge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhodge"><span>The HEXITEC Hard X-Ray Pixelated CdTe <span class="hlt">Imager</span> for Fast Solar Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen</p> <p>2016-01-01</p> <p>There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic <span class="hlt">imaging</span>. Such observations would present ground breaking opportunities to study the poorly understood high <span class="hlt">energy</span> processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state <span class="hlt">detectors</span> <span class="hlt">sensitive</span> to high <span class="hlt">energy</span> X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation <span class="hlt">detectors</span>. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) <span class="hlt">detector</span> system, called HEXITEC (High <span class="hlt">Energy</span> X-ray <span class="hlt">Imaging</span> Technology). It is an 80 x 80 array of 250 micron independent pixels <span class="hlt">sensitive</span> in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these <span class="hlt">detectors</span> for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's <span class="hlt">imaging</span> capability, <span class="hlt">energy</span> resolution, high read out rate, and reveal it to be ideal for such future instruments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810052785&hterms=bybee&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbybee','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810052785&hterms=bybee&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbybee"><span>Multianode microchannel array <span class="hlt">detectors</span> for Space Shuttle <span class="hlt">imaging</span> applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Timothy, J. G.; Bybee, R. L.</p> <p>1981-01-01</p> <p>The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array <span class="hlt">detectors</span> that have been developed and qualified specifically for use in space. MAMA <span class="hlt">detectors</span> with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of <span class="hlt">imaging</span> and tracking applications. These photo-emissive <span class="hlt">detectors</span> can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA <span class="hlt">detectors</span> are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these <span class="hlt">detectors</span> are outlined. Performance characteristics of the MAMA <span class="hlt">detectors</span> that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array <span class="hlt">detectors</span> such as the CCDs and CIDs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830000008&hterms=silicon+detector+electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsilicon%2Bdetector%2Belectrons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830000008&hterms=silicon+detector+electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsilicon%2Bdetector%2Belectrons"><span>X-Ray <span class="hlt">Detector</span> for 1 to 30 keV</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.</p> <p>1983-01-01</p> <p>Array of silicon X-ray detecting diodes measures photon <span class="hlt">energy</span> and provides <span class="hlt">image</span> of X-ray pattern. Regardless of thickness of new X-ray <span class="hlt">detector</span>, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray <span class="hlt">energy</span>. X-ray <span class="hlt">detector</span> is mated to chargecoupled-device array for <span class="hlt">image</span> generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JInst...9C3055O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JInst...9C3055O"><span>Modeling and simulation of Positron Emission Mammography (PEM) based on double-sided CdTe strip <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozsahin, I.; Unlu, M. Z.</p> <p>2014-03-01</p> <p>Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for <span class="hlt">imaging</span> primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these <span class="hlt">detectors</span> have significant limitations like poor <span class="hlt">energy</span> resolution resulting with false-negative result (missed cancer), and false-positive result which leads to suspecting cancer and suggests an unnecessary biopsy. In this work, a PEM scanner based on CdTe strip <span class="hlt">detectors</span> is simulated via the Monte Carlo method and evaluated in terms of its spatial resolution, <span class="hlt">sensitivity</span>, and <span class="hlt">image</span> quality. The spatial resolution is found to be ~ 1 mm in all three directions. The results also show that CdTe strip <span class="hlt">detectors</span> based PEM scanner can produce high resolution <span class="hlt">images</span> for early diagnosis of breast cancer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11604008C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11604008C"><span>Predicted <span class="hlt">sensitivity</span> of the KM3NeT/ARCA <span class="hlt">detector</span> to a diffuse flux of cosmic neutrinos</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coniglione, R.; Fusco, L. A.; Stransky, D.</p> <p>2016-04-01</p> <p>The KM3NeT Collaboration has started the construction of a research infrastructure hosting a network of underwater neutrino <span class="hlt">detectors</span> in the Mediterranean Sea. Two instruments based on the same technology are being built: KM3NeT/ORCA to measure the neutrino mass hierarchy and to study atmospheric neutrino oscillations and KM3NeT/ARCA to detect high-<span class="hlt">energy</span> cosmic neutrinos both in diffuse and point source mode. The excellent angular resolution of the ARCA <span class="hlt">detector</span>, with an instrumented volume of about one Gton, will allow for an unprecedented exploration of the neutrino sky searching for neutrinos coming from defined sources of sky regions, like the Galactic Plane and the Fermi Bubbles. It will also look for diffuse high <span class="hlt">energy</span> neutrino fluxes following the indication provided by the IceCube signal. This contribution will report on the <span class="hlt">sensitivity</span> of the KM3NeT/ARCA telescope with particular attention to the region of the Galactic Plane. Comparisons with theoretical expectations are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1233434','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1233434"><span>Intermediate <span class="hlt">Energies</span> for Nuclear Astrophysics and the Development of a Position <span class="hlt">Sensitive</span> Microstrip <span class="hlt">Detector</span> System</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sobotka, Lee G.; Blackmon, J.; Bertulani, C.</p> <p>2015-12-30</p> <p>The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large <span class="hlt">energy</span> and large deposited <span class="hlt">energy</span> in a <span class="hlt">detector</span> system) and protons (with little <span class="hlt">energy</span> and deposited <span class="hlt">energy</span>.) Early onmore » in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7021E..11L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7021E..11L"><span>Hard x-ray and gamma-ray <span class="hlt">imaging</span> and spectroscopy using scintillators coupled to silicon drift <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.</p> <p>2008-07-01</p> <p>Silicon Drift <span class="hlt">Detectors</span> (SDDs) are used as low-capacitance photon <span class="hlt">detectors</span> for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved <span class="hlt">energy</span> resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact <span class="hlt">imaging</span> spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of <span class="hlt">detector</span> cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high <span class="hlt">energy</span> missions. The <span class="hlt">energy</span> information is obtained by summing the <span class="hlt">detector</span> cell signals. Compared to direct converting pixelated <span class="hlt">detectors</span>, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RuPhJ..60.1638H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RuPhJ..60.1638H"><span>Remote <span class="hlt">Imaging</span> by Nanosecond Terahertz Spectrometer with Standoff <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.</p> <p>2018-01-01</p> <p>Creation and application of the remote <span class="hlt">imaging</span> spectrometer based on high power nanosecond terahertz source with standoff <span class="hlt">detector</span> is reported. 2D transmission <span class="hlt">images</span> of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection <span class="hlt">images</span> of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10351E..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10351E..05F"><span>A design of <span class="hlt">energy</span> <span class="hlt">detector</span> for ArF excimer lasers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun</p> <p>2017-08-01</p> <p>ArF excimer lasers with short wavelength and high photon <span class="hlt">energy</span> are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse <span class="hlt">energy</span> is a very important parameter in the application. In order to detect the single pulse <span class="hlt">energy</span> on-line, one <span class="hlt">energy</span> <span class="hlt">detector</span> based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse <span class="hlt">energy</span> of ArF excimer laser. In every condition of deferent pulse <span class="hlt">energy</span> value levels, a series of data about laser pulses <span class="hlt">energy</span> were acquired synchronously using the Ophir <span class="hlt">energy</span> meter and the <span class="hlt">energy</span> <span class="hlt">detector</span>. A data set about the relationship between laser pulse <span class="hlt">energy</span> and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the <span class="hlt">energy</span> value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the <span class="hlt">energy</span> value can be obtained directly from the <span class="hlt">energy</span> <span class="hlt">detector</span> designed in this project. The result shows that the relative error between the <span class="hlt">energy</span> obtained by the <span class="hlt">energy</span> <span class="hlt">detector</span> and by the Ophir <span class="hlt">energy</span> meter is less than 2%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020844','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020844"><span>A Satellite Borne Cadmium Sulfide Total Corpuscular <span class="hlt">Energy</span> <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freeman, John W.</p> <p>1961-01-01</p> <p>The properties of single crystals of cadmium sulfide as radiation <span class="hlt">detectors</span> are described. It has been found possible to select crystals such that: (a) The ratio of increase of conductivity under irradiation to the rate of absorption of <span class="hlt">energy</span> in the crystal is substantially independent of particle <span class="hlt">energy</span> (over the examined ranges of 500 ev to 80 kev for electrons and 5 kev to 180 kev for protons) and of the magnitude of <span class="hlt">energy</span> flux (over the range from.005 to 10 ergs/cm(sup 2 -sec); and (b) The above ration is substantially the same for protons, electrons, alpha particles, x-rays, and gamma-rays. For a driving voltage of 100 volts, typical crystal yield currents of 10(sup -7) to 10(sup- 6) amperes for each erg/cm(sup 2-sec) of <span class="hlt">energy</span> absorbed by the crystal. The threshold of such crystal <span class="hlt">detectors</span> (resulting from dark currents of the order of 10(sup 10 amp) is typically 10(sup -3) ergs/cm(sup 2- sec). For the selected crystals a response-temperature coefficient of -0.25% per degree centigrade is found for the temperature range -50 deg C to + 50 deg C. A description is given of a complete CdS total corpuscular <span class="hlt">energy</span> <span class="hlt">detector</span> for the study of geomagnetically trapped radiation by means of a satellite. The <span class="hlt">detector</span> described has a dynamic range great than 10(sup 4), a solid angle of 10(exp -3) steradian, and a detection threshold of approximately 1 erg/cm(sup 2-sec-sterad). A similar <span class="hlt">detector</span> employing a small magnet for the selective exclusion of electrons is also described. Noteworthy practical features of these <span class="hlt">detectors</span> for satellite and space probe experiments are: (a) Use of bare crystals, without covering foils, in order to detect charged particles having <span class="hlt">energies</span> as low as hundreds of electron volts. (b) Simplicity of electronic auxiliaries. (c) Compactness, lightweight and nechanical ruggedness. (d) Low electrical power requirements; and (e) Conversion of conduction current to the rate of a twostate relaxation oscillator in order to facilitate telemetric</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>