Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design
1974-08-30
1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses
14 CFR 23.1111 - Turbine engine bleed air system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...
14 CFR 23.1111 - Turbine engine bleed air system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...
14 CFR 23.1111 - Turbine engine bleed air system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...
14 CFR 23.1111 - Turbine engine bleed air system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...
14 CFR 23.1111 - Turbine engine bleed air system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...
14 CFR 33.66 - Bleed air system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Bleed air system. 33.66 Section 33.66... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...
System and method for conditioning intake air to an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellnau, Mark C.
A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
14 CFR 33.66 - Bleed air system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...
14 CFR 33.66 - Bleed air system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...
High efficiency stoichiometric internal combustion engine system
Winsor, Richard Edward; Chase, Scott Allen
2009-06-02
A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines
NASA Technical Reports Server (NTRS)
Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)
2001-01-01
This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.
Airstart performance of a digital electronic engine control system on an F100 engine
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.
1984-01-01
The digital electronic engine control (DEEC) system installed on an F100 engine in an F-15 aircraft was tested. The DEEC system incorporates a closed-loop air start feature in which the fuel flow is modulated to achieve the desired rate of compressor acceleration. With this logic the DEEC equipped F100 engine can achieve air starts over a larger envelope. The DEEC air start logic, the test program conducted on the F-15, and its results are described.
Physiological Investigation of Localized Temperature Effects on Vigilance Performance
2014-03-27
Department of Systems Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Systems Engineering Justine D. Jeroski, BS...electrodes (right). ...................................................... 14 Figure A 3. BIOPAC © hardware system showing placement of ECG
Closed-loop air cooling system for a turbine engine
North, William Edward
2000-01-01
Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.
Afterburning control of internal combustion engine exhaust gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y.; Hayashi, Y.; Nagumo, S.I.
1976-08-17
Flow of secondary air into the exhaust system is regulated by diaphragm assembly controlled valves between an air supply and the exhaust system. The diaphragm assemblies respond to vacuum in the intake air system of the engine.
40 CFR 89.326 - Engine intake air humidity measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...
AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…
NASA Astrophysics Data System (ADS)
Curnock, Barry
Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.
14 CFR 29.1091 - Air induction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...
14 CFR 29.1091 - Air induction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...
14 CFR 29.1091 - Air induction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 29.1091 - Air induction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...
14 CFR 29.1091 - Air induction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
Empowering Marine Corps System Administrators: Taxonomy of Training
2004-03-01
of Systems and Engineering Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...Information Assurance ................................................................................ 16 2.8 Attacks, Social Engineering & Online Users... drawbridge , outer castle walls, inner castle walls and the keep. No single form of defense is foolproof, thus each layer compensates for deficiencies
40 CFR 91.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (b) The air inlet filter system and exhaust muffler system combination used on the test engine must... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine inlet and exhaust systems. 91.407 Section 91.407 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…
Development of Engines for Unmanned Air Vehicles: Some Factors to be Considered
2003-01-01
discussions, Honeywell Engines & Systems , Phoenix, AZ, December 14, 2001 [8] Jane’s Aero- Engines , Issue 11, Bill Gunston, Ed., pp. 93–97 (PW300, PW500...Weight/Thrust Reduction Compared to Engine Development Cost—UCAVs................................................................. 24 11. System ... engines are not candidate propulsion systems . The majority of Department of Defense (DoD) efforts (Global Hawk, Air Force UCAV, and Navy UCAV) are
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
Method and apparatus for controlling fuel/air mixture in a lean burn engine
Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James
1998-04-07
The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.
2016-08-01
Sanders, Chase A. Nessler, William W. Copenhaver, Michael G. List, and Timothy J. Janczewski Turbomachinery Branch Turbine Engine Division AUGUST...Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// ROBERT D. HANCOCK Principal Scientist Turbine ...ORGANIZATION Turbomachinery Branch Turbine Engine Division Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…
14 CFR 33.66 - Bleed air system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...
14 CFR 33.66 - Bleed air system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
Moncelle, Michael E.
2003-01-01
An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.
Natural Gas Propulsion Options for Short Sea Shipping Routes
2010-08-01
that are involved with gas and the relevant systems, along with personal protection issues that come into effect when handling both compressed and...a compressed air system for engine starting, which is stored in compressed air storage cylinders . The system leads compressed air through a valve...directly into the cylinder heads at 30bar to begin the rotation of the engine. After this rotation occurs, the engine is supplied with diesel fuel
Advanced nozzle and engine components test facility
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben
1992-01-01
A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.
Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air
Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.
1997-01-01
An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
14 CFR 23.1091 - Air induction system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and their accessories must supply the air required by that engine and auxiliary power unit and their... cowling if the emergence of backfire flames will result in a hazard. (3) The supplying of air to the engine through the alternate air intake system may not result in a loss of excessive power in addition to...
Central Control Room in the Engine Research Building
1968-11-21
Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
Engine bleed air reduction in DC-10
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.
1980-01-01
An 0.8 percent fuel savings was achieved by a reduction in engine bleed air through the use of cabin air recirculation. The recirculation system was evaluated in revenue service on a DC-10. The cabin remained comfortable with reductions in cabin fresh air (engine bleed air) as much as 50 percent. Flight test verified the predicted fuel saving of 0.8 percent.
How to be Green and Stay in the Black: Environmental Guideline Document.
1997-10-01
of the studies were within the American Society of Heating, Refrigera- tion, and Air conditioning Engineers (ASHRAE) Guidelines. Polaroid plans to...Whitney, Texas Instru- ments-Defense Group, Hughes Missile Systems, Boeing Defense Systems, and General Electric Air - craft Engines . The methodology...boxes, and the need to install space air thermostats. Description For Polaroid’s needs, engineers installed inte- grated, self-contained, thermally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedewa, Andrew
A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchangermore » and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.« less
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications
Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.
1997-01-01
An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.
40 CFR 85.510 - Exemption provisions for new and relatively new vehicles/engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system, engine calibration, and emission control system functionality when operating on the fuel with... relatively new vehicles/engines. 85.510 Section 85.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
Submarine Construction (Unterseebootsbau)
1972-08-01
PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...
Effect of timed secondary-air injection on automotive emissions
NASA Technical Reports Server (NTRS)
Coffin, K. P.
1973-01-01
A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.
History of the Gas Turbine Engine in the United States: Bibliography
1988-05-11
Space Administration, 1965. Aircraft Engine Acquisition. St. Louis, MO: US Army Aviation Systems Command, nad.. Aircraft Engine Health Monitoring System...Air Breathing Engines. 3d . Munich. 1976. Proceedings of the Third International Symposium on Air Breathing Engines, Munich, Germany, 7-12 March 1976...Curves." Flight Magazine 46 (February 1957):32. Manton, Grenville. "Salute to Seguin." Aeronautics 36 (June 1957):46. Morgan, P. F. "The Formation of
The AFIT of Today is the Air Force of Tomorrow
2012-05-11
Engineering • Operations Research • Space Systems • Systems Engineering • Air Mobility • Combating Weapons of Mass Destruction • Cost Analysis • Cyber...Fight - Win Graduate Certificate Programs • Systems Engineering • Space Systems • Advanced Geospatial Intelligence • Combating Weapons of Mass ...over five years • Critical enabler for SSA: extending the satellite catalog to small objects Current Works: • Converting satellite catalog to KAM Tori
Primary Exhaust Cooler at the Propulsion Systems Laboratory
1952-09-21
One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.
Automotive Stirling engine system component review
NASA Technical Reports Server (NTRS)
Hindes, Chip; Stotts, Robert
1987-01-01
The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.
Tuned intake air system for a rotary engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, W.D.
This patent describes a rotary internal combustion engine for an outboard board motor. It comprises a plenum chamber attached to the rear of the engine; and the plenum chamber including an inner wall attached to the exhaust manifold; an inlet conduit connecting the cooling air exit passage and the inlet air opening; an outlet conduit connecting the outlet air opening and the combustion air inlet; and the outlet conduit terminating in a combustion air outlet in the inner wall of the plenum chamber.
Impact of air conditioning system operation on increasing gases emissions from automobile
NASA Astrophysics Data System (ADS)
Burciu, S. M.; Coman, G.
2016-08-01
The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1979-01-01
The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.
Secondary air injection system and method
Wu, Ko-Jen; Walter, Darrell J.
2014-08-19
According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.
Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility
NASA Technical Reports Server (NTRS)
Gomez, Carlos R.; Panda, Jayanta
2006-01-01
A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust
Low pressure EGR system having full range capability
Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir
2009-09-22
An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
1990-05-01
FFRDC); and the Systems Engineering Technical Assistance (SETA) contractor to selected Air Force bases including: Vandenberg AFB California; March AFB...05/21/90 comptroller, acquisition civil engineering , legal, security, communications-computer systems, product assurance, and safety, among others...housing units were constructed in 1983. The Fort MacArthur Housing Area also includes administrative offices, several warehouses, and civil engineering
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
A reusable rocket engine intelligen control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.
A reusable rocket engine intelligent control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.
A Decision Analysis Tool for the Source Selection Process
2006-03-01
THE SOURCE SELECTION PROCESS THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of...Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of...the Requirements for the Degree of Master of Science in Engineering Management John R. Trumm, BS Captain, USAF March 2006
2004-04-15
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Swenson, Paul F.; Moore, Paul B.
1979-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Swenson, Paul F.; Moore, Paul B.
1982-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Deicing System Protects General Aviation Aircraft
NASA Technical Reports Server (NTRS)
2007-01-01
Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts
Variable speed gas engine-driven air compressor system
NASA Astrophysics Data System (ADS)
Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.
1992-11-01
Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.
Deformed Shape Analysis of Coupled Glazing Systems
2013-09-01
Tyndall Air Force Base, Florida, USA ABSTRACT Glazing in storefront and curtain wall configurations is increasingly used in areas subjected to... AIR FORCE CIVIL ENGINEER CENTER READINESS DIRECTORATE Requirements & Acquisition Division United States Air Force Tyndall Air Force...Antonio, Texas; %Omaha, Nebraska #Jacobs Technology, Fort Walton Beach, Florida Air Force Civil Engineer Center Readiness Directorate Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, R.J.
1976-01-01
Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Air Intake Performance of Air Breathing Ion Engines
NASA Astrophysics Data System (ADS)
Fujita, Kazuhisa
The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.
Air and Space Power Journal. Volume 17, Number 2, Summer 2003
2003-01-01
aircraft especially designed for close air support of ground forces. This simple, effective, and survivable twin- engine jet aircraft can be used against...In “Allied Airpower Comes of Age: The Roles and Contributions of Airpower to the Italian Cam paign,” Maj Robert A. Renner analyzes the fight for air ...means treating the development of Air Force personnel as a weapon system, which is created by using a systems- engineering approach and the best
Engine Research Building’s Central Control Room
1948-07-21
Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1976-01-01
The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.
Exploiting the Automatic Dependent Surveillance-Broadcast System via False Target Injection
2012-03-01
THESIS Domenic Magazu III, Captain, USAF AFIT/GCO/ENG/12-07 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...of GNU Radio, a Universal Software Radio Peripheral (USRP), and software developed by the author. The ability to generate, transmit, and insert
40 CFR 87.60 - Testing engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Testing engines. 87.60 Section 87.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... gearbox-mounted components required to drive aircraft systems. (d) Test engines must reach a steady...
40 CFR 87.60 - Testing engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Testing engines. 87.60 Section 87.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... gearbox-mounted components required to drive aircraft systems. (d) Test engines must reach a steady...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
Common Database Interface for Heterogeneous Software Engineering Tools.
1987-12-01
SUB-GROUP Database Management Systems ;Programming(Comuters); 1e 05 Computer Files;Information Transfer;Interfaces; 19. ABSTRACT (Continue on reverse...Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems ...Literature ..... 8 System 690 Configuration ......... 8 Database Functionis ............ 14 Software Engineering Environments ... 14 Data Manager
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.
1980-09-02
A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Air/fuel ratio control system for internal combustion engine having rotary valve and step motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, M.
A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less
A Short History of The Air University, Maxwell AFB, and the 42nd Air Base Wing
2014-07-31
established Aircraft and Engine Repair Depot No. 3 at the former Wright flying field. The depot operations continued until early 1919. In 1921, the...1943 the Army Air Forces (AAF) announced the opening of a specialized four- engine pilot school, initially to train air crews for the B-24 Liberator...AFIT first offered a master’s degree in systems engineering in March 2007, followed three months later by ACSC’s offering an on-line graduate
Development of EPA aircraft piston engine emission standards. [for air quality
NASA Technical Reports Server (NTRS)
Houtman, W.
1976-01-01
Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.
Airbreathing combined cycle engine systems
NASA Technical Reports Server (NTRS)
Rohde, John
1992-01-01
The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.
Compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.
NASA Astrophysics Data System (ADS)
Ispas, N.; Cofaru, C.; Aleonte, M.
2017-10-01
Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.
Mid-section of a can-annular gas turbine engine with a cooling system for the transition
Wiebe, David J.; Rodriguez, Jose L.
2015-12-08
A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.
40 CFR 85.510 - Exemption provisions for new and relatively new vehicles/engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control system functionality when operating on the fuel with which the vehicle/engine was originally... relatively new vehicles/engines. 85.510 Section 85.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of...
System controls challenges of hypersonic combined-cycle engine powered vehicles
NASA Technical Reports Server (NTRS)
Morrison, Russell H.; Ianculescu, George D.
1992-01-01
Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.
NASA Astrophysics Data System (ADS)
Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra
2018-05-01
The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.
Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned
NASA Technical Reports Server (NTRS)
Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica
2010-01-01
The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.
1988-05-01
funded by the U.S. Air Force and GDFW. The system will be capable of unmanned operation and will encompass design, engineering , fabrication, and product...Industrial Engineering Production (309) 782-4619 ActivityRock Island, IL Richard Celin Naval Air Engineering Center Production (201) 323-2173 Lakehurst...CONFIGURATION CONTROL Engineering Change Control Room ............................................ 15 Implementatlon af Retofit Changes
Reduced bleed air extraction for DC-10 cabin air conditioning
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.; Hrach, F. J.
1980-01-01
It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.
Feasibility of CO/sub 2/ monitoring to assess air quality in mines using diesel equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, J.H. Jr.
1987-01-01
The methodology includes: (1) establishing pollutant to CO/sub 2/ ratios for in-service equipment, (2) estimating pollutant concentrations from the ratios and in-mine CO/sub 2/ measurements, and (3) using an air quality index to combine the pollutants into a single number, which indicates the health hazard associated with the pollutants. For the methodology to be valid, the pollutant to CO/sub 2/ ratios must remain constant if engine operating conditions do not significantly change. However, due to the complex dynamics of the fuel injection system, the fuel-air combustion process, and the engine speed-load governing system, the pollutant to CO/sub 2/ ratios maymore » vary during repetitive, but transient engine speed-and-load operation. These transient effects were investigated. In addition, the influence of changing engine conditions due to engine maladjustment, and a practical means to evaluate engine condition were investigated to advance the methodology. The laboratory investigation determined that CO/sub 2/ is an effective indicator of engine exhaust pollutants. It was shown that the exhaust concentrations of carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter do not significantly vary among repetitive, but transient engine speed-and-load duty cycles typical of in-service equipment. Based on an air quality index and threshold limit values, particulate matter exhibited the greatest adverse effect on air quality. Particulate mass was separated into volatile (organic soluble fraction) and nonvolatile (insoluble carbon fraction) components. Due to particulate concentrations, the engine operating conditions of overfueling and advanced injector timing had greater adverse effects on air quality than the conditions of retarded injector timing, intake air restriction, and Federal certification specifications.« less
Automotive Stirling Engine Mod 1 Design Review, volume 2
NASA Technical Reports Server (NTRS)
1982-01-01
The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.
Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.
1997-01-01
A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.
30 CFR 36.23 - Engine intake system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engine intake system. 36.23 Section 36.23... EQUIPMENT Construction and Design Requirements § 36.23 Engine intake system. (a) Construction. The intake... operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit...
30 CFR 36.23 - Engine intake system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Engine intake system. 36.23 Section 36.23... EQUIPMENT Construction and Design Requirements § 36.23 Engine intake system. (a) Construction. The intake... operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit...
Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine
NASA Astrophysics Data System (ADS)
Cofaru, Corneliu
2017-10-01
This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.
CF6 Jet Engine Performance Improvement: High Pressure Turbine Active Clearance Control
NASA Technical Reports Server (NTRS)
Rich, S. E.; Fasching, W. A.
1982-01-01
An active clearance control system was developed which reduces fuel consumption and performance degradation. This system utilizes compressor discharge air during takeoff and fan discharge air during cruise to impinge on the shroud structure to improve the thermal response. The system was evaluated in component and engine tests. The test results demonstrated a performance improvement of 0.7 percent in cruise SFC.
Practical Guide to HVAC for Schools.
ERIC Educational Resources Information Center
ASHRAE Journal, 1998
1998-01-01
Features six articles on heating, ventilation, and air-conditioning systems for schools. Examines how to avoid air temperature complaints when choosing a system; special system features; engineers, indoor air quality, and schools; mechanical systems noise in classrooms; operation and management issues related to design; and details on bids and…
Tactical Unmanned Ground Vehicle Related Research References (BTA Study)
1993-03-01
draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000
Combustion driven ammonia generation strategies for passive ammonia SCR system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toner, Joel G.; Narayanaswamy, Kushal; Szekely, Jr., Gerald A.
A method for controlling ammonia generation in an exhaust gas feedstream output from an internal combustion engine equipped with an exhaust aftertreatment system including a first aftertreatment device includes executing an ammonia generation cycle to generate ammonia on the first aftertreatment device. A desired air-fuel ratio output from the engine and entering the exhaust aftertreatment system conducive for generating ammonia on the first aftertreatment device is determined. Operation of a selected combination of a plurality of cylinders of the engine is selectively altered to achieve the desired air-fuel ratio entering the exhaust aftertreatment system.
1984-09-12
423, R. Jones ATTN: DAEN-ECE-T ATTN: DAEN-RDL DEPARTMENT OF THE AIR FORCE ATTN: DAEN-RDM. J. Healy ATTN: DAEN-ZCM Air Force Engineering & Services Ctr...31 7 Comparison Chart of Various Femperature Sensors (Prepared by HY-CAL Engineering ) ... ...... 36 8 Temperature Sensor Requirements and...Positions * TRS Valve Positions; LOX, AL, N2 Solenoid and Control . - Valve Positions 1.4 Air Compressor System Control * Valve Positions 0 Pressure
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1981-01-01
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
Gas-Dynamic Designing of the Exhaust System for the Air Brake
NASA Astrophysics Data System (ADS)
Novikova, Yu; Goriachkin, E.; Volkov, A.
2018-01-01
Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Tamaldin, N.; Rusnandi, H.; Manoharan, T.; Samsir, M. A.
2013-12-01
The engine that was chosen to be developed and modified is Yamaha LC 135 Single Overhead Camshaft (SOHC) 4-valve 4-stroke 135cc liquid-cooled engine. The engine selection is based on the specification, rule and regulation in UTeM Formula Varsity 2012 (FV 2012). The engine performance is determined by engine operating characteristics. The engine air flow affects the filtration, intake and exhaust systems. The heat from the engine rejected to the surrounding through the active cooling system which has radiator and fan. The selection of the engine is based on weighted decision matrix which consists of reliability, operating and maintenance cost, fuel consumption and weight. The score of the matrix is formulated based on relative weighted factor among the selections. It been compared between Yamaha LC 135 Single Overhead Camshaft (SOHC) 4-valve 4-stroke 135cc liquid-cooled engine, Honda Wave 125 X Air Cooled, 4 Cycle Engine Overhead Camshaft (OHC) and Suzuki Shogun RR 4 stroke air cooled Single Overhead Camshaft (SOHC). The modification is applied to the engine through the simulation and tuning of Capacitor Discharge Ignition (CDI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawanabe, T.; Asakura, M.; Shina, T.
1987-09-01
An air intake side secondary air supply system is described for an internal combustion engine having an air intake passage with a carburetor and an exhaust passage, comprising: an air intake side secondary air supply passage communicating with the air intake passage on the downstream side of the carburetor; an open/close valve disposed in the air intake side secondary air supply passage; an oxygen concentration sensor disposed in the exhaust passage; and detection and control means for detecting whether an air-fuel ratio of mixture to be supplied to the engine is leaner or richer with respect to a target air-fuelmore » ratio through a level of an output signal of the oxygen concentration sensor and for periodically actuating the open/close valve, the detection and control means decreasing a valve open period of the open/close valve within each cyclic period by a first predetermined amount when a detected air-fuel ratio of mixture is leaner than the target air-fuel ratio and increasing the valve open period by a second predetermined amount when the detected air-fuel ratio of mixture is richer than the target air-fuel ratio. The second predetermined amount is different from the first predetermined amount.« less
Icing-Protection Requirements for Reciprocating-Engine Induction System
NASA Technical Reports Server (NTRS)
Coles, Willard D; Rollin, Vern G; Mulholland, Donald R
1950-01-01
Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.
NASA Technical Reports Server (NTRS)
Biermann, David; Valentine, E. Floyd
1939-01-01
This paper is one of several dealing with methods intended to reduce the drag of present-day radial engine installations and improve the cooling at zero and low air speeds, The present paper describes model wind-tunnel tests of blowers of three designs tested in conjunction with a wing-nacelle combination. The principle of operation involved consists of drawing cooling air into ducts located in the wing root at the point of maximum slipstream velocity, passing the air through the engine baffles from rear to front, and exhausting the air through an annular slot located between the propeller and the engine with the aid of a blower mounted on the spinner. The test apparatus consisted essentially of a stub wing having a 5-foot chord and a 15-foot span, an engine nacelle of 20 inches diameter enclosing a 25-horsepower electric motor, and three blowers mounted on propeller spinners. Two of the blowers utilize centrifugal force while the other uses the lift from airfoils to force the air out radially through the exit slot. Maximum efficiencies of over 70 percent were obtained for the system as a whole. Pressures were measured over the entire flight range which were in excess of those necessary to cool present-day engines, The results indicated that blowers mounted on propeller spinners could be built sufficiently powerful and efficient to warrant their use as the only, or chief, means of forcing air through the cooling system, so that cooling would be independent of the speed of the airplane.
NASA Astrophysics Data System (ADS)
Plotnikov, L. V.
2017-09-01
Comparison of experimental research results of gas dynamics and instantaneous local heat transfer in the intake pipes for piston internal combustion engines (ICE) without and with supercharging are presented in the article. Studies were conducted on full-scale experimental setups in terms of gas dynamic nonstationarity, which is characteristic of piston engines. It has been established that the turbocharger installation in a gas-air system of piston internal combustion engine leads to significant differences in the patterns of change in gas-dynamic and heat transfer characteristics of flows. These data can be used in a modernization of piston engines due to installation of a turbocharger or in a development of gas-air systems for piston ICE with supercharging.
Dedicated exhaust gas recirculation control systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.
An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGRmore » valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.951 General. (a) Each fuel system must... to be in operation. (b) Each fuel system must be arranged so that any air which is introduced into... engines; or (2) Flameout for turbine engines. (c) Each fuel system for a turbine engine must be capable of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.951 General. (a) Each fuel system must... to be in operation. (b) Each fuel system must be arranged so that any air which is introduced into... engines; or (2) Flameout for turbine engines. (c) Each fuel system for a turbine engine must be capable of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.951 General. (a) Each fuel system must... to be in operation. (b) Each fuel system must be arranged so that any air which is introduced into... engines; or (2) Flameout for turbine engines. (c) Each fuel system for a turbine engine must be capable of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.951 General. (a) Each fuel system must... to be in operation. (b) Each fuel system must be arranged so that any air which is introduced into... engines; or (2) Flameout for turbine engines. (c) Each fuel system for a turbine engine must be capable of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.951 General. (a) Each fuel system must... to be in operation. (b) Each fuel system must be arranged so that any air which is introduced into... engines; or (2) Flameout for turbine engines. (c) Each fuel system for a turbine engine must be capable of...
1979-09-01
The Corps of Engineers Management Information System (COEMIS) is used by the Corps of Engineers in their role as Construction Agents on Air Force...California. The research concluded that the Corps of Engineers Management Information System can be an effective, efficient management tool which has the
Diesel engine catalytic combustor system. [aircraft engines
NASA Technical Reports Server (NTRS)
Ream, L. W. (Inventor)
1984-01-01
A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.
Air carrier operations system model
DOT National Transportation Integrated Search
2001-03-01
Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...
NASA Technical Reports Server (NTRS)
2014-01-01
On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).
USAF Aircraft Engine Emission Goals: A Critical Review.
1979-09-01
21 June 1965 and Change 1; and the National Pollution Discharge Elimination System . it applies to all Air Force installations and facilities, the Air...the combustion problems in turbine engines from a more applied viewpoint. He states: "While the combustion system was the primary limitation in... microemulsions and to determine their capacity for reducing smoke emissions from an aviation gas turbine combustion system . (2) A secondary objective is
Simplified Daylight Spectrum Approximation by Blending Two Light Emitting Diode Sources
2012-03-01
Iota Epsilon (SIE). Michael E. Miller, PhD is an Assistant Professor of Human Systems Integration at the Air Force Institute of Technology. His...USA. Dr Grimaila’s research interests include mission assurance, network management 49 and security , quantum information warfare, and systems...Engineers (SAME) and Sigma Iota Epsilon (SIE). John Colombi, Ph.D. is an Assistant Professor of Systems Engineering at the Air Force Institute of
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.
System safety engineering in the development of advanced surface transportation vehicles
NASA Technical Reports Server (NTRS)
Arnzen, H. E.
1971-01-01
Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
Integrated Natural Resources Management Plan Grand Forks Air Force Base, North Dakota. 2004-2008
2005-12-01
5-37 5.7 Integrated Pest Management...5-44 5.7.3 Animal Pest Control...mph MSL 2005 INRMP Update 319th Civil Engineer Squadron/Environmental Management Automated Civil Engineer System Project Management Air Combat
Engine with pulse-suppressed dedicated exhaust gas recirculation
Keating, Edward J.; Baker, Rodney E.
2016-06-07
An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
NASA Technical Reports Server (NTRS)
Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)
2017-01-01
One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Variable volume combustor with an air bypass system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael
The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.
Systems engineering for Air Force C3I systems
NASA Astrophysics Data System (ADS)
Monahan, John H.
1993-06-01
Each day, sophisticated information systems provide the U.S. with crucial capabilities both to understand the world situation and to react effectively as required by our nation's decision makers. These systems attest to the success of the cooperative efforts of government and industry. Over the last 35 years, to help provide those capabilities, The MITRE Corporation has been privileged to fulfill the role of systems engineer on more than 100 different command, control, communications, and intelligence (C3I) systems for the Air Force and other elements of the Department of Defense (DOD). A long history of successful performance in this broad role provides MITRE with detailed knowledge of the systems' operational capabilities and needs, proficiency in their systems engineering, and a C3I-related corporate memory unmatched by any other organization. That background is the foundation of this book on systems engineering at MITRE.
1976-11-01
Box 209, St. Louis, Missouri 63166. UNITED STATES ARMY AVIATION ENGINEERING FLIGHT ACTIVITY EDWARDS AIR FORCE BASE, CALIFORNIA 93523 81 9 18 0 8,L...ELEMENT. PROJECT. TASKAR EA A WORK UNIT "UMBERS US ARMY AVIATION ENGINEERING FLIGHT ACTIV IU EDWARDS AIR FORCE BASE. CALIFORNIA 93523 68-T-UA022-0-68-EC...It. CONTROLLI~NG OFFICE NAME AND ADDRESS 12. REPORT DATE US ARMY AVIATION ENGINEERING FLIGHT ACTIVITY NOVEMBER 1976 EDWARDS AIR FORCE BASE
A Short History of the Air University, Maxwell AFB, and the 42nd Air Base Wing
2013-07-31
Aircraft and Engine Repair Depot No. 3 at the former Wright flying field. The depot operations continued until early 1919. In 1921, the 22nd (later...Forces (AAF) announced the opening of a specialized four- engine pilot school, initially to train air crews for the B-24 Liberator and, later, for the...systems engineering in March 2007, followed three months later by ACSC’s offering an on-line graduate degree. On 2 Mar 2009, the CCAF initiated the
Computational studies of an intake manifold for restricted engine application
NASA Astrophysics Data System (ADS)
Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar
2018-02-01
The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.
Method and graphs for the evaluation of air-induction systems
NASA Technical Reports Server (NTRS)
Brajnikoff, George B
1953-01-01
Graphs have been developed for rapid evaluation of air-induction systems from considerations of their aerodynamic-performance parameters in combination with power-plant characteristics. The graphs cover the range of supersonic Mach numbers to 3.0. Examples are presented for an air-induction system and engine combination of two Mach numbers and two altitudes in order to illustrate the method and application of the graphs. The examples show that jet-engine characteristics impose restrictions on the use of fixed inlets if the maximum net thrusts are to be realized at all flight conditions. (author)
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.
49 CFR 232.217 - Train brake tests conducted using yard air.
Code of Federal Regulations, 2010 CFR
2010-10-01
... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... potential overcharge conditions to the train brake system are avoided, the yard air test device may be... section, when yard air is used the train air brake system must be charged and tested as prescribed by...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Variable Cycle Intake for Reverse Core Engine
NASA Technical Reports Server (NTRS)
Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor); Suciu, Gabriel L (Inventor)
2016-01-01
A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.
Use of exhaust gas as sweep flow to enhance air separation membrane performance
Dutart, Charles H.; Choi, Cathy Y.
2003-01-01
An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...
NASA Technical Reports Server (NTRS)
Colis, William D
1947-01-01
The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.
U.S. Air Force Engineering and Services Hardware Requirements
DOT National Transportation Integrated Search
1991-04-01
This document proposes a path to meet the communications-computer systems (CSC) requirements of Air Force Engineering and Services (E and S) in the mid-to-late 1990s. It reflects the philosophies that guide E and S upper- level management as it carri...
NASA Technical Reports Server (NTRS)
Pryor, D.; Hyde, E. H.; Escher, W. J. D.
1999-01-01
Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
Microfog lubrication for aircraft engine bearings
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1976-01-01
An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.
NASA Astrophysics Data System (ADS)
Mayhew, Ellen R.
1994-07-01
Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.
ERIC Educational Resources Information Center
Hill, Pamela
This student manual, part of a small-engine repair series on servicing fuel systems, is designed for use by special needs students in Texas. The manual explains in pictures and short sentences, written on a low reading level, the job of servicing carburetor air cleaners. Along with the steps of this repair job, specific safety and caution…
ERIC Educational Resources Information Center
Slebodnick, Edward B.; And Others
Volume 1 of the study reports a work effort to define and give guidelines for the acquisition of cost-effective alternative continuing education (CE) systems to prevent the technological obsolescence of Air Force military scientific and engineering officer personnel. A detailed background survey of the problem was conducted using questionnaires,…
A brief review on the recent advances in scramjet engine
NASA Astrophysics Data System (ADS)
Choubey, Gautam; Pandey, K. M.; Maji, Ambarish; Deshamukhya, Tuhin
2017-07-01
The scramjet engine is the most favourable air breathing propulsive system and suitable option for high-speed flight (Ma<4). Several scientists across the globe are continuously working on the advancement of the high-speed scramjet engine due to its implementation in the military missiles, low-cost access to space etc. The mixing phenomena associated with air and fuel is the salient feature for the effective combustion process and the fuel and air should be mixed adequately before entering into the combustor. But the key challenges associated with scramjet engine are the high speed of air inside the combustor and low residence time which actually deteriorate the combustion phenomena. That's why numerous computational, as well as experimental researches are being carried out by several researchers. The flow-field inside the scramjet engine is very complex. Hence an elaborated approach of the complicated combustion and mixing process inside the combustor is essential for the upgradation of the effective scramjet engine. This paper clearly signifies a brief review of the current development in scramjet engine.
Concepts for reducing exhaust emissions and fuel consumption of the aircraft piston engine
NASA Technical Reports Server (NTRS)
Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.
1979-01-01
A study was made to reduce exhaust emissions and fuel consumption of a general aviation aircraft piston engine by applying known technology. Fourteen promising concepts such as stratified charge combustion chambers, cooling cylinder head improvements, and ignition system changes were evaluated for emission reduction and cost effectiveness. A combination of three concepts, improved fuel injection system, improved cylinder head with exhaust port liners and exhaust air injection was projected as the most cost effective and safe means of meeting the EPA standards for CO, HC and NO. The fuel economy improvement of 4.6% over a typical single engine aircraft flight profile does not though justify the added cost of the three concepts, and significant reductions in fuel consumption must be applied to the cruise mode where most of the fuel is used. The use of exhaust air injection in combination with exhaust port liners reduces exhaust valve stem temperatures which can result in longer valve guide life. The use of exhaust port liners alone can reduce engine cooling air requirements by 11% which is the equivalent of a 1.5% increase in propulsive power. The EPA standards for CO, HC and NO can be met in the IO-520 engine using air injection alone or the Simmonds improved fuel injection system.
Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics
NASA Technical Reports Server (NTRS)
Stevens, Howard C., Jr.
1947-01-01
An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.
14 CFR 29.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... prevent icing has a preheater that can provide a heat rise of 100 °F. (b) Turbine engines. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the flight power range of... engine operation, within the limitations established for the rotorcraft. (2) Each turbine engine must...
14 CFR 29.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... prevent icing has a preheater that can provide a heat rise of 100 °F. (b) Turbine engines. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the flight power range of... engine operation, within the limitations established for the rotorcraft. (2) Each turbine engine must...
14 CFR 29.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... prevent icing has a preheater that can provide a heat rise of 100 °F. (b) Turbine engines. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the flight power range of... engine operation, within the limitations established for the rotorcraft. (2) Each turbine engine must...
14 CFR 29.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prevent icing has a preheater that can provide a heat rise of 100 °F. (b) Turbine engines. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the flight power range of... engine operation, within the limitations established for the rotorcraft. (2) Each turbine engine must...
CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 8
2008-08-01
effort. No one ever replaced the dirty string and no one washed the cup ... The BASE -1 system came up on time, under budget, and exceeded all operating...the base where he worked was written, maintained, and com- pletely understood by one individual. Unfortunately, that individual was in a bad car ...sponsor: Software Engineering and System Assurance. USN co- sponsor: Naval Air Systems Command. USAF co- sponsors: Oklahoma City-Air Logistics Center
Air/fuel supply system for use in a gas turbine engine
Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico
2014-06-17
A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.
14 CFR 23.1107 - Induction system filters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Induction system filters. 23.1107 Section... § 23.1107 Induction system filters. If an air filter is used to protect the engine against foreign material particles in the induction air supply— (a) Each air filter must be capable of withstanding the...
14 CFR 23.1107 - Induction system filters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Induction system filters. 23.1107 Section... § 23.1107 Induction system filters. If an air filter is used to protect the engine against foreign material particles in the induction air supply— (a) Each air filter must be capable of withstanding the...
14 CFR 23.1107 - Induction system filters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system filters. 23.1107 Section... § 23.1107 Induction system filters. If an air filter is used to protect the engine against foreign material particles in the induction air supply— (a) Each air filter must be capable of withstanding the...
14 CFR 23.1107 - Induction system filters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Induction system filters. 23.1107 Section... § 23.1107 Induction system filters. If an air filter is used to protect the engine against foreign material particles in the induction air supply— (a) Each air filter must be capable of withstanding the...
14 CFR 23.1107 - Induction system filters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system filters. 23.1107 Section... § 23.1107 Induction system filters. If an air filter is used to protect the engine against foreign material particles in the induction air supply— (a) Each air filter must be capable of withstanding the...
Engine having hydraulic and fan drive systems using a single high pressure pump
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2000-01-01
An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.
Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.
1997-01-01
A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.
Air Force Systems Engineering Assessment Model (AF SEAM) Management Guide, Version 2
2010-09-21
gleaned from experienced professionals who assisted with the model’s development. Examples of the references used include the following: • ISO /IEC...Defense Acquisition Guidebook, Chapter 4 • AFI 63-1201, Life Cycle Systems Engineering • IEEE/EIA 12207 , Software Life Cycle Processes • Air...Selection criteria Reference Material: IEEE/EIA 12207 , MIL-HDBK-514 Other Considerations: Modeling, simulation and analysis techniques can be
Automated Sneak Circuit Analysis Technique
1990-06-01
the OrCAD/SDT module Port facility. 2. The terminals of all in- circuit voltage sources (e , batteries) must be labeled using the OrCAD/SDT module port...ELECTE 1 MAY 2 01994 _- AUTOMATED SNEAK CIRCUIT ANALYSIS TECHNIQUEIt~ w I wtA who RADC 94-14062 Systems Reliability & Engineering Division Rome...Air Develpment Center Best Avai~lable copy AUTOMATED SNEAK CIRCUIT ANALYSIS TECHNIQUE RADC June 1990 Systems Reliability & Engineering Division Rome Air
HVAC--the importance of clean intake section and dry air filter in cold climate.
Hanssen, S O
2004-01-01
HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.
40 CFR 85.2211 - Engine restart idle test-EPA 81.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Engine restart idle test-EPA 81. 85.2211 Section 85.2211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short...
2011-03-01
Byres, E. J., Lowe, J. (2004). The Myths and facts behind cyber security risks for industrial control systems . Berlin, Germany: VDE 2004 Congress...ACQUISITION (SCADA) SYSTEM THESIS Jason R. Nielsen, Major, USAF AFIT/GCO/ENG/11-10 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE...DATA ACQUISITION (SCADA) SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of
Computer-Aided Design Applications for the Base Civil Engineering Technical Design Section.
1983-09-01
4 1983.’ S DEPARTMENT OF TiHE AIR FORCE L ~j AIR UNIVERSITY * AIR FORCE INSTITUTE OF TECHNOLOGY Nam Wright- Patterson Air Force Bas, Ohio d ’rI ’ 4to...I -. L I 1it it COMPUTER-AIDED DESIGN APPLICATIONS FOR THE BASE CIVIL ENGINEERING TECHNICAL DESIGN SECTION William M. Duncan, Captain, USAF LSSR 15-83...8217 .. ’ , .. - -. . ’ . , ._, - . . - .2 , _ : ’i 1 . . . . .- J.. .. . ’ _ -i l - , . analysis and design, water supply and wastewater disposal system design, and most
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
1951-03-14
human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and
Damage-Tolerant Fan Casings for Jet Engines
NASA Technical Reports Server (NTRS)
2006-01-01
All turbofan engines work on the same principle. A large fan at the front of the engine draws air in. A portion of the air enters the compressor, but a greater portion passes on the outside of the engine this is called bypass air. The air that enters the compressor then passes through several stages of rotating fan blades that compress the air more, and then it passes into the combustor. In the combustor, fuel is injected into the airstream, and the fuel-air mixture is ignited. The hot gasses produced expand rapidly to the rear, and the engine reacts by moving forward. If there is a flaw in the system, such as an unexpected obstruction, the fan blade can break, spin off, and harm other engine components. Fan casings, therefore, need to be strong enough to contain errant blades and damage-tolerant to withstand the punishment of a loose blade-turned-projectile. NASA has spearheaded research into improving jet engine fan casings, ultimately discovering a cost-effective approach to manufacturing damage-tolerant fan cases that also boast significant weight reduction. In an aircraft, weight reduction translates directly into fuel burn savings, increased payload, and greater aircraft range. This technology increases safety and structural integrity; is an attractive, viable option for engine manufacturers, because of the low-cost manufacturing; and it is a practical alternative for customers, as it has the added cost saving benefits of the weight reduction.
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
NASA Technical Reports Server (NTRS)
Hurley, J. F.; Anson, L.; Wilson, C.
1978-01-01
This report describes the design configuration and method used to design the forced engine exhaust to bypass air mixing system for Lycoming's QCGAT engine. This mixer is an integral part of the total engine and nacelle system and was configured to reduce the propulsion system noise and fuel consumption levels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... the emission control system. Certification means, with respect to new nonroad engines, obtaining a...) of the Clean Air Act. Emission control system means any device, system, or element of design which...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... the emission control system. Certification means, with respect to new nonroad engines, obtaining a...) of the Clean Air Act. Emission control system means any device, system, or element of design which...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... the emission control system. Certification means, with respect to new nonroad engines, obtaining a...) of the Clean Air Act. Emission control system means any device, system, or element of design which...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... the emission control system. Certification means, with respect to new nonroad engines, obtaining a...) of the Clean Air Act. Emission control system means any device, system, or element of design which...
1993-08-20
UNLIMITED. SYSTEMS ENGINEERING DIVISION AERONAUTICAL SYSTEMS CENTER AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7126 YOITCE When Government...BASINGER Progatl anager Team Leader Special Programs Divsion Special Programs Division JAMES J. O’CONNELL Chief, Systems Engineering Division Training...ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER Aeronautical Systems Center Systems Engineering Division ASC-TR-94-50 10 Bldg 11 2240 B St
Air traffic control system baseline methodology guide.
DOT National Transportation Integrated Search
1999-06-01
The Air Traffic Control System Baseline Methodology Guide serves as a reference in the design and conduct of baseline studies. : Engineering research psychologists are the intended audience for the Methodology Guide, which focuses primarily on techni...
[Aerotoxic syndrome: fact or fiction?].
de Graaf, Leroy J; Hageman, Gerard; Gouders, Bernie C M; Mulder, Michel F A
2014-01-01
Although the air from the turbine engines of commercial jet aircraft is used chiefly for propulsion some is also used to refresh and replenish air in the cabin. As a result of oil-seal leakage, pyrolysed engine oil or lubricating oil can contaminate cabin air via the aircraft's ventilation system, and flight crew and passengers can then inhale the combusted fumes. Exposure to emissions from cabin air, whether polluted or not, is associated with certain health risks. This phenomenon is known as the aerotoxic syndrome or 'cabin contamination'. The symptoms are non-specific, consisting predominantly of fatigue and mild cognitive impairment. Possible adverse health effects are attributed factors including organophosphate tricresyl phosphate, a component of aircraft engine oil that is potently neurotoxic.
Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Engineer Measures Ice Formation on an Instrument Antenna Model
1945-05-21
A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.
Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory
NASA Technical Reports Server (NTRS)
Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.
1989-01-01
High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.
Sun, MIn; Perry, Kevin L.
2015-11-20
A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
40 CFR 1068.120 - What requirements must I follow to rebuild engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Prohibited Actions and... rebuilding an engine's turbocharger or aftercooler or the engine's systems for fuel metering or electronic control so that it significantly increases the service life of the engine. For these provisions...
A comparative study of emission motorcycle with gasoline and CNG fuel
NASA Astrophysics Data System (ADS)
Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.
2016-03-01
A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline
Engine control system having speed-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-02-14
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.
NASA Astrophysics Data System (ADS)
Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2012-05-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.
Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2013-01-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707
JT90 thermal barrier coated vanes
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.
1982-01-01
The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Gregory T.; Sellnau, Mark C.
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less
Design and Implementation of the Combined Federal Campaign Collection System.
1987-12-01
Combined Federal Campaign Collection System THESIS 1 Frank L. Ucman Captain, USAF [ AFIT/GCS/ENG/87D.27 ’ii DEPARTMENT OF THE AIR FORCE LI AIR UNIVERSITY... AIR FORCE INSTITUTE OF TECHNOLOGY ii Wright-Patterson Air Force Base, Ohio DISTMIUTION STATMV1ENT A r 4 Approved for public r~~;8 6 ~ 3...of the Combined Federal Campaign Collection System THESIS I Presented to the Faculty of the School of Engineering of the Air Force Institute of
Gas Turbine Engine with Air/Fuel Heat Exchanger
NASA Technical Reports Server (NTRS)
Krautheim, Michael Stephen (Inventor); Chouinard, Donald G. (Inventor); Donovan, Eric Sean (Inventor); Karam, Michael Abraham (Inventor); Vetters, Daniel Kent (Inventor)
2017-01-01
One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Feedback linearization for control of air breathing engines
NASA Technical Reports Server (NTRS)
Phillips, Stephen; Mattern, Duane
1991-01-01
The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.
JT90 Ceramic Outer Air Seal System Refinement Program, Phase 2
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1982-01-01
The sprayed ceramic gas turbine outer air seal system was tested in two JT9D engines to substantiate the abradability and durability of the seals. Of particular significance was that one of the tests, a 150 hour 1000 cycle endurance program at nominal JT9D operating conditions, was completed with minimal effect on the seals and received Federal Aviation Administration cognizance with respect to potential field service use by the airlines. The other engine test completed 1825 endurance cycles at severe operating conditions and no burn through or other serious defects in the structural integrity of a seal segment was observed. These test results combined with other Pratt and Whitney Aircraft engine tests substantiate the potential of the ceramic outer air seal system to attain the durability goal of 50000 hour engine operating capability. Both engine tests subjected the seals to intentional blade rubs and demonstrated good abradability with volume wear ratios greater than 100, far exceeding the design goal of 10. The improved volume wear ratio will allow the turbine tip clearance to be reduced, thereby resulting in an estimated thrust specific fuel consumption improvement of 0.3 percent.
Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine
NASA Astrophysics Data System (ADS)
Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren
2018-07-01
The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.
This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...
This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
Cooling system with compressor bleed and ambient air for gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Jan H.; Marra, John J.
A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
Wright R–2600–8 Engine in the Engine Propeller Research Building
1943-03-21
A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.
NASA Technical Reports Server (NTRS)
Gary, Bruce L. (Inventor)
2001-01-01
The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.
Air Force Science and Technology Plan
2011-01-01
charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air
14 CFR 125.181 - Induction system ice prevention.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...
14 CFR 125.181 - Induction system ice prevention.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...
14 CFR 125.181 - Induction system ice prevention.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...
14 CFR 125.181 - Induction system ice prevention.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...
14 CFR 125.181 - Induction system ice prevention.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle
NASA Technical Reports Server (NTRS)
Weinstein, Leonard
2004-01-01
A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.
Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
The storage of hydrogen in the form of metal hydrides: An application to thermal engines
NASA Technical Reports Server (NTRS)
Gales, C.; Perroud, P.
1981-01-01
The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.
NASA Astrophysics Data System (ADS)
Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.
2015-12-01
The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.
Rubber hose surface defect detection system based on machine vision
NASA Astrophysics Data System (ADS)
Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng
2018-01-01
As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.
NASA Astrophysics Data System (ADS)
Barlow, Steven J.
1986-09-01
The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
Web-Based Integrated Research Environment for Aerodynamic Analyses and Design
NASA Astrophysics Data System (ADS)
Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won
e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.
Gas-engine-based, low-emission cogeneration units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chellini, R.
1994-04-01
Continental Energy Systems (CES) of Westmalle, Belgium, has been specializing, since its foundation in 1983, in the supply of cogeneration packages in the 50-300 KW power range. CES activity is mainly concentrated in the transformation of Valmet, Scania, Iveco and MAN diesel engines into spark-ignited engines capable of running on natural gas, CNG, LPG, biogas, landfill gas, etc. In the upper power range they also package Waukesha gas engines supplied from the Dutch plant of the American engine manufacturer. The new closed-loop combustion control system allows engines in the naturally-aspirated or turbocharged configuration with catalytic converters to operate well belowmore » Euro 2 limits. In fact, these engines already comply with 1995 CARB (California Air Resources Board) emission limits and with those that will become mandatory in Europe with the 1996 step. The new system still makes use of conventional components for metering and mixing functions, but these are considered as three separate devices; the electronic control unit, the oxygen sensor and an actuator enabling closed loop air/fuel ratio control. 4 figs.« less
Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report
NASA Technical Reports Server (NTRS)
Biermann, David; Valentine, E. Floyd
1939-01-01
Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System
2007-08-01
Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
Air pollution control system research: An iterative approach to developing affordable systems
NASA Technical Reports Server (NTRS)
Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.
1995-01-01
This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.
Enabling Air Force Satellite Ground System Automation Through Software Engineering
US Air Force satellite ground stations require significant manpower to operate due to their fragmented legacy architectures . To improve operating...daily operations, but also the development, maintainability, and the extensibility of such systems. This thesis researches challenges to Air Force...satellite automation: 1) existing architecture of legacy systems, 2) space segment diversity, and 3) unclear definition and scoping of the term, automation
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G
A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air ismore » directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.« less
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.
The Role of Tribology in the Development of an Oil-Free Turbocharger
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1997-01-01
Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.
Early Training Estimation System
1984-06-01
Cybernetics and Society, 1980, pp. 1067-1974. J. David , J. Price, Successful communication in full scale engineering development statements of work. Air Force...Technical Memorandum 24-80, 1980, US Army Engineering Laboratory. S. Shrier , Algorithms for system design. Proceedings of the international conference on
14 CFR 29.1105 - Induction system screens.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1105 Induction system... screen may be in any part of the induction system that is the only passage through which air can reach the engine, unless it can be deiced by heated air; (c) No screen may be deiced by alcohol alone; and...
14 CFR 25.1105 - Induction system screens.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1105 Induction system... screen may be in any part of the induction system that is the only passage through which air can reach the engine, unless it can be deiced by heated air; (c) No screen may be deiced by alcohol alone; and...
Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems
NASA Technical Reports Server (NTRS)
Coles, W. D.
1949-01-01
The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Gustafsson, U. R. C.
1976-01-01
An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.
Ambient air particle concentrating systems were installed by the US EPA in RTP, NC. These systems, designed by Harvard School of Public Health’s Department of Environmental Sciences and Engineering (Boston, MA), concentrated ambient fine and ultra-fine mode particulate matter (P...
The microspace launcher: first step to the fully air-breathing space launcher
NASA Astrophysics Data System (ADS)
Falempin, F.; Bouchez, M.; Calabro, M.
2009-09-01
A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.
1978-01-01
around 100 miles. With two Lockheed external 165-gallon tanks (and a full rocket load ) it was only 225 miles. Lieutenants Edward R. Johnston and...start. 12 While waiting for acceptable engines, North American had to bear the expense of storing unequipped F-82 airframes.13 The situation grew so bad...secure a suitable airframe for the GE TG-180 axial flow gas turbine engine, that the Air Technical Service Command of the Army Air Forces was
Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines
NASA Astrophysics Data System (ADS)
MacLeod, C.
This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
...., Digital Management Group, Mercury Air Group, Inc., Greenwood, and Professional Maintenance of Charleston... Solutions, Becht Engineering, Engineering Support Systems, Manufacturing Management Services, US Securities, WB Wells, Belcan, American Engineers, CH2M Hill Engineers, Inc., Digital Management Group, Mercury...
1988-06-01
Washington, DC Richard Celin Naval Air Engineering Center (201) 323-2173 Lakehurst, NJ Alice Giampapa TRIAD Engineering Co., Inc. Administrative (609) 939...7 3.1 DESIGN DESIGN PROCESS Producibility Engineering ........................................................ 7 Producibility Advisor... Engineers in Manufacturing Processes ........................... 21 Method Improvement Report Program
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less
Turbine blade tip gap reduction system
Diakunchak, Ihor S.
2012-09-11
A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.
Improving air traffic control: Proving new tools or approving the joint human-machine system?
NASA Technical Reports Server (NTRS)
Gaillard, Irene; Leroux, Marcel
1994-01-01
From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... filter change, fuel filter change, air filter change, cooling system maintenance, adjustment of idle... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES... at 1,500-hour intervals thereafter. (i) Exhaust gas recirculation system-related filters and coolers...
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.
Research on advanced transportation systems
NASA Astrophysics Data System (ADS)
Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka
1992-08-01
An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.
Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1978-01-01
A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine.
A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine
2006-12-01
Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K
Coherent Turbulence Rig in the Engine Research Building
1979-08-21
An engineer examines the Coherent Turbulence Rig in the Engine Research Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Coherent turbulence occurs when waves of uniform size and alignment are present in airflow. Researchers at NASA Lewis were interested in determining the relation between the size of the waves and their heat transfer properties. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities.
Integrated Evaluation of Closed Loop Air Revitalization System Components
NASA Technical Reports Server (NTRS)
Murdock, K.
2010-01-01
NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.
1994-06-27
The modified F-18 High Alpha Research Vehicle (HARV) carries out air flow studies on a flight from the Dryden Flight Research Center, Edwards, California. Using oil, researchers were able to track the air flow across the wing at different speeds and angles of attack. A thrust vectoring system had been installed on the engines' exhaust nozzles for the high angle of attack research program. The thrust vectoring system, linked to the aircraft's flight control system, moves a set of three paddles on each engine to redirect thrust for directional control and increased maneuverability at angles of attack at up to 70 degrees.
2. Photographic copy of engineering drawing showing mechanical systems in ...
2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Beliakov, V. P.
Recent developments and trends in cryogenic engineering are reviewed, with emphasis on the role of cryogenics in power generation, machine building, chemistry, and metallurgy. Several cryogenic systems are described, including air-separation apparatus, cryogenic storage systems, cryothermovacuum devices, and the cryogenic systems of superconducting devices. The theoretical principles underlying the design of cryogenic systems are examined, along with the theory for the processes involved.
This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.
The engineering options for mitigating the climate impacts of aviation.
Williams, Victoria
2007-12-15
Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.
Idle speed and fuel vapor recovery control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzel, D.V.
1993-06-01
A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.
40 CFR 86.429-78 - Maintenance, unscheduled; test vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicles. 86.429-78 Section 86.429-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES..., unscheduled; test vehicles. (a) Any unscheduled engine, emission control system, or fuel system adjustment...
Development of an instantaneous local fuel-concentration measurement probe: an engine application
NASA Astrophysics Data System (ADS)
Guibert, P.; Boutar, Z.; Lemoyne, L.
2003-11-01
This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.
40 CFR 91.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...
40 CFR 91.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...
40 CFR 91.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...
40 CFR 91.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...
40 CFR 91.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines. Previously announced in STAR as N83-34946
Engine flow visualization using a copper vapor laser
NASA Technical Reports Server (NTRS)
Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.
1987-01-01
A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... without air filters or other portions of the air intake system that are specifically identified by part... appropriate aftertreatment device and/or air filter, but without completing the assembly with all the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL...
Code of Federal Regulations, 2011 CFR
2011-07-01
... without air filters or other portions of the air intake system that are specifically identified by part... appropriate aftertreatment device and/or air filter, but without completing the assembly with all the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL...
Device to lower NOx in a gas turbine engine combustion system
Laster, Walter R; Schilp, Reinhard; Wiebe, David J
2015-02-24
An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
Electronic Warfare and Radar Systems Engineering Handbook
2012-06-01
Airframe Missile, or Reliability, Availability, and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming...the Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that the radar can also be used to update the aircraft
Electronic Warfare and Radar Systems Engineering Handbook. 4th Edition
2013-10-01
and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming Offboard Chaff RCP or RHCP Right-hand Circular...Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...Doppler techniques, in order to precisely predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that
Chin, Walter; Huchim-Lara, Oswaldo; Salas, Silvia
2016-01-01
Artisanal fishermen in the Yucatán Peninsula utilize hookah dive systems (HDS). The air compressors in these HDS are not filtered, and the intake is near the engine exhaust. This proximity allows carbon monoxide (CO) from the exhaust to directly enter the HDS volume tank and contaminate the fishermen diver's air supply. Conservative safety standards permit a diver's air supply to contain 10 parts per million (ppm) of CO. This study quantified the levels of CO in the diver's air supply both before and after physical separation of the engine exhaust from the compressor intake. CO levels in seven volume tanks were analyzed before and after a 1-inch hose was attached to the compressor intake and elevated 5 feet above the engine exhaust. The tanks were drained and refilled before collecting each set of pre- and post-intervention gas samples. Four CO measurements were collected before and after the intervention from each volume tank. A C-Squared© CO Analyzer (± 1 ppm), calibrated with a Praxair 70 ppm CON2 gas (± 5%), was used to analyze the gas samples. A paired samples t-test shows a statistically significant difference in average CO values before and after the intervention (t = 6.8674, df: 27; p⟨0.0001). The physical separation of the engine exhaust from the compressor intake reduced the CO contamination of the diver air supply by 72%. This intervention could be applied to the hookah systems in the rest of the fishing cooperative to reduce the divers' risk of CO poisoning. Copyright© Undersea and Hyperbaric Medical Society.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2014 CFR
2014-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2010 CFR
2010-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
Incident-response monitoring technologies for aircraft cabin air quality
NASA Astrophysics Data System (ADS)
Magoha, Paul W.
Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained from BAS tests by optical particle counter (OPC) revealed lognormal distributions with the mean (range) of geometric mass mean diameter (GMMD) = 0.41 (0.39, 0.45) microm and geometric standard deviation (GSD), sigma g = 1.92 (1.87, 1.98). FESEM/EDS and NAA techniques found a wide range of elements on filters, and further investigations of used filters are recommended using these techniques. The protocols for air and filter sampling and GC/MS analysis used in this study will increase the options available for detecting jet engine oil on cabin air filters. Such criteria could support policy development for compliance with cabin air quality standards during incidents.
Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.
1996-01-01
The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.
Method for controlling exhaust gas heat recovery systems in vehicles
Spohn, Brian L.; Claypole, George M.; Starr, Richard D
2013-06-11
A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.
Evaluation of fuel preparation systems for lean premixing-prevaporizing combustors
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1985-01-01
A series of experiments was carried out in order to produce design data for a premixing prevaporizing fuel-air mixture preparation system for aircraft gas turbine engine combustors. The fuel-air mixture uniformity of four different system design concepts was evaluated over a range of conditions representing the cruise operation of a modern commercial turbofan engine. Operating conditions including pressure, temperature, fuel-to-air ratio, and velocity, exhibited no clear effect on mixture uniformity of systems using pressure-atomizing fuel nozzles and large-scale mixing devices. However, the performance of systems using atomizing fuel nozzles and large-scale mixing devices was found to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixing uniformity was found to improve with system length, pressure drop, and the number of fuel injection points per unit area. A premixing system capable of providing mixing uniformity to within 15 percent over a typical range of cruise operating conditions is demonstrated.
An innovative system for supplying air and fuel mixture to a combustion chamber of an engine
NASA Astrophysics Data System (ADS)
Saikumar, G. R. Bharath
2018-04-01
Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.
2011-03-01
DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE...position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the United...Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In
40 CFR 1068.101 - What general actions does this regulation prohibit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the ultimate purchaser. This includes, for example, operating an engine without a supply of... incorrect fuel or engine oil that renders the emissions control system inoperative. Section 1068.120... (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Prohibited Actions and...
Developing Air Force Systems Engineers - a Flight Path
2012-12-01
to viewing problems from different perspectives. Specialists generally see the world through the lens of their own specialty. To paraphrase Abraham ... Maslow : If all you have is a hammer, everything looks like a nail. Systems engineers are supposed to take a different approach to problem solving
NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine
NASA Technical Reports Server (NTRS)
Weaver, Harold F.
2003-01-01
In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.
Cabin air filtration: helping to protect occupants from infectious diseases.
Bull, Karen
2008-05-01
Presentation made at the Aviation Health Conference, London, November 2006. In modern aircraft, the air in the cabin is provided by the environmental control system (ECS) and consists of approximately 50% outside air (engine 'bleed air') mixed with approximately 50% filtered, recirculated air. This paper describes how modern aircraft cabin air filters are effective at removing airborne particulate contamination (such as bacteria and viruses) from the recirculated air system. It also describes one of the technological solutions that is currently available to treat any odours or volatile organic compounds (VOCs) that may be present in the aircraft ECS.
Design type air engine Di Pietro
NASA Astrophysics Data System (ADS)
Zwierzchowski, Jaroslaw
The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine's design or emission-control system. (b) To sell engines from an engine family with a revoked... under this subpart and how may I sell these engines again? 1048.340 Section 1048.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... change the engine's design or emission control system. (b) To sell engines from an engine family with a... under this subpart and how may I sell these engines again? 1045.340 Section 1045.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK...
2010-01-01
rescue vehicle e: Error term ft: Feet HDW: Howaldtswerke- Deutsche Werft GmbH PEMFC : Proton exchange membrane fuel cells IR: Indiscretion rate/ratio...engines &Rankine cycle power plants &Closed cycle engines A PEMFC AIP system is fitted in the 212 class of submarines that German shipbuilders How...bines a conventional system consisting of a diesel engine and a lead acid battery, with the PEMFC AIP system used for slow, silent cruising. The AIP
Application of solar energy to air conditioning systems
NASA Technical Reports Server (NTRS)
Nash, J. M.; Harstad, A. J.
1976-01-01
The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditioning system compressor, converted to an equivalent roadload component, to the normal dynamometer... driving the SC03 cycle with the air conditioning system operating. (1) Engine revolutions/minute (ERPMt...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...
Aircraft Brake Systems Testing Handbook.
1981-05-01
distribution is unlimited. AIR FORCE FLIGHT TEST CENTER EDWARDS AIR FORCE BASE , CALIFORNIA AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE A This handbook... Base , California 93523. This handbook has been reviewed and cleared for open publication and/or public release by the AFFTC Office of Public Affairs in...Force lbs Ft Engine Thrust lbs F vrt Vertical Force acting on the tire at the qround lbs 9 Acceleration due to gravity 32.17 ft/sec 2 h Distance
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
Van Blarigan, Peter
2001-01-01
A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.
Measurement Uncertainty Within the Uniform Engine Test Programme
1989-05-01
Design to Cost and l.ifc (.cle Cost to Aircraft Engines AGARD LS 107 (May 1980) Microcomputer Applications in Power and Propulsion Systems AGARD LS...Flows in Propulsion Systems AGARD LS 140 (June 1985) Engine Airframe Integration for Rotorcraft AGARD LS 148 (June 1986) Design Methods Used in Solid...modest nero-thermodynamic design was of no consequence. Two engines were loaned to the proeram by the U.S. Air Force. Due to higher priority test workload
The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment
NASA Technical Reports Server (NTRS)
Malone, J. B.; Housner, J. M.; Lytle, J. K.
1999-01-01
This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
DOT National Transportation Integrated Search
1969-02-01
Both the inverted-Y yoke torso harness with inertia reel and the air- bag restraint system have had extensive independent development for some time by several engineering and research organizations for both aviation and ground vehicle occupant protec...
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., engine displacement, transmission class and configuration, interior volume, climate control system type... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
HPAC Info-dex 5: Locating engineering societies, associations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is the 1995/1996 listing of heating, ventilation, air conditioning and refrigeration systems engineering societies, trade associations, and government organizations that have established performance standards for mechanical systems and components. The societies and associations are listed alphabetically along with their complete addresses and telephone and FAX numbers.
40 CFR 86.1863-07 - Optional chassis certification for diesel vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be tested using the test fuels, sampling systems, or analytical systems specified for diesel engines... diesel vehicles. 86.1863-07 Section 86.1863-07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...
Air Force Inspection System: An Application for System-of-Systems (SOS) Engineering
2014-06-19
Program, 15 Dec 11 5. AFI 10-210, Prime Base Engineer Emergency Force ( BEEF ) Program, 6 Sep 12 6. AFI 10-245, Antiterrorism (AT), 21 Sep 12 AFI 10...Aircraft Carrying Hazardous Materials, 11 Nov 94 79. AFMAN 11-226 (I), US Standard for Terminal Instrument Procedures (TERPS) 92 80. AFMAN 10
ERIC Educational Resources Information Center
Rains, Larry
This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…
Cooling Tests of an Airplane Equipped with an NACA Cowling and a Wing-duct Cooling System
NASA Technical Reports Server (NTRS)
Turner, L I , Jr; Bierman, David; Boothy, W B
1941-01-01
Cooling tests were made of a Northrop A-17A attack airplane successively equipped with a conventional.NACA cowling and with a wing-duct cooling system. The method of cooling the engine by admitting air from the propeller slipstream into wing ducts, passing it first through the accessory compartment and then over the engine from rear to front, appeared to offer possibilities for improved engine cooling, increased cooling of the accessories, and better fairing of the power-plant installation. The results showed that ground cooling for the wing duct system without cowl flap was better than for the NACA cowling with flap; ground cooling was appreciably improved by installing a cowl flap. Satisfactory temperatures were maintained in both climb and high-speed flight, but, with the use of conventional baffles, a greater quantity of cooling air appeared to be required for the wing duct system.
I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access
NASA Technical Reports Server (NTRS)
Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)
2001-01-01
The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air Breathing Launch Vehicle 4 (ABLV4) lifting body configuration which has design heritage from NASA's NASP Program. The vehicle will be designed to accelerate from Mach 0.8 to Mach 7 and will be equipped with landing gear for horizontal landing. The complete vehicle, including the engine, will be designed for 25 flights and will be approximately 33 feet long with a total vehicle weight of approximately 25000 lbs.
Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Bruckner, Robert J.
2007-01-01
An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1983-01-01
Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.
Bose, Ranendra K.
2002-06-04
Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.
Air-Breathing Rocket Engine Test
NASA Technical Reports Server (NTRS)
2000-01-01
This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
SE Capstone Project: Building Systems Engineering Education and Workforce Capacity
2012-04-01
This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704
Report on Lincoln Electric System gas turbine inlet air cooling. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.
1993-12-01
As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less
NASA Technical Reports Server (NTRS)
Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)
1978-01-01
The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.
Automotive dual-mode hydrogen generation system
NASA Astrophysics Data System (ADS)
Kelly, D. A.
The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.
12. VIEW OF (PRESUMED) OUTHOUSE SHED. DOOR HAS AN AIR ...
12. VIEW OF (PRESUMED) OUTHOUSE SHED. DOOR HAS AN AIR FORCE INSIGNIA EMBLEM AFFIXED, 'AIR FORCE WEAPONS LABORATORY.' OTHER SIGN ON DOOR SAYS, 'BSD LIASON OFFICE.' INEL PHOTO NUMBER 65-6173, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
2017-03-23
Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Using Markov Decision Processes with Heterogeneous Queueing Systems... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in...POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less
2011-02-01
Heating, Ventilation, Air Conditioning (HVAC) system to environmentally control the HPA Room as well as a Mechanical Room to house the new diesel ...Rickie D. Moon, Senior Systems Engineer MS, Environmental Management, Samford University BS, Chemistry and Mathematics, Samford University 28...Huntsville 16 LPES, Inc. Timothy Lavallee, PE, Principal/Senior Engineer BS, Mechanical Engineering , Northeastern University MS, Civil and
Defense Acquisitions: Assessments of Selected Weapon Programs
2017-03-01
PAC-3 MSE) 81 Warfighter Information Network-Tactical (WIN-T) Increment 2 83 Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires...Unmanned Air System 05/2018 —- O Joint Surveillance Target Attack Radar System Recapitalization 10/2017 —- O Improved Turbine Engine Program TBD...Network-Tactical (WIN-T) Increment 2 83 1-page assessments Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires (LRPF) 86
Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew
A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Engine control system having fuel-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-04-03
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.
40 CFR 91.310 - Engine intake air humidity measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...
Design and Development of Wireless Power Transmission for Unmanned Air Vehicles
2012-09-01
ELECTRONIC WARFARE SYSTEMS ENGINEERING and MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 2012...Agilent Advanced Design System (ADS). Tuning elements were added and adjusted in order to optimize the efficiency. A maximum efficiency of 57% was...investigated by a series of simulations using Agilent Advanced Design System (ADS). Tuning elements were added and adjusted
System Qualities Ontology, Tradespace and Affordability (SQOTA) Project: Phase 5
2017-04-30
Principal Investigator: Dr. Barry Boehm, University of Southern California Research Team: Organizations 1: Air force Institute of Technology...Date April 30, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research ...Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology. This material is based upon
1986-10-01
opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC
2007-03-01
mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications
Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
40 CFR 610.21 - Device functional category and vehicle system effects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device's category will be based on: (1) Engineering principles governing operation of the device; (2... mechanical) All. Vapor Injectors All. Choke controls 1, 2, and 4. Air filters 1, 2, and 4. Fuel-air...
40 CFR 610.21 - Device functional category and vehicle system effects.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device's category will be based on: (1) Engineering principles governing operation of the device; (2... mechanical) All. Vapor Injectors All. Choke controls 1, 2, and 4. Air filters 1, 2, and 4. Fuel-air...
40 CFR 610.21 - Device functional category and vehicle system effects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device's category will be based on: (1) Engineering principles governing operation of the device; (2... mechanical) All. Vapor Injectors All. Choke controls 1, 2, and 4. Air filters 1, 2, and 4. Fuel-air...
19. INTERIOR VIEW INSIDE BUNKER SHOWING NITROGEN TANKS, 'MOBILE AIR ...
19. INTERIOR VIEW INSIDE BUNKER SHOWING NITROGEN TANKS, 'MOBILE AIR MONITOR' EQUIPMENT, MAN. INEL PHOTO NUMBER 65-6183, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Experimental Air Pressure Tank Systems for Process Control Education
ERIC Educational Resources Information Center
Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.
2006-01-01
In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…
Discharge Processes in the Oxygen Plasma
1981-04-01
for Period October 1975 - October 1980 Approved for public release; distribution unlimited C.) A "AERO PROPULSION LABORATORY L. AIR FORCE WRIGHT...AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AIR FORCE BASE, OHIO 45433 816,., 009 Best Available Copy S...it different from Report) IS. SUPPLEMENTARY NOTES A Dissertation Presented to the Faculty of the School of Engineering of the Air Force Institute of
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
14 CFR 25.1103 - Induction system ducts and air duct systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... between which relative motion could exist must have means for flexibility. (d) For turbine engine and... stage of the engine supercharger and of the auxiliary power unit compressor must have a drain to prevent... compartment to prevent hot gas reverse flow from burning through auxiliary power unit ducts and entering any...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
Cooling system operation efficiency of locomotive diesel engine
NASA Astrophysics Data System (ADS)
Ovcharenko, Sergey; Balagin, Oleg; Balagin, Dmitry
2017-10-01
A theoretical model for the calculation of the heat parameters of locomotive diesel engine cooling system in case of using heating agent bypass between the circuits is represented. The influence of the cooling fluid on the bypass from “hot” circuit to the “cold” circuit at different ambient air temperature is studied.
Internal combustion engine system having a power turbine with a broad efficiency range
Whiting, Todd Mathew; Vuk, Carl Thomas
2010-04-13
An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.
NASA Astrophysics Data System (ADS)
Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.
2001-04-01
We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
Combined rankine and vapor compression cycles
Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.
2005-04-19
An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.
New Compressor Added to Glenn's 450- psig Combustion Air System
NASA Technical Reports Server (NTRS)
Swan, Jeffrey A.
2000-01-01
In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.
Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode
1979-08-01
phases of air -to- air combat, for example). This is far simpler than the general problem of control law definition. How- ever, the results of such...unlimited. Ali FORCE FUGHT DYNAMICS LABORATORYAIR FORCE WRIGHT AERONAUTICALLABORATORIES AIR FORCE SYSTEMS COMMANDI * WRIGHT-PATITERSON AIR FORCE BASE...not necessarily shared by the Air Force. Brian. W. VauVliet Project Engineer S Rorad0. Anderson, Chief Control Dynamics Branch Flight Control Division
1978-06-01
and Sound Levels. Tank sound characteris- tics can be categorized by four areas of tank operation. These are: engine starting and running, mobility or...the use of the ballistic computer system. The indirect sighting and fire control system consists of the elevation quadrant M13A3, a control light source...in low ambient 2-22 temperatures. No controls or indicators are provided for the engine air intake system. The exhaust system has four engine
1987-09-01
BBiC FILE Copy- 00 ~OF AN HISTORICAL ANALYSIS OF THE DEVELOPMENT OF RED HORSE THESIS Jon A. Wheeler Captain, USAF AFIT/GEM/LSR/87S-26 T C Wrgh-atero...Air~ Forc BaEe, Ohi7 j~~pploved I ni8ie D~dmwdl AFIT/GEM/LSR/87S-26 AN HISTORICAL ANALYSIS OF THE DEVELOPMENT OF RED HORSE THESIS Jon A. Wheeler...DEVELOPMENT OF RED HORSE THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology Air University
HIDEC F-15 adaptive engine control system flight test results
NASA Technical Reports Server (NTRS)
Smolka, James W.
1987-01-01
NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
Future Air Transportation System Breakout Series Report
NASA Technical Reports Server (NTRS)
2001-01-01
This presentation discusses: AvSTAR Future System Effort Critically important; Investment in the future; Need to follow a systems engineering process; and Efforts need to be worked in worldwide context
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air...
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2003-01-01
The objective is to develop the capability to numerically model the performance of gas turbine engines used for aircraft propulsion. This capability will provide turbine engine designers with a means of accurately predicting the performance of new engines in a system environment prior to building and testing. The 'numerical test cell' developed under this project will reduce the number of component and engine tests required during development. As a result, the project will help to reduce the design cycle time and cost of gas turbine engines. This capability will be distributed to U.S. turbine engine manufacturers and air framers. This project focuses on goals of maintaining U.S. superiority in commercial gas turbine engine development for the aeronautics industry.
Characteristic Boundary Conditions for ARO-1
1983-05-01
I As shown in Fig. 3, the point designated II is the interior point that was used to define the barred coordinate system , evaluated at time t=. All...L. Jacocks Calspan Field Services, Inc. May 1983 Final Report for Period October 1981 - September 1982 r Approved for public release; destribut ...on unlimited I ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE N O T I
Performance and operational improvements made to the Waukesha AT27-GL engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbold, E.O.
1996-12-31
This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1045.120 - What emission-related warranty requirements apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... purchaser that the new engine, including all parts of its emission control system, meets two conditions: (1... generous than we require. The emission-related warranty for an engine may not be shorter than any published...
Optimization of a Small-Scale Engine Using Plasma Enhanced Ignition
2013-03-01
PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...systems were tested in the small engine and their effects on engine performance determined through comparison with a regular spark discharge (thermal...pulse plasma discharge system purchased from Plasmatronics LLC. Air fuel ratio (λ units are used in this report) sweeps were performed at several
means of increasing the life of aircraft gas turbine compressor rotor blades and stator vanes . Two proprietary erosion resistant coating systems... engine tests as the two most promising systems for doubling compressor airfoil lives. An Air Force Sponsored program to evaluate the applicability of...Helicopter engine erosion has become a severe problem in S. E. Asia because of extensive operations in sand and dust. Hard coatings offer a potential
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P.; Gustafsson, U. R. C.
1975-01-01
An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.
NASA Astrophysics Data System (ADS)
Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi
Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
Air-steam hybrid engine : an alternative to internal combustion.
DOT National Transportation Integrated Search
2011-03-01
In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...
Study of V/STOL aircraft implementation. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Portenier, W. J.; Webb, H. M.
1973-01-01
A high density short haul air market which by 1980 is large enough to support the introduction of an independent short haul air transportation system is discussed. This system will complement the existing air transportation system and will provide relief of noise and congestion problems at conventional airports. The study has found that new aircraft, exploiting V/STOL and quiet engine technology, can be available for implementing these new services, and they can operate from existing reliever and general aviation airports. The study has also found that the major funding requirements for implementing new short haul services could be borne by private capital, and that the government funding requirement would be minimal and/or recovered through the airline ticket tax. In addition, a suitable new short haul aircraft would have a market potential for $3.5 billion in foreign sales. The long lead times needed for aircraft and engine technology development will require timely actions by federal agencies.
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...
30 CFR 250.610 - Diesel engine air intakes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...
30 CFR 250.610 - Diesel engine air intakes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...
Expert System For Heat Exchanger
NASA Technical Reports Server (NTRS)
Bagby, D. Gordon; Cormier, Reginald A.
1991-01-01
Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.
Low thermal expansion seal ring support
Dewis, David W.; Glezer, Boris
2000-01-01
Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...
NASA Technical Reports Server (NTRS)
2000-01-01
Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.
Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid
Geisbrecht, Rodney A [New Alexandria, PA; Holcombe, Norman T [McMurray, PA
2006-02-07
A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
An Analysis of Air Force Management of Turbine Engine Monitoring Systems (TEMS).
1980-06-01
AIR FORCE AIR UNIVERSITY (ATC) C AIR FORCE INSTITUTE OF TECHNOLOGY LWright-Patterson Air Force Base, Ohio 80 9 22 057 All BBO RCE j GEMEM Elbert B...detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in the document are those of the author(s) and...role problems, information flow and integration problems, and leadership and command problems. Four alternative management concepts were analyzed. Based
Compact Analyzer/Controller For Oxygen-Enrichment System
NASA Technical Reports Server (NTRS)
Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.
1990-01-01
System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.
Method and system for controlled combustion engines
Oppenheim, A. K.
1990-01-01
A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1981-01-01
Preliminary layouts were made for the exhaust system, air induction system, and battery installation. Points of interference were identified and resolved by altering either the vehicle or engine designs. An engine general arrangement evolved to meet the vehicle engine compartment constraints while minimizing the duct pressure losses and the heat rejection. A power transfer system (between gasifier and power turbines) was developed to maintain nearly constant temperatures throughout the entire range of engine operation. An advanced four speed automatic transmission was selected to be used with the engine. Performance calculations show improvements in component efficiencies and an increase in fuel economy. A single stage centrifugal compressor design was completed and released for procurement. Gasifier turbine, power turbine, combustor, generator, secondary systems, materials, controls, and transmission development are reported.
UPDATE ON RADON MITIGATION RESEARCH IN SCHOOLS
The paper is an overview of research by EPA's Air and Energy Engineering Research Laboratory (AEERL) on radon mitigation in 47 schools since 1988. he structural and heating, ventilating, and air-conditioning (HVAC) system characteristics of the research schools are presented, alo...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... family which can be described on the basis of gross power, emission control system, governed speed... means the collection of engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... family which can be described on the basis of gross power, emission control system, governed speed... means the collection of engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... family which can be described on the basis of gross power, emission control system, governed speed... means the collection of engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... family which can be described on the basis of gross power, emission control system, governed speed... means the collection of engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... family which can be described on the basis of gross power, emission control system, governed speed... means the collection of engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
... designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control..., system, or element of design which controls or reduces the emission of substances from an engine. Engine... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF...
The Case for Distributed Engine Control in Turbo-Shaft Engine Systems
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.
2009-01-01
The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.
2006-03-01
2003 Air Emission Inventory, July 2004. o The generators are assumed to be diesel-fired and have a horsepower rating of less than 600 hp. o...In July 2003, the 460th LRS purchased and installed an automated movable storage system for mobility bag storage. This system eliminates wasted aisle...Installation Restoration Program Draft Final Engineering Evaluation/Cost Analysis IRP Site 4. July . • URS Corporation (URS). 2003a. Buckley Air Force
Emergency and microfog lubrication and cooling of bearings for Army helicopters
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.